xref: /freebsd/crypto/krb5/src/plugins/kdb/db2/libdb2/btree/bt_seq.c (revision 7f2fe78b9dd5f51c821d771b63d2e096f6fd49e9)
1 /*
2  * Copyright (C) 2002, 2016 by the Massachusetts Institute of Technology.
3  * All rights reserved.
4  *
5  * Export of this software from the United States of America may
6  *   require a specific license from the United States Government.
7  *   It is the responsibility of any person or organization contemplating
8  *   export to obtain such a license before exporting.
9  *
10  * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
11  * distribute this software and its documentation for any purpose and
12  * without fee is hereby granted, provided that the above copyright
13  * notice appear in all copies and that both that copyright notice and
14  * this permission notice appear in supporting documentation, and that
15  * the name of M.I.T. not be used in advertising or publicity pertaining
16  * to distribution of the software without specific, written prior
17  * permission.  Furthermore if you modify this software you must label
18  * your software as modified software and not distribute it in such a
19  * fashion that it might be confused with the original M.I.T. software.
20  * M.I.T. makes no representations about the suitability of
21  * this software for any purpose.  It is provided "as is" without express
22  * or implied warranty.
23  */
24 
25 /*-
26  * Copyright (c) 1990, 1993, 1994
27  *	The Regents of the University of California.  All rights reserved.
28  *
29  * This code is derived from software contributed to Berkeley by
30  * Mike Olson.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions
34  * are met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  * 3. All advertising materials mentioning features or use of this software
41  *    must display the following acknowledgement:
42  *	This product includes software developed by the University of
43  *	California, Berkeley and its contributors.
44  * 4. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  */
60 
61 #if defined(LIBC_SCCS) && !defined(lint)
62 static char sccsid[] = "@(#)bt_seq.c	8.9 (Berkeley) 6/20/95";
63 #endif /* LIBC_SCCS and not lint */
64 
65 #include <sys/types.h>
66 
67 #include <errno.h>
68 #include <stddef.h>
69 #include <stdio.h>
70 #include <stdlib.h>
71 #include <string.h>
72 
73 #include "db-int.h"
74 #include "btree.h"
75 
76 static int __bt_first __P((BTREE *, const DBT *, EPG *, int *));
77 static int __bt_seqadv __P((BTREE *, EPG *, int));
78 static int __bt_seqset __P((BTREE *, EPG *, DBT *, int));
79 
80 static int bt_rseq_next(BTREE *, EPG *);
81 static int bt_rseq_prev(BTREE *, EPG *);
82 
83 /*
84  * Sequential scan support.
85  *
86  * The tree can be scanned sequentially, starting from either end of the
87  * tree or from any specific key.  A scan request before any scanning is
88  * done is initialized as starting from the least node.
89  */
90 
91 /*
92  * __bt_seq --
93  *	Btree sequential scan interface.
94  *
95  * Parameters:
96  *	dbp:	pointer to access method
97  *	key:	key for positioning and return value
98  *	data:	data return value
99  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV.
100  *
101  * Returns:
102  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
103  */
104 int
__bt_seq(dbp,key,data,flags)105 __bt_seq(dbp, key, data, flags)
106 	const DB *dbp;
107 	DBT *key, *data;
108 	u_int flags;
109 {
110 	BTREE *t;
111 	EPG e;
112 	int status;
113 
114 	t = dbp->internal;
115 
116 	/* Toss any page pinned across calls. */
117 	if (t->bt_pinned != NULL) {
118 		mpool_put(t->bt_mp, t->bt_pinned, 0);
119 		t->bt_pinned = NULL;
120 	}
121 
122 	/*
123 	 * If scan unitialized as yet, or starting at a specific record, set
124 	 * the scan to a specific key.  Both __bt_seqset and __bt_seqadv pin
125 	 * the page the cursor references if they're successful.
