1 /* 2 * services/authzone.c - authoritative zone that is locally hosted. 3 * 4 * Copyright (c) 2017, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains the functions for an authority zone. This zone 40 * is queried by the iterator, just like a stub or forward zone, but then 41 * the data is locally held. 42 */ 43 44 #include "config.h" 45 #include "services/authzone.h" 46 #include "util/data/dname.h" 47 #include "util/data/msgparse.h" 48 #include "util/data/msgreply.h" 49 #include "util/data/msgencode.h" 50 #include "util/data/packed_rrset.h" 51 #include "util/regional.h" 52 #include "util/net_help.h" 53 #include "util/netevent.h" 54 #include "util/config_file.h" 55 #include "util/log.h" 56 #include "util/module.h" 57 #include "util/random.h" 58 #include "services/cache/dns.h" 59 #include "services/outside_network.h" 60 #include "services/listen_dnsport.h" 61 #include "services/mesh.h" 62 #include "sldns/rrdef.h" 63 #include "sldns/pkthdr.h" 64 #include "sldns/sbuffer.h" 65 #include "sldns/str2wire.h" 66 #include "sldns/wire2str.h" 67 #include "sldns/parseutil.h" 68 #include "sldns/keyraw.h" 69 #include "validator/val_nsec3.h" 70 #include "validator/val_nsec.h" 71 #include "validator/val_secalgo.h" 72 #include "validator/val_sigcrypt.h" 73 #include "validator/val_anchor.h" 74 #include "validator/val_utils.h" 75 #include <ctype.h> 76 77 /** bytes to use for NSEC3 hash buffer. 20 for sha1 */ 78 #define N3HASHBUFLEN 32 79 /** max number of CNAMEs we are willing to follow (in one answer) */ 80 #define MAX_CNAME_CHAIN 8 81 /** timeout for probe packets for SOA */ 82 #define AUTH_PROBE_TIMEOUT 100 /* msec */ 83 /** when to stop with SOA probes (when exponential timeouts exceed this) */ 84 #define AUTH_PROBE_TIMEOUT_STOP 1000 /* msec */ 85 /* auth transfer timeout for TCP connections, in msec */ 86 #define AUTH_TRANSFER_TIMEOUT 10000 /* msec */ 87 /* auth transfer max backoff for failed transfers and probes */ 88 #define AUTH_TRANSFER_MAX_BACKOFF 86400 /* sec */ 89 /* auth http port number */ 90 #define AUTH_HTTP_PORT 80 91 /* auth https port number */ 92 #define AUTH_HTTPS_PORT 443 93 /* max depth for nested $INCLUDEs */ 94 #define MAX_INCLUDE_DEPTH 10 95 /** number of timeouts before we fallback from IXFR to AXFR, 96 * because some versions of servers (eg. dnsmasq) drop IXFR packets. */ 97 #define NUM_TIMEOUTS_FALLBACK_IXFR 3 98 99 /** pick up nextprobe task to start waiting to perform transfer actions */ 100 static void xfr_set_timeout(struct auth_xfer* xfr, struct module_env* env, 101 int failure, int lookup_only); 102 /** move to sending the probe packets, next if fails. task_probe */ 103 static void xfr_probe_send_or_end(struct auth_xfer* xfr, 104 struct module_env* env); 105 /** pick up probe task with specified(or NULL) destination first, 106 * or transfer task if nothing to probe, or false if already in progress */ 107 static int xfr_start_probe(struct auth_xfer* xfr, struct module_env* env, 108 struct auth_master* spec); 109 /** delete xfer structure (not its tree entry) */ 110 static void auth_xfer_delete(struct auth_xfer* xfr); 111 112 /** create new dns_msg */ 113 static struct dns_msg* 114 msg_create(struct regional* region, struct query_info* qinfo) 115 { 116 struct dns_msg* msg = (struct dns_msg*)regional_alloc(region, 117 sizeof(struct dns_msg)); 118 if(!msg) 119 return NULL; 120 msg->qinfo.qname = regional_alloc_init(region, qinfo->qname, 121 qinfo->qname_len); 122 if(!msg->qinfo.qname) 123 return NULL; 124 msg->qinfo.qname_len = qinfo->qname_len; 125 msg->qinfo.qtype = qinfo->qtype; 126 msg->qinfo.qclass = qinfo->qclass; 127 msg->qinfo.local_alias = NULL; 128 /* non-packed reply_info, because it needs to grow the array */ 129 msg->rep = (struct reply_info*)regional_alloc_zero(region, 130 sizeof(struct reply_info)-sizeof(struct rrset_ref)); 131 if(!msg->rep) 132 return NULL; 133 msg->rep->flags = (uint16_t)(BIT_QR | BIT_AA); 134 msg->rep->authoritative = 1; 135 msg->rep->reason_bogus = LDNS_EDE_NONE; 136 msg->rep->qdcount = 1; 137 /* rrsets is NULL, no rrsets yet */ 138 return msg; 139 } 140 141 /** grow rrset array by one in msg */ 142 static int 143 msg_grow_array(struct regional* region, struct dns_msg* msg) 144 { 145 if(msg->rep->rrsets == NULL) { 146 msg->rep->rrsets = regional_alloc_zero(region, 147 sizeof(struct ub_packed_rrset_key*)*(msg->rep->rrset_count+1)); 148 if(!msg->rep->rrsets) 149 return 0; 150 } else { 151 struct ub_packed_rrset_key** rrsets_old = msg->rep->rrsets; 152 msg->rep->rrsets = regional_alloc_zero(region, 153 sizeof(struct ub_packed_rrset_key*)*(msg->rep->rrset_count+1)); 154 if(!msg->rep->rrsets) 155 return 0; 156 memmove(msg->rep->rrsets, rrsets_old, 157 sizeof(struct ub_packed_rrset_key*)*msg->rep->rrset_count); 158 } 159 return 1; 160 } 161 162 /** get ttl of rrset */ 163 static time_t 164 get_rrset_ttl(struct ub_packed_rrset_key* k) 165 { 166 struct packed_rrset_data* d = (struct packed_rrset_data*) 167 k->entry.data; 168 return d->ttl; 169 } 170 171 /** Copy rrset into region from domain-datanode and packet rrset */ 172 static struct ub_packed_rrset_key* 173 auth_packed_rrset_copy_region(struct auth_zone* z, struct auth_data* node, 174 struct auth_rrset* rrset, struct regional* region, time_t adjust) 175 { 176 struct ub_packed_rrset_key key; 177 memset(&key, 0, sizeof(key)); 178 key.entry.key = &key; 179 key.entry.data = rrset->data; 180 key.rk.dname = node->name; 181 key.rk.dname_len = node->namelen; 182 key.rk.type = htons(rrset->type); 183 key.rk.rrset_class = htons(z->dclass); 184 key.entry.hash = rrset_key_hash(&key.rk); 185 return packed_rrset_copy_region(&key, region, adjust); 186 } 187 188 /** fix up msg->rep TTL and prefetch ttl */ 189 static void 190 msg_ttl(struct dns_msg* msg) 191 { 192 if(msg->rep->rrset_count == 0) return; 193 if(msg->rep->rrset_count == 1) { 194 msg->rep->ttl = get_rrset_ttl(msg->rep->rrsets[0]); 195 msg->rep->prefetch_ttl = PREFETCH_TTL_CALC(msg->rep->ttl); 196 msg->rep->serve_expired_ttl = msg->rep->ttl + SERVE_EXPIRED_TTL; 197 } else if(get_rrset_ttl(msg->rep->rrsets[msg->rep->rrset_count-1]) < 198 msg->rep->ttl) { 199 msg->rep->ttl = get_rrset_ttl(msg->rep->rrsets[ 200 msg->rep->rrset_count-1]); 201 msg->rep->prefetch_ttl = PREFETCH_TTL_CALC(msg->rep->ttl); 202 msg->rep->serve_expired_ttl = msg->rep->ttl + SERVE_EXPIRED_TTL; 203 } 204 } 205 206 /** see if rrset is a duplicate in the answer message */ 207 static int 208 msg_rrset_duplicate(struct dns_msg* msg, uint8_t* nm, size_t nmlen, 209 uint16_t type, uint16_t dclass) 210 { 211 size_t i; 212 for(i=0; i<msg->rep->rrset_count; i++) { 213 struct ub_packed_rrset_key* k = msg->rep->rrsets[i]; 214 if(ntohs(k->rk.type) == type && k->rk.dname_len == nmlen && 215 ntohs(k->rk.rrset_class) == dclass && 216 query_dname_compare(k->rk.dname, nm) == 0) 217 return 1; 218 } 219 return 0; 220 } 221 222 /** add rrset to answer section (no auth, add rrsets yet) */ 223 static int 224 msg_add_rrset_an(struct auth_zone* z, struct regional* region, 225 struct dns_msg* msg, struct auth_data* node, struct auth_rrset* rrset) 226 { 227 log_assert(msg->rep->ns_numrrsets == 0); 228 log_assert(msg->rep->ar_numrrsets == 0); 229 if(!rrset || !node) 230 return 1; 231 if(msg_rrset_duplicate(msg, node->name, node->namelen, rrset->type, 232 z->dclass)) 233 return 1; 234 /* grow array */ 235 if(!msg_grow_array(region, msg)) 236 return 0; 237 /* copy it */ 238 if(!(msg->rep->rrsets[msg->rep->rrset_count] = 239 auth_packed_rrset_copy_region(z, node, rrset, region, 0))) 240 return 0; 241 msg->rep->rrset_count++; 242 msg->rep->an_numrrsets++; 243 msg_ttl(msg); 244 return 1; 245 } 246 247 /** add rrset to authority section (no additional section rrsets yet) */ 248 static int 249 msg_add_rrset_ns(struct auth_zone* z, struct regional* region, 250 struct dns_msg* msg, struct auth_data* node, struct auth_rrset* rrset) 251 { 252 log_assert(msg->rep->ar_numrrsets == 0); 253 if(!rrset || !node) 254 return 1; 255 if(msg_rrset_duplicate(msg, node->name, node->namelen, rrset->type, 256 z->dclass)) 257 return 1; 258 /* grow array */ 259 if(!msg_grow_array(region, msg)) 260 return 0; 261 /* copy it */ 262 if(!(msg->rep->rrsets[msg->rep->rrset_count] = 263 auth_packed_rrset_copy_region(z, node, rrset, region, 0))) 264 return 0; 265 msg->rep->rrset_count++; 266 msg->rep->ns_numrrsets++; 267 msg_ttl(msg); 268 return 1; 269 } 270 271 /** add rrset to additional section */ 272 static int 273 msg_add_rrset_ar(struct auth_zone* z, struct regional* region, 274 struct dns_msg* msg, struct auth_data* node, struct auth_rrset* rrset) 275 { 276 if(!rrset || !node) 277 return 1; 278 if(msg_rrset_duplicate(msg, node->name, node->namelen, rrset->type, 279 z->dclass)) 280 return 1; 281 /* grow array */ 282 if(!msg_grow_array(region, msg)) 283 return 0; 284 /* copy it */ 285 if(!(msg->rep->rrsets[msg->rep->rrset_count] = 286 auth_packed_rrset_copy_region(z, node, rrset, region, 0))) 287 return 0; 288 msg->rep->rrset_count++; 289 msg->rep->ar_numrrsets++; 290 msg_ttl(msg); 291 return 1; 292 } 293 294 struct auth_zones* auth_zones_create(void) 295 { 296 struct auth_zones* az = (struct auth_zones*)calloc(1, sizeof(*az)); 297 if(!az) { 298 log_err("out of memory"); 299 return NULL; 300 } 301 rbtree_init(&az->ztree, &auth_zone_cmp); 302 rbtree_init(&az->xtree, &auth_xfer_cmp); 303 lock_rw_init(&az->lock); 304 lock_protect(&az->lock, &az->ztree, sizeof(az->ztree)); 305 lock_protect(&az->lock, &az->xtree, sizeof(az->xtree)); 306 /* also lock protects the rbnode's in struct auth_zone, auth_xfer */ 307 lock_rw_init(&az->rpz_lock); 308 lock_protect(&az->rpz_lock, &az->rpz_first, sizeof(az->rpz_first)); 309 return az; 310 } 311 312 int auth_zone_cmp(const void* z1, const void* z2) 313 { 314 /* first sort on class, so that hierarchy can be maintained within 315 * a class */ 316 struct auth_zone* a = (struct auth_zone*)z1; 317 struct auth_zone* b = (struct auth_zone*)z2; 318 int m; 319 if(a->dclass != b->dclass) { 320 if(a->dclass < b->dclass) 321 return -1; 322 return 1; 323 } 324 /* sorted such that higher zones sort before lower zones (their 325 * contents) */ 326 return dname_lab_cmp(a->name, a->namelabs, b->name, b->namelabs, &m); 327 } 328 329 int auth_data_cmp(const void* z1, const void* z2) 330 { 331 struct auth_data* a = (struct auth_data*)z1; 332 struct auth_data* b = (struct auth_data*)z2; 333 int m; 334 /* canonical sort, because DNSSEC needs that */ 335 return dname_canon_lab_cmp(a->name, a->namelabs, b->name, 336 b->namelabs, &m); 337 } 338 339 int auth_xfer_cmp(const void* z1, const void* z2) 340 { 341 /* first sort on class, so that hierarchy can be maintained within 342 * a class */ 343 struct auth_xfer* a = (struct auth_xfer*)z1; 344 struct auth_xfer* b = (struct auth_xfer*)z2; 345 int m; 346 if(a->dclass != b->dclass) { 347 if(a->dclass < b->dclass) 348 return -1; 349 return 1; 350 } 351 /* sorted such that higher zones sort before lower zones (their 352 * contents) */ 353 return dname_lab_cmp(a->name, a->namelabs, b->name, b->namelabs, &m); 354 } 355 356 /** delete auth rrset node */ 357 static void 358 auth_rrset_delete(struct auth_rrset* rrset) 359 { 360 if(!rrset) return; 361 free(rrset->data); 362 free(rrset); 363 } 364 365 /** delete auth data domain node */ 366 static void 367 auth_data_delete(struct auth_data* n) 368 { 369 struct auth_rrset* p, *np; 370 if(!n) return; 371 p = n->rrsets; 372 while(p) { 373 np = p->next; 374 auth_rrset_delete(p); 375 p = np; 376 } 377 free(n->name); 378 free(n); 379 } 380 381 /** helper traverse to delete zones */ 382 static void 383 auth_data_del(rbnode_type* n, void* ATTR_UNUSED(arg)) 384 { 385 struct auth_data* z = (struct auth_data*)n->key; 386 auth_data_delete(z); 387 } 388 389 /** delete an auth zone structure (tree remove must be done elsewhere) */ 390 static void 391 auth_zone_delete(struct auth_zone* z, struct auth_zones* az) 392 { 393 if(!z) return; 394 lock_rw_destroy(&z->lock); 395 traverse_postorder(&z->data, auth_data_del, NULL); 396 397 if(az && z->rpz) { 398 /* keep RPZ linked list intact */ 399 lock_rw_wrlock(&az->rpz_lock); 400 if(z->rpz_az_prev) 401 z->rpz_az_prev->rpz_az_next = z->rpz_az_next; 402 else 403 az->rpz_first = z->rpz_az_next; 404 if(z->rpz_az_next) 405 z->rpz_az_next->rpz_az_prev = z->rpz_az_prev; 406 lock_rw_unlock(&az->rpz_lock); 407 } 408 if(z->rpz) 409 rpz_delete(z->rpz); 410 free(z->name); 411 free(z->zonefile); 412 free(z); 413 } 414 415 struct auth_zone* 416 auth_zone_create(struct auth_zones* az, uint8_t* nm, size_t nmlen, 417 uint16_t dclass) 418 { 419 struct auth_zone* z = (struct auth_zone*)calloc(1, sizeof(*z)); 420 if(!z) { 421 return NULL; 422 } 423 z->node.key = z; 424 z->dclass = dclass; 425 z->namelen = nmlen; 426 z->namelabs = dname_count_labels(nm); 427 z->name = memdup(nm, nmlen); 428 if(!z->name) { 429 free(z); 430 return NULL; 431 } 432 rbtree_init(&z->data, &auth_data_cmp); 433 lock_rw_init(&z->lock); 434 lock_protect(&z->lock, &z->name, sizeof(*z)-sizeof(rbnode_type)- 435 sizeof(&z->rpz_az_next)-sizeof(&z->rpz_az_prev)); 436 lock_rw_wrlock(&z->lock); 437 /* z lock protects all, except rbtree itself and the rpz linked list 438 * pointers, which are protected using az->lock */ 439 if(!rbtree_insert(&az->ztree, &z->node)) { 440 lock_rw_unlock(&z->lock); 441 auth_zone_delete(z, NULL); 442 log_warn("duplicate auth zone"); 443 return NULL; 444 } 445 return z; 446 } 447 448 struct auth_zone* 449 auth_zone_find(struct auth_zones* az, uint8_t* nm, size_t nmlen, 450 uint16_t dclass) 451 { 452 struct auth_zone key; 453 key.node.key = &key; 454 key.dclass = dclass; 455 key.name = nm; 456 key.namelen = nmlen; 457 key.namelabs = dname_count_labels(nm); 458 return (struct auth_zone*)rbtree_search(&az->ztree, &key); 459 } 460 461 struct auth_xfer* 462 auth_xfer_find(struct auth_zones* az, uint8_t* nm, size_t nmlen, 463 uint16_t dclass) 464 { 465 struct auth_xfer key; 466 key.node.key = &key; 467 key.dclass = dclass; 468 key.name = nm; 469 key.namelen = nmlen; 470 key.namelabs = dname_count_labels(nm); 471 return (struct auth_xfer*)rbtree_search(&az->xtree, &key); 472 } 473 474 /** find an auth zone or sorted less-or-equal, return true if exact */ 475 static int 476 auth_zone_find_less_equal(struct auth_zones* az, uint8_t* nm, size_t nmlen, 477 uint16_t dclass, struct auth_zone** z) 478 { 479 struct auth_zone key; 480 key.node.key = &key; 481 key.dclass = dclass; 482 key.name = nm; 483 key.namelen = nmlen; 484 key.namelabs = dname_count_labels(nm); 485 return rbtree_find_less_equal(&az->ztree, &key, (rbnode_type**)z); 486 } 487 488 489 /** find the auth zone that is above the given name */ 490 struct auth_zone* 491 auth_zones_find_zone(struct auth_zones* az, uint8_t* name, size_t name_len, 492 uint16_t dclass) 493 { 494 uint8_t* nm = name; 495 size_t nmlen = name_len; 496 struct auth_zone* z; 497 if(auth_zone_find_less_equal(az, nm, nmlen, dclass, &z)) { 498 /* exact match */ 499 return z; 500 } else { 501 /* less-or-nothing */ 502 if(!z) return NULL; /* nothing smaller, nothing above it */ 503 /* we found smaller name; smaller may be above the name, 504 * but not below it. */ 505 nm = dname_get_shared_topdomain(z->name, name); 506 dname_count_size_labels(nm, &nmlen); 507 z = NULL; 508 } 509 510 /* search up */ 511 while(!z) { 512 z = auth_zone_find(az, nm, nmlen, dclass); 513 if(z) return z; 514 if(dname_is_root(nm)) break; 515 dname_remove_label(&nm, &nmlen); 516 } 517 return NULL; 518 } 519 520 /** find or create zone with name str. caller must have lock on az. 521 * returns a wrlocked zone */ 522 static struct auth_zone* 523 auth_zones_find_or_add_zone(struct auth_zones* az, char* name) 524 { 525 uint8_t nm[LDNS_MAX_DOMAINLEN+1]; 526 size_t nmlen = sizeof(nm); 527 struct auth_zone* z; 528 529 if(sldns_str2wire_dname_buf(name, nm, &nmlen) != 0) { 530 log_err("cannot parse auth zone name: %s", name); 531 return 0; 532 } 533 z = auth_zone_find(az, nm, nmlen, LDNS_RR_CLASS_IN); 534 if(!z) { 535 /* not found, create the zone */ 536 z = auth_zone_create(az, nm, nmlen, LDNS_RR_CLASS_IN); 537 } else { 538 lock_rw_wrlock(&z->lock); 539 } 540 return z; 541 } 542 543 /** find or create xfer zone with name str. caller must have lock on az. 544 * returns a locked xfer */ 545 static struct auth_xfer* 546 auth_zones_find_or_add_xfer(struct auth_zones* az, struct auth_zone* z) 547 { 548 struct auth_xfer* x; 549 x = auth_xfer_find(az, z->name, z->namelen, z->dclass); 550 if(!x) { 551 /* not found, create the zone */ 552 x = auth_xfer_create(az, z); 553 } else { 554 lock_basic_lock(&x->lock); 555 } 556 return x; 557 } 558 559 int 560 auth_zone_set_zonefile(struct auth_zone* z, char* zonefile) 