1 /* -*- mode: c; c-basic-offset: 4; indent-tabs-mode: nil -*- */
2 /*
3 * prof_tree.c --- these routines maintain the parse tree of the
4 * config file.
5 *
6 * All of the details of how the tree is stored is abstracted away in
7 * this file; all of the other profile routines build, access, and
8 * modify the tree via the accessor functions found in this file.
9 *
10 * Each node may represent either a relation or a section header.
11 *
12 * A section header must have its value field be null, and may have one
13 * or more child nodes, pointed to by first_child.
14 *
15 * A relation has as its value a pointer to allocated memory
16 * containing a string. Its first_child pointer must be null.
17 *
18 */
19
20
21 #include "prof_int.h"
22
23 #include <stdio.h>
24 #include <string.h>
25 #ifdef HAVE_STDLIB_H
26 #include <stdlib.h>
27 #endif
28 #include <errno.h>
29 #include <ctype.h>
30
31 struct profile_node {
32 errcode_t magic;
33 char *name;
34 char *value;
35 int group_level;
36 unsigned int final:1; /* Indicate don't search next file */
37 unsigned int deleted:1;
38 struct profile_node *first_child;
39 struct profile_node *parent;
40 struct profile_node *next, *prev;
41 };
42
43 #define CHECK_MAGIC(node) \
44 if ((node)->magic != PROF_MAGIC_NODE) \
45 return PROF_MAGIC_NODE;
46
47 /*
48 * Free a node, and any children
49 */
profile_free_node(struct profile_node * node)50 void profile_free_node(struct profile_node *node)
51 {
52 struct profile_node *child, *next;
53
54 if (node->magic != PROF_MAGIC_NODE)
55 return;
56
57 if (node->name)
58 free(node->name);
59 if (node->value)
60 free(node->value);
61
62 for (child=node->first_child; child; child = next) {
63 next = child->next;
64 profile_free_node(child);
65 }
66 node->magic = 0;
67
68 free(node);
69 }
70
71 #ifndef HAVE_STRDUP
72 #undef strdup
73 #define strdup MYstrdup
MYstrdup(const char * s)74 static char *MYstrdup (const char *s)
75 {
76 size_t sz = strlen(s) + 1;
77 char *p = malloc(sz);
78 if (p != 0)
79 memcpy(p, s, sz);
80 return p;
81 }
82 #endif
83
84 /*
85 * Create a node
86 */
profile_create_node(const char * name,const char * value,struct profile_node ** ret_node)87 errcode_t profile_create_node(const char *name, const char *value,
88 struct profile_node **ret_node)
89 {
90 struct profile_node *new;
91
92 new = malloc(sizeof(struct profile_node));
93 if (!new)
94 return ENOMEM;
95 memset(new, 0, sizeof(struct profile_node));
96 /* Set magic here so profile_free_node will free memory */
97 new->magic = PROF_MAGIC_NODE;
98 new->name = strdup(name);
99 if (new->name == 0) {
100 profile_free_node(new);
101 return ENOMEM;
102 }
103 if (value) {
104 new->value = strdup(value);
105 if (new->value == 0) {
106 profile_free_node(new);
107 return ENOMEM;
108 }
109 }
110
111 *ret_node = new;
112 return 0;
113 }
114
115 /*
116 * This function verifies that all of the representation invariants of
117 * the profile are true. If not, we have a programming bug somewhere,
118 * probably in this file.
119 */
profile_verify_node(struct profile_node * node)120 errcode_t profile_verify_node(struct profile_node *node)
121 {
122 struct profile_node *p, *last;
123 errcode_t retval;
124
125 CHECK_MAGIC(node);
126
127 if (node->value && node->first_child)
128 return PROF_SECTION_WITH_VALUE;
129
130 last = 0;
131 for (p = node->first_child; p; last = p, p = p->next) {
132 if (p->prev != last)
133 return PROF_BAD_LINK_LIST;
134 if (last && (last->next != p))
135 return PROF_BAD_LINK_LIST;
136 if (node->group_level+1 != p->group_level)
137 return PROF_BAD_GROUP_LVL;
138 if (p->parent != node)
139 return PROF_BAD_PARENT_PTR;
140 retval = profile_verify_node(p);
141 if (retval)
142 return retval;
143 }
144 return 0;
145 }
146
147 /*
148 * Add a node to a particular section
149 */
profile_add_node(struct profile_node * section,const char * name,const char * value,struct profile_node ** ret_node)150 errcode_t profile_add_node(struct profile_node *section, const char *name,
151 const char *value, struct profile_node **ret_node)
152 {
153 errcode_t retval;
154 struct profile_node *p, *last, *new;
155
156 CHECK_MAGIC(section);
157
158 if (section->value)
159 return PROF_ADD_NOT_SECTION;
160
161 /*
162 * Find the place to insert the new node. If we are adding a subsection
163 * and already have a subsection with that name, merge them. Otherwise,
164 * we look for the place *after* the last match of the node name, since
165 * order matters.
