1 /* -*- mode: c; c-basic-offset: 4; indent-tabs-mode: nil -*- */ 2 /* 3 * prof_tree.c --- these routines maintain the parse tree of the 4 * config file. 5 * 6 * All of the details of how the tree is stored is abstracted away in 7 * this file; all of the other profile routines build, access, and 8 * modify the tree via the accessor functions found in this file. 9 * 10 * Each node may represent either a relation or a section header. 11 * 12 * A section header must have its value field be null, and may have one 13 * or more child nodes, pointed to by first_child. 14 * 15 * A relation has as its value a pointer to allocated memory 16 * containing a string. Its first_child pointer must be null. 17 * 18 */ 19 20 21 #include "prof_int.h" 22 23 #include <stdio.h> 24 #include <string.h> 25 #ifdef HAVE_STDLIB_H 26 #include <stdlib.h> 27 #endif 28 #include <errno.h> 29 #include <ctype.h> 30 31 struct profile_node { 32 errcode_t magic; 33 char *name; 34 char *value; 35 int group_level; 36 unsigned int final:1; /* Indicate don't search next file */ 37 unsigned int deleted:1; 38 struct profile_node *first_child; 39 struct profile_node *parent; 40 struct profile_node *next, *prev; 41 }; 42 43 #define CHECK_MAGIC(node) \ 44 if ((node)->magic != PROF_MAGIC_NODE) \ 45 return PROF_MAGIC_NODE; 46 47 /* 48 * Free a node, and any children 49 */ 50 void profile_free_node(struct profile_node *node) 51 { 52 struct profile_node *child, *next; 53 54 if (node->magic != PROF_MAGIC_NODE) 55 return; 56 57 if (node->name) 58 free(node->name); 59 if (node->value) 60 free(node->value); 61 62 for (child=node->first_child; child; child = next) { 63 next = child->next; 64 profile_free_node(child); 65 } 66 node->magic = 0; 67 68 free(node); 69 } 70 71 #ifndef HAVE_STRDUP 72 #undef strdup 73 #define strdup MYstrdup 74 static char *MYstrdup (const char *s) 75 { 76 size_t sz = strlen(s) + 1; 77 char *p = malloc(sz); 78 if (p != 0) 79 memcpy(p, s, sz); 80 return p; 81 } 82 #endif 83 84 /* 85 * Create a node 86 */ 87 errcode_t profile_create_node(const char *name, const char *value, 88 struct profile_node **ret_node) 89 { 90 struct profile_node *new; 91 92 new = malloc(sizeof(struct profile_node)); 93 if (!new) 94 return ENOMEM; 95 memset(new, 0, sizeof(struct profile_node)); 96 /* Set magic here so profile_free_node will free memory */ 97 new->magic = PROF_MAGIC_NODE; 98 new->name = strdup(name); 99 if (new->name == 0) { 100 profile_free_node(new); 101 return ENOMEM; 102 } 103 if (value) { 104 new->value = strdup(value); 105 if (new->value == 0) { 106 profile_free_node(new); 107 return ENOMEM; 108 } 109 } 110 111 *ret_node = new; 112 return 0; 113 } 114 115 /* 116 * This function verifies that all of the representation invariants of 117 * the profile are true. If not, we have a programming bug somewhere, 118 * probably in this file. 119 */ 120 errcode_t profile_verify_node(struct profile_node *node) 121 { 122 struct profile_node *p, *last; 123 errcode_t retval; 124 125 CHECK_MAGIC(node); 126 127 if (node->value && node->first_child) 128 return PROF_SECTION_WITH_VALUE; 129 130 last = 0; 131 for (p = node->first_child; p; last = p, p = p->next) { 132 if (p->prev != last) 133 return PROF_BAD_LINK_LIST; 134 if (last && (last->next != p)) 135 return PROF_BAD_LINK_LIST; 136 if (node->group_level+1 != p->group_level) 137 return PROF_BAD_GROUP_LVL; 138 if (p->parent != node) 139 return PROF_BAD_PARENT_PTR; 140 retval = profile_verify_node(p); 141 if (retval) 142 return retval; 143 } 144 return 0; 145 } 146 147 /* 148 * Add a node to a particular section 149 */ 