561 { 562 if(z->zonefile) free(z->zonefile); 563 if(zonefile == NULL) { 564 z->zonefile = NULL; 565 } else { 566 z->zonefile = strdup(zonefile); 567 if(!z->zonefile) { 568 log_err("malloc failure"); 569 return 0; 570 } 571 } 572 return 1; 573 } 574 575 /** set auth zone fallback. caller must have lock on zone */ 576 int 577 auth_zone_set_fallback(struct auth_zone* z, char* fallbackstr) 578 { 579 if(strcmp(fallbackstr, "yes") != 0 && strcmp(fallbackstr, "no") != 0){ 580 log_err("auth zone fallback, expected yes or no, got %s", 581 fallbackstr); 582 return 0; 583 } 584 z->fallback_enabled = (strcmp(fallbackstr, "yes")==0); 585 return 1; 586 } 587 588 /** create domain with the given name */ 589 static struct auth_data* 590 az_domain_create(struct auth_zone* z, uint8_t* nm, size_t nmlen) 591 { 592 struct auth_data* n = (struct auth_data*)malloc(sizeof(*n)); 593 if(!n) return NULL; 594 memset(n, 0, sizeof(*n)); 595 n->node.key = n; 596 n->name = memdup(nm, nmlen); 597 if(!n->name) { 598 free(n); 599 return NULL; 600 } 601 n->namelen = nmlen; 602 n->namelabs = dname_count_labels(nm); 603 if(!rbtree_insert(&z->data, &n->node)) { 604 log_warn("duplicate auth domain name"); 605 free(n->name); 606 free(n); 607 return NULL; 608 } 609 return n; 610 } 611 612 /** find domain with exactly the given name */ 613 static struct auth_data* 614 az_find_name(struct auth_zone* z, uint8_t* nm, size_t nmlen) 615 { 616 struct auth_zone key; 617 key.node.key = &key; 618 key.name = nm; 619 key.namelen = nmlen; 620 key.namelabs = dname_count_labels(nm); 621 return (struct auth_data*)rbtree_search(&z->data, &key); 622 } 623 624 /** Find domain name (or closest match) */ 625 static void 626 az_find_domain(struct auth_zone* z, struct query_info* qinfo, int* node_exact, 627 struct auth_data** node) 628 { 629 struct auth_zone key; 630 key.node.key = &key; 631 key.name = qinfo->qname; 632 key.namelen = qinfo->qname_len; 633 key.namelabs = dname_count_labels(key.name); 634 *node_exact = rbtree_find_less_equal(&z->data, &key, 635 (rbnode_type**)node); 636 } 637 638 /** find or create domain with name in zone */ 639 static struct auth_data* 640 az_domain_find_or_create(struct auth_zone* z, uint8_t* dname, 641 size_t dname_len) 642 { 643 struct auth_data* n = az_find_name(z, dname, dname_len); 644 if(!n) { 645 n = az_domain_create(z, dname, dname_len); 646 } 647 return n; 648 } 649 650 /** find rrset of given type in the domain */ 651 static struct auth_rrset* 652 az_domain_rrset(struct auth_data* n, uint16_t t) 653 { 654 struct auth_rrset* rrset; 655 if(!n) return NULL; 656 rrset = n->rrsets; 657 while(rrset) { 658 if(rrset->type == t) 659 return rrset; 660 rrset = rrset->next; 661 } 662 return NULL; 663 } 664 665 /** remove rrset of this type from domain */ 666 static void 667 domain_remove_rrset(struct auth_data* node, uint16_t rr_type) 668 { 669 struct auth_rrset* rrset, *prev; 670 if(!node) return; 671 prev = NULL; 672 rrset = node->rrsets; 673 while(rrset) { 674 if(rrset->type == rr_type) { 675 /* found it, now delete it */ 676 if(prev) prev->next = rrset->next; 677 else node->rrsets = rrset->next; 678 auth_rrset_delete(rrset); 679 return; 680 } 681 prev = rrset; 682 rrset = rrset->next; 683 } 684 } 685 686 /** find an rrsig index in the rrset. returns true if found */ 687 static int 688 az_rrset_find_rrsig(struct packed_rrset_data* d, uint8_t* rdata, size_t len, 689 size_t* index) 690 { 691 size_t i; 692 for(i=d->count; i<d->count + d->rrsig_count; i++) { 693 if(d->rr_len[i] != len) 694 continue; 695 if(memcmp(d->rr_data[i], rdata, len) == 0) { 696 *index = i; 697 return 1; 698 } 699 } 700 return 0; 701 } 702 703 /** see if rdata is duplicate */ 704 static int 705 rdata_duplicate(struct packed_rrset_data* d, uint8_t* rdata, size_t len) 706 { 707 size_t i; 708 for(i=0; i<d->count + d->rrsig_count; i++) { 709 if(d->rr_len[i] != len) 710 continue; 711 if(memcmp(d->rr_data[i], rdata, len) == 0) 712 return 1; 713 } 714 return 0; 715 } 716 717 /** get rrsig type covered from rdata. 718 * @param rdata: rdata in wireformat, starting with 16bit rdlength. 719 * @param rdatalen: length of rdata buffer. 720 * @return type covered (or 0). 721 */ 722 static uint16_t 723 rrsig_rdata_get_type_covered(uint8_t* rdata, size_t rdatalen) 724 { 725 if(rdatalen < 4) 726 return 0; 727 return sldns_read_uint16(rdata+2); 728 } 729 730 /** remove RR from existing RRset. Also sig, if it is a signature. 731 * reallocates the packed rrset for a new one, false on alloc failure */ 732 static int 733 rrset_remove_rr(struct auth_rrset* rrset, size_t index) 734 { 735 struct packed_rrset_data* d, *old = rrset->data; 736 size_t i; 737 if(index >= old->count + old->rrsig_count) 738 return 0; /* index out of bounds */ 739 d = (struct packed_rrset_data*)calloc(1, packed_rrset_sizeof(old) - ( 740 sizeof(size_t) + sizeof(uint8_t*) + sizeof(time_t) + 741 old->rr_len[index])); 742 if(!d) { 743 log_err("malloc failure"); 744 return 0; 745 } 746 d->ttl = old->ttl; 747 d->count = old->count; 748 d->rrsig_count = old->rrsig_count; 749 if(index < d->count) d->count--; 750 else d->rrsig_count--; 751 d->trust = old->trust; 752 d->security = old->security; 753 754 /* set rr_len, needed for ptr_fixup */ 755 d->rr_len = (size_t*)((uint8_t*)d + 756 sizeof(struct packed_rrset_data)); 757 if(index > 0) 758 memmove(d->rr_len, old->rr_len, (index)*sizeof(size_t)); 759 if(index+1 < old->count+old->rrsig_count) 760 memmove(&d->rr_len[index], &old->rr_len[index+1], 761 (old->count+old->rrsig_count - (index+1))*sizeof(size_t)); 762 packed_rrset_ptr_fixup(d); 763 764 /* move over ttls */ 765 if(index > 0) 766 memmove(d->rr_ttl, old->rr_ttl, (index)*sizeof(time_t)); 767 if(index+1 < old->count+old->rrsig_count) 768 memmove(&d->rr_ttl[index], &old->rr_ttl[index+1], 769 (old->count+old->rrsig_count - (index+1))*sizeof(time_t)); 770 771 /* move over rr_data */ 772 for(i=0; i<d->count+d->rrsig_count; i++) { 773 size_t oldi; 774 if(i < index) oldi = i; 775 else oldi = i+1; 776 memmove(d->rr_data[i], old->rr_data[oldi], d->rr_len[i]); 777 } 778 779 /* recalc ttl (lowest of remaining RR ttls) */ 780 if(d->count + d->rrsig_count > 0) 781 d->ttl = d->rr_ttl[0]; 782 for(i=0; i<d->count+d->rrsig_count; i++) { 783 if(d->rr_ttl[i] < d->ttl) 784 d->ttl = d->rr_ttl[i]; 785 } 786 787 free(rrset->data); 788 rrset->data = d; 789 return 1; 790 } 791 792 /** add RR to existing RRset. If insert_sig is true, add to rrsigs. 793 * This reallocates the packed rrset for a new one */ 794 static int 795 rrset_add_rr(struct auth_rrset* rrset, uint32_t rr_ttl, uint8_t* rdata, 796 size_t rdatalen, int insert_sig) 797 { 798 struct packed_rrset_data* d, *old = rrset->data; 799 size_t total, old_total; 800 801 d = (struct packed_rrset_data*)calloc(1, packed_rrset_sizeof(old) 802 + sizeof(size_t) + sizeof(uint8_t*) + sizeof(time_t) 803 + rdatalen); 804 if(!d) { 805 log_err("out of memory"); 806 return 0; 807 } 808 /* copy base values */ 809 memcpy(d, old, sizeof(struct packed_rrset_data)); 810 if(!insert_sig) { 811 d->count++; 812 } else { 813 d->rrsig_count++; 814 } 815 old_total = old->count + old->rrsig_count; 816 total = d->count + d->rrsig_count; 817 /* set rr_len, needed for ptr_fixup */ 818 d->rr_len = (size_t*)((uint8_t*)d + 819 sizeof(struct packed_rrset_data)); 820 if(old->count != 0) 821 memmove(d->rr_len, old->rr_len, old->count*sizeof(size_t)); 822 if(old->rrsig_count != 0) 823 memmove(d->rr_len+d->count, old->rr_len+old->count, 824 old->rrsig_count*sizeof(size_t)); 825 if(!insert_sig) 826 d->rr_len[d->count-1] = rdatalen; 827 else d->rr_len[total-1] = rdatalen; 828 packed_rrset_ptr_fixup(d); 829 if((time_t)rr_ttl < d->ttl) 830 d->ttl = rr_ttl; 831 832 /* copy old values into new array */ 833 if(old->count != 0) { 834 memmove(d->rr_ttl, old->rr_ttl, old->count*sizeof(time_t)); 835 /* all the old rr pieces are allocated sequential, so we 836 * can copy them in one go */ 837 memmove(d->rr_data[0], old->rr_data[0], 838 (old->rr_data[old->count-1] - old->rr_data[0]) + 839 old->rr_len[old->count-1]); 840 } 841 if(old->rrsig_count != 0) { 842 memmove(d->rr_ttl+d->count, old->rr_ttl+old->count, 843 old->rrsig_count*sizeof(time_t)); 844 memmove(d->rr_data[d->count], old->rr_data[old->count], 845 (old->rr_data[old_total-1] - old->rr_data[old->count]) + 846 old->rr_len[old_total-1]); 847 } 848 849 /* insert new value */ 850 if(!insert_sig) { 851 d->rr_ttl[d->count-1] = rr_ttl; 852 memmove(d->rr_data[d->count-1], rdata, rdatalen); 853 } else { 854 d->rr_ttl[total-1] = rr_ttl; 855 memmove(d->rr_data[total-1], rdata, rdatalen); 856 } 857 858 rrset->data = d; 859 free(old); 860 return 1; 861 } 862 863 /** Create new rrset for node with packed rrset with one RR element */ 864 static struct auth_rrset* 865 rrset_create(struct auth_data* node, uint16_t rr_type, uint32_t rr_ttl, 866 uint8_t* rdata, size_t rdatalen) 867 { 868 struct auth_rrset* rrset = (struct auth_rrset*)calloc(1, 869 sizeof(*rrset)); 870 struct auth_rrset* p, *prev; 871 struct packed_rrset_data* d; 872 if(!rrset) { 873 log_err("out of memory"); 874 return NULL; 875 } 876 rrset->type = rr_type; 877 878 /* the rrset data structure, with one RR */ 879 d = (struct packed_rrset_data*)calloc(1, 880 sizeof(struct packed_rrset_data) + sizeof(size_t) + 881 sizeof(uint8_t*) + sizeof(time_t) + rdatalen); 882 if(!d) { 883 free(rrset); 884 log_err("out of memory"); 885 return NULL; 886 } 887 rrset->data = d; 888 d->ttl = rr_ttl; 889 d->trust = rrset_trust_prim_noglue; 890 d->rr_len = (size_t*)((uint8_t*)d + sizeof(struct packed_rrset_data)); 891 d->rr_data = (uint8_t**)&(d->rr_len[1]); 892 d->rr_ttl = (time_t*)&(d->rr_data[1]); 893 d->rr_data[0] = (uint8_t*)&(d->rr_ttl[1]); 894 895 /* insert the RR */ 896 d->rr_len[0] = rdatalen; 897 d->rr_ttl[0] = rr_ttl; 898 memmove(d->rr_data[0], rdata, rdatalen); 899 d->count++; 900 901 /* insert rrset into linked list for domain */ 902 /* find sorted place to link the rrset into the list */ 903 prev = NULL; 904 p = node->rrsets; 905 while(p && p->type<=rr_type) { 906 prev = p; 907 p = p->next; 908 } 909 /* so, prev is smaller, and p is larger than rr_type */ 910 rrset->next = p; 911 if(prev) prev->next = rrset; 912 else node->rrsets = rrset; 913 return rrset; 914 } 915 916 /** count number (and size) of rrsigs that cover a type */ 917 static size_t 918 rrsig_num_that_cover(struct auth_rrset* rrsig, uint16_t rr_type, size_t* sigsz) 919 { 920 struct packed_rrset_data* d = rrsig->data; 921 size_t i, num = 0; 922 *sigsz = 0; 923 log_assert(d && rrsig->type == LDNS_RR_TYPE_RRSIG); 924 for(i=0; i<d->count+d->rrsig_count; i++) { 925 if(rrsig_rdata_get_type_covered(d->rr_data[i], 926 d->rr_len[i]) == rr_type) { 927 num++; 928 (*sigsz) += d->rr_len[i]; 929 } 930 } 931 return num; 932 } 933 934 /** See if rrsig set has covered sigs for rrset and move them over */ 935 static int 936 rrset_moveover_rrsigs(struct auth_data* node, uint16_t rr_type, 937 struct auth_rrset* rrset, struct auth_rrset* rrsig) 938 { 939 size_t sigs, sigsz, i, j, total; 940 struct packed_rrset_data* sigold = rrsig->data; 941 struct packed_rrset_data* old = rrset->data; 942 struct packed_rrset_data* d, *sigd; 943 944 log_assert(rrset->type == rr_type); 945 log_assert(rrsig->type == LDNS_RR_TYPE_RRSIG); 946 sigs = rrsig_num_that_cover(rrsig, rr_type, &sigsz); 947 if(sigs == 0) { 948 /* 0 rrsigs to move over, done */ 949 return 1; 950 } 951 952 /* allocate rrset sigsz larger for extra sigs elements, and 953 * allocate rrsig sigsz smaller for less sigs elements. */ 954 d = (struct packed_rrset_data*)calloc(1, packed_rrset_sizeof(old) 955 + sigs*(sizeof(size_t) + sizeof(uint8_t*) + sizeof(time_t)) 956 + sigsz); 957 if(!d) { 958 log_err("out of memory"); 959 return 0; 960 } 961 /* copy base values */ 962 total = old->count + old->rrsig_count; 963 memcpy(d, old, sizeof(struct packed_rrset_data)); 964 d->rrsig_count += sigs; 965 /* setup rr_len */ 966 d->rr_len = (size_t*)((uint8_t*)d + 967 sizeof(struct packed_rrset_data)); 968 if(total != 0) 969 memmove(d->rr_len, old->rr_len, total*sizeof(size_t)); 970 j = d->count+d->rrsig_count-sigs; 971 for(i=0; i<sigold->count+sigold->rrsig_count; i++) { 972 if(rrsig_rdata_get_type_covered(sigold->rr_data[i], 973 sigold->rr_len[i]) == rr_type) { 974 d->rr_len[j] = sigold->rr_len[i]; 975 j++; 976 } 977 } 978 packed_rrset_ptr_fixup(d); 979 980 /* copy old values into new array */ 981 if(total != 0) { 982 memmove(d->rr_ttl, old->rr_ttl, total*sizeof(time_t)); 983 /* all the old rr pieces are allocated sequential, so we 984 * can copy them in one go */ 985 memmove(d->rr_data[0], old->rr_data[0], 986 (old->rr_data[total-1] - old->rr_data[0]) + 987 old->rr_len[total-1]); 988 } 989 990 /* move over the rrsigs to the larger rrset*/ 991 j = d->count+d->rrsig_count-sigs; 992 for(i=0; i<sigold->count+sigold->rrsig_count; i++) { 993 if(rrsig_rdata_get_type_covered(sigold->rr_data[i], 994 sigold->rr_len[i]) == rr_type) { 995 /* move this one over to location j */ 996 d->rr_ttl[j] = sigold->rr_ttl[i]; 997 memmove(d->rr_data[j], sigold->rr_data[i], 998 sigold->rr_len[i]); 999 if(d->rr_ttl[j] < d->ttl) 1000 d->ttl = d->rr_ttl[j]; 1001 j++; 1002 } 1003 } 1004 1005 /* put it in and deallocate the old rrset */ 1006 rrset->data = d; 1007 free(old); 1008 1009 /* now make rrsig set smaller */ 1010 if(sigold->count+sigold->rrsig_count == sigs) { 1011 /* remove all sigs from rrsig, remove it entirely */ 1012 domain_remove_rrset(node, LDNS_RR_TYPE_RRSIG); 1013 return 1; 1014 } 1015 log_assert(packed_rrset_sizeof(sigold) > sigs*(sizeof(size_t) + 1016 sizeof(uint8_t*) + sizeof(time_t)) + sigsz); 1017 sigd = (struct packed_rrset_data*)calloc(1, packed_rrset_sizeof(sigold) 1018 - sigs*(sizeof(size_t) + sizeof(uint8_t*) + sizeof(time_t)) 1019 - sigsz); 1020 if(!sigd) { 1021 /* no need to free up d, it has already been placed in the 1022 * node->rrset structure */ 1023 log_err("out of memory"); 1024 return 0; 1025 } 1026 /* copy base values */ 1027 memcpy(sigd, sigold, sizeof(struct packed_rrset_data)); 1028 /* in sigd the RRSIGs are stored in the base of the RR, in count */ 1029 sigd->count -= sigs; 1030 /* setup rr_len */ 1031 sigd->rr_len = (size_t*)((uint8_t*)sigd + 1032 sizeof(struct packed_rrset_data)); 1033 j = 0; 1034 for(i=0; i<sigold->count+sigold->rrsig_count; i++) { 1035 if(rrsig_rdata_get_type_covered(sigold->rr_data[i], 1036 sigold->rr_len[i]) != rr_type) { 1037 sigd->rr_len[j] = sigold->rr_len[i]; 1038 j++; 1039 } 1040 } 1041 packed_rrset_ptr_fixup(sigd); 1042 1043 /* copy old values into new rrsig array */ 1044 j = 0; 1045 for(i=0; i<sigold->count+sigold->rrsig_count; i++) { 1046 if(rrsig_rdata_get_type_covered(sigold->rr_data[i], 1047 sigold->rr_len[i]) != rr_type) { 1048 /* move this one over to location j */ 1049 sigd->rr_ttl[j] = sigold->rr_ttl[i]; 1050 memmove(sigd->rr_data[j], sigold->rr_data[i], 1051 sigold->rr_len[i]); 1052 if(j==0) sigd->ttl = sigd->rr_ttl[j]; 1053 else { 1054 if(sigd->rr_ttl[j] < sigd->ttl) 1055 sigd->ttl = sigd->rr_ttl[j]; 1056 } 1057 j++; 1058 } 1059 } 1060 1061 /* put it in and deallocate the old rrset */ 1062 rrsig->data = sigd; 1063 free(sigold); 1064 1065 return 1; 1066 } 1067 1068 /** copy the rrsigs from the rrset to the rrsig rrset, because the rrset 1069 * is going to be deleted. reallocates the RRSIG rrset data. */ 1070 static int 1071 rrsigs_copy_from_rrset_to_rrsigset(struct auth_rrset* rrset, 1072 struct auth_rrset* rrsigset) 1073 { 1074 size_t i; 1075 if(rrset->data->rrsig_count == 0) 1076 return 1; 1077 1078 /* move them over one by one, because there might be duplicates, 1079 * duplicates are ignored */ 1080 for(i=rrset->data->count; 1081 i<rrset->data->count+rrset->data->rrsig_count; i++) { 1082 uint8_t* rdata = rrset->data->rr_data[i]; 1083 size_t rdatalen = rrset->data->rr_len[i]; 1084 time_t rr_ttl = rrset->data->rr_ttl[i]; 1085 1086 if(rdata_duplicate(rrsigset->data, rdata, rdatalen)) { 1087 continue; 1088 } 1089 if(!rrset_add_rr(rrsigset, rr_ttl, rdata, rdatalen, 0)) 1090 return 0; 1091 } 1092 return 1; 1093 } 1094 1095 /** Add rr to node, ignores duplicate RRs, 1096 * rdata points to buffer with rdatalen octets, starts with 2bytelength. */ 1097 static int 1098 az_domain_add_rr(struct auth_data* node, uint16_t rr_type, uint32_t rr_ttl, 1099 uint8_t* rdata, size_t rdatalen, int* duplicate) 1100 { 1101 struct auth_rrset* rrset; 1102 /* packed rrsets have their rrsigs along with them, sort them out */ 1103 if(rr_type == LDNS_RR_TYPE_RRSIG) { 1104 uint16_t ctype = rrsig_rdata_get_type_covered(rdata, rdatalen); 1105 if((rrset=az_domain_rrset(node, ctype))!