166 */
167 for (p=section->first_child, last = 0; p; last = p, p = p->next) {
168 int cmp;
169 cmp = strcmp(p->name, name);
170 if (cmp > 0) {
171 break;
172 } else if (value == NULL && cmp == 0 &&
173 p->value == NULL && p->deleted != 1) {
174 /* Found duplicate subsection, so don't make a new one. */
175 *ret_node = p;
176 return 0;
177 }
178 }
179 retval = profile_create_node(name, value, &new);
180 if (retval)
181 return retval;
182 new->group_level = section->group_level+1;
183 new->deleted = 0;
184 new->parent = section;
185 new->prev = last;
186 new->next = p;
187 if (p)
188 p->prev = new;
189 if (last)
190 last->next = new;
191 else
192 section->first_child = new;
193 if (ret_node)
194 *ret_node = new;
195 return 0;
196 }
197
198 /*
199 * Set the final flag on a particular node.
200 */
profile_make_node_final(struct profile_node * node)201 errcode_t profile_make_node_final(struct profile_node *node)
202 {
203 CHECK_MAGIC(node);
204
205 node->final = 1;
206 return 0;
207 }
208
209 /*
210 * Check the final flag on a node
211 */
profile_is_node_final(struct profile_node * node)212 int profile_is_node_final(struct profile_node *node)
213 {
214 return (node->final != 0);
215 }
216
217 /*
218 * Return the name of a node. (Note: this is for internal functions
219 * only; if the name needs to be returned from an exported function,
220 * strdup it first!)
221 */
profile_get_node_name(struct profile_node * node)222 const char *profile_get_node_name(struct profile_node *node)
223 {
224 return node->name;
225 }
226
227 /*
228 * Return the value of a node. (Note: this is for internal functions
229 * only; if the name needs to be returned from an exported function,
230 * strdup it first!)
231 */
profile_get_node_value(struct profile_node * node)232 const char *profile_get_node_value(struct profile_node *node)
233 {
234 return node->value;
235 }
236
237 /*
238 * Iterate through the section, returning the nodes which match
239 * the given name. If name is NULL, then iterate through all the
240 * nodes in the section. If section_flag is non-zero, only return the
241 * section which matches the name; don't return relations. If value
242 * is non-NULL, then only return relations which match the requested
243 * value. (The value argument is ignored if section_flag is non-zero.)
244 *
245 * The first time this routine is called, the state pointer must be
246 * null. When this profile_find_node_relation() returns, if the state
247 * pointer is non-NULL, then this routine should be called again.
248 * (This won't happen if section_flag is non-zero, obviously.)
249 *
250 */
profile_find_node(struct profile_node * section,const char * name,const char * value,int section_flag,void ** state,struct profile_node ** node)251 errcode_t profile_find_node(struct profile_node *section, const char *name,
252 const char *value, int section_flag, void **state,
253 struct profile_node **node)
254 {
255 struct profile_node *p;
256
257 CHECK_MAGIC(section);
258 p = *state;
259 if (p) {
260 CHECK_MAGIC(p);
261 } else
262 p = section->first_child;
263
264 for (; p; p = p->next) {
265 if (name && (strcmp(p->name, name)))
266 continue;
267 if (section_flag) {
268 if (p->value)
269 continue;
270 } else {
271 if (!p->value)
272 continue;
273 if (value && (strcmp(p->value, value)))
274 continue;
275 }
276 if (p->deleted)
277 continue;
278 /* A match! */
279 if (node)
280 *node = p;
281 break;
282 }
283 if (p == 0) {
284 *state = 0;
285 return section_flag ? PROF_NO_SECTION : PROF_NO_RELATION;
286 }
287 /*
288 * OK, we've found one match; now let's try to find another
289 * one. This way, if we return a non-zero state pointer,
290 * there's guaranteed to be another match that's returned.