150 errcode_t profile_add_node(struct profile_node *section, const char *name, 151 const char *value, struct profile_node **ret_node) 152 { 153 errcode_t retval; 154 struct profile_node *p, *last, *new; 155 156 CHECK_MAGIC(section); 157 158 if (section->value) 159 return PROF_ADD_NOT_SECTION; 160 161 /* 162 * Find the place to insert the new node. If we are adding a subsection 163 * and already have a subsection with that name, merge them. Otherwise, 164 * we look for the place *after* the last match of the node name, since 165 * order matters. 166 */ 167 for (p=section->first_child, last = 0; p; last = p, p = p->next) { 168 int cmp; 169 cmp = strcmp(p->name, name); 170 if (cmp > 0) { 171 break; 172 } else if (value == NULL && cmp == 0 && 173 p->value == NULL && p->deleted != 1) { 174 /* Found duplicate subsection, so don't make a new one. */ 175 *ret_node = p; 176 return 0; 177 } 178 } 179 retval = profile_create_node(name, value, &new); 180 if (retval) 181 return retval; 182 new->group_level = section->group_level+1; 183 new->deleted = 0; 184 new->parent = section; 185 new->prev = last; 186 new->next = p; 187 if (p) 188 p->prev = new; 189 if (last) 190 last->next = new; 191 else 192 section->first_child = new; 193 if (ret_node) 194 *ret_node = new; 195 return 0; 196 } 197 198 /* 199 * Set the final flag on a particular node. 200 */ 201 errcode_t profile_make_node_final(struct profile_node *node) 202 { 203 CHECK_MAGIC(node); 204 205 node->final = 1; 206 return 0; 207 } 208 209 /* 210 * Check the final flag on a node 211 */ 212 int profile_is_node_final(struct profile_node *node) 213 { 214 return (node->final != 0); 215 } 216 217 /* 218 * Return the name of a node. (Note: this is for internal functions 219 * only; if the name needs to be returned from an exported function, 220 * strdup it first!) 221 */ 222 const char *profile_get_node_name(struct profile_node *node) 223 { 224 return node->name; 225 } 226 227 /* 228 * Return the value of a node. (Note: this is for internal functions 229 * only; if the name needs to be returned from an exported function, 230 * strdup it first!) 231 */ 232 const char *profile_get_node_value(struct profile_node *node) 233 { 234 return node->value; 235 } 236 237 /* 238 * Iterate through the section, returning the nodes which match 239 * the given name. If name is NULL, then iterate through all the 240 * nodes in the section. If section_flag is non-zero, only return the 241 * section which matches the name; don't return relations. If value 242 * is non-NULL, then only return relations which match the requested 243 * value. (The value argument is ignored if section_flag is non-zero.) 244 * 245 * The first time this routine is called, the state pointer must be 246 * null. When this profile_find_node_relation() returns, if the state 247 * pointer is non-NULL, then this routine should be called again. 248 * (This won't happen if section_flag is non-zero, obviously.) 249 * 250 */ 251 errcode_t profile_find_node(struct profile_node *section, const char *name, 252 const char *value, int section_flag, void **state, 253 struct profile_node **node) 254 { 255 struct profile_node *p; 256 257 CHECK_MAGIC(section); 258 p = *state; 259 if (p) { 260 CHECK_MAGIC(p); 261 } else 262 p = section->first_child; 263 264 for (; p; p = p->next) { 265 if (name && (strcmp(p->name, name))) 266 continue; 267 if (section_flag) { 268 if (p->value) 269 continue; 270 } else { 271 if (!p->value) 272 continue; 273 if (value && (strcmp(p->value, value))) 274 continue; 275 } 276 if (p->deleted) 277 continue; 278 /* A match! */ 279 if (node) 280 *node = p; 281 break; 282 } 283 if (p == 0) { 284 *state = 0; 285 return section_flag ? PROF_NO_SECTION : PROF_NO_RELATION; 286 } 287 /* 288 * OK, we've found one match; now let's try to find another 289 * one. This way, if we return a non-zero state pointer, 290 * there's guaranteed to be another match that's returned. 