= NULL) { 1106 /* a node of the correct type exists, add the RRSIG 1107 * to the rrset of the covered data type */ 1108 if(rdata_duplicate(rrset->data, rdata, rdatalen)) { 1109 if(duplicate) *duplicate = 1; 1110 return 1; 1111 } 1112 if(!rrset_add_rr(rrset, rr_ttl, rdata, rdatalen, 1)) 1113 return 0; 1114 } else if((rrset=az_domain_rrset(node, rr_type))!= NULL) { 1115 /* add RRSIG to rrset of type RRSIG */ 1116 if(rdata_duplicate(rrset->data, rdata, rdatalen)) { 1117 if(duplicate) *duplicate = 1; 1118 return 1; 1119 } 1120 if(!rrset_add_rr(rrset, rr_ttl, rdata, rdatalen, 0)) 1121 return 0; 1122 } else { 1123 /* create rrset of type RRSIG */ 1124 if(!rrset_create(node, rr_type, rr_ttl, rdata, 1125 rdatalen)) 1126 return 0; 1127 } 1128 } else { 1129 /* normal RR type */ 1130 if((rrset=az_domain_rrset(node, rr_type))!= NULL) { 1131 /* add data to existing node with data type */ 1132 if(rdata_duplicate(rrset->data, rdata, rdatalen)) { 1133 if(duplicate) *duplicate = 1; 1134 return 1; 1135 } 1136 if(!rrset_add_rr(rrset, rr_ttl, rdata, rdatalen, 0)) 1137 return 0; 1138 } else { 1139 struct auth_rrset* rrsig; 1140 /* create new node with data type */ 1141 if(!(rrset=rrset_create(node, rr_type, rr_ttl, rdata, 1142 rdatalen))) 1143 return 0; 1144 1145 /* see if node of type RRSIG has signatures that 1146 * cover the data type, and move them over */ 1147 /* and then make the RRSIG type smaller */ 1148 if((rrsig=az_domain_rrset(node, LDNS_RR_TYPE_RRSIG)) 1149 != NULL) { 1150 if(!rrset_moveover_rrsigs(node, rr_type, 1151 rrset, rrsig)) 1152 return 0; 1153 } 1154 } 1155 } 1156 return 1; 1157 } 1158 1159 /** insert RR into zone, ignore duplicates */ 1160 static int 1161 az_insert_rr(struct auth_zone* z, uint8_t* rr, size_t rr_len, 1162 size_t dname_len, int* duplicate) 1163 { 1164 struct auth_data* node; 1165 uint8_t* dname = rr; 1166 uint16_t rr_type = sldns_wirerr_get_type(rr, rr_len, dname_len); 1167 uint16_t rr_class = sldns_wirerr_get_class(rr, rr_len, dname_len); 1168 uint32_t rr_ttl = sldns_wirerr_get_ttl(rr, rr_len, dname_len); 1169 size_t rdatalen = ((size_t)sldns_wirerr_get_rdatalen(rr, rr_len, 1170 dname_len))+2; 1171 /* rdata points to rdata prefixed with uint16 rdatalength */ 1172 uint8_t* rdata = sldns_wirerr_get_rdatawl(rr, rr_len, dname_len); 1173 1174 if(rr_class != z->dclass) { 1175 log_err("wrong class for RR"); 1176 return 0; 1177 } 1178 if(!(node=az_domain_find_or_create(z, dname, dname_len))) { 1179 log_err("cannot create domain"); 1180 return 0; 1181 } 1182 if(!az_domain_add_rr(node, rr_type, rr_ttl, rdata, rdatalen, 1183 duplicate)) { 1184 log_err("cannot add RR to domain"); 1185 return 0; 1186 } 1187 if(z->rpz) { 1188 if(!(rpz_insert_rr(z->rpz, z->name, z->namelen, dname, 1189 dname_len, rr_type, rr_class, rr_ttl, rdata, rdatalen, 1190 rr, rr_len))) 1191 return 0; 1192 } 1193 return 1; 1194 } 1195 1196 /** Remove rr from node, ignores nonexisting RRs, 1197 * rdata points to buffer with rdatalen octets, starts with 2bytelength. */ 1198 static int 1199 az_domain_remove_rr(struct auth_data* node, uint16_t rr_type, 1200 uint8_t* rdata, size_t rdatalen, int* nonexist) 1201 { 1202 struct auth_rrset* rrset; 1203 size_t index = 0; 1204 1205 /* find the plain RR of the given type */ 1206 if((rrset=az_domain_rrset(node, rr_type))!= NULL) { 1207 if(packed_rrset_find_rr(rrset->data, rdata, rdatalen, &index)) { 1208 if(rrset->data->count == 1 && 1209 rrset->data->rrsig_count == 0) { 1210 /* last RR, delete the rrset */ 1211 domain_remove_rrset(node, rr_type); 1212 } else if(rrset->data->count == 1 && 1213 rrset->data->rrsig_count != 0) { 1214 /* move RRSIGs to the RRSIG rrset, or 1215 * this one becomes that RRset */ 1216 struct auth_rrset* rrsigset = az_domain_rrset( 1217 node, LDNS_RR_TYPE_RRSIG); 1218 if(rrsigset) { 1219 /* move left over rrsigs to the 1220 * existing rrset of type RRSIG */ 1221 rrsigs_copy_from_rrset_to_rrsigset( 1222 rrset, rrsigset); 1223 /* and then delete the rrset */ 1224 domain_remove_rrset(node, rr_type); 1225 } else { 1226 /* no rrset of type RRSIG, this 1227 * set is now of that type, 1228 * just remove the rr */ 1229 if(!rrset_remove_rr(rrset, index)) 1230 return 0; 1231 rrset->type = LDNS_RR_TYPE_RRSIG; 1232 rrset->data->count = rrset->data->rrsig_count; 1233 rrset->data->rrsig_count = 0; 1234 } 1235 } else { 1236 /* remove the RR from the rrset */ 1237 if(!rrset_remove_rr(rrset, index)) 1238 return 0; 1239 } 1240 return 1; 1241 } 1242 /* rr not found in rrset */ 1243 } 1244 1245 /* is it a type RRSIG, look under the covered type */ 1246 if(rr_type == LDNS_RR_TYPE_RRSIG) { 1247 uint16_t ctype = rrsig_rdata_get_type_covered(rdata, rdatalen); 1248 if((rrset=az_domain_rrset(node, ctype))!= NULL) { 1249 if(az_rrset_find_rrsig(rrset->data, rdata, rdatalen, 1250 &index)) { 1251 /* rrsig should have d->count > 0, be 1252 * over some rr of that type */ 1253 /* remove the rrsig from the rrsigs list of the 1254 * rrset */ 1255 if(!rrset_remove_rr(rrset, index)) 1256 return 0; 1257 return 1; 1258 } 1259 } 1260 /* also RRSIG not found */ 1261 } 1262 1263 /* nothing found to delete */ 1264 if(nonexist) *nonexist = 1; 1265 return 1; 1266 } 1267 1268 /** remove RR from zone, ignore if it does not exist, false on alloc failure*/ 1269 static int 1270 az_remove_rr(struct auth_zone* z, uint8_t* rr, size_t rr_len, 1271 size_t dname_len, int* nonexist) 1272 { 1273 struct auth_data* node; 1274 uint8_t* dname = rr; 1275 uint16_t rr_type = sldns_wirerr_get_type(rr, rr_len, dname_len); 1276 uint16_t rr_class = sldns_wirerr_get_class(rr, rr_len, dname_len); 1277 size_t rdatalen = ((size_t)sldns_wirerr_get_rdatalen(rr, rr_len, 1278 dname_len))+2; 1279 /* rdata points to rdata prefixed with uint16 rdatalength */ 1280 uint8_t* rdata = sldns_wirerr_get_rdatawl(rr, rr_len, dname_len); 1281 1282 if(rr_class != z->dclass) { 1283 log_err("wrong class for RR"); 1284 /* really also a nonexisting entry, because no records 1285 * of that class in the zone, but return an error because 1286 * getting records of the wrong class is a failure of the 1287 * zone transfer */ 1288 return 0; 1289 } 1290 node = az_find_name(z, dname, dname_len); 1291 if(!node) { 1292 /* node with that name does not exist */ 1293 /* nonexisting entry, because no such name */ 1294 *nonexist = 1; 1295 return 1; 1296 } 1297 if(!az_domain_remove_rr(node, rr_type, rdata, rdatalen, nonexist)) { 1298 /* alloc failure or so */ 1299 return 0; 1300 } 1301 /* remove the node, if necessary */ 1302 /* an rrsets==NULL entry is not kept around for empty nonterminals, 1303 * and also parent nodes are not kept around, so we just delete it */ 1304 if(node->rrsets == NULL) { 1305 (void)rbtree_delete(&z->data, node); 1306 auth_data_delete(node); 1307 } 1308 if(z->rpz) { 1309 rpz_remove_rr(z->rpz, z->name, z->namelen, dname, dname_len, 1310 rr_type, rr_class, rdata, rdatalen); 1311 } 1312 return 1; 1313 } 1314 1315 /** decompress an RR into the buffer where it'll be an uncompressed RR 1316 * with uncompressed dname and uncompressed rdata (dnames) */ 1317 static int 1318 decompress_rr_into_buffer(struct sldns_buffer* buf, uint8_t* pkt, 1319 size_t pktlen, uint8_t* dname, uint16_t rr_type, uint16_t rr_class, 1320 uint32_t rr_ttl, uint8_t* rr_data, uint16_t rr_rdlen) 1321 { 1322 sldns_buffer pktbuf; 1323 size_t dname_len = 0; 1324 size_t rdlenpos; 1325 size_t rdlen; 1326 uint8_t* rd; 1327 const sldns_rr_descriptor* desc; 1328 sldns_buffer_init_frm_data(&pktbuf, pkt, pktlen); 1329 sldns_buffer_clear(buf); 1330 1331 /* decompress dname */ 1332 sldns_buffer_set_position(&pktbuf, 1333 (size_t)(dname - sldns_buffer_current(&pktbuf))); 1334 dname_len = pkt_dname_len(&pktbuf); 1335 if(dname_len == 0) return 0; /* parse fail on dname */ 1336 if(!sldns_buffer_available(buf, dname_len)) return 0; 1337 dname_pkt_copy(&pktbuf, sldns_buffer_current(buf), dname); 1338 sldns_buffer_skip(buf, (ssize_t)dname_len); 1339 1340 /* type, class, ttl and rdatalength fields */ 1341 if(!sldns_buffer_available(buf, 10)) return 0; 1342 sldns_buffer_write_u16(buf, rr_type); 1343 sldns_buffer_write_u16(buf, rr_class); 1344 sldns_buffer_write_u32(buf, rr_ttl); 1345 rdlenpos = sldns_buffer_position(buf); 1346 sldns_buffer_write_u16(buf, 0); /* rd length position */ 1347 1348 /* decompress rdata */ 1349 desc = sldns_rr_descript(rr_type); 1350 rd = rr_data; 1351 rdlen = rr_rdlen; 1352 if(rdlen > 0 && desc && desc->_dname_count > 0) { 1353 int count = (int)desc->_dname_count; 1354 int rdf = 0; 1355 size_t len; /* how much rdata to plain copy */ 1356 size_t uncompressed_len, compressed_len; 1357 size_t oldpos; 1358 /* decompress dnames. */ 1359 while(rdlen > 0 && count) { 1360 switch(desc->_wireformat[rdf]) { 1361 case LDNS_RDF_TYPE_DNAME: 1362 sldns_buffer_set_position(&pktbuf, 1363 (size_t)(rd - 1364 sldns_buffer_begin(&pktbuf))); 1365 oldpos = sldns_buffer_position(&pktbuf); 1366 /* moves pktbuf to right after the 1367 * compressed dname, and returns uncompressed 1368 * dname length */ 1369 uncompressed_len = pkt_dname_len(&pktbuf); 1370 if(!uncompressed_len) 1371 return 0; /* parse error in dname */ 1372 if(!sldns_buffer_available(buf, 1373 uncompressed_len)) 1374 /* dname too long for buffer */ 1375 return 0; 1376 dname_pkt_copy(&pktbuf, 1377 sldns_buffer_current(buf), rd); 1378 sldns_buffer_skip(buf, (ssize_t)uncompressed_len); 1379 compressed_len = sldns_buffer_position( 1380 &pktbuf) - oldpos; 1381 rd += compressed_len; 1382 rdlen -= compressed_len; 1383 count--; 1384 len = 0; 1385 break; 1386 case LDNS_RDF_TYPE_STR: 1387 len = rd[0] + 1; 1388 break; 1389 default: 1390 len = get_rdf_size(desc->_wireformat[rdf]); 1391 break; 1392 } 1393 if(len) { 1394 if(!sldns_buffer_available(buf, len)) 1395 return 0; /* too long for buffer */ 1396 sldns_buffer_write(buf, rd, len); 1397 rd += len; 1398 rdlen -= len; 1399 } 1400 rdf++; 1401 } 1402 } 1403 /* copy remaining data */ 1404 if(rdlen > 0) { 1405 if(!sldns_buffer_available(buf, rdlen)) return 0; 1406 sldns_buffer_write(buf, rd, rdlen); 1407 } 1408 /* fixup rdlength */ 1409 sldns_buffer_write_u16_at(buf, rdlenpos, 1410 sldns_buffer_position(buf)-rdlenpos-2); 1411 sldns_buffer_flip(buf); 1412 return 1; 1413 } 1414 1415 /** insert RR into zone, from packet, decompress RR, 1416 * if duplicate is nonNULL set the flag but otherwise ignore duplicates */ 1417 static int 1418 az_insert_rr_decompress(struct auth_zone* z, uint8_t* pkt, size_t pktlen, 1419 struct sldns_buffer* scratch_buffer, uint8_t* dname, uint16_t rr_type, 1420 uint16_t rr_class, uint32_t rr_ttl, uint8_t* rr_data, 1421 uint16_t rr_rdlen, int* duplicate) 1422 { 1423 uint8_t* rr; 1424 size_t rr_len; 1425 size_t dname_len; 1426 if(!decompress_rr_into_buffer(scratch_buffer, pkt, pktlen, dname, 1427 rr_type, rr_class, rr_ttl, rr_data, rr_rdlen)) { 1428 log_err("could not decompress RR"); 1429 return 0; 1430 } 1431 rr = sldns_buffer_begin(scratch_buffer); 1432 rr_len = sldns_buffer_limit(scratch_buffer); 1433 dname_len = dname_valid(rr, rr_len); 1434 return az_insert_rr(z, rr, rr_len, dname_len, duplicate); 1435 } 1436 1437 /** remove RR from zone, from packet, decompress RR, 1438 * if nonexist is nonNULL set the flag but otherwise ignore nonexisting entries*/ 1439 static int 1440 az_remove_rr_decompress(struct auth_zone* z, uint8_t* pkt, size_t pktlen, 1441 struct sldns_buffer* scratch_buffer, uint8_t* dname, uint16_t rr_type, 1442 uint16_t rr_class, uint32_t rr_ttl, uint8_t* rr_data, 1443 uint16_t rr_rdlen, int* nonexist) 1444 { 1445 uint8_t* rr; 1446 size_t rr_len; 1447 size_t dname_len; 1448 if(!decompress_rr_into_buffer(scratch_buffer, pkt, pktlen, dname, 1449 rr_type, rr_class, rr_ttl, rr_data, rr_rdlen)) { 1450 log_err("could not decompress RR"); 1451 return 0; 1452 } 1453 rr = sldns_buffer_begin(scratch_buffer); 1454 rr_len = sldns_buffer_limit(scratch_buffer); 1455 dname_len = dname_valid(rr, rr_len); 1456 return az_remove_rr(z, rr, rr_len, dname_len, nonexist); 1457 } 1458 1459 /** 1460 * Parse zonefile 1461 * @param z: zone to read in. 1462 * @param in: file to read from (just opened). 1463 * @param rr: buffer to use for RRs, 64k. 1464 * passed so that recursive includes can use the same buffer and do 1465 * not grow the stack too much. 1466 * @param rrbuflen: sizeof rr buffer. 1467 * @param state: parse state with $ORIGIN, $TTL and 'prev-dname' and so on, 1468 * that is kept between includes. 1469 * The lineno is set at 1 and then increased by the function. 1470 * @param fname: file name. 1471 * @param depth: recursion depth for includes 1472 * @param cfg: config for chroot. 1473 * returns false on failure, has printed an error message 1474 */ 1475 static int 1476 az_parse_file(struct auth_zone* z, FILE* in, uint8_t* rr, size_t rrbuflen, 1477 struct sldns_file_parse_state* state, char* fname, int depth, 1478 struct config_file* cfg) 1479 { 1480 size_t rr_len, dname_len; 1481 int status; 1482 state->lineno = 1; 1483 1484 while(!feof(in)) { 1485 rr_len = rrbuflen; 1486 dname_len = 0; 1487 status = sldns_fp2wire_rr_buf(in, rr, &rr_len, &dname_len, 1488 state); 1489 if(status == LDNS_WIREPARSE_ERR_INCLUDE && rr_len == 0) { 1490 /* we have $INCLUDE or $something */ 1491 if(strncmp((char*)rr, "$INCLUDE ", 9) == 0 || 1492 strncmp((char*)rr, "$INCLUDE\t", 9) == 0) { 1493 FILE* inc; 1494 int lineno_orig = state->lineno; 1495 char* incfile = (char*)rr + 8; 1496 if(depth > MAX_INCLUDE_DEPTH) { 1497 log_err("%s:%d max include depth" 1498 "exceeded", fname, state->lineno); 1499 return 0; 1500 } 1501 /* skip spaces */ 1502 while(*incfile == ' ' || *incfile == '\t') 1503 incfile++; 1504 /* adjust for chroot on include file */ 1505 if(cfg->chrootdir && cfg->chrootdir[0] && 1506 strncmp(incfile, cfg->chrootdir, 1507 strlen(cfg->chrootdir)) == 0) 1508 incfile += strlen(cfg->chrootdir); 1509 incfile = strdup(incfile); 1510 if(!incfile) { 1511 log_err("malloc failure"); 1512 return 0; 1513 } 1514 verbose(VERB_ALGO, "opening $INCLUDE %s", 1515 incfile); 1516 inc = fopen(incfile, "r"); 1517 if(!inc) { 1518 log_err("%s:%d cannot open include " 1519 "file %s: %s", fname, 1520 lineno_orig, incfile, 1521 strerror(errno)); 1522 free(incfile); 1523 return 0; 1524 } 1525 /* recurse read that file now */ 1526 if(!az_parse_file(z, inc, rr, rrbuflen, 1527 state, incfile, depth+1, cfg)) { 1528 log_err("%s:%d cannot parse include " 1529 "file %s", fname, 1530 lineno_orig, incfile); 1531 fclose(inc); 1532 free(incfile); 1533 return 0; 1534 } 1535 fclose(inc); 1536 verbose(VERB_ALGO, "done with $INCLUDE %s", 1537 incfile); 1538 free(incfile); 1539 state->lineno = lineno_orig; 1540 } 1541 continue; 1542 } 1543 if(status != 0) { 1544 log_err("parse error %s %d:%d: %s", fname, 1545 state->lineno, LDNS_WIREPARSE_OFFSET(status), 1546 sldns_get_errorstr_parse(status)); 1547 return 0; 1548 } 1549 if(rr_len == 0) { 1550 /* EMPTY line, TTL or ORIGIN */ 1551 continue; 1552 } 1553 /* insert wirerr in rrbuf */ 1554 if(!az_insert_rr(z, rr, rr_len, dname_len, NULL)) { 1555 char buf[17]; 1556 sldns_wire2str_type_buf(sldns_wirerr_get_type(rr, 1557 rr_len, dname_len), buf, sizeof(buf)); 1558 log_err("%s:%d cannot insert RR of type %s", 1559 fname, state->lineno, buf); 1560 return 0; 1561 } 1562 } 1563 return 1; 1564 } 1565 1566 int 1567 auth_zone_read_zonefile(struct auth_zone* z, struct config_file* cfg) 1568 { 1569 uint8_t rr[LDNS_RR_BUF_SIZE]; 1570 struct sldns_file_parse_state state; 1571 char* zfilename; 1572 FILE* in; 1573 if(!z || !z->zonefile || z->zonefile[0]==0) 1574 return 1; /* no file, or "", nothing to read */ 1575 1576 zfilename = z->zonefile; 1577 if(cfg->chrootdir && cfg->chrootdir[0] && strncmp(zfilename, 1578 cfg->chrootdir, strlen(cfg->chrootdir)) == 0) 1579 zfilename += strlen(cfg->chrootdir); 1580 if(verbosity >= VERB_ALGO) { 1581 char nm[255+1]; 1582 dname_str(z->name, nm); 1583 verbose(VERB_ALGO, "read zonefile %s for %s", zfilename, nm); 1584 } 1585 in = fopen(zfilename, "r"); 1586 if(!in) { 1587 char* n = sldns_wire2str_dname(z->name, z->namelen); 1588 if(z->zone_is_slave && errno == ENOENT) { 1589 /* we fetch the zone contents later, no file yet */ 1590 verbose(VERB_ALGO, "no zonefile %s for %s", 1591 zfilename, n?n:"error"); 1592 free(n); 1593 return 1; 1594 } 1595 log_err("cannot open zonefile %s for %s: %s", 1596 zfilename, n?n:"error", strerror(errno)); 1597 free(n); 1598 return 0; 1599 } 1600 1601 /* clear the data tree */ 1602 traverse_postorder(&z->data, auth_data_del, NULL); 1603 rbtree_init(&z->data, &auth_data_cmp); 1604 /* clear the RPZ policies */ 1605 if(z->rpz) 1606 rpz_clear(z->rpz); 1607 1608 memset(&state, 0, sizeof(state)); 1609 /* default TTL to 3600 */ 1610 state.default_ttl = 3600; 1611 /* set $ORIGIN to the zone name */ 1612 if(z->namelen <= sizeof(state.origin)) { 1613 memcpy(state.origin, z->name, z->namelen); 