291 */
292 for (p = p->next; p; p = p->next) {
293 if (name && (strcmp(p->name, name)))
294 continue;
295 if (section_flag) {
296 if (p->value)
297 continue;
298 } else {
299 if (!p->value)
300 continue;
301 if (value && (strcmp(p->value, value)))
302 continue;
303 }
304 if (p->deleted)
305 continue;
306 /* A match! */
307 break;
308 }
309 *state = p;
310 return 0;
311 }
312
313
314 /*
315 * Iterate through the section, returning the relations which match
316 * the given name. If name is NULL, then iterate through all the
317 * relations in the section. The first time this routine is called,
318 * the state pointer must be null. When this profile_find_node_relation()
319 * returns, if the state pointer is non-NULL, then this routine should
320 * be called again.
321 *
322 * The returned character string in value points to the stored
323 * character string in the parse string. Before this string value is
324 * returned to a calling application (profile_find_node_relation is not an
325 * exported interface), it should be strdup()'ed.
326 */
profile_find_node_relation(struct profile_node * section,const char * name,void ** state,char ** ret_name,char ** value)327 errcode_t profile_find_node_relation(struct profile_node *section,
328 const char *name, void **state,
329 char **ret_name, char **value)
330 {
331 struct profile_node *p;
332 errcode_t retval;
333
334 retval = profile_find_node(section, name, 0, 0, state, &p);
335 if (retval)
336 return retval;
337
338 if (p) {
339 if (value)
340 *value = p->value;
341 if (ret_name)
342 *ret_name = p->name;
343 }
344 return 0;
345 }
346
347 /*
348 * Iterate through the section, returning the subsections which match
349 * the given name. If name is NULL, then iterate through all the
350 * subsections in the section. The first time this routine is called,
351 * the state pointer must be null. When this profile_find_node_subsection()
352 * returns, if the state pointer is non-NULL, then this routine should
353 * be called again.
354 *
355 * This is (plus accessor functions for the name and value given a
356 * profile node) makes this function mostly syntactic sugar for
357 * profile_find_node.
358 */
profile_find_node_subsection(struct profile_node * section,const char * name,void ** state,char ** ret_name,struct profile_node ** subsection)359 errcode_t profile_find_node_subsection(struct profile_node *section,
360 const char *name, void **state,
361 char **ret_name,
362 struct profile_node **subsection)
363 {
364 struct profile_node *p;
365 errcode_t retval;
366
367 retval = profile_find_node(section, name, 0, 1, state, &p);
368 if (retval)
369 return retval;
370
371 if (p) {
372 if (subsection)
373 *subsection = p;
374 if (ret_name)
375 *ret_name = p->name;
376 }
377 return 0;
378 }
379
380 /*
381 * This function returns the parent of a particular node.
382 */
profile_get_node_parent(struct profile_node * section,struct profile_node ** parent)383 errcode_t profile_get_node_parent(struct profile_node *section,
384 struct profile_node **parent)
385 {
386 *parent = section->parent;
387 return 0;
388 }
389
390 /*
391 * This is a general-purpose iterator for returning all nodes that
392 * match the specified name array.