291 */ 292 for (p = p->next; p; p = p->next) { 293 if (name && (strcmp(p->name, name))) 294 continue; 295 if (section_flag) { 296 if (p->value) 297 continue; 298 } else { 299 if (!p->value) 300 continue; 301 if (value && (strcmp(p->value, value))) 302 continue; 303 } 304 if (p->deleted) 305 continue; 306 /* A match! */ 307 break; 308 } 309 *state = p; 310 return 0; 311 } 312 313 314 /* 315 * Iterate through the section, returning the relations which match 316 * the given name. If name is NULL, then iterate through all the 317 * relations in the section. The first time this routine is called, 318 * the state pointer must be null. When this profile_find_node_relation() 319 * returns, if the state pointer is non-NULL, then this routine should 320 * be called again. 321 * 322 * The returned character string in value points to the stored 323 * character string in the parse string. Before this string value is 324 * returned to a calling application (profile_find_node_relation is not an 325 * exported interface), it should be strdup()'ed. 326 */ 327 errcode_t profile_find_node_relation(struct profile_node *section, 328 const char *name, void **state, 329 char **ret_name, char **value) 330 { 331 struct profile_node *p; 332 errcode_t retval; 333 334 retval = profile_find_node(section, name, 0, 0, state, &p); 335 if (retval) 336 return retval; 337 338 if (p) { 339 if (value) 340 *value = p->value; 341 if (ret_name) 342 *ret_name = p->name; 343 } 344 return 0; 345 } 346 347 /* 348 * Iterate through the section, returning the subsections which match 349 * the given name. If name is NULL, then iterate through all the 350 * subsections in the section. The first time this routine is called, 351 * the state pointer must be null. When this profile_find_node_subsection() 352 * returns, if the state pointer is non-NULL, then this routine should 353 * be called again. 354 * 355 * This is (plus accessor functions for the name and value given a 356 * profile node) makes this function mostly syntactic sugar for 357 * profile_find_node. 358 */ 359 errcode_t profile_find_node_subsection(struct profile_node *section, 360 const char *name, void **state, 361 char **ret_name, 362 struct profile_node **subsection) 363 { 364 struct profile_node *p; 365 errcode_t retval; 366 367 retval = profile_find_node(section, name, 0, 1, state, &p); 368 if (retval) 369 return retval; 370 371 if (p) { 372 if (subsection) 373 *subsection = p; 374 if (ret_name) 375 *ret_name = p->name; 376 } 377 return 0; 378 } 379 380 /* 381 * This function returns the parent of a particular node. 382 */ 383 errcode_t profile_get_node_parent(struct profile_node *section, 384 struct profile_node **parent) 385 { 386 *parent = section->parent; 387 return 0; 388 } 389 390 /* 391 * This is a general-purpose iterator for returning all nodes that 392 * match the specified name array. 393 */ 394 struct profile_node_iterator { 395 prf_magic_t magic; 396 int flags; 397 const char *const *names; 398 const char *name; 399 prf_file_t file; 400 int file_serial; 401 int done_idx; 402 struct profile_node *node; 403 int num; 404 }; 405 406 errcode_t profile_node_iterator_create(profile_t profile, 407 const char *const *names, int flags, 408 void **ret_iter) 409 { 410 struct profile_node_iterator *iter; 411 int done_idx = 0; 412 413 if (profile == 0) 414 return PROF_NO_PROFILE; 415 if (profile->magic != PROF_MAGIC_PROFILE) 416 return PROF_MAGIC_PROFILE; 417 if (!names) 418 return PROF_BAD_NAMESET; 419 if (!