1614 state.origin_len = z->namelen; 1615 } 1616 /* parse the (toplevel) file */ 1617 if(!az_parse_file(z, in, rr, sizeof(rr), &state, zfilename, 0, cfg)) { 1618 char* n = sldns_wire2str_dname(z->name, z->namelen); 1619 log_err("error parsing zonefile %s for %s", 1620 zfilename, n?n:"error"); 1621 free(n); 1622 fclose(in); 1623 return 0; 1624 } 1625 fclose(in); 1626 1627 if(z->rpz) 1628 rpz_finish_config(z->rpz); 1629 return 1; 1630 } 1631 1632 /** write buffer to file and check return codes */ 1633 static int 1634 write_out(FILE* out, const char* str, size_t len) 1635 { 1636 size_t r; 1637 if(len == 0) 1638 return 1; 1639 r = fwrite(str, 1, len, out); 1640 if(r == 0) { 1641 log_err("write failed: %s", strerror(errno)); 1642 return 0; 1643 } else if(r < len) { 1644 log_err("write failed: too short (disk full?)"); 1645 return 0; 1646 } 1647 return 1; 1648 } 1649 1650 /** convert auth rr to string */ 1651 static int 1652 auth_rr_to_string(uint8_t* nm, size_t nmlen, uint16_t tp, uint16_t cl, 1653 struct packed_rrset_data* data, size_t i, char* s, size_t buflen) 1654 { 1655 int w = 0; 1656 size_t slen = buflen, datlen; 1657 uint8_t* dat; 1658 if(i >= data->count) tp = LDNS_RR_TYPE_RRSIG; 1659 dat = nm; 1660 datlen = nmlen; 1661 w += sldns_wire2str_dname_scan(&dat, &datlen, &s, &slen, NULL, 0, NULL); 1662 w += sldns_str_print(&s, &slen, "\t"); 1663 w += sldns_str_print(&s, &slen, "%lu\t", (unsigned long)data->rr_ttl[i]); 1664 w += sldns_wire2str_class_print(&s, &slen, cl); 1665 w += sldns_str_print(&s, &slen, "\t"); 1666 w += sldns_wire2str_type_print(&s, &slen, tp); 1667 w += sldns_str_print(&s, &slen, "\t"); 1668 datlen = data->rr_len[i]-2; 1669 dat = data->rr_data[i]+2; 1670 w += sldns_wire2str_rdata_scan(&dat, &datlen, &s, &slen, tp, NULL, 0, NULL); 1671 1672 if(tp == LDNS_RR_TYPE_DNSKEY) { 1673 w += sldns_str_print(&s, &slen, " ;{id = %u}", 1674 sldns_calc_keytag_raw(data->rr_data[i]+2, 1675 data->rr_len[i]-2)); 1676 } 1677 w += sldns_str_print(&s, &slen, "\n"); 1678 1679 if(w >= (int)buflen) { 1680 log_nametypeclass(NO_VERBOSE, "RR too long to print", nm, tp, cl); 1681 return 0; 1682 } 1683 return 1; 1684 } 1685 1686 /** write rrset to file */ 1687 static int 1688 auth_zone_write_rrset(struct auth_zone* z, struct auth_data* node, 1689 struct auth_rrset* r, FILE* out) 1690 { 1691 size_t i, count = r->data->count + r->data->rrsig_count; 1692 char buf[LDNS_RR_BUF_SIZE]; 1693 for(i=0; i<count; i++) { 1694 if(!auth_rr_to_string(node->name, node->namelen, r->type, 1695 z->dclass, r->data, i, buf, sizeof(buf))) { 1696 verbose(VERB_ALGO, "failed to rr2str rr %d", (int)i); 1697 continue; 1698 } 1699 if(!write_out(out, buf, strlen(buf))) 1700 return 0; 1701 } 1702 return 1; 1703 } 1704 1705 /** write domain to file */ 1706 static int 1707 auth_zone_write_domain(struct auth_zone* z, struct auth_data* n, FILE* out) 1708 { 1709 struct auth_rrset* r; 1710 /* if this is zone apex, write SOA first */ 1711 if(z->namelen == n->namelen) { 1712 struct auth_rrset* soa = az_domain_rrset(n, LDNS_RR_TYPE_SOA); 1713 if(soa) { 1714 if(!auth_zone_write_rrset(z, n, soa, out)) 1715 return 0; 1716 } 1717 } 1718 /* write all the RRsets for this domain */ 1719 for(r = n->rrsets; r; r = r->next) { 1720 if(z->namelen == n->namelen && 1721 r->type == LDNS_RR_TYPE_SOA) 1722 continue; /* skip SOA here */ 1723 if(!auth_zone_write_rrset(z, n, r, out)) 1724 return 0; 1725 } 1726 return 1; 1727 } 1728 1729 int auth_zone_write_file(struct auth_zone* z, const char* fname) 1730 { 1731 FILE* out; 1732 struct auth_data* n; 1733 out = fopen(fname, "w"); 1734 if(!out) { 1735 log_err("could not open %s: %s", fname, strerror(errno)); 1736 return 0; 1737 } 1738 RBTREE_FOR(n, struct auth_data*, &z->data) { 1739 if(!auth_zone_write_domain(z, n, out)) { 1740 log_err("could not write domain to %s", fname); 1741 fclose(out); 1742 return 0; 1743 } 1744 } 1745 fclose(out); 1746 return 1; 1747 } 1748 1749 /** offline verify for zonemd, while reading a zone file to immediately 1750 * spot bad hashes in zonefile as they are read. 1751 * Creates temp buffers, but uses anchors and validation environment 1752 * from the module_env. */ 1753 static void 1754 zonemd_offline_verify(struct auth_zone* z, struct module_env* env_for_val, 1755 struct module_stack* mods) 1756 { 1757 struct module_env env; 1758 time_t now = 0; 1759 if(!z->zonemd_check) 1760 return; 1761 env = *env_for_val; 1762 env.scratch_buffer = sldns_buffer_new(env.cfg->msg_buffer_size); 1763 if(!env.scratch_buffer) { 1764 log_err("out of memory"); 1765 goto clean_exit; 1766 } 1767 env.scratch = regional_create(); 1768 if(!env.now) { 1769 env.now = &now; 1770 now = time(NULL); 1771 } 1772 if(!env.scratch) { 1773 log_err("out of memory"); 1774 goto clean_exit; 1775 } 1776 auth_zone_verify_zonemd(z, &env, mods, NULL, 1, 0); 1777 1778 clean_exit: 1779 /* clean up and exit */ 1780 sldns_buffer_free(env.scratch_buffer); 1781 regional_destroy(env.scratch); 1782 } 1783 1784 /** read all auth zones from file (if they have) */ 1785 static int 1786 auth_zones_read_zones(struct auth_zones* az, struct config_file* cfg, 1787 struct module_env* env, struct module_stack* mods) 1788 { 1789 struct auth_zone* z; 1790 lock_rw_wrlock(&az->lock); 1791 RBTREE_FOR(z, struct auth_zone*, &az->ztree) { 1792 lock_rw_wrlock(&z->lock); 1793 if(!auth_zone_read_zonefile(z, cfg)) { 1794 lock_rw_unlock(&z->lock); 1795 lock_rw_unlock(&az->lock); 1796 return 0; 1797 } 1798 if(z->zonefile && z->zonefile[0]!=0 && env) 1799 zonemd_offline_verify(z, env, mods); 1800 lock_rw_unlock(&z->lock); 1801 } 1802 lock_rw_unlock(&az->lock); 1803 return 1; 1804 } 1805 1806 /** fetch the content of a ZONEMD RR from the rdata */ 1807 static int zonemd_fetch_parameters(struct auth_rrset* zonemd_rrset, size_t i, 1808 uint32_t* serial, int* scheme, int* hashalgo, uint8_t** hash, 1809 size_t* hashlen) 1810 { 1811 size_t rr_len; 1812 uint8_t* rdata; 1813 if(i >= zonemd_rrset->data->count) 1814 return 0; 1815 rr_len = zonemd_rrset->data->rr_len[i]; 1816 if(rr_len < 2+4+1+1) 1817 return 0; /* too short, for rdlen+serial+scheme+algo */ 1818 rdata = zonemd_rrset->data->rr_data[i]; 1819 *serial = sldns_read_uint32(rdata+2); 1820 *scheme = rdata[6]; 1821 *hashalgo = rdata[7]; 1822 *hashlen = rr_len - 8; 1823 if(*hashlen == 0) 1824 *hash = NULL; 1825 else *hash = rdata+8; 1826 return 1; 1827 } 1828 1829 /** 1830 * See if the ZONEMD scheme, hash occurs more than once. 1831 * @param zonemd_rrset: the zonemd rrset to check with the RRs in it. 1832 * @param index: index of the original, this is allowed to have that 1833 * scheme and hashalgo, but other RRs should not have it. 1834 * @param scheme: the scheme to check for. 1835 * @param hashalgo: the hash algorithm to check for. 1836 * @return true if it occurs more than once. 1837 */ 1838 static int zonemd_is_duplicate_scheme_hash(struct auth_rrset* zonemd_rrset, 1839 size_t index, int scheme, int hashalgo) 1840 { 1841 size_t j; 1842 for(j=0; j<zonemd_rrset->data->count; j++) { 1843 uint32_t serial2 = 0; 1844 int scheme2 = 0, hashalgo2 = 0; 1845 uint8_t* hash2 = NULL; 1846 size_t hashlen2 = 0; 1847 if(index == j) { 1848 /* this is the original */ 1849 continue; 1850 } 1851 if(!zonemd_fetch_parameters(zonemd_rrset, j, &serial2, 1852 &scheme2, &hashalgo2, &hash2, &hashlen2)) { 1853 /* malformed, skip it */ 1854 continue; 1855 } 1856 if(scheme == scheme2 && hashalgo == hashalgo2) { 1857 /* duplicate scheme, hash */ 1858 verbose(VERB_ALGO, "zonemd duplicate for scheme %d " 1859 "and hash %d", scheme, hashalgo); 1860 return 1; 1861 } 1862 } 1863 return 0; 1864 } 1865 1866 /** 1867 * Check ZONEMDs if present for the auth zone. Depending on config 1868 * it can warn or fail on that. Checks the hash of the ZONEMD. 1869 * @param z: auth zone to check for. 1870 * caller must hold lock on zone. 1871 * @param env: module env for temp buffers. 1872 * @param reason: returned on failure. 1873 * @return false on failure, true if hash checks out. 1874 */ 1875 static int auth_zone_zonemd_check_hash(struct auth_zone* z, 1876 struct module_env* env, char** reason) 1877 { 1878 /* loop over ZONEMDs and see which one is valid. if not print 1879 * failure (depending on config) */ 1880 struct auth_data* apex; 1881 struct auth_rrset* zonemd_rrset; 1882 size_t i; 1883 struct regional* region = NULL; 1884 struct sldns_buffer* buf = NULL; 1885 uint32_t soa_serial = 0; 1886 char* unsupported_reason = NULL; 1887 int only_unsupported = 1; 1888 region = env->scratch; 1889 regional_free_all(region); 1890 buf = env->scratch_buffer; 1891 if(!auth_zone_get_serial(z, &soa_serial)) { 1892 *reason = "zone has no SOA serial"; 1893 return 0; 1894 } 1895 1896 apex = az_find_name(z, z->name, z->namelen); 1897 if(!apex) { 1898 *reason = "zone has no apex"; 1899 return 0; 1900 } 1901 zonemd_rrset = az_domain_rrset(apex, LDNS_RR_TYPE_ZONEMD); 1902 if(!zonemd_rrset || zonemd_rrset->data->count==0) { 1903 *reason = "zone has no ZONEMD"; 1904 return 0; /* no RRset or no RRs in rrset */ 1905 } 1906 1907 /* we have a ZONEMD, check if it is correct */ 1908 for(i=0; i<zonemd_rrset->data->count; i++) { 1909 uint32_t serial = 0; 1910 int scheme = 0, hashalgo = 0; 1911 uint8_t* hash = NULL; 1912 size_t hashlen = 0; 1913 if(!zonemd_fetch_parameters(zonemd_rrset, i, &serial, &scheme, 1914 &hashalgo, &hash, &hashlen)) { 1915 /* malformed RR */ 1916 *reason = "ZONEMD rdata malformed"; 1917 only_unsupported = 0; 1918 continue; 1919 } 1920 /* check for duplicates */ 1921 if(zonemd_is_duplicate_scheme_hash(zonemd_rrset, i, scheme, 1922 hashalgo)) { 1923 /* duplicate hash of the same scheme,hash 1924 * is not allowed. */ 1925 *reason = "ZONEMD RRSet contains more than one RR " 1926 "with the same scheme and hash algorithm"; 1927 only_unsupported = 0; 1928 continue; 1929 } 1930 regional_free_all(region); 1931 if(serial != soa_serial) { 1932 *reason = "ZONEMD serial is wrong"; 1933 only_unsupported = 0; 1934 continue; 1935 } 1936 *reason = NULL; 1937 if(auth_zone_generate_zonemd_check(z, scheme, hashalgo, 1938 hash, hashlen, region, buf, reason)) { 1939 /* success */ 1940 if(*reason) { 1941 if(!unsupported_reason) 1942 unsupported_reason = *reason; 1943 /* continue to check for valid ZONEMD */ 1944 if(verbosity >= VERB_ALGO) { 1945 char zstr[255+1]; 1946 dname_str(z->name, zstr); 1947 verbose(VERB_ALGO, "auth-zone %s ZONEMD %d %d is unsupported: %s", zstr, (int)scheme, (int)hashalgo, *reason); 1948 } 1949 *reason = NULL; 1950 continue; 1951 } 1952 if(verbosity >= VERB_ALGO) { 1953 char zstr[255+1]; 1954 dname_str(z->name, zstr); 1955 if(!*reason) 1956 verbose(VERB_ALGO, "auth-zone %s ZONEMD hash is correct", zstr); 1957 } 1958 return 1; 1959 } 1960 only_unsupported = 0; 1961 /* try next one */ 1962 } 1963 /* have we seen no failures but only unsupported algo, 1964 * and one unsupported algorithm, or more. */ 1965 if(only_unsupported && unsupported_reason) { 1966 /* only unsupported algorithms, with valid serial, not 1967 * malformed. Did not see supported algorithms, failed or 1968 * successful ones. */ 1969 *reason = unsupported_reason; 1970 return 1; 1971 } 1972 /* fail, we may have reason */ 1973 if(!*reason) 1974 *reason = "no ZONEMD records found"; 1975 if(verbosity >= VERB_ALGO) { 1976 char zstr[255+1]; 1977 dname_str(z->name, zstr); 1978 verbose(VERB_ALGO, "auth-zone %s ZONEMD failed: %s", zstr, *reason); 1979 } 1980 return 0; 1981 } 1982 1983 /** find the apex SOA RRset, if it exists */ 1984 struct auth_rrset* auth_zone_get_soa_rrset(struct auth_zone* z) 1985 { 1986 struct auth_data* apex; 1987 struct auth_rrset* soa; 1988 apex = az_find_name(z, z->name, z->namelen); 1989 if(!apex) return NULL; 1990 soa = az_domain_rrset(apex, LDNS_RR_TYPE_SOA); 1991 return soa; 1992 } 1993 1994 /** find serial number of zone or false if none */ 1995 int 1996 auth_zone_get_serial(struct auth_zone* z, uint32_t* serial) 1997 { 1998 struct auth_data* apex; 1999 struct auth_rrset* soa; 2000 struct packed_rrset_data* d; 2001 apex = az_find_name(z, z->name, z->namelen); 2002 if(!apex) return 0; 2003 soa = az_domain_rrset(apex, LDNS_RR_TYPE_SOA); 2004 if(!soa || soa->data->count==0) 2005 return 0; /* no RRset or no RRs in rrset */ 2006 if(soa->data->rr_len[0] < 2+4*5) return 0; /* SOA too short */ 2007 d = soa->data; 2008 *serial = sldns_read_uint32(d->rr_data[0]+(d->rr_len[0]-20)); 2009 return 1; 2010 } 2011 2012 /** Find auth_zone SOA and populate the values in xfr(soa values). */ 2013 int 2014 xfr_find_soa(struct auth_zone* z, struct auth_xfer* xfr) 2015 { 2016 struct auth_data* apex; 2017 struct auth_rrset* soa; 2018 struct packed_rrset_data* d; 2019 apex = az_find_name(z, z->name, z->namelen); 2020 if(!apex) return 0; 2021 soa = az_domain_rrset(apex, LDNS_RR_TYPE_SOA); 2022 if(!soa || soa->data->count==0) 2023 return 0; /* no RRset or no RRs in rrset */ 2024 if(soa->data->rr_len[0] < 2+4*5) return 0; /* SOA too short */ 2025 /* SOA record ends with serial, refresh, retry, expiry, minimum, 2026 * as 4 byte fields */ 2027 d = soa->data; 2028 xfr->have_zone = 1; 2029 xfr->serial = sldns_read_uint32(d->rr_data[0]+(d->rr_len[0]-20)); 2030 xfr->refresh = sldns_read_uint32(d->rr_data[0]+(d->rr_len[0]-16)); 2031 xfr->retry = sldns_read_uint32(d->rr_data[0]+(d->rr_len[0]-12)); 2032 xfr->expiry = sldns_read_uint32(d->rr_data[0]+(d->rr_len[0]-8)); 2033 /* soa minimum at d->rr_len[0]-4 */ 2034 return 1; 2035 } 2036 2037 /** 2038 * Setup auth_xfer zone 2039 * This populates the have_zone, soa values, and so on times. 2040 * Doesn't do network traffic yet, can set option flags. 2041 * @param z: locked by caller, and modified for setup 2042 * @param x: locked by caller, and modified. 2043 * @return false on failure. 2044 */ 2045 static int 2046 auth_xfer_setup(struct auth_zone* z, struct auth_xfer* x) 2047 { 2048 /* for a zone without zone transfers, x==NULL, so skip them, 2049 * i.e. the zone config is fixed with no masters or urls */ 2050 if(!z || !x) return 1; 2051 if(!xfr_find_soa(z, x)) { 2052 return 1; 2053 } 2054 /* nothing for probe, nextprobe and transfer tasks */ 2055 return 1; 2056 } 2057 2058 /** 2059 * Setup all zones 2060 * @param az: auth zones structure 2061 * @return false on failure. 2062 */ 2063 static int 2064 auth_zones_setup_zones(struct auth_zones* az) 2065 { 2066 struct auth_zone* z; 2067 struct auth_xfer* x; 2068 lock_rw_wrlock(&az->lock); 2069 RBTREE_FOR(z, struct auth_zone*, &az->ztree) { 2070 lock_rw_wrlock(&z->lock); 2071 x = auth_xfer_find(az, z->name, z->namelen, z->dclass); 2072 if(x) { 2073 lock_basic_lock(&x->lock); 2074 } 2075 if(!auth_xfer_setup(z, x)) { 2076 if(x) { 2077 lock_basic_unlock(&x->lock); 2078 } 2079 lock_rw_unlock(&z->lock); 2080 lock_rw_unlock(&az->lock); 2081 return 0; 2082 } 2083 if(x) { 2084 lock_basic_unlock(&x->lock); 2085 } 2086 lock_rw_unlock(&z->lock); 2087 } 2088 lock_rw_unlock(&az->lock); 2089 return 1; 2090 } 2091 2092 /** set config items and create zones */ 2093 static int 2094 auth_zones_cfg(struct auth_zones* az, struct config_auth* c) 2095 { 2096 struct auth_zone* z; 2097 struct auth_xfer* x = NULL; 2098 2099 /* create zone */ 2100 if(c->isrpz) { 2101 /* if the rpz lock is needed, grab it before the other 2102 * locks to avoid a lock dependency cycle */ 2103 lock_rw_wrlock(&az->rpz_lock); 2104 } 2105 lock_rw_wrlock(&az->lock); 2106 if(!(z=auth_zones_find_or_add_zone(az, c->name))) { 2107 lock_rw_unlock(&az->lock); 2108 if(c->isrpz) { 2109 lock_rw_unlock(&az->rpz_lock); 2110 } 2111 return 0; 2112 } 2113 if(c->masters || c->urls) { 2114 if(!(x=auth_zones_find_or_add_xfer(az, z))) { 2115 lock_rw_unlock(&az->lock); 2116 lock_rw_unlock(&z->lock); 2117 if(c->isrpz) { 2118 lock_rw_unlock(&az->rpz_lock); 2119 } 2120 return 0; 2121 } 2122 } 2123 if(c->for_downstream) 2124 az->have_downstream = 1; 2125 lock_rw_unlock(&az->lock); 2126 2127 /* set options */ 2128 z->zone_deleted = 0; 2129 if(!auth_zone_set_zonefile(z, c->zonefile)) { 2130 if(x) { 2131 lock_basic_unlock(&x->lock); 2132 } 2133 lock_rw_unlock(&z->lock); 2134 if(c->isrpz) { 2135 lock_rw_unlock(&az->rpz_lock); 2136 } 2137 return 0; 2138 } 2139 z->for_downstream = c->for_downstream; 2140 z->for_upstream = c->for_upstream; 2141 z->fallback_enabled = c->fallback_enabled; 2142 z->zonemd_check = c->zonemd_check; 2143 z->zonemd_reject_absence = c->zonemd_reject_absence; 2144 if(c->isrpz && !z->rpz){ 2145 if(!