393 */
394 struct profile_node_iterator {
395 prf_magic_t magic;
396 int flags;
397 const char *const *names;
398 const char *name;
399 prf_file_t file;
400 int file_serial;
401 int done_idx;
402 struct profile_node *node;
403 int num;
404 };
405
profile_node_iterator_create(profile_t profile,const char * const * names,int flags,void ** ret_iter)406 errcode_t profile_node_iterator_create(profile_t profile,
407 const char *const *names, int flags,
408 void **ret_iter)
409 {
410 struct profile_node_iterator *iter;
411 int done_idx = 0;
412
413 if (profile == 0)
414 return PROF_NO_PROFILE;
415 if (profile->magic != PROF_MAGIC_PROFILE)
416 return PROF_MAGIC_PROFILE;
417 if (!names)
418 return PROF_BAD_NAMESET;
419 if (!(flags & PROFILE_ITER_LIST_SECTION)) {
420 if (!names[0])
421 return PROF_BAD_NAMESET;
422 done_idx = 1;
423 }
424
425 iter = malloc(sizeof(*iter));
426 if (iter == NULL)
427 return ENOMEM;
428
429 iter->magic = PROF_MAGIC_NODE_ITERATOR;
430 iter->names = names;
431 iter->flags = flags;
432 iter->file = profile->first_file;
433 iter->done_idx = done_idx;
434 iter->node = 0;
435 iter->num = 0;
436 *ret_iter = iter;
437 return 0;
438 }
439
profile_node_iterator_free(void ** iter_p)440 void profile_node_iterator_free(void **iter_p)
441 {
442 struct profile_node_iterator *iter;
443
444 if (!iter_p)
445 return;
446 iter = *iter_p;
447 if (!iter || iter->magic != PROF_MAGIC_NODE_ITERATOR)
448 return;
449 free(iter);
450 *iter_p = 0;
451 }
452
453 /*
454 * Note: the returned character strings in ret_name and ret_value
455 * points to the stored character string in the parse string. Before
456 * this string value is returned to a calling application
457 * (profile_node_iterator is not an exported interface), it should be
458 * strdup()'ed.
459 */
profile_node_iterator(void ** iter_p,struct profile_node ** ret_node,char ** ret_name,char ** ret_value)460 errcode_t profile_node_iterator(void **iter_p,
461 struct profile_node **ret_node,
462 char **ret_name, char **ret_value)
463 {
464 struct profile_node_iterator *iter = *iter_p;
465 struct profile_node *section, *p;
466 const char *const *cpp;
467 errcode_t retval;
468 int skip_num = 0;
469
470 if (!iter || iter->magic != PROF_MAGIC_NODE_ITERATOR)
471 return PROF_MAGIC_NODE_ITERATOR;
472 if (iter->file && iter->file->magic != PROF_MAGIC_FILE)
473 return PROF_MAGIC_FILE;
474 if (iter->file && iter->file->data->magic != PROF_MAGIC_FILE_DATA)
475 return PROF_MAGIC_FILE_DATA;
476 /*
477 * If the file has changed, then the node pointer is invalid,
478 * so we'll have search the file again looking for it.
479 */
480 if (iter->file)
481 k5_mutex_lock(&iter->file->data->lock);
482 if (iter->node && (iter->file->data->upd_serial != iter->file_serial)) {
483 iter->flags &= ~PROFILE_ITER_FINAL_SEEN;
484 skip_num = iter->num;
485 iter->node = 0;
486 }
487 if (iter->node && iter->node->magic != PROF_MAGIC_NODE) {
488 if (iter->file)
489 k5_mutex_unlock(&iter->file->data->lock);
490 return PROF_MAGIC_NODE;
491 }
492 get_new_file:
493 if (iter->node == 0) {
494 if (iter->file == 0 ||
495 (iter->flags & PROFILE_ITER_FINAL_SEEN)) {
496 if (iter->file)
497 k5_mutex_unlock(&iter->file->data->lock);
498 profile_node_iterator_free(iter_p);
499 if (ret_node)
500 *ret_node = 0;
501 if (ret_name)
502 *ret_name = 0;
503 if (ret_value)
504 *ret_value =0;
505 return 0;
506 }
507 if ((retval = profile_update_file_locked(iter->file, NULL))) {
508 k5_mutex_unlock(&iter->file->data->lock);
509 if (retval == ENOENT || retval == EACCES) {
510 /* XXX memory leak? */
511 iter->file = iter->file->next;
512 if (iter->file)
513 k5_mutex_lock(&iter->file->data->lock);
514 skip_num = 0;
515 retval = 0;
516 goto get_new_file;
517 } else {
518 profile_node_iterator_free(iter_p);
519 return retval;
520 }
521 }
522 iter->file_serial = iter->file->data->upd_serial;
523 /*
524 * Find the section to list if we are a LIST_SECTION,
525 * or find the containing section if not.
526 */
527 section = iter->file->data->root;
528 assert(section != NULL);
529 for (cpp = iter->names; cpp[iter->done_idx]; cpp++) {
530 for (p=section->first_child; p; p = p->next) {
531 if (!strcmp(p->name, *cpp) && !p->value && !p->deleted)
532 break;
533 }
534 if (!p) {
535 section = 0;
536 break;
537 }
538 section = p;
539 if (p->final)
540 iter->flags |= PROFILE_ITER_FINAL_SEEN;
541 }
542 if (!section) {
543 k5_mutex_unlock(&iter->file->data->lock);
544 iter->file = iter->file->next;
545 if (iter->file)
546 k5_mutex_lock(&iter->file->data->lock);
547 skip_num = 0;
548 goto get_new_file;
549 }
550 iter->name = *cpp;
551 iter->node = section->first_child;
552 }
553 /*
554 * OK, now we know iter->node is set up correctly. Let's do
555 * the search.