(flags & PROFILE_ITER_LIST_SECTION)) { 420 if (!names[0]) 421 return PROF_BAD_NAMESET; 422 done_idx = 1; 423 } 424 425 iter = malloc(sizeof(*iter)); 426 if (iter == NULL) 427 return ENOMEM; 428 429 iter->magic = PROF_MAGIC_NODE_ITERATOR; 430 iter->names = names; 431 iter->flags = flags; 432 iter->file = profile->first_file; 433 iter->done_idx = done_idx; 434 iter->node = 0; 435 iter->num = 0; 436 *ret_iter = iter; 437 return 0; 438 } 439 440 void profile_node_iterator_free(void **iter_p) 441 { 442 struct profile_node_iterator *iter; 443 444 if (!iter_p) 445 return; 446 iter = *iter_p; 447 if (!iter || iter->magic != PROF_MAGIC_NODE_ITERATOR) 448 return; 449 free(iter); 450 *iter_p = 0; 451 } 452 453 /* 454 * Note: the returned character strings in ret_name and ret_value 455 * points to the stored character string in the parse string. Before 456 * this string value is returned to a calling application 457 * (profile_node_iterator is not an exported interface), it should be 458 * strdup()'ed. 459 */ 460 errcode_t profile_node_iterator(void **iter_p, 461 struct profile_node **ret_node, 462 char **ret_name, char **ret_value) 463 { 464 struct profile_node_iterator *iter = *iter_p; 465 struct profile_node *section, *p; 466 const char *const *cpp; 467 errcode_t retval; 468 int skip_num = 0; 469 470 if (!iter || iter->magic != PROF_MAGIC_NODE_ITERATOR) 471 return PROF_MAGIC_NODE_ITERATOR; 472 if (iter->file && iter->file->magic != PROF_MAGIC_FILE) 473 return PROF_MAGIC_FILE; 474 if (iter->file && iter->file->data->magic != PROF_MAGIC_FILE_DATA) 475 return PROF_MAGIC_FILE_DATA; 476 /* 477 * If the file has changed, then the node pointer is invalid, 478 * so we'll have search the file again looking for it. 479 */ 480 if (iter->file) 481 k5_mutex_lock(&iter->file->data->lock); 482 if (iter->node && (iter->file->data->upd_serial != iter->file_serial)) { 483 iter->flags &= ~PROFILE_ITER_FINAL_SEEN; 484 skip_num = iter->num; 485 iter->node = 0; 486 } 487 if (iter->node && iter->node->magic != PROF_MAGIC_NODE) { 488 if (iter->file) 489 k5_mutex_unlock(&iter->file->data->lock); 490 return PROF_MAGIC_NODE; 491 } 492 get_new_file: 493 if (iter->node == 0) { 494 if (iter->file == 0 || 495 (iter->flags & PROFILE_ITER_FINAL_SEEN)) { 496 if (iter->file) 497 k5_mutex_unlock(&iter->file->data->lock); 498 profile_node_iterator_free(iter_p); 499 if (ret_node) 500 *ret_node = 0; 501 if (ret_name) 502 *ret_name = 0; 503 if (ret_value) 504 *ret_value =0; 505 return 0; 506 } 507 if ((retval = profile_update_file_locked(iter->file, NULL))) { 508 k5_mutex_unlock(&iter->file->data->lock); 509 if (retval == ENOENT || retval == EACCES) { 510 /* XXX memory leak? */ 511 iter->file = iter->file->next; 512 if (iter->file) 513 k5_mutex_lock(&iter->file->data->lock); 514 skip_num = 0; 515 retval = 0; 516 goto get_new_file; 517 } else { 518 profile_node_iterator_free(iter_p); 519 return retval; 520 } 521 } 522 iter->file_serial = iter->file->data->upd_serial; 523 /* 524 * Find the section to list if we are a LIST_SECTION, 525 * or find the containing section if not. 526 */ 527 section = iter->file->data->root; 528 assert(section != NULL); 529 for (cpp = iter->names; cpp[iter->done_idx]; cpp++) { 530 for (p=section->first_child; p; p = p->next) { 531 if (!strcmp(p->name, *cpp) && !p->value && !p->deleted) 532 break; 533 } 534 if (!p) { 535 section = 0; 536 break; 537 } 538 section = p; 539 if (p->final) 540 iter->flags |= PROFILE_ITER_FINAL_SEEN; 541 } 542 if (!section) { 543 k5_mutex_unlock(&iter->file->data->lock); 544 iter->file = iter->file->next; 545 if (iter->file) 546 k5_mutex_lock(&iter->file->data->lock); 547 skip_num = 0; 548 goto get_new_file; 549 } 550 iter->name = *cpp; 551 iter->node = section->first_child; 552 } 553 /* 554 * OK, now we know iter->node is set up correctly. Let's do 555 * the search. 