(z->rpz = rpz_create(c))){ 2146 fatal_exit("Could not setup RPZ zones"); 2147 return 0; 2148 } 2149 lock_protect(&z->lock, &z->rpz->local_zones, sizeof(*z->rpz)); 2150 /* the az->rpz_lock is locked above */ 2151 z->rpz_az_next = az->rpz_first; 2152 if(az->rpz_first) 2153 az->rpz_first->rpz_az_prev = z; 2154 az->rpz_first = z; 2155 } 2156 if(c->isrpz) { 2157 lock_rw_unlock(&az->rpz_lock); 2158 } 2159 2160 /* xfer zone */ 2161 if(x) { 2162 z->zone_is_slave = 1; 2163 /* set options on xfer zone */ 2164 if(!xfer_set_masters(&x->task_probe->masters, c, 0)) { 2165 lock_basic_unlock(&x->lock); 2166 lock_rw_unlock(&z->lock); 2167 return 0; 2168 } 2169 if(!xfer_set_masters(&x->task_transfer->masters, c, 1)) { 2170 lock_basic_unlock(&x->lock); 2171 lock_rw_unlock(&z->lock); 2172 return 0; 2173 } 2174 lock_basic_unlock(&x->lock); 2175 } 2176 2177 lock_rw_unlock(&z->lock); 2178 return 1; 2179 } 2180 2181 /** set all auth zones deleted, then in auth_zones_cfg, it marks them 2182 * as nondeleted (if they are still in the config), and then later 2183 * we can find deleted zones */ 2184 static void 2185 az_setall_deleted(struct auth_zones* az) 2186 { 2187 struct auth_zone* z; 2188 lock_rw_wrlock(&az->lock); 2189 RBTREE_FOR(z, struct auth_zone*, &az->ztree) { 2190 lock_rw_wrlock(&z->lock); 2191 z->zone_deleted = 1; 2192 lock_rw_unlock(&z->lock); 2193 } 2194 lock_rw_unlock(&az->lock); 2195 } 2196 2197 /** find zones that are marked deleted and delete them. 2198 * This is called from apply_cfg, and there are no threads and no 2199 * workers, so the xfr can just be deleted. */ 2200 static void 2201 az_delete_deleted_zones(struct auth_zones* az) 2202 { 2203 struct auth_zone* z; 2204 struct auth_zone* delete_list = NULL, *next; 2205 struct auth_xfer* xfr; 2206 lock_rw_wrlock(&az->lock); 2207 RBTREE_FOR(z, struct auth_zone*, &az->ztree) { 2208 lock_rw_wrlock(&z->lock); 2209 if(z->zone_deleted) { 2210 /* we cannot alter the rbtree right now, but 2211 * we can put it on a linked list and then 2212 * delete it */ 2213 z->delete_next = delete_list; 2214 delete_list = z; 2215 } 2216 lock_rw_unlock(&z->lock); 2217 } 2218 /* now we are out of the tree loop and we can loop and delete 2219 * the zones */ 2220 z = delete_list; 2221 while(z) { 2222 next = z->delete_next; 2223 xfr = auth_xfer_find(az, z->name, z->namelen, z->dclass); 2224 if(xfr) { 2225 (void)rbtree_delete(&az->xtree, &xfr->node); 2226 auth_xfer_delete(xfr); 2227 } 2228 (void)rbtree_delete(&az->ztree, &z->node); 2229 auth_zone_delete(z, az); 2230 z = next; 2231 } 2232 lock_rw_unlock(&az->lock); 2233 } 2234 2235 int auth_zones_apply_cfg(struct auth_zones* az, struct config_file* cfg, 2236 int setup, int* is_rpz, struct module_env* env, 2237 struct module_stack* mods) 2238 { 2239 struct config_auth* p; 2240 az_setall_deleted(az); 2241 for(p = cfg->auths; p; p = p->next) { 2242 if(!p->name || p->name[0] == 0) { 2243 log_warn("auth-zone without a name, skipped"); 2244 continue; 2245 } 2246 *is_rpz = (*is_rpz || p->isrpz); 2247 if(!auth_zones_cfg(az, p)) { 2248 log_err("cannot config auth zone %s", p->name); 2249 return 0; 2250 } 2251 } 2252 az_delete_deleted_zones(az); 2253 if(!auth_zones_read_zones(az, cfg, env, mods)) 2254 return 0; 2255 if(setup) { 2256 if(!auth_zones_setup_zones(az)) 2257 return 0; 2258 } 2259 return 1; 2260 } 2261 2262 /** delete chunks 2263 * @param at: transfer structure with chunks list. The chunks and their 2264 * data are freed. 2265 */ 2266 static void 2267 auth_chunks_delete(struct auth_transfer* at) 2268 { 2269 if(at->chunks_first) { 2270 struct auth_chunk* c, *cn; 2271 c = at->chunks_first; 2272 while(c) { 2273 cn = c->next; 2274 free(c->data); 2275 free(c); 2276 c = cn; 2277 } 2278 } 2279 at->chunks_first = NULL; 2280 at->chunks_last = NULL; 2281 } 2282 2283 /** free master addr list */ 2284 static void 2285 auth_free_master_addrs(struct auth_addr* list) 2286 { 2287 struct auth_addr *n; 2288 while(list) { 2289 n = list->next; 2290 free(list); 2291 list = n; 2292 } 2293 } 2294 2295 /** free the masters list */ 2296 static void 2297 auth_free_masters(struct auth_master* list) 2298 { 2299 struct auth_master* n; 2300 while(list) { 2301 n = list->next; 2302 auth_free_master_addrs(list->list); 2303 free(list->host); 2304 free(list->file); 2305 free(list); 2306 list = n; 2307 } 2308 } 2309 2310 /** delete auth xfer structure 2311 * @param xfr: delete this xfer and its tasks. 2312 */ 2313 static void 2314 auth_xfer_delete(struct auth_xfer* xfr) 2315 { 2316 if(!xfr) return; 2317 lock_basic_destroy(&xfr->lock); 2318 free(xfr->name); 2319 if(xfr->task_nextprobe) { 2320 comm_timer_delete(xfr->task_nextprobe->timer); 2321 free(xfr->task_nextprobe); 2322 } 2323 if(xfr->task_probe) { 2324 auth_free_masters(xfr->task_probe->masters); 2325 comm_point_delete(xfr->task_probe->cp); 2326 comm_timer_delete(xfr->task_probe->timer); 2327 free(xfr->task_probe); 2328 } 2329 if(xfr->task_transfer) { 2330 auth_free_masters(xfr->task_transfer->masters); 2331 comm_point_delete(xfr->task_transfer->cp); 2332 comm_timer_delete(xfr->task_transfer->timer); 2333 if(xfr->task_transfer->chunks_first) { 2334 auth_chunks_delete(xfr->task_transfer); 2335 } 2336 free(xfr->task_transfer); 2337 } 2338 auth_free_masters(xfr->allow_notify_list); 2339 free(xfr); 2340 } 2341 2342 /** helper traverse to delete zones */ 2343 static void 2344 auth_zone_del(rbnode_type* n, void* ATTR_UNUSED(arg)) 2345 { 2346 struct auth_zone* z = (struct auth_zone*)n->key; 2347 auth_zone_delete(z, NULL); 2348 } 2349 2350 /** helper traverse to delete xfer zones */ 2351 static void 2352 auth_xfer_del(rbnode_type* n, void* ATTR_UNUSED(arg)) 2353 { 2354 struct auth_xfer* z = (struct auth_xfer*)n->key; 2355 auth_xfer_delete(z); 2356 } 2357 2358 void auth_zones_delete(struct auth_zones* az) 2359 { 2360 if(!az) return; 2361 lock_rw_destroy(&az->lock); 2362 lock_rw_destroy(&az->rpz_lock); 2363 traverse_postorder(&az->ztree, auth_zone_del, NULL); 2364 traverse_postorder(&az->xtree, auth_xfer_del, NULL); 2365 free(az); 2366 } 2367 2368 /** true if domain has only nsec3 */ 2369 static int 2370 domain_has_only_nsec3(struct auth_data* n) 2371 { 2372 struct auth_rrset* rrset = n->rrsets; 2373 int nsec3_seen = 0; 2374 while(rrset) { 2375 if(rrset->type == LDNS_RR_TYPE_NSEC3) { 2376 nsec3_seen = 1; 2377 } else if(rrset->type != LDNS_RR_TYPE_RRSIG) { 2378 return 0; 2379 } 2380 rrset = rrset->next; 2381 } 2382 return nsec3_seen; 2383 } 2384 2385 /** see if the domain has a wildcard child '*.domain' */ 2386 static struct auth_data* 2387 az_find_wildcard_domain(struct auth_zone* z, uint8_t* nm, size_t nmlen) 2388 { 2389 uint8_t wc[LDNS_MAX_DOMAINLEN]; 2390 if(nmlen+2 > sizeof(wc)) 2391 return NULL; /* result would be too long */ 2392 wc[0] = 1; /* length of wildcard label */ 2393 wc[1] = (uint8_t)'*'; /* wildcard label */ 2394 memmove(wc+2, nm, nmlen); 2395 return az_find_name(z, wc, nmlen+2); 2396 } 2397 2398 /** find wildcard between qname and cename */ 2399 static struct auth_data* 2400 az_find_wildcard(struct auth_zone* z, struct query_info* qinfo, 2401 struct auth_data* ce) 2402 { 2403 uint8_t* nm = qinfo->qname; 2404 size_t nmlen = qinfo->qname_len; 2405 struct auth_data* node; 2406 if(!dname_subdomain_c(nm, z->name)) 2407 return NULL; /* out of zone */ 2408 while((node=az_find_wildcard_domain(z, nm, nmlen))==NULL) { 2409 /* see if we can go up to find the wildcard */ 2410 if(nmlen == z->namelen) 2411 return NULL; /* top of zone reached */ 2412 if(ce && nmlen == ce->namelen) 2413 return NULL; /* ce reached */ 2414 if(dname_is_root(nm)) 2415 return NULL; /* cannot go up */ 2416 dname_remove_label(&nm, &nmlen); 2417 } 2418 return node; 2419 } 2420 2421 /** domain is not exact, find first candidate ce (name that matches 2422 * a part of qname) in tree */ 2423 static struct auth_data* 2424 az_find_candidate_ce(struct auth_zone* z, struct query_info* qinfo, 2425 struct auth_data* n) 2426 { 2427 uint8_t* nm; 2428 size_t nmlen; 2429 if(n) { 2430 nm = dname_get_shared_topdomain(qinfo->qname, n->name); 2431 } else { 2432 nm = qinfo->qname; 2433 } 2434 dname_count_size_labels(nm, &nmlen); 2435 n = az_find_name(z, nm, nmlen); 2436 /* delete labels and go up on name */ 2437 while(!n) { 2438 if(dname_is_root(nm)) 2439 return NULL; /* cannot go up */ 2440 dname_remove_label(&nm, &nmlen); 2441 n = az_find_name(z, nm, nmlen); 2442 } 2443 return n; 2444 } 2445 2446 /** go up the auth tree to next existing name. */ 2447 static struct auth_data* 2448 az_domain_go_up(struct auth_zone* z, struct auth_data* n) 2449 { 2450 uint8_t* nm = n->name; 2451 size_t nmlen = n->namelen; 2452 while(!dname_is_root(nm)) { 2453 dname_remove_label(&nm, &nmlen); 2454 if((n=az_find_name(z, nm, nmlen)) != NULL) 2455 return n; 2456 } 2457 return NULL; 2458 } 2459 2460 /** Find the closest encloser, an name that exists and is above the 2461 * qname. 2462 * return true if the node (param node) is existing, nonobscured and 2463 * can be used to generate answers from. It is then also node_exact. 2464 * returns false if the node is not good enough (or it wasn't node_exact) 2465 * in this case the ce can be filled. 2466 * if ce is NULL, no ce exists, and likely the zone is completely empty, 2467 * not even with a zone apex. 2468 * if ce is nonNULL it is the closest enclosing upper name (that exists 2469 * itself for answer purposes). That name may have DNAME, NS or wildcard 2470 * rrset is the closest DNAME or NS rrset that was found. 2471 */ 2472 static int 2473 az_find_ce(struct auth_zone* z, struct query_info* qinfo, 2474 struct auth_data* node, int node_exact, struct auth_data** ce, 2475 struct auth_rrset** rrset) 2476 { 2477 struct auth_data* n = node; 2478 struct auth_rrset* lookrrset; 2479 *ce = NULL; 2480 *rrset = NULL; 2481 if(!node_exact) { 2482 /* if not exact, lookup closest exact match */ 2483 n = az_find_candidate_ce(z, qinfo, n); 2484 } else { 2485 /* if exact, the node itself is the first candidate ce */ 2486 *ce = n; 2487 } 2488 2489 /* no direct answer from nsec3-only domains */ 2490 if(n && domain_has_only_nsec3(n)) { 2491 node_exact = 0; 2492 *ce = NULL; 2493 } 2494 2495 /* with exact matches, walk up the labels until we find the 2496 * delegation, or DNAME or zone end */ 2497 while(n) { 2498 /* see if the current candidate has issues */ 2499 /* not zone apex and has type NS */ 2500 if(n->namelen != z->namelen && 2501 (lookrrset=az_domain_rrset(n, LDNS_RR_TYPE_NS)) && 2502 /* delegate here, but DS at exact the dp has notype */ 2503 (qinfo->qtype != LDNS_RR_TYPE_DS || 2504 n->namelen != qinfo->qname_len)) { 2505 /* referral */ 2506 /* this is ce and the lowernode is nonexisting */ 2507 *ce = n; 2508 *rrset = lookrrset; 2509 node_exact = 0; 2510 } 2511 /* not equal to qname and has type DNAME */ 2512 if(n->namelen != qinfo->qname_len && 2513 (lookrrset=az_domain_rrset(n, LDNS_RR_TYPE_DNAME))) { 2514 /* this is ce and the lowernode is nonexisting */ 2515 *ce = n; 2516 *rrset = lookrrset; 2517 node_exact = 0; 2518 } 2519 2520 if(*ce == NULL && !domain_has_only_nsec3(n)) { 2521 /* if not found yet, this exact name must be 2522 * our lowest match (but not nsec3onlydomain) */ 2523 *ce = n; 2524 } 2525 2526 /* walk up the tree by removing labels from name and lookup */ 2527 n = az_domain_go_up(z, n); 2528 } 2529 /* found no problems, if it was an exact node, it is fine to use */ 2530 return node_exact; 2531 } 2532 2533 /** add additional A/AAAA from domain names in rrset rdata (+offset) 2534 * offset is number of bytes in rdata where the dname is located. */ 2535 static int 2536 az_add_additionals_from(struct auth_zone* z, struct regional* region, 2537 struct dns_msg* msg, struct auth_rrset* rrset, size_t offset) 2538 { 2539 struct packed_rrset_data* d = rrset->data; 2540 size_t i; 2541 if(!d) return 0; 2542 for(i=0; i<d->count; i++) { 2543 size_t dlen; 2544 struct auth_data* domain; 2545 struct auth_rrset* ref; 2546 if(d->rr_len[i] < 2+offset) 2547 continue; /* too short */ 2548 if(!(dlen = dname_valid(d->rr_data[i]+2+offset, 2549 d->rr_len[i]-2-offset))) 2550 continue; /* malformed */ 2551 domain = az_find_name(z, d->rr_data[i]+2+offset, dlen); 2552 if(!domain) 2553 continue; 2554 if((ref=az_domain_rrset(domain, LDNS_RR_TYPE_A)) != NULL) { 2555 if(!msg_add_rrset_ar(z, region, msg, domain, ref)) 2556 return 0; 2557 } 2558 if((ref=az_domain_rrset(domain, LDNS_RR_TYPE_AAAA)) != NULL) { 2559 if(!msg_add_rrset_ar(z, region, msg, domain, ref)) 2560 return 0; 2561 } 2562 } 2563 return 1; 2564 } 2565 2566 /** add negative SOA record (with negative TTL) */ 2567 static int 2568 az_add_negative_soa(struct auth_zone* z, struct regional* region, 2569 struct dns_msg* msg) 2570 { 2571 time_t minimum; 2572 size_t i; 2573 struct packed_rrset_data* d; 2574 struct auth_rrset* soa; 2575 struct auth_data* apex = az_find_name(z, z->name, z->namelen); 2576 if(!apex) return 0; 2577 soa = az_domain_rrset(apex, LDNS_RR_TYPE_SOA); 2578 if(!soa) return 0; 2579 /* must be first to put in message; we want to fix the TTL with 2580 * one RRset here, otherwise we'd need to loop over the RRs to get 2581 * the resulting lower TTL */ 2582 log_assert(msg->rep->rrset_count == 0); 2583 if(!msg_add_rrset_ns(z, region, msg, apex, soa)) return 0; 2584 /* fixup TTL */ 2585 d = (struct packed_rrset_data*)msg->rep->rrsets[msg->rep->rrset_count-1]->entry.data; 2586 /* last 4 bytes are minimum ttl in network format */ 2587 if(d->count == 0) return 0; 2588 if(d->rr_len[0] < 2+4) return 0; 2589 minimum = (time_t)sldns_read_uint32(d->rr_data[0]+(d->rr_len[0]-4)); 2590 minimum = d->ttl<minimum?d->ttl:minimum; 2591 d->ttl = minimum; 2592 for(i=0; i < d->count + d->rrsig_count; i++) 2593 d->rr_ttl[i] = minimum; 2594 msg->rep->ttl = get_rrset_ttl(msg->rep->rrsets[0]); 2595 msg->rep->prefetch_ttl = PREFETCH_TTL_CALC(msg->rep->ttl); 2596 msg->rep->serve_expired_ttl = msg->rep->ttl + SERVE_EXPIRED_TTL; 2597 return 1; 2598 } 2599 2600 /** See if the query goes to empty nonterminal (that has no auth_data, 2601 * but there are nodes underneath. We already checked that there are 2602 * not NS, or DNAME above, so that we only need to check if some node 2603 * exists below (with nonempty rr list), return true if emptynonterminal */ 2604 static int 2605 az_empty_nonterminal(struct auth_zone* z, struct query_info* qinfo, 2606 struct auth_data* node) 2607 { 2608 struct auth_data* next; 2609 if(!node) { 2610 /* no smaller was found, use first (smallest) node as the 2611 * next one */ 2612 next = (struct auth_data*)rbtree_first(&z->data); 2613 } else { 2614 next = (struct auth_data*)rbtree_next(&node->node); 2615 } 2616 while(next && (rbnode_type*)next != RBTREE_NULL && next->rrsets == NULL) { 2617 /* the next name has empty rrsets, is an empty nonterminal 2618 * itself, see if there exists something below it */ 2619 next = (struct auth_data*)rbtree_next(&node->node); 2620 } 2621 if((rbnode_type*)next == RBTREE_NULL || !next) { 2622 /* there is no next node, so something below it cannot 2623 * exist */ 2624 return 0; 2625 } 2626 /* a next node exists, if there was something below the query, 2627 * this node has to be it. See if it is below the query name */ 2628 if(dname_strict_subdomain_c(next->name, qinfo->qname)) 2629 return 1; 2630 return 0; 2631 } 2632 2633 /** create synth cname target name in buffer, or fail if too long */ 2634 static size_t 2635 synth_cname_buf(uint8_t* qname, size_t qname_len, size_t dname_len, 2636 uint8_t* dtarg, size_t dtarglen, uint8_t* buf, size_t buflen) 2637 { 2638 size_t newlen = qname_len + dtarglen - dname_len; 2639 if(newlen > buflen) { 2640 /* YXDOMAIN error */ 2641 return 0; 2642 } 2643 /* new name is concatenation of qname front (without DNAME owner) 2644 * and DNAME target name */ 2645 memcpy(buf, qname, qname_len-dname_len); 2646 memmove(buf+(qname_len-dname_len), dtarg, dtarglen); 2647 return newlen; 2648 } 2649 2650 /** create synthetic CNAME rrset for in a DNAME answer in region, 2651 * false on alloc failure, cname==NULL when name too long. */ 2652 static int 2653 create_synth_cname(uint8_t* qname, size_t qname_len, struct regional* region, 2654 struct auth_data* node, struct auth_rrset* dname, uint16_t dclass, 2655 struct ub_packed_rrset_key** cname) 2656 { 2657 uint8_t buf[LDNS_MAX_DOMAINLEN]; 2658 uint8_t* dtarg; 2659 size_t dtarglen, newlen; 2660 struct packed_rrset_data* d; 2661 2662 /* get DNAME target name */ 2663 if(dname->data->count < 1) return 0; 2664 if(dname->data->rr_len[0] < 3) return 0; /* at least rdatalen +1 */ 2665 dtarg = dname->data->rr_data[0]+2; 2666 dtarglen = dname->data->rr_len[0]-2; 2667 if(sldns_read_uint16(dname->data->rr_data[0]) != dtarglen) 2668 return 0; /* rdatalen in DNAME rdata is malformed */ 2669 if(dname_valid(dtarg, dtarglen) != dtarglen) 2670 return 0; /* DNAME RR has malformed rdata */ 2671 if(qname_len == 0) 2672 return 0; /* too short */ 2673 if(qname_len <= node->namelen) 2674 return 0; /* qname too short for dname removal */ 2675 2676 /* synthesize a CNAME */ 2677 newlen = synth_cname_buf(qname, qname_len, node->namelen, 2678 dtarg, dtarglen, buf, sizeof(buf)); 2679 if(newlen == 0) { 2680 /* YXDOMAIN error */ 2681 *cname = NULL; 2682 return 1; 2683 } 2684 *cname = (struct ub_packed_rrset_key*)regional_alloc(region, 2685 sizeof(struct ub_packed_rrset_key)); 2686 if(!