126 	 */
127 	switch (flags) {
128 	case R_NEXT:
129 	case R_PREV:
130 	case R_RNEXT:
131 	case R_RPREV:
132 		if (F_ISSET(&t->bt_cursor, CURS_INIT)) {
133 			status = __bt_seqadv(t, &e, flags);
134 			break;
135 		}
136 		/* FALLTHROUGH */
137 	case R_FIRST:
138 	case R_LAST:
139 	case R_CURSOR:
140 		status = __bt_seqset(t, &e, key, flags);
141 		break;
142 	default:
143 		errno = EINVAL;
144 		return (RET_ERROR);
145 	}
146 
147 	if (status == RET_SUCCESS) {
148 		__bt_setcur(t, e.page->pgno, e.index);
149 
150 		status =
151 		    __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);
152 
153 		/*
154 		 * If the user is doing concurrent access, we copied the
155 		 * key/data, toss the page.
156 		 */
157 		if (F_ISSET(t, B_DB_LOCK))
158 			mpool_put(t->bt_mp, e.page, 0);
159 		else
160 			t->bt_pinned = e.page;
161 	}
162 	return (status);
163 }
164 
165 /*
166  * __bt_seqset --
167  *	Set the sequential scan to a specific key.
168  *
169  * Parameters:
170  *	t:	tree
171  *	ep:	storage for returned key
172  *	key:	key for initial scan position
173  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV
174  *
175  * Side effects:
176  *	Pins the page the cursor references.
177  *
178  * Returns:
179  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
180  */
181 static int
__bt_seqset(t,ep,key,flags)182 __bt_seqset(t, ep, key, flags)
183 	BTREE *t;
184 	EPG *ep;
185 	DBT *key;
186 	int flags;
187 {
188 	PAGE *h;
189 	db_pgno_t pg;
190 	int exact;
191 
192 	/*
193 	 * Find the first, last or specific key in the tree and point the
194 	 * cursor at it.  The cursor may not be moved until a new key has
195 	 * been found.
196 	 */
197 	switch (flags) {
198 	case R_CURSOR:				/* Keyed scan. */
199 		/*
200 		 * Find the first instance of the key or the smallest key
201 		 * which is greater than or equal to the specified key.
202 		 */
203 		if (key->data == NULL || key->size == 0) {
204 			errno = EINVAL;
205 			return (RET_ERROR);
206 		}
207 		return (__bt_first(t, key, ep, &exact));
208 	case R_FIRST:				/* First record. */
209 	case R_NEXT:
210 	case R_RNEXT:
211 		BT_CLR(t);
212 		/* Walk down the left-hand side of the tree. */
213 		for (pg = P_ROOT;;) {
214 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
215 				return (RET_ERROR);
216 
217 			/* Check for an empty tree. */
218 			if (NEXTINDEX(h) == 0) {
219 				mpool_put(t->bt_mp, h, 0);
220 				return (RET_SPECIAL);
221 			}
222 
223 			if (h->flags & (P_BLEAF | P_RLEAF))
224 				break;
225 			pg = GETBINTERNAL(h, 0)->pgno;
226 			BT_PUSH(t, h->pgno, 0);
227 			mpool_put(t->bt_mp, h, 0);
228 		}
229 		ep->page = h;
230 		ep->index = 0;
231 		break;
232 	case R_LAST:				/* Last record. */
233 	case R_PREV:
234 	case R_RPREV:
235 		BT_CLR(t);
236 		/* Walk down the right-hand side of the tree. */
237 		for (pg = P_ROOT;;) {
238 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
239 				return (RET_ERROR);
240 
241 			/* Check for an empty tree. */
242 			if (NEXTINDEX(h) == 0) {
243 				mpool_put(t->bt_mp, h, 0);
244 				return (RET_SPECIAL);
245 			}
246 
247 			if (h->flags & (P_BLEAF | P_RLEAF))
248 				break;
249 			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
250 			BT_PUSH(t, h->pgno, NEXTINDEX(h) - 1);
251 			mpool_put(t->bt_mp, h, 0);
252 		}
253 
254 		ep->page = h;
255 		ep->index = NEXTINDEX(h) - 1;
256 		break;
257 	}
258 	return (RET_SUCCESS);
259 }
260 
261 /*
262  * __bt_seqadvance --
263  *	Advance the sequential scan.
264  *
265  * Parameters:
266  *	t:	tree
267  *	flags:	R_NEXT, R_PREV
268  *
269  * Side effects:
270  *	Pins the page the new key/data record is on.