556 */ 557 for (p = iter->node; p; p = p->next) { 558 if (iter->name && strcmp(p->name, iter->name)) 559 continue; 560 if ((iter->flags & PROFILE_ITER_SECTIONS_ONLY) && 561 p->value) 562 continue; 563 if ((iter->flags & PROFILE_ITER_RELATIONS_ONLY) && 564 !p->value) 565 continue; 566 if (skip_num > 0) { 567 skip_num--; 568 continue; 569 } 570 if (p->deleted) 571 continue; 572 break; 573 } 574 iter->num++; 575 if (!p) { 576 k5_mutex_unlock(&iter->file->data->lock); 577 iter->file = iter->file->next; 578 if (iter->file) 579 k5_mutex_lock(&iter->file->data->lock); 580 iter->node = 0; 581 skip_num = 0; 582 goto get_new_file; 583 } 584 k5_mutex_unlock(&iter->file->data->lock); 585 if ((iter->node = p->next) == NULL) 586 iter->file = iter->file->next; 587 if (ret_node) 588 *ret_node = p; 589 if (ret_name) 590 *ret_name = p->name; 591 if (ret_value) 592 *ret_value = p->value; 593 return 0; 594 } 595 596 /* 597 * Remove a particular node. 598 * 599 * TYT, 2/25/99 600 */ 601 errcode_t profile_remove_node(struct profile_node *node) 602 { 603 CHECK_MAGIC(node); 604 605 if (node->parent == 0) 606 return PROF_EINVAL; /* Can't remove the root! */ 607 608 node->deleted = 1; 609 610 return 0; 611 } 612 613 /* 614 * Set the value of a specific node containing a relation. 615 * 616 * TYT, 2/25/99 617 */ 618 errcode_t profile_set_relation_value(struct profile_node *node, 619 const char *new_value) 620 { 621 char *cp; 622 623 CHECK_MAGIC(node); 624 625 if (!node->value) 626 return PROF_SET_SECTION_VALUE; 627 628 cp = strdup(new_value); 629 if (!cp) 630 return ENOMEM; 631 632 free(node->value); 633 node->value = cp; 634 635 return 0; 636 } 637 638 /* 639 * Rename a specific node 640 * 641 * TYT 2/25/99 642 */ 643 errcode_t profile_rename_node(struct profile_node *node, const char *new_name) 644 { 645 char *new_string; 646 struct profile_node *p, *last; 647 648 CHECK_MAGIC(node); 649 650 if (strcmp(new_name, node->name) == 0) 651 return 0; /* It's the same name, return */ 652 653 /* 654 * Make sure we can allocate memory for the new name, first! 655 */ 656 new_string = strdup(new_name); 657 if (!new_string) 658 return ENOMEM; 659 660 /* 661 * Find the place to where the new node should go. We look 662 * for the place *after* the last match of the node name, 663 * since order matters. 664 */ 665 for (p=node->parent->first_child, last = 0; p; last = p, p = p->next) { 666 if (strcmp(p->name, new_name) > 0) 667 break; 668 } 669 670 /* 671 * If we need to move the node, do it now. 672 */ 673 if ((p != node) && (last != node)) { 674 /* 675 * OK, let's detach the node 676 */ 677 if (node->prev) 678 node->prev->next = node->next; 679 else 680 node->parent->first_child = node->next; 681 if (node->next) 682 node->next->prev = node->prev; 683 684 /* 685 * Now let's reattach it in the right place. 686 */ 687 if (p) 688 p->prev = node; 689 if (last) 690 last->next = node; 691 else 692 node->parent->first_child = node; 693 node->next = p; 694 node->prev = last; 695 } 696 697 free(node->name); 698 node->name = new_string; 699 return 0; 700 } 701