*cname) 2687 return 0; /* out of memory */ 2688 memset(&(*cname)->entry, 0, sizeof((*cname)->entry)); 2689 (*cname)->entry.key = (*cname); 2690 (*cname)->rk.type = htons(LDNS_RR_TYPE_CNAME); 2691 (*cname)->rk.rrset_class = htons(dclass); 2692 (*cname)->rk.flags = 0; 2693 (*cname)->rk.dname = regional_alloc_init(region, qname, qname_len); 2694 if(!(*cname)->rk.dname) 2695 return 0; /* out of memory */ 2696 (*cname)->rk.dname_len = qname_len; 2697 (*cname)->entry.hash = rrset_key_hash(&(*cname)->rk); 2698 d = (struct packed_rrset_data*)regional_alloc_zero(region, 2699 sizeof(struct packed_rrset_data) + sizeof(size_t) + 2700 sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t) 2701 + newlen); 2702 if(!d) 2703 return 0; /* out of memory */ 2704 (*cname)->entry.data = d; 2705 d->ttl = dname->data->ttl; /* RFC6672: synth CNAME TTL == DNAME TTL */ 2706 d->count = 1; 2707 d->rrsig_count = 0; 2708 d->trust = rrset_trust_ans_noAA; 2709 d->rr_len = (size_t*)((uint8_t*)d + 2710 sizeof(struct packed_rrset_data)); 2711 d->rr_len[0] = newlen + sizeof(uint16_t); 2712 packed_rrset_ptr_fixup(d); 2713 d->rr_ttl[0] = d->ttl; 2714 sldns_write_uint16(d->rr_data[0], newlen); 2715 memmove(d->rr_data[0] + sizeof(uint16_t), buf, newlen); 2716 return 1; 2717 } 2718 2719 /** add a synthesized CNAME to the answer section */ 2720 static int 2721 add_synth_cname(struct auth_zone* z, uint8_t* qname, size_t qname_len, 2722 struct regional* region, struct dns_msg* msg, struct auth_data* dname, 2723 struct auth_rrset* rrset) 2724 { 2725 struct ub_packed_rrset_key* cname; 2726 /* synthesize a CNAME */ 2727 if(!create_synth_cname(qname, qname_len, region, dname, rrset, 2728 z->dclass, &cname)) { 2729 /* out of memory */ 2730 return 0; 2731 } 2732 if(!cname) { 2733 /* cname cannot be create because of YXDOMAIN */ 2734 msg->rep->flags |= LDNS_RCODE_YXDOMAIN; 2735 return 1; 2736 } 2737 /* add cname to message */ 2738 if(!msg_grow_array(region, msg)) 2739 return 0; 2740 msg->rep->rrsets[msg->rep->rrset_count] = cname; 2741 msg->rep->rrset_count++; 2742 msg->rep->an_numrrsets++; 2743 msg_ttl(msg); 2744 return 1; 2745 } 2746 2747 /** Change a dname to a different one, for wildcard namechange */ 2748 static void 2749 az_change_dnames(struct dns_msg* msg, uint8_t* oldname, uint8_t* newname, 2750 size_t newlen, int an_only) 2751 { 2752 size_t i; 2753 size_t start = 0, end = msg->rep->rrset_count; 2754 if(!an_only) start = msg->rep->an_numrrsets; 2755 if(an_only) end = msg->rep->an_numrrsets; 2756 for(i=start; i<end; i++) { 2757 /* allocated in region so we can change the ptrs */ 2758 if(query_dname_compare(msg->rep->rrsets[i]->rk.dname, oldname) 2759 == 0) { 2760 msg->rep->rrsets[i]->rk.dname = newname; 2761 msg->rep->rrsets[i]->rk.dname_len = newlen; 2762 msg->rep->rrsets[i]->entry.hash = rrset_key_hash(&msg->rep->rrsets[i]->rk); 2763 } 2764 } 2765 } 2766 2767 /** find NSEC record covering the query */ 2768 static struct auth_rrset* 2769 az_find_nsec_cover(struct auth_zone* z, struct auth_data** node) 2770 { 2771 uint8_t* nm = (*node)->name; 2772 size_t nmlen = (*node)->namelen; 2773 struct auth_rrset* rrset; 2774 /* find the NSEC for the smallest-or-equal node */ 2775 /* if node == NULL, we did not find a smaller name. But the zone 2776 * name is the smallest name and should have an NSEC. So there is 2777 * no NSEC to return (for a properly signed zone) */ 2778 /* for empty nonterminals, the auth-data node should not exist, 2779 * and thus we don't need to go rbtree_previous here to find 2780 * a domain with an NSEC record */ 2781 /* but there could be glue, and if this is node, then it has no NSEC. 2782 * Go up to find nonglue (previous) NSEC-holding nodes */ 2783 while((rrset=az_domain_rrset(*node, LDNS_RR_TYPE_NSEC)) == NULL) { 2784 if(dname_is_root(nm)) return NULL; 2785 if(nmlen == z->namelen) return NULL; 2786 dname_remove_label(&nm, &nmlen); 2787 /* adjust *node for the nsec rrset to find in */ 2788 *node = az_find_name(z, nm, nmlen); 2789 } 2790 return rrset; 2791 } 2792 2793 /** Find NSEC and add for wildcard denial */ 2794 static int 2795 az_nsec_wildcard_denial(struct auth_zone* z, struct regional* region, 2796 struct dns_msg* msg, uint8_t* cenm, size_t cenmlen) 2797 { 2798 struct query_info qinfo; 2799 int node_exact; 2800 struct auth_data* node; 2801 struct auth_rrset* nsec; 2802 uint8_t wc[LDNS_MAX_DOMAINLEN]; 2803 if(cenmlen+2 > sizeof(wc)) 2804 return 0; /* result would be too long */ 2805 wc[0] = 1; /* length of wildcard label */ 2806 wc[1] = (uint8_t)'*'; /* wildcard label */ 2807 memmove(wc+2, cenm, cenmlen); 2808 2809 /* we have '*.ce' in wc wildcard name buffer */ 2810 /* get nsec cover for that */ 2811 qinfo.qname = wc; 2812 qinfo.qname_len = cenmlen+2; 2813 qinfo.qtype = 0; 2814 qinfo.qclass = 0; 2815 az_find_domain(z, &qinfo, &node_exact, &node); 2816 if((nsec=az_find_nsec_cover(z, &node)) != NULL) { 2817 if(!msg_add_rrset_ns(z, region, msg, node, nsec)) return 0; 2818 } 2819 return 1; 2820 } 2821 2822 /** Find the NSEC3PARAM rrset (if any) and if true you have the parameters */ 2823 static int 2824 az_nsec3_param(struct auth_zone* z, int* algo, size_t* iter, uint8_t** salt, 2825 size_t* saltlen) 2826 { 2827 struct auth_data* apex; 2828 struct auth_rrset* param; 2829 size_t i; 2830 apex = az_find_name(z, z->name, z->namelen); 2831 if(!apex) return 0; 2832 param = az_domain_rrset(apex, LDNS_RR_TYPE_NSEC3PARAM); 2833 if(!param || param->data->count==0) 2834 return 0; /* no RRset or no RRs in rrset */ 2835 /* find out which NSEC3PARAM RR has supported parameters */ 2836 /* skip unknown flags (dynamic signer is recalculating nsec3 chain) */ 2837 for(i=0; i<param->data->count; i++) { 2838 uint8_t* rdata = param->data->rr_data[i]+2; 2839 size_t rdatalen = param->data->rr_len[i]; 2840 if(rdatalen < 2+5) 2841 continue; /* too short */ 2842 if(!nsec3_hash_algo_size_supported((int)(rdata[0]))) 2843 continue; /* unsupported algo */ 2844 if(rdatalen < (size_t)(2+5+(size_t)rdata[4])) 2845 continue; /* salt missing */ 2846 if((rdata[1]&NSEC3_UNKNOWN_FLAGS)!=0) 2847 continue; /* unknown flags */ 2848 *algo = (int)(rdata[0]); 2849 *iter = sldns_read_uint16(rdata+2); 2850 *saltlen = rdata[4]; 2851 if(*saltlen == 0) 2852 *salt = NULL; 2853 else *salt = rdata+5; 2854 return 1; 2855 } 2856 /* no supported params */ 2857 return 0; 2858 } 2859 2860 /** Hash a name with nsec3param into buffer, it has zone name appended. 2861 * return length of hash */ 2862 static size_t 2863 az_nsec3_hash(uint8_t* buf, size_t buflen, uint8_t* nm, size_t nmlen, 2864 int algo, size_t iter, uint8_t* salt, size_t saltlen) 2865 { 2866 size_t hlen = nsec3_hash_algo_size_supported(algo); 2867 /* buffer has domain name, nsec3hash, and 256 is for max saltlen 2868 * (salt has 0-255 length) */ 2869 unsigned char p[LDNS_MAX_DOMAINLEN+1+N3HASHBUFLEN+256]; 2870 size_t i; 2871 if(nmlen+saltlen > sizeof(p) || hlen+saltlen > sizeof(p)) 2872 return 0; 2873 if(hlen > buflen) 2874 return 0; /* somehow too large for destination buffer */ 2875 /* hashfunc(name, salt) */ 2876 memmove(p, nm, nmlen); 2877 query_dname_tolower(p); 2878 if(salt && saltlen > 0) 2879 memmove(p+nmlen, salt, saltlen); 2880 (void)secalgo_nsec3_hash(algo, p, nmlen+saltlen, (unsigned char*)buf); 2881 for(i=0; i<iter; i++) { 2882 /* hashfunc(hash, salt) */ 2883 memmove(p, buf, hlen); 2884 if(salt && saltlen > 0) 2885 memmove(p+hlen, salt, saltlen); 2886 (void)secalgo_nsec3_hash(algo, p, hlen+saltlen, 2887 (unsigned char*)buf); 2888 } 2889 return hlen; 2890 } 2891 2892 /** Hash name and return b32encoded hashname for lookup, zone name appended */ 2893 static int 2894 az_nsec3_hashname(struct auth_zone* z, uint8_t* hashname, size_t* hashnmlen, 2895 uint8_t* nm, size_t nmlen, int algo, size_t iter, uint8_t* salt, 2896 size_t saltlen) 2897 { 2898 uint8_t hash[N3HASHBUFLEN]; 2899 size_t hlen; 2900 int ret; 2901 hlen = az_nsec3_hash(hash, sizeof(hash), nm, nmlen, algo, iter, 2902 salt, saltlen); 2903 if(!hlen) return 0; 2904 /* b32 encode */ 2905 if(*hashnmlen < hlen*2+1+z->namelen) /* approx b32 as hexb16 */ 2906 return 0; 2907 ret = sldns_b32_ntop_extended_hex(hash, hlen, (char*)(hashname+1), 2908 (*hashnmlen)-1); 2909 if(ret<1) 2910 return 0; 2911 hashname[0] = (uint8_t)ret; 2912 ret++; 2913 if((*hashnmlen) - ret < z->namelen) 2914 return 0; 2915 memmove(hashname+ret, z->name, z->namelen); 2916 *hashnmlen = z->namelen+(size_t)ret; 2917 return 1; 2918 } 2919 2920 /** Find the datanode that covers the nsec3hash-name */ 2921 static struct auth_data* 2922 az_nsec3_findnode(struct auth_zone* z, uint8_t* hashnm, size_t hashnmlen) 2923 { 2924 struct query_info qinfo; 2925 struct auth_data* node; 2926 int node_exact; 2927 qinfo.qclass = 0; 2928 qinfo.qtype = 0; 2929 qinfo.qname = hashnm; 2930 qinfo.qname_len = hashnmlen; 2931 /* because canonical ordering and b32 nsec3 ordering are the same. 2932 * this is a good lookup to find the nsec3 name. */ 2933 az_find_domain(z, &qinfo, &node_exact, &node); 2934 /* but we may have to skip non-nsec3 nodes */ 2935 /* this may be a lot, the way to speed that up is to have a 2936 * separate nsec3 tree with nsec3 nodes */ 2937 while(node && (rbnode_type*)node != RBTREE_NULL && 2938 !az_domain_rrset(node, LDNS_RR_TYPE_NSEC3)) { 2939 node = (struct auth_data*)rbtree_previous(&node->node); 2940 } 2941 if((rbnode_type*)node == RBTREE_NULL) 2942 node = NULL; 2943 return node; 2944 } 2945 2946 /** Find cover for hashed(nm, nmlen) (or NULL) */ 2947 static struct auth_data* 2948 az_nsec3_find_cover(struct auth_zone* z, uint8_t* nm, size_t nmlen, 2949 int algo, size_t iter, uint8_t* salt, size_t saltlen) 2950 { 2951 struct auth_data* node; 2952 uint8_t hname[LDNS_MAX_DOMAINLEN]; 2953 size_t hlen = sizeof(hname); 2954 if(!az_nsec3_hashname(z, hname, &hlen, nm, nmlen, algo, iter, 2955 salt, saltlen)) 2956 return NULL; 2957 node = az_nsec3_findnode(z, hname, hlen); 2958 if(node) 2959 return node; 2960 /* we did not find any, perhaps because the NSEC3 hash is before 2961 * the first hash, we have to find the 'last hash' in the zone */ 2962 node = (struct auth_data*)rbtree_last(&z->data); 2963 while(node && (rbnode_type*)node != RBTREE_NULL && 2964 !az_domain_rrset(node, LDNS_RR_TYPE_NSEC3)) { 2965 node = (struct auth_data*)rbtree_previous(&node->node); 2966 } 2967 if((rbnode_type*)node == RBTREE_NULL) 2968 node = NULL; 2969 return node; 2970 } 2971 2972 /** Find exact match for hashed(nm, nmlen) NSEC3 record or NULL */ 2973 static struct auth_data* 2974 az_nsec3_find_exact(struct auth_zone* z, uint8_t* nm, size_t nmlen, 2975 int algo, size_t iter, uint8_t* salt, size_t saltlen) 2976 { 2977 struct auth_data* node; 2978 uint8_t hname[LDNS_MAX_DOMAINLEN]; 2979 size_t hlen = sizeof(hname); 2980 if(!az_nsec3_hashname(z, hname, &hlen, nm, nmlen, algo, iter, 2981 salt, saltlen)) 2982 return NULL; 2983 node = az_find_name(z, hname, hlen); 2984 if(az_domain_rrset(node, LDNS_RR_TYPE_NSEC3)) 2985 return node; 2986 return NULL; 2987 } 2988 2989 /** Return nextcloser name (as a ref into the qname). This is one label 2990 * more than the cenm (cename must be a suffix of qname) */ 2991 static void 2992 az_nsec3_get_nextcloser(uint8_t* cenm, uint8_t* qname, size_t qname_len, 2993 uint8_t** nx, size_t* nxlen) 2994 { 2995 int celabs = dname_count_labels(cenm); 2996 int qlabs = dname_count_labels(qname); 2997 int strip = qlabs - celabs -1; 2998 log_assert(dname_strict_subdomain(qname, qlabs, cenm, celabs)); 2999 *nx = qname; 3000 *nxlen = qname_len; 3001 if(strip>0) 3002 dname_remove_labels(nx, nxlen, strip); 3003 } 3004 3005 /** Find the closest encloser that has exact NSEC3. 3006 * updated cenm to the new name. If it went up no-exact-ce is true. */ 3007 static struct auth_data* 3008 az_nsec3_find_ce(struct auth_zone* z, uint8_t** cenm, size_t* cenmlen, 3009 int* no_exact_ce, int algo, size_t iter, uint8_t* salt, size_t saltlen) 3010 { 3011 struct auth_data* node; 3012 while((node = az_nsec3_find_exact(z, *cenm, *cenmlen, 3013 algo, iter, salt, saltlen)) == NULL) { 3014 if(*cenmlen == z->namelen) { 3015 /* next step up would take us out of the zone. fail */ 3016 return NULL; 3017 } 3018 *no_exact_ce = 1; 3019 dname_remove_label(cenm, cenmlen); 3020 } 3021 return node; 3022 } 3023 3024 /* Insert NSEC3 record in authority section, if NULL does nothing */ 3025 static int 3026 az_nsec3_insert(struct auth_zone* z, struct regional* region, 3027 struct dns_msg* msg, struct auth_data* node) 3028 { 3029 struct auth_rrset* nsec3; 3030 if(!node) return 1; /* no node, skip this */ 3031 nsec3 = az_domain_rrset(node, LDNS_RR_TYPE_NSEC3); 3032 if(!nsec3) return 1; /* if no nsec3 RR, skip it */ 3033 if(!msg_add_rrset_ns(z, region, msg, node, nsec3)) return 0; 3034 return 1; 3035 } 3036 3037 /** add NSEC3 records to the zone for the nsec3 proof. 3038 * Specify with the flags with parts of the proof are required. 3039 * the ce is the exact matching name (for notype) but also delegation points. 3040 * qname is the one where the nextcloser name can be derived from. 3041 * If NSEC3 is not properly there (in the zone) nothing is added. 3042 * always enabled: include nsec3 proving about the Closest Encloser. 3043 * that is an exact match that should exist for it. 3044 * If that does not exist, a higher exact match + nxproof is enabled 3045 * (for some sort of opt-out empty nonterminal cases). 3046 * nodataproof: search for exact match and include that instead. 3047 * ceproof: include ce proof NSEC3 (omitted for wildcard replies). 3048 * nxproof: include denial of the qname. 3049 * wcproof: include denial of wildcard (wildcard.ce). 3050 */ 3051 static int 3052 az_add_nsec3_proof(struct auth_zone* z, struct regional* region, 3053 struct dns_msg* msg, uint8_t* cenm, size_t cenmlen, uint8_t* qname, 3054 size_t qname_len, int nodataproof, int ceproof, int nxproof, 3055 int wcproof) 3056 { 3057 int algo; 3058 size_t iter, saltlen; 3059 uint8_t* salt; 3060 int no_exact_ce = 0; 3061 struct auth_data* node; 3062 3063 /* find parameters of nsec3 proof */ 3064 if(!az_nsec3_param(z, &algo, &iter, &salt, &saltlen)) 3065 return 1; /* no nsec3 */ 3066 if(nodataproof) { 3067 /* see if the node has a hash of itself for the nodata 3068 * proof nsec3, this has to be an exact match nsec3. */ 3069 struct auth_data* match; 3070 match = az_nsec3_find_exact(z, qname, qname_len, algo, 3071 iter, salt, saltlen); 3072 if(match) { 3073 if(!az_nsec3_insert(z, region, msg, match)) 3074 return 0; 3075 /* only nodata NSEC3 needed, no CE or others. */ 3076 return 1; 3077 } 3078 } 3079 /* find ce that has an NSEC3 */ 3080 if(ceproof) { 3081 node = az_nsec3_find_ce(z, &cenm, &cenmlen, &no_exact_ce, 3082 algo, iter, salt, saltlen); 3083 if(no_exact_ce) nxproof = 1; 3084 if(!az_nsec3_insert(z, region, msg, node)) 3085 return 0; 3086 } 3087 3088 if(nxproof) { 3089 uint8_t* nx; 3090 size_t nxlen; 3091 /* create nextcloser domain name */ 3092 az_nsec3_get_nextcloser(cenm, qname, qname_len, &nx, &nxlen); 3093 /* find nsec3 that matches or covers it */ 3094 node = az_nsec3_find_cover(z, nx, nxlen, algo, iter, salt, 3095 saltlen); 3096 if(!az_nsec3_insert(z, region, msg, node)) 3097 return 0; 3098 } 3099 if(wcproof) { 3100 /* create wildcard name *.ce */ 3101 uint8_t wc[LDNS_MAX_DOMAINLEN]; 3102 size_t wclen; 3103 if(cenmlen+2 > sizeof(wc)) 3104 return 0; /* result would be too long */ 3105 wc[0] = 1; /* length of wildcard label */ 3106 wc[1] = (uint8_t)'*'; /* wildcard label */ 3107 memmove(wc+2, cenm, cenmlen); 3108 wclen = cenmlen+2; 3109 /* find nsec3 that matches or covers it */ 3110 node = az_nsec3_find_cover(z, wc, wclen, algo, iter, salt, 3111 saltlen); 3112 if(!az_nsec3_insert(z, region, msg, node)) 3113 return 0; 3114 } 3115 return 1; 3116 } 3117 3118 /** generate answer for positive answer */ 3119 static int 3120 az_generate_positive_answer(struct auth_zone* z, struct regional* region, 3121 struct dns_msg* msg, struct auth_data* node, struct auth_rrset* rrset) 3122 { 3123 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3124 /* see if we want additional rrs */ 3125 if(rrset->type == LDNS_RR_TYPE_MX) { 3126 if(!az_add_additionals_from(z, region, msg, rrset, 2)) 3127 return 0; 3128 } else if(rrset->type == LDNS_RR_TYPE_SRV) { 3129 if(!az_add_additionals_from(z, region, msg, rrset, 6)) 3130 return 0; 3131 } else if(rrset->type == LDNS_RR_TYPE_NS) { 3132 if(!az_add_additionals_from(z, region, msg, rrset, 0)) 3133 return 0; 3134 } 3135 return 1; 3136 } 3137 3138 /** generate answer for type ANY answer */ 3139 static int 3140 az_generate_any_answer(struct auth_zone* z, struct regional* region, 3141 struct dns_msg* msg, struct auth_data* node) 3142 { 3143 struct auth_rrset* rrset; 3144 int added = 0; 3145 /* add a couple (at least one) RRs */ 3146 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_SOA)) != NULL) { 3147 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3148 added++; 3149 } 3150 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_MX)) != NULL) { 3151 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3152 added++; 3153 } 3154 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_A)) != NULL) { 3155 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3156 added++; 3157 } 3158 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_AAAA)) != NULL) { 3159 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3160 added++; 3161 } 3162 if(added == 0 && node && node->rrsets) { 3163 if(!msg_add_rrset_an(z, region, msg, node, 3164 node->rrsets)) return 0; 3165 } 3166 return 1; 3167 } 3168 3169 /** follow cname chain and add more data to the answer section */ 3170 static int 3171 follow_cname_chain(struct auth_zone* z, uint16_t qtype, 3172 struct regional* region, struct dns_msg* msg, 3173 struct packed_rrset_data* d) 3174 { 3175 int maxchain = 0; 3176 /* see if we can add the target of the CNAME into the answer */ 3177 while(maxchain++ < MAX_CNAME_CHAIN) { 3178 struct auth_data* node; 3179 struct auth_rrset* rrset; 3180 size_t clen; 3181 /* d has cname rdata */ 3182 if(d->count == 0) break; /* no CNAME */ 3183 if(d->rr_len[0] < 2+1) break; /* too small */ 3184 if((clen=dname_valid(d->rr_data[0]+2, d->rr_len[0]-2))==0) 3185 break; /* malformed */ 3186 if(!dname_subdomain_c(d->rr_data[0]+2, z->name)) 3187 break; /* target out of zone */ 3188 if((node = az_find_name(z, d->rr_data[0]+2, clen))==NULL) 3189 break; /* no such target name */ 3190 if((rrset=az_domain_rrset(node, qtype))!