556 */
557 for (p = iter->node; p; p = p->next) {
558 if (iter->name && strcmp(p->name, iter->name))
559 continue;
560 if ((iter->flags & PROFILE_ITER_SECTIONS_ONLY) &&
561 p->value)
562 continue;
563 if ((iter->flags & PROFILE_ITER_RELATIONS_ONLY) &&
564 !p->value)
565 continue;
566 if (skip_num > 0) {
567 skip_num--;
568 continue;
569 }
570 if (p->deleted)
571 continue;
572 break;
573 }
574 iter->num++;
575 if (!p) {
576 k5_mutex_unlock(&iter->file->data->lock);
577 iter->file = iter->file->next;
578 if (iter->file)
579 k5_mutex_lock(&iter->file->data->lock);
580 iter->node = 0;
581 skip_num = 0;
582 goto get_new_file;
583 }
584 k5_mutex_unlock(&iter->file->data->lock);
585 if ((iter->node = p->next) == NULL)
586 iter->file = iter->file->next;
587 if (ret_node)
588 *ret_node = p;
589 if (ret_name)
590 *ret_name = p->name;
591 if (ret_value)
592 *ret_value = p->value;
593 return 0;
594 }
595
596 /*
597 * Remove a particular node.
598 *
599 * TYT, 2/25/99
600 */
profile_remove_node(struct profile_node * node)601 errcode_t profile_remove_node(struct profile_node *node)
602 {
603 CHECK_MAGIC(node);
604
605 if (node->parent == 0)
606 return PROF_EINVAL; /* Can't remove the root! */
607
608 node->deleted = 1;
609
610 return 0;
611 }
612
613 /*
614 * Set the value of a specific node containing a relation.
615 *
616 * TYT, 2/25/99
617 */
profile_set_relation_value(struct profile_node * node,const char * new_value)618 errcode_t profile_set_relation_value(struct profile_node *node,
619 const char *new_value)
620 {
621 char *cp;
622
623 CHECK_MAGIC(node);
624
625 if (!node->value)
626 return PROF_SET_SECTION_VALUE;
627
628 cp = strdup(new_value);
629 if (!cp)
630 return ENOMEM;
631
632 free(node->value);
633 node->value = cp;
634
635 return 0;
636 }
637
638 /*
639 * Rename a specific node
640 *
641 * TYT 2/25/99
642 */
profile_rename_node(struct profile_node * node,const char * new_name)643 errcode_t profile_rename_node(struct profile_node *node, const char *new_name)
644 {
645 char *new_string;
646 struct profile_node *p, *last;
647
648 CHECK_MAGIC(node);
649
650 if (strcmp(new_name, node->name) == 0)
651 return 0; /* It's the same name, return */
652
653 /*
654 * Make sure we can allocate memory for the new name, first!
655 */
656 new_string = strdup(new_name);
657 if (!new_string)
658 return ENOMEM;
659
660 /*
661 * Find the place to where the new node should go. We look
662 * for the place *after* the last match of the node name,
663 * since order matters.
664 */
665 for (p=node->parent->first_child, last = 0; p; last = p, p = p->next) {
666 if (strcmp(p->name, new_name) > 0)
667 break;
668 }
669
670 /*
671 * If we need to move the node, do it now.
672 */
673 if ((p != node) && (last != node)) {
674 /*
675 * OK, let's detach the node
676 */
677 if (node->prev)
678 node->prev->next = node->next;
679 else
680 node->parent->first_child = node->next;
681 if (node->next)
682 node->next->prev = node->prev;
683
684 /*
685 * Now let's reattach it in the right place.
686 */
687 if (p)
688 p->prev = node;
689 if (last)
690 last->next = node;
691 else
692 node->parent->first_child = node;
693 node->next = p;
694 node->prev = last;
695 }
696
697 free(node->name);
698 node->name = new_string;
699 return 0;
700 }
701