271  *
272  * Returns:
273  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
274  */
275 static int
__bt_seqadv(t,ep,flags)276 __bt_seqadv(t, ep, flags)
277 	BTREE *t;
278 	EPG *ep;
279 	int flags;
280 {
281 	CURSOR *c;
282 	PAGE *h;
283 	indx_t idx = 0;
284 	db_pgno_t pg;
285 	int exact, rval;
286 
287 	/*
288 	 * There are a couple of states that we can be in.  The cursor has
289 	 * been initialized by the time we get here, but that's all we know.
290 	 */
291 	c = &t->bt_cursor;
292 
293 	/*
294 	 * The cursor was deleted and there weren't any duplicate records,
295 	 * so the cursor's key was saved.  Find out where that key would
296 	 * be in the current tree.  If the returned key is an exact match,
297 	 * it means that a key/data pair was inserted into the tree after
298 	 * the delete.  We could reasonably return the key, but the problem
299 	 * is that this is the access pattern we'll see if the user is
300 	 * doing seq(..., R_NEXT)/put(..., 0) pairs, i.e. the put deletes
301 	 * the cursor record and then replaces it, so the cursor was saved,
302 	 * and we'll simply return the same "new" record until the user
303 	 * notices and doesn't do a put() of it.  Since the key is an exact
304 	 * match, we could as easily put the new record before the cursor,
305 	 * and we've made no guarantee to return it.  So, move forward or
306 	 * back a record if it's an exact match.
307 	 *
308 	 * XXX
309 	 * In the current implementation, put's to the cursor are done with
310 	 * delete/add pairs.  This has two consequences.  First, it means
311 	 * that seq(..., R_NEXT)/put(..., R_CURSOR) pairs are going to exhibit
312 	 * the same behavior as above.  Second, you can return the same key
313 	 * twice if you have duplicate records.  The scenario is that the
314 	 * cursor record is deleted, moving the cursor forward or backward
315 	 * to a duplicate.  The add then inserts the new record at a location
316 	 * ahead of the cursor because duplicates aren't sorted in any way,
317 	 * and the new record is later returned.  This has to be fixed at some
318 	 * point.
319 	 */
320 	if (F_ISSET(c, CURS_ACQUIRE)) {
321 		if ((rval = __bt_first(t, &c->key, ep, &exact)) == RET_ERROR)
322 			return (RET_ERROR);
323 		if (!exact)
324 			return (rval);
325 		/*
326 		 * XXX
327 		 * Kluge -- get, release, get the page.
328 		 */
329 		c->pg.pgno = ep->page->pgno;
330 		c->pg.index = ep->index;
331 		mpool_put(t->bt_mp, ep->page, 0);
332 	}
333 
334 	/* Get the page referenced by the cursor. */
335 	if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
336 		return (RET_ERROR);
337 
338 	/*
339  	 * Find the next/previous record in the tree and point the cursor at
340 	 * it.  The cursor may not be moved until a new key has been found.
341 	 */
342 	switch (flags) {
343 	case R_NEXT:			/* Next record. */
344 	case R_RNEXT:
345 		/*
346 		 * The cursor was deleted in duplicate records, and moved
347 		 * forward to a record that has yet to be returned.  Clear
348 		 * that flag, and return the record.
349 		 */
350 		if (F_ISSET(c, CURS_AFTER))
351 			goto usecurrent;
352 		idx = c->pg.index;
353 		if (++idx == NEXTINDEX(h)) {
354 			if (flags == R_RNEXT) {
355 				ep->page = h;
356 				ep->index = idx;
357 				return (bt_rseq_next(t, ep));
358 			}
359 			pg = h->nextpg;
360 			mpool_put(t->bt_mp, h, 0);
361 			if (pg == P_INVALID)
362 				return (RET_SPECIAL);
363 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
364 				return (RET_ERROR);
365 			idx = 0;
366 		}
367 		break;
368 	case R_PREV:			/* Previous record. */
369 	case R_RPREV:
370 		/*
371 		 * The cursor was deleted in duplicate records, and moved
372 		 * backward to a record that has yet to be returned.  Clear
373 		 * that flag, and return the record.