=NULL) { 3191 /* done we found the target */ 3192 if(!msg_add_rrset_an(z, region, msg, node, rrset)) 3193 return 0; 3194 break; 3195 } 3196 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_CNAME))==NULL) 3197 break; /* no further CNAME chain, notype */ 3198 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3199 d = rrset->data; 3200 } 3201 return 1; 3202 } 3203 3204 /** generate answer for cname answer */ 3205 static int 3206 az_generate_cname_answer(struct auth_zone* z, struct query_info* qinfo, 3207 struct regional* region, struct dns_msg* msg, 3208 struct auth_data* node, struct auth_rrset* rrset) 3209 { 3210 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3211 if(!rrset) return 1; 3212 if(!follow_cname_chain(z, qinfo->qtype, region, msg, rrset->data)) 3213 return 0; 3214 return 1; 3215 } 3216 3217 /** generate answer for notype answer */ 3218 static int 3219 az_generate_notype_answer(struct auth_zone* z, struct regional* region, 3220 struct dns_msg* msg, struct auth_data* node) 3221 { 3222 struct auth_rrset* rrset; 3223 if(!az_add_negative_soa(z, region, msg)) return 0; 3224 /* DNSSEC denial NSEC */ 3225 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_NSEC))!=NULL) { 3226 if(!msg_add_rrset_ns(z, region, msg, node, rrset)) return 0; 3227 } else if(node) { 3228 /* DNSSEC denial NSEC3 */ 3229 if(!az_add_nsec3_proof(z, region, msg, node->name, 3230 node->namelen, msg->qinfo.qname, 3231 msg->qinfo.qname_len, 1, 1, 0, 0)) 3232 return 0; 3233 } 3234 return 1; 3235 } 3236 3237 /** generate answer for referral answer */ 3238 static int 3239 az_generate_referral_answer(struct auth_zone* z, struct regional* region, 3240 struct dns_msg* msg, struct auth_data* ce, struct auth_rrset* rrset) 3241 { 3242 struct auth_rrset* ds, *nsec; 3243 /* turn off AA flag, referral is nonAA because it leaves the zone */ 3244 log_assert(ce); 3245 msg->rep->flags &= ~BIT_AA; 3246 if(!msg_add_rrset_ns(z, region, msg, ce, rrset)) return 0; 3247 /* add DS or deny it */ 3248 if((ds=az_domain_rrset(ce, LDNS_RR_TYPE_DS))!=NULL) { 3249 if(!msg_add_rrset_ns(z, region, msg, ce, ds)) return 0; 3250 } else { 3251 /* deny the DS */ 3252 if((nsec=az_domain_rrset(ce, LDNS_RR_TYPE_NSEC))!=NULL) { 3253 if(!msg_add_rrset_ns(z, region, msg, ce, nsec)) 3254 return 0; 3255 } else { 3256 if(!az_add_nsec3_proof(z, region, msg, ce->name, 3257 ce->namelen, msg->qinfo.qname, 3258 msg->qinfo.qname_len, 1, 1, 0, 0)) 3259 return 0; 3260 } 3261 } 3262 /* add additional rrs for type NS */ 3263 if(!az_add_additionals_from(z, region, msg, rrset, 0)) return 0; 3264 return 1; 3265 } 3266 3267 /** generate answer for DNAME answer */ 3268 static int 3269 az_generate_dname_answer(struct auth_zone* z, struct query_info* qinfo, 3270 struct regional* region, struct dns_msg* msg, struct auth_data* ce, 3271 struct auth_rrset* rrset) 3272 { 3273 log_assert(ce); 3274 /* add the DNAME and then a CNAME */ 3275 if(!msg_add_rrset_an(z, region, msg, ce, rrset)) return 0; 3276 if(!add_synth_cname(z, qinfo->qname, qinfo->qname_len, region, 3277 msg, ce, rrset)) return 0; 3278 if(FLAGS_GET_RCODE(msg->rep->flags) == LDNS_RCODE_YXDOMAIN) 3279 return 1; 3280 if(msg->rep->rrset_count == 0 || 3281 !msg->rep->rrsets[msg->rep->rrset_count-1]) 3282 return 0; 3283 if(!follow_cname_chain(z, qinfo->qtype, region, msg, 3284 (struct packed_rrset_data*)msg->rep->rrsets[ 3285 msg->rep->rrset_count-1]->entry.data)) 3286 return 0; 3287 return 1; 3288 } 3289 3290 /** generate answer for wildcard answer */ 3291 static int 3292 az_generate_wildcard_answer(struct auth_zone* z, struct query_info* qinfo, 3293 struct regional* region, struct dns_msg* msg, struct auth_data* ce, 3294 struct auth_data* wildcard, struct auth_data* node) 3295 { 3296 struct auth_rrset* rrset, *nsec; 3297 int insert_ce = 0; 3298 if((rrset=az_domain_rrset(wildcard, qinfo->qtype)) != NULL) { 3299 /* wildcard has type, add it */ 3300 if(!msg_add_rrset_an(z, region, msg, wildcard, rrset)) 3301 return 0; 3302 az_change_dnames(msg, wildcard->name, msg->qinfo.qname, 3303 msg->qinfo.qname_len, 1); 3304 } else if((rrset=az_domain_rrset(wildcard, LDNS_RR_TYPE_CNAME))!=NULL) { 3305 /* wildcard has cname instead, do that */ 3306 if(!msg_add_rrset_an(z, region, msg, wildcard, rrset)) 3307 return 0; 3308 az_change_dnames(msg, wildcard->name, msg->qinfo.qname, 3309 msg->qinfo.qname_len, 1); 3310 if(!follow_cname_chain(z, qinfo->qtype, region, msg, 3311 rrset->data)) 3312 return 0; 3313 } else if(qinfo->qtype == LDNS_RR_TYPE_ANY && wildcard->rrsets) { 3314 /* add ANY rrsets from wildcard node */ 3315 if(!az_generate_any_answer(z, region, msg, wildcard)) 3316 return 0; 3317 az_change_dnames(msg, wildcard->name, msg->qinfo.qname, 3318 msg->qinfo.qname_len, 1); 3319 } else { 3320 /* wildcard has nodata, notype answer */ 3321 /* call other notype routine for dnssec notype denials */ 3322 if(!az_generate_notype_answer(z, region, msg, wildcard)) 3323 return 0; 3324 /* because the notype, there is no positive data with an 3325 * RRSIG that indicates the wildcard position. Thus the 3326 * wildcard qname denial needs to have a CE nsec3. */ 3327 insert_ce = 1; 3328 } 3329 3330 /* ce and node for dnssec denial of wildcard original name */ 3331 if((nsec=az_find_nsec_cover(z, &node)) != NULL) { 3332 if(!msg_add_rrset_ns(z, region, msg, node, nsec)) return 0; 3333 } else if(ce) { 3334 uint8_t* wildup = wildcard->name; 3335 size_t wilduplen= wildcard->namelen; 3336 dname_remove_label(&wildup, &wilduplen); 3337 if(!az_add_nsec3_proof(z, region, msg, wildup, 3338 wilduplen, msg->qinfo.qname, 3339 msg->qinfo.qname_len, 0, insert_ce, 1, 0)) 3340 return 0; 3341 } 3342 3343 /* fixup name of wildcard from *.zone to qname, use already allocated 3344 * pointer to msg qname */ 3345 az_change_dnames(msg, wildcard->name, msg->qinfo.qname, 3346 msg->qinfo.qname_len, 0); 3347 return 1; 3348 } 3349 3350 /** generate answer for nxdomain answer */ 3351 static int 3352 az_generate_nxdomain_answer(struct auth_zone* z, struct regional* region, 3353 struct dns_msg* msg, struct auth_data* ce, struct auth_data* node) 3354 { 3355 struct auth_rrset* nsec; 3356 msg->rep->flags |= LDNS_RCODE_NXDOMAIN; 3357 if(!az_add_negative_soa(z, region, msg)) return 0; 3358 if((nsec=az_find_nsec_cover(z, &node)) != NULL) { 3359 if(!msg_add_rrset_ns(z, region, msg, node, nsec)) return 0; 3360 if(ce && !az_nsec_wildcard_denial(z, region, msg, ce->name, 3361 ce->namelen)) return 0; 3362 } else if(ce) { 3363 if(!az_add_nsec3_proof(z, region, msg, ce->name, 3364 ce->namelen, msg->qinfo.qname, 3365 msg->qinfo.qname_len, 0, 1, 1, 1)) 3366 return 0; 3367 } 3368 return 1; 3369 } 3370 3371 /** Create answers when an exact match exists for the domain name */ 3372 static int 3373 az_generate_answer_with_node(struct auth_zone* z, struct query_info* qinfo, 3374 struct regional* region, struct dns_msg* msg, struct auth_data* node) 3375 { 3376 struct auth_rrset* rrset; 3377 /* positive answer, rrset we are looking for exists */ 3378 if((rrset=az_domain_rrset(node, qinfo->qtype)) != NULL) { 3379 return az_generate_positive_answer(z, region, msg, node, rrset); 3380 } 3381 /* CNAME? */ 3382 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_CNAME)) != NULL) { 3383 return az_generate_cname_answer(z, qinfo, region, msg, 3384 node, rrset); 3385 } 3386 /* type ANY ? */ 3387 if(qinfo->qtype == LDNS_RR_TYPE_ANY) { 3388 return az_generate_any_answer(z, region, msg, node); 3389 } 3390 /* NOERROR/NODATA (no such type at domain name) */ 3391 return az_generate_notype_answer(z, region, msg, node); 3392 } 3393 3394 /** Generate answer without an existing-node that we can use. 3395 * So it'll be a referral, DNAME or nxdomain */ 3396 static int 3397 az_generate_answer_nonexistnode(struct auth_zone* z, struct query_info* qinfo, 3398 struct regional* region, struct dns_msg* msg, struct auth_data* ce, 3399 struct auth_rrset* rrset, struct auth_data* node) 3400 { 3401 struct auth_data* wildcard; 3402 3403 /* we do not have an exact matching name (that exists) */ 3404 /* see if we have a NS or DNAME in the ce */ 3405 if(ce && rrset && rrset->type == LDNS_RR_TYPE_NS) { 3406 return az_generate_referral_answer(z, region, msg, ce, rrset); 3407 } 3408 if(ce && rrset && rrset->type == LDNS_RR_TYPE_DNAME) { 3409 return az_generate_dname_answer(z, qinfo, region, msg, ce, 3410 rrset); 3411 } 3412 /* if there is an empty nonterminal, wildcard and nxdomain don't 3413 * happen, it is a notype answer */ 3414 if(az_empty_nonterminal(z, qinfo, node)) { 3415 return az_generate_notype_answer(z, region, msg, node); 3416 } 3417 /* see if we have a wildcard under the ce */ 3418 if((wildcard=az_find_wildcard(z, qinfo, ce)) != NULL) { 3419 return az_generate_wildcard_answer(z, qinfo, region, msg, 3420 ce, wildcard, node); 3421 } 3422 /* generate nxdomain answer */ 3423 return az_generate_nxdomain_answer(z, region, msg, ce, node); 3424 } 3425 3426 /** Lookup answer in a zone. */ 3427 static int 3428 auth_zone_generate_answer(struct auth_zone* z, struct query_info* qinfo, 3429 struct regional* region, struct dns_msg** msg, int* fallback) 3430 { 3431 struct auth_data* node, *ce; 3432 struct auth_rrset* rrset; 3433 int node_exact, node_exists; 3434 /* does the zone want fallback in case of failure? */ 3435 *fallback = z->fallback_enabled; 3436 if(!(*msg=msg_create(region, qinfo))) return 0; 3437 3438 /* lookup if there is a matching domain name for the query */ 3439 az_find_domain(z, qinfo, &node_exact, &node); 3440 3441 /* see if node exists for generating answers from (i.e. not glue and 3442 * obscured by NS or DNAME or NSEC3-only), and also return the 3443 * closest-encloser from that, closest node that should be used 3444 * to generate answers from that is above the query */ 3445 node_exists = az_find_ce(z, qinfo, node, node_exact, &ce, &rrset); 3446 3447 if(verbosity >= VERB_ALGO) { 3448 char zname[256], qname[256], nname[256], cename[256], 3449 tpstr[32], rrstr[32]; 3450 sldns_wire2str_dname_buf(qinfo->qname, qinfo->qname_len, qname, 3451 sizeof(qname)); 3452 sldns_wire2str_type_buf(qinfo->qtype, tpstr, sizeof(tpstr)); 3453 sldns_wire2str_dname_buf(z->name, z->namelen, zname, 3454 sizeof(zname)); 3455 if(node) 3456 sldns_wire2str_dname_buf(node->name, node->namelen, 3457 nname, sizeof(nname)); 3458 else snprintf(nname, sizeof(nname), "NULL"); 3459 if(ce) 3460 sldns_wire2str_dname_buf(ce->name, ce->namelen, 3461 cename, sizeof(cename)); 3462 else snprintf(cename, sizeof(cename), "NULL"); 3463 if(rrset) sldns_wire2str_type_buf(rrset->type, rrstr, 3464 sizeof(rrstr)); 3465 else snprintf(rrstr, sizeof(rrstr), "NULL"); 3466 log_info("auth_zone %s query %s %s, domain %s %s %s, " 3467 "ce %s, rrset %s", zname, qname, tpstr, nname, 3468 (node_exact?"exact":"notexact"), 3469 (node_exists?"exist":"notexist"), cename, rrstr); 3470 } 3471 3472 if(node_exists) { 3473 /* the node is fine, generate answer from node */ 3474 return az_generate_answer_with_node(z, qinfo, region, *msg, 3475 node); 3476 } 3477 return az_generate_answer_nonexistnode(z, qinfo, region, *msg, 3478 ce, rrset, node); 3479 } 3480 3481 int auth_zones_lookup(struct auth_zones* az, struct query_info* qinfo, 3482 struct regional* region, struct dns_msg** msg, int* fallback, 3483 uint8_t* dp_nm, size_t dp_nmlen) 3484 { 3485 int r; 3486 struct auth_zone* z; 3487 /* find the zone that should contain the answer. */ 3488 lock_rw_rdlock(&az->lock); 3489 z = auth_zone_find(az, dp_nm, dp_nmlen, qinfo->qclass); 3490 if(!z) { 3491 lock_rw_unlock(&az->lock); 3492 /* no auth zone, fallback to internet */ 3493 *fallback = 1; 3494 return 0; 3495 } 3496 lock_rw_rdlock(&z->lock); 3497 lock_rw_unlock(&az->lock); 3498 3499 /* if not for upstream queries, fallback */ 3500 if(!z->for_upstream) { 3501 lock_rw_unlock(&z->lock); 3502 *fallback = 1; 3503 return 0; 3504 } 3505 if(z->zone_expired) { 3506 *fallback = z->fallback_enabled; 3507 lock_rw_unlock(&z->lock); 3508 return 0; 3509 } 3510 /* see what answer that zone would generate */ 3511 r = auth_zone_generate_answer(z, qinfo, region, msg, fallback); 3512 lock_rw_unlock(&z->lock); 3513 return r; 3514 } 3515 3516 /** encode auth answer */ 3517 static void 3518 auth_answer_encode(struct query_info* qinfo, struct module_env* env, 3519 struct edns_data* edns, struct comm_reply* repinfo, sldns_buffer* buf, 3520 struct regional* temp, struct dns_msg* msg) 3521 { 3522 uint16_t udpsize; 3523 udpsize = edns->udp_size; 3524 edns->edns_version = EDNS_ADVERTISED_VERSION; 3525 edns->udp_size = EDNS_ADVERTISED_SIZE; 3526 edns->ext_rcode = 0; 3527 edns->bits &= EDNS_DO; 3528 3529 if(!inplace_cb_reply_local_call(env, qinfo, NULL, msg->rep, 3530 (int)FLAGS_GET_RCODE(msg->rep->flags), edns, repinfo, temp, env->now_tv) 3531 || !reply_info_answer_encode(qinfo, msg->rep, 3532 *(uint16_t*)sldns_buffer_begin(buf), 3533 sldns_buffer_read_u16_at(buf, 2), 3534 buf, 0, 0, temp, udpsize, edns, 3535 (int)(edns->bits&EDNS_DO), 0)) { 3536 error_encode(buf, (LDNS_RCODE_SERVFAIL|BIT_AA), qinfo, 3537 *(uint16_t*)sldns_buffer_begin(buf), 3538 sldns_buffer_read_u16_at(buf, 2), edns); 3539 } 3540 } 3541 3542 /** encode auth error answer */ 3543 static void 3544 auth_error_encode(struct query_info* qinfo, struct module_env* env, 3545 struct edns_data* edns, struct comm_reply* repinfo, sldns_buffer* buf, 3546 struct regional* temp, int rcode) 3547 { 3548 edns->edns_version = EDNS_ADVERTISED_VERSION; 3549 edns->udp_size = EDNS_ADVERTISED_SIZE; 3550 edns->ext_rcode = 0; 3551 edns->bits &= EDNS_DO; 3552 3553 if(!inplace_cb_reply_local_call(env, qinfo, NULL, NULL, 3554 rcode, edns, repinfo, temp, env->now_tv)) 3555 edns->opt_list_inplace_cb_out = NULL; 3556 error_encode(buf, rcode|BIT_AA, qinfo, 3557 *(uint16_t*)sldns_buffer_begin(buf), 3558 sldns_buffer_read_u16_at(buf, 2), edns); 3559 } 3560 3561 int auth_zones_answer(struct auth_zones* az, struct module_env* env, 3562 struct query_info* qinfo, struct edns_data* edns, 3563 struct comm_reply* repinfo, struct sldns_buffer* buf, struct regional* temp) 3564 { 3565 struct dns_msg* msg = NULL; 3566 struct auth_zone* z; 3567 int r; 3568 int fallback = 0; 3569 3570 lock_rw_rdlock(&az->lock); 3571 if(!az->have_downstream) { 3572 /* no downstream auth zones */ 3573 lock_rw_unlock(&az->lock); 3574 return 0; 3575 } 3576 if(qinfo->qtype == LDNS_RR_TYPE_DS) { 3577 uint8_t* delname = qinfo->qname; 3578 size_t delnamelen = qinfo->qname_len; 3579 dname_remove_label(&delname, &delnamelen); 3580 z = auth_zones_find_zone(az, delname, delnamelen, 3581 qinfo->qclass); 3582 } else { 3583 z = auth_zones_find_zone(az, qinfo->qname, qinfo->qname_len, 3584 qinfo->qclass); 3585 } 3586 if(!z) { 3587 /* no zone above it */ 