374 		 */
375 		if (F_ISSET(c, CURS_BEFORE)) {
376 usecurrent:		F_CLR(c, CURS_AFTER | CURS_BEFORE);
377 			ep->page = h;
378 			ep->index = c->pg.index;
379 			return (RET_SUCCESS);
380 		}
381 		idx = c->pg.index;
382 		if (idx == 0) {
383 			if (flags == R_RPREV) {
384 				ep->page = h;
385 				ep->index = idx;
386 				return (bt_rseq_prev(t, ep));
387 			}
388 			pg = h->prevpg;
389 			mpool_put(t->bt_mp, h, 0);
390 			if (pg == P_INVALID)
391 				return (RET_SPECIAL);
392 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
393 				return (RET_ERROR);
394 			idx = NEXTINDEX(h) - 1;
395 		} else
396 			--idx;
397 		break;
398 	}
399 
400 	ep->page = h;
401 	ep->index = idx;
402 	return (RET_SUCCESS);
403 }
404 
405 /*
406  * Get the first item on the next page, but by going up and down the tree.
407  */
408 static int
bt_rseq_next(BTREE * t,EPG * ep)409 bt_rseq_next(BTREE *t, EPG *ep)
410 {
411 	PAGE *h;
412 	indx_t idx;
413 	EPGNO *up;
414 	db_pgno_t pg;
415 
416 	h = ep->page;
417 	idx = ep->index;
418 	do {
419 		/* Move up the tree. */
420 		up = BT_POP(t);
421 		mpool_put(t->bt_mp, h, 0);
422 		/* Did we hit the right edge of the root? */
423 		if (up == NULL)
424 			return (RET_SPECIAL);
425 		if ((h = mpool_get(t->bt_mp, up->pgno, 0)) == NULL)
426 			return (RET_ERROR);
427 		idx = up->index;
428 	} while (++idx == NEXTINDEX(h));
429 
430 	while (!(h->flags & (P_BLEAF | P_RLEAF))) {
431 		/* Move back down the tree. */
432 		BT_PUSH(t, h->pgno, idx);
433 		pg = GETBINTERNAL(h, idx)->pgno;
434 		mpool_put(t->bt_mp, h, 0);
435 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
436 			return (RET_ERROR);
437 		idx = 0;
438 	}
439 	ep->page = h;
440 	ep->index = idx;
441 	return (RET_SUCCESS);
442 }
443 
444 /*
445  * Get the last item on the previous page, but by going up and down the tree.
446  */
447 static int
bt_rseq_prev(BTREE * t,EPG * ep)448 bt_rseq_prev(BTREE *t, EPG *ep)
449 {
450 	PAGE *h;
451 	indx_t idx;
452 	EPGNO *up;
453 	db_pgno_t pg;
454 
455 	h = ep->page;
456 	idx = ep->index;
457 	do {
458 		/* Move up the tree. */
459 		up = BT_POP(t);
460 		mpool_put(t->bt_mp, h, 0);
461 		/* Did we hit the left edge of the root? */
462 		if (up == NULL)
463 			return (RET_SPECIAL);
464 		if ((h = mpool_get(t->bt_mp, up->pgno, 0)) == NULL)
465 			return (RET_ERROR);
466 		idx = up->index;
467 	} while (idx == 0);
468 	--idx;
469 	while (!(h->flags & (P_BLEAF | P_RLEAF))) {
470 		/* Move back down the tree. */
471 		BT_PUSH(t, h->pgno, idx);
472 		pg = GETBINTERNAL(h, idx)->pgno;
473 		mpool_put(t->bt_mp, h, 0);
474 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
475 			return (RET_ERROR);
476 		idx = NEXTINDEX(h) - 1;
477 	}
478 	ep->page = h;
479 	ep->index = idx;
480 	return (RET_SUCCESS);
481 }
482 
483 /*
484  * __bt_first --
485  *	Find the first entry.
486  *
487  * Parameters:
488  *	t:	the tree
489  *    key:	the key
490  *  erval:	return EPG
491  * exactp:	pointer to exact match flag
492  *
493  * Returns:
494  *	The first entry in the tree greater than or equal to key,
495  *	or RET_SPECIAL if no such key exists.
496  */
497 static int
__bt_first(t,key,erval,exactp)498 __bt_first(t, key, erval, exactp)
499 	BTREE *t;
500 	const DBT *key;
501 	EPG *erval;
502 	int *exactp;
503 {
504 	PAGE *h, *hprev;
505 	EPG *ep, save;
506 	db_pgno_t pg;
507 
508 	/*
509 	 * Find any matching record; __bt_search pins the page.
510 	 *
511 	 * If it's an exact match and duplicates are possible, walk backwards
512 	 * in the tree until we find the first one.  Otherwise, make sure it's
513 	 * a valid key (__bt_search may return an index just past the end of a
514 	 * page) and return it.
515 	 */
516 	if ((ep = __bt_search(t, key, exactp)) == NULL)
517 		return (RET_SPECIAL);
518 	if (*exactp) {
519 		if (F_ISSET(t, B_NODUPS)) {
520 			*erval = *ep;
521 			return (RET_SUCCESS);
522 		}
523 
524 		/*
525 		 * Walk backwards, as long as the entry matches and there are
526 		 * keys left in the tree.  Save a copy of each match in case
527 		 * we go too far.
528 		 */
529 		save = *ep;
530 		h = ep->page;
531 		do {
532 			if (save.page->pgno != ep->page->pgno) {
533 				mpool_put(t->bt_mp, save.page, 0);
534 				save = *ep;
535 			} else
536 				save.index = ep->index;
537 
538 			/*
539 			 * Don't unpin the page the last (or original) match
540 			 * was on, but make sure it's unpinned if an error
541 			 * occurs.
542 			 */
543 			if (ep->index == 0) {
544 				if (h->prevpg == P_INVALID)
545 					break;
546 				if (h->pgno != save.page->pgno)
547 					mpool_put(t->bt_mp, h, 0);
548 				if ((hprev = mpool_get(t->bt_mp,
549 				    h->prevpg, 0)) == NULL) {
550 					if (h->pgno == save.page->pgno)
551 						mpool_put(t->bt_mp,
552 						    save.page, 0);
553 					return (RET_ERROR);
554 				}
555 				ep->page = h = hprev;
556 				ep->index = NEXTINDEX(h);
557 			}
558 			--ep->index;
559 		} while (__bt_cmp(t, key, ep) == 0);
560 
561 		/*
562 		 * Reach here with the last page that was looked at pinned,
563 		 * which may or may not be the same as the last (or original)
564 		 * match page.  If it's not useful, release it.
565 		 */
566 		if (h->pgno != save.page->pgno)
567 			mpool_put(t->bt_mp, h, 0);
568 
569 		*erval = save;
570 		return (RET_SUCCESS);
571 	}
572 
573 	/* If at the end of a page, find the next entry. */
574 	if (ep->index == NEXTINDEX(ep->page)) {
575 		h = ep->page;
576 		pg = h->nextpg;
577 		mpool_put(t->bt_mp, h, 0);
578 		if (pg == P_INVALID)
579 			return (RET_SPECIAL);
580 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
581 			return (RET_ERROR);
582 		ep->index = 0;
583 		ep->page = h;
584 	}
585 	*erval = *ep;
586 	return (RET_SUCCESS);
587 }
588 
589 /*
590  * __bt_setcur --
591  *	Set the cursor to an entry in the tree.
592  *
593  * Parameters:
594  *	t:	the tree
595  *   pgno:	page number
596  *  index:	page index
597  */
598 void
__bt_setcur(t,pgno,idx)599 __bt_setcur(t, pgno, idx)
600 	BTREE *t;
601 	db_pgno_t pgno;
602 	u_int idx;
603 {
604 	/* Lose any already deleted key. */
605 	if (t->bt_cursor.key.data != NULL) {
606 		free(t->bt_cursor.key.data);
607 		t->bt_cursor.key.size = 0;
608 		t->bt_cursor.key.data = NULL;
609 	}
610 	F_CLR(&t->bt_cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
611 
612 	/* Update the cursor. */
613 	t->bt_cursor.pg.pgno = pgno;
614 	t->bt_cursor.pg.index = idx;
615 	F_SET(&t->bt_cursor, CURS_INIT);
616 }
617