3588 lock_rw_unlock(&az->lock); 3589 return 0; 3590 } 3591 lock_rw_rdlock(&z->lock); 3592 lock_rw_unlock(&az->lock); 3593 if(!z->for_downstream) { 3594 lock_rw_unlock(&z->lock); 3595 return 0; 3596 } 3597 if(z->zone_expired) { 3598 if(z->fallback_enabled) { 3599 lock_rw_unlock(&z->lock); 3600 return 0; 3601 } 3602 lock_rw_unlock(&z->lock); 3603 lock_rw_wrlock(&az->lock); 3604 az->num_query_down++; 3605 lock_rw_unlock(&az->lock); 3606 auth_error_encode(qinfo, env, edns, repinfo, buf, temp, 3607 LDNS_RCODE_SERVFAIL); 3608 return 1; 3609 } 3610 3611 /* answer it from zone z */ 3612 r = auth_zone_generate_answer(z, qinfo, temp, &msg, &fallback); 3613 lock_rw_unlock(&z->lock); 3614 if(!r && fallback) { 3615 /* fallback to regular answering (recursive) */ 3616 return 0; 3617 } 3618 lock_rw_wrlock(&az->lock); 3619 az->num_query_down++; 3620 lock_rw_unlock(&az->lock); 3621 3622 /* encode answer */ 3623 if(!r) 3624 auth_error_encode(qinfo, env, edns, repinfo, buf, temp, 3625 LDNS_RCODE_SERVFAIL); 3626 else auth_answer_encode(qinfo, env, edns, repinfo, buf, temp, msg); 3627 3628 return 1; 3629 } 3630 3631 int auth_zones_can_fallback(struct auth_zones* az, uint8_t* nm, size_t nmlen, 3632 uint16_t dclass) 3633 { 3634 int r; 3635 struct auth_zone* z; 3636 lock_rw_rdlock(&az->lock); 3637 z = auth_zone_find(az, nm, nmlen, dclass); 3638 if(!z) { 3639 lock_rw_unlock(&az->lock); 3640 /* no such auth zone, fallback */ 3641 return 1; 3642 } 3643 lock_rw_rdlock(&z->lock); 3644 lock_rw_unlock(&az->lock); 3645 r = z->fallback_enabled || (!z->for_upstream); 3646 lock_rw_unlock(&z->lock); 3647 return r; 3648 } 3649 3650 int 3651 auth_zone_parse_notify_serial(sldns_buffer* pkt, uint32_t *serial) 3652 { 3653 struct query_info q; 3654 uint16_t rdlen; 3655 memset(&q, 0, sizeof(q)); 3656 sldns_buffer_set_position(pkt, 0); 3657 if(!query_info_parse(&q, pkt)) return 0; 3658 if(LDNS_ANCOUNT(sldns_buffer_begin(pkt)) == 0) return 0; 3659 /* skip name of RR in answer section */ 3660 if(sldns_buffer_remaining(pkt) < 1) return 0; 3661 if(pkt_dname_len(pkt) == 0) return 0; 3662 /* check type */ 3663 if(sldns_buffer_remaining(pkt) < 10 /* type,class,ttl,rdatalen*/) 3664 return 0; 3665 if(sldns_buffer_read_u16(pkt) != LDNS_RR_TYPE_SOA) return 0; 3666 sldns_buffer_skip(pkt, 2); /* class */ 3667 sldns_buffer_skip(pkt, 4); /* ttl */ 3668 rdlen = sldns_buffer_read_u16(pkt); /* rdatalen */ 3669 if(sldns_buffer_remaining(pkt) < rdlen) return 0; 3670 if(rdlen < 22) return 0; /* bad soa length */ 3671 sldns_buffer_skip(pkt, (ssize_t)(rdlen-20)); 3672 *serial = sldns_buffer_read_u32(pkt); 3673 /* return true when has serial in answer section */ 3674 return 1; 3675 } 3676 3677 /** see if addr appears in the list */ 3678 static int 3679 addr_in_list(struct auth_addr* list, struct sockaddr_storage* addr, 3680 socklen_t addrlen) 3681 { 3682 struct auth_addr* p; 3683 for(p=list; p; p=p->next) { 3684 if(sockaddr_cmp_addr(addr, addrlen, &p->addr, p->addrlen)==0) 3685 return 1; 3686 } 3687 return 0; 3688 } 3689 3690 /** check if an address matches a master specification (or one of its 3691 * addresses in the addr list) */ 3692 static int 3693 addr_matches_master(struct auth_master* master, struct sockaddr_storage* addr, 3694 socklen_t addrlen, struct auth_master** fromhost) 3695 { 3696 struct sockaddr_storage a; 3697 socklen_t alen = 0; 3698 int net = 0; 3699 if(addr_in_list(master->list, addr, addrlen)) { 3700 *fromhost = master; 3701 return 1; 3702 } 3703 /* compare address (but not port number, that is the destination 3704 * port of the master, the port number of the received notify is 3705 * allowed to by any port on that master) */ 3706 if(extstrtoaddr(master->host, &a, &alen, UNBOUND_DNS_PORT) && 3707 sockaddr_cmp_addr(addr, addrlen, &a, alen)==0) { 3708 *fromhost = master; 3709 return 1; 3710 } 3711 /* prefixes, addr/len, like 10.0.0.0/8 */ 3712 /* not http and has a / and there is one / */ 3713 if(master->allow_notify && !master->http && 3714 strchr(master->host, '/') != NULL && 3715 strchr(master->host, '/') == strrchr(master->host, '/') && 3716 netblockstrtoaddr(master->host, UNBOUND_DNS_PORT, &a, &alen, 3717 &net) && alen == addrlen) { 3718 if(addr_in_common(addr, (addr_is_ip6(addr, addrlen)?128:32), 3719 &a, net, alen) >= net) { 3720 *fromhost = NULL; /* prefix does not have destination 3721 to send the probe or transfer with */ 3722 return 1; /* matches the netblock */ 3723 } 3724 } 3725 return 0; 3726 } 3727 3728 /** check access list for notifies */ 3729 static int 3730 az_xfr_allowed_notify(struct auth_xfer* xfr, struct sockaddr_storage* addr, 3731 socklen_t addrlen, struct auth_master** fromhost) 3732 { 3733 struct auth_master* p; 3734 for(p=xfr->allow_notify_list; p; p=p->next) { 3735 if(addr_matches_master(p, addr, addrlen, fromhost)) { 3736 return 1; 3737 } 3738 } 3739 return 0; 3740 } 3741 3742 /** see if the serial means the zone has to be updated, i.e. the serial 3743 * is newer than the zone serial, or we have no zone */ 3744 static int 3745 xfr_serial_means_update(struct auth_xfer* xfr, uint32_t serial) 3746 { 3747 if(!xfr->have_zone) 3748 return 1; /* no zone, anything is better */ 3749 if(xfr->zone_expired) 3750 return 1; /* expired, the sent serial is better than expired 3751 data */ 3752 if(compare_serial(xfr->serial, serial) < 0) 3753 return 1; /* our serial is smaller than the sent serial, 3754 the data is newer, fetch it */ 3755 return 0; 3756 } 3757 3758 /** note notify serial, updates the notify information in the xfr struct */ 3759 static void 3760 xfr_note_notify_serial(struct auth_xfer* xfr, int has_serial, uint32_t serial) 3761 { 3762 if(xfr->notify_received && xfr->notify_has_serial && has_serial) { 3763 /* see if this serial is newer */ 3764 if(compare_serial(xfr->notify_serial, serial) < 0) 3765 xfr->notify_serial = serial; 3766 } else if(xfr->notify_received && xfr->notify_has_serial && 3767 !has_serial) { 3768 /* remove serial, we have notify without serial */ 3769 xfr->notify_has_serial = 0; 3770 xfr->notify_serial = 0; 3771 } else if(xfr->notify_received && !xfr->notify_has_serial) { 3772 /* we already have notify without serial, keep it 3773 * that way; no serial check when current operation 3774 * is done */ 3775 } else { 3776 xfr->notify_received = 1; 3777 xfr->notify_has_serial = has_serial; 3778 xfr->notify_serial = serial; 3779 } 3780 } 3781 3782 /** process a notify serial, start new probe or note serial. xfr is locked */ 3783 static void 3784 xfr_process_notify(struct auth_xfer* xfr, struct module_env* env, 3785 int has_serial, uint32_t serial, struct auth_master* fromhost) 3786 { 3787 /* if the serial of notify is older than we have, don't fetch 3788 * a zone, we already have it */ 3789 if(has_serial && !xfr_serial_means_update(xfr, serial)) { 3790 lock_basic_unlock(&xfr->lock); 3791 return; 3792 } 3793 /* start new probe with this addr src, or note serial */ 3794 if(!xfr_start_probe(xfr, env, fromhost)) { 3795 /* not started because already in progress, note the serial */ 3796 xfr_note_notify_serial(xfr, has_serial, serial); 3797 lock_basic_unlock(&xfr->lock); 3798 } 3799 /* successful end of start_probe unlocked xfr->lock */ 3800 } 3801 3802 int auth_zones_notify(struct auth_zones* az, struct module_env* env, 3803 uint8_t* nm, size_t nmlen, uint16_t dclass, 3804 struct sockaddr_storage* addr, socklen_t addrlen, int has_serial, 3805 uint32_t serial, int* refused) 3806 { 3807 struct auth_xfer* xfr; 3808 struct auth_master* fromhost = NULL; 3809 /* see which zone this is */ 3810 lock_rw_rdlock(&az->lock); 3811 xfr = auth_xfer_find(az, nm, nmlen, dclass); 3812 if(!xfr) { 3813 lock_rw_unlock(&az->lock); 3814 /* no such zone, refuse the notify */ 3815 *refused = 1; 3816 return 0; 3817 } 3818 lock_basic_lock(&xfr->lock); 3819 lock_rw_unlock(&az->lock); 3820 3821 /* check access list for notifies */ 3822 if(!az_xfr_allowed_notify(xfr, addr, addrlen, &fromhost)) { 3823 lock_basic_unlock(&xfr->lock); 3824 /* notify not allowed, refuse the notify */ 3825 *refused = 1; 3826 return 0; 3827 } 3828 3829 /* process the notify */ 3830 xfr_process_notify(xfr, env, has_serial, serial, fromhost); 3831 return 1; 3832 } 3833 3834 int auth_zones_startprobesequence(struct auth_zones* az, 3835 struct module_env* env, uint8_t* nm, size_t nmlen, uint16_t dclass) 3836 { 3837 struct auth_xfer* xfr; 3838 lock_rw_rdlock(&az->lock); 3839 xfr = auth_xfer_find(az, nm, nmlen, dclass); 3840 if(!xfr) { 3841 lock_rw_unlock(&az->lock); 3842 return 0; 3843 } 3844 lock_basic_lock(&xfr->lock); 3845 lock_rw_unlock(&az->lock); 3846 3847 xfr_process_notify(xfr, env, 0, 0, NULL); 3848 return 1; 3849 } 3850 3851 /** set a zone expired */ 3852 static void 3853 auth_xfer_set_expired(struct auth_xfer* xfr, struct module_env* env, 3854 int expired) 3855 { 3856 struct auth_zone* z; 3857 3858 /* expire xfr */ 3859 lock_basic_lock(&xfr->lock); 3860 xfr->zone_expired = expired; 3861 lock_basic_unlock(&xfr->lock); 3862 3863 /* find auth_zone */ 3864 lock_rw_rdlock(&env->auth_zones->lock); 3865 z = auth_zone_find(env->auth_zones, xfr->name, xfr->namelen, 3866 xfr->dclass); 3867 if(!z) { 3868 lock_rw_unlock(&env->auth_zones->lock); 3869 return; 3870 } 3871 lock_rw_wrlock(&z->lock); 3872 lock_rw_unlock(&env->auth_zones->lock); 3873 3874 /* expire auth_zone */ 3875 z->zone_expired = expired; 3876 lock_rw_unlock(&z->lock); 3877 } 3878 3879 /** find master (from notify or probe) in list of masters */ 3880 static struct auth_master* 3881 find_master_by_host(struct auth_master* list, char* host) 3882 { 3883 struct auth_master* p; 3884 for(p=list; p; p=p->next) { 3885 if(strcmp(p->host, host) == 0) 3886 return p; 3887 } 3888 return NULL; 3889 } 3890 3891 /** delete the looked up auth_addrs for all the masters in the list */ 3892 static void 3893 xfr_masterlist_free_addrs(struct auth_master* list) 3894 { 3895 struct auth_master* m; 3896 for(m=list; m; m=m->next) { 3897 if(m->list) { 3898 auth_free_master_addrs(m->list); 3899 m->list = NULL; 3900 } 3901 } 3902 } 3903 3904 /** copy a list of auth_addrs */ 3905 static struct auth_addr* 3906 auth_addr_list_copy(struct auth_addr* source) 3907 { 3908 struct auth_addr* list = NULL, *last = NULL; 3909 struct auth_addr* p; 3910 for(p=source; p; p=p->next) { 3911 struct auth_addr* a = (struct auth_addr*)memdup(p, sizeof(*p)); 3912 if(!a) { 3913 log_err("malloc failure"); 3914 auth_free_master_addrs(list); 3915 return NULL; 3916 } 3917 a->next = NULL; 3918 if(last) last->next = a; 3919 if(!list) list = a; 3920 last = a; 3921 } 3922 return list; 3923 } 3924 3925 /** copy a master to a new structure, NULL on alloc failure */ 3926 static struct auth_master* 3927 auth_master_copy(struct auth_master* o) 3928 { 3929 struct auth_master* m; 3930 if(!o) return NULL; 3931 m = (struct auth_master*)memdup(o, sizeof(*o)); 3932 if(!m) { 3933 log_err("malloc failure"); 3934 return NULL; 3935 } 3936 m->next = NULL; 3937 if(m->host) { 3938 m->host = strdup(m->host); 3939 if(!m->host) { 3940 free(m); 3941 log_err("malloc failure"); 3942 return NULL; 3943 } 3944 } 3945 if(m->file) { 3946 m->file = strdup(m->file); 3947 if(!m->file) { 3948 free(m->host); 3949 free(m); 3950 log_err("malloc failure"); 3951 return NULL; 3952 } 3953 } 3954 if(m->list) { 3955 m->list = auth_addr_list_copy(m->list); 3956 if(!m->list) { 3957 free(m->file); 3958 free(m->host); 3959 free(m); 3960 return NULL; 3961 } 3962 } 3963 return m; 3964 } 3965 3966 /** copy the master addresses from the task_probe lookups to the allow_notify 3967 * list of masters */ 3968 static void 3969 probe_copy_masters_for_allow_notify(struct auth_xfer* xfr) 3970 { 3971 struct auth_master* list = NULL, *last = NULL; 3972 struct auth_master* p; 3973 /* build up new list with copies */ 3974 for(p = xfr->task_transfer->masters; p; p=p->next) { 3975 struct auth_master* m = auth_master_copy(p); 3976 if(!m) { 3977 auth_free_masters(list); 3978 /* failed because of malloc failure, use old list */ 3979 return; 3980 } 3981 m->next = NULL; 3982 if(last) last->next = m; 3983 if(!list) list = m; 3984 last = m; 3985 } 3986 /* success, replace list */ 3987 auth_free_masters(xfr->allow_notify_list); 3988 xfr->allow_notify_list = list; 3989 } 3990 3991 /** start the lookups for task_transfer */ 3992 static void 3993 xfr_transfer_start_lookups(struct auth_xfer* xfr) 3994 { 3995 /* delete all the looked up addresses in the list */ 3996 xfr->task_transfer->scan_addr = NULL; 3997 xfr_masterlist_free_addrs(xfr->task_transfer->masters); 3998 3999 /* start lookup at the first master */ 4000 xfr->task_transfer->lookup_target = xfr->task_transfer->masters; 4001 xfr->task_transfer->lookup_aaaa = 0; 4002 } 4003 4004 /** move to the next lookup of hostname for task_transfer */ 4005 static void 4006 xfr_transfer_move_to_next_lookup(struct auth_xfer* xfr, struct module_env* env) 4007 { 4008 if(!xfr->task_transfer->lookup_target) 4009 return; /* already at end of list */ 4010 if(!xfr->task_transfer->lookup_aaaa && env->cfg->do_ip6) { 4011 /* move to lookup AAAA */ 4012 xfr->task_transfer->lookup_aaaa = 1; 4013 return; 4014 } 4015 xfr->task_transfer->lookup_target = 4016 xfr->task_transfer->lookup_target->next; 4017 xfr->task_transfer->lookup_aaaa = 0; 4018 if(!env->cfg->do_ip4 && xfr->task_transfer->lookup_target!=NULL) 4019 xfr->task_transfer->lookup_aaaa = 1; 4020 } 4021 4022 /** start the lookups for task_probe */ 4023 static void 4024 xfr_probe_start_lookups(struct auth_xfer* xfr) 4025 { 4026 /* delete all the looked up addresses in the list */ 4027 xfr->task_probe->scan_addr = NULL; 4028 xfr_masterlist_free_addrs(xfr->task_probe->masters); 4029 4030 /* start lookup at the first master */ 4031 xfr->task_probe->lookup_target = xfr->task_probe->masters; 4032 xfr->task_probe->lookup_aaaa = 0; 4033 } 4034 4035 /** move to the next lookup of hostname for task_probe */ 4036 static void 4037 xfr_probe_move_to_next_lookup(struct auth_xfer* xfr, struct module_env* env) 4038 { 4039 if(!xfr->task_probe->lookup_target) 4040 return; /* already at end of list */ 4041 if(!xfr->task_probe->lookup_aaaa && env->cfg->do_ip6) { 4042 /* move to lookup AAAA */ 4043 xfr->task_probe->lookup_aaaa = 1; 4044 return; 4045 } 4046 xfr->task_probe->lookup_target = xfr->task_probe->lookup_target->next; 4047 xfr->task_probe->lookup_aaaa = 0; 4048 if(!env->cfg->do_ip4 && xfr->task_probe->lookup_target!=NULL) 4049 xfr->task_probe->lookup_aaaa = 1; 4050 } 4051 4052 /** start the iteration of the task_transfer list of masters */ 4053 static void 4054 xfr_transfer_start_list(struct auth_xfer* xfr, struct auth_master* spec) 4055 { 4056 if(spec) { 4057 xfr->task_transfer->scan_specific = find_master_by_host( 4058 xfr->task_transfer->masters, spec->host); 4059 if(xfr->task_transfer->scan_specific) { 4060 xfr->task_transfer->scan_target = NULL; 4061 xfr->task_transfer->scan_addr = NULL; 4062 if(xfr->task_transfer->scan_specific->list) 4063 xfr->task_transfer->scan_addr = 4064 xfr->task_transfer->scan_specific->list; 4065 return; 4066 } 4067 } 4068 /* no specific (notified) host to scan */ 4069 xfr->task_transfer->scan_specific = NULL; 4070 xfr->task_transfer->scan_addr = NULL; 4071 /* pick up first scan target */ 4072 xfr->task_transfer->scan_target = xfr->task_transfer->masters; 4073 if(xfr->task_transfer->scan_target && xfr->task_transfer-> 4074 scan_target->list) 4075 xfr->task_transfer->scan_addr = 4076 xfr->task_transfer->scan_target->list; 4077 } 4078 4079 /** start the iteration of the task_probe list of masters */ 4080 static void 4081 xfr_probe_start_list(struct auth_xfer* xfr, struct auth_master* spec) 4082 { 4083 if(spec) { 4084 xfr->task_probe->scan_specific = find_master_by_host( 4085 xfr->task_probe->masters, spec->host); 4086 if(xfr->task_probe->scan_specific) { 4087 xfr->task_probe->scan_target = NULL; 4088 xfr->task_probe->scan_addr = NULL; 4089 if(xfr->task_probe->scan_specific->list) 4090 xfr->task_probe->scan_addr = 4091 xfr->task_probe->scan_specific->list; 4092 return; 4093 } 4094 } 4095 /* no specific (notified) host to scan */ 4096 xfr->task_probe->scan_specific = NULL; 4097 xfr->task_probe->scan_addr = NULL; 4098 /* pick up first scan target */ 4099 xfr->task_probe->scan_target = xfr->task_probe->masters; 4100 if(xfr->task_probe->scan_target && xfr->task_probe->scan_target->list) 4101 xfr->task_probe->scan_addr = 4102 xfr->task_probe->scan_target->list; 4103 } 4104 4105 /** pick up the master that is being scanned right now, task_transfer */ 4106 static struct auth_master* 4107 xfr_transfer_current_master(struct auth_xfer* xfr) 4108 { 4109 if(xfr->task_transfer->scan_specific) 4110 return xfr->task_transfer->scan_specific; 4111 return xfr->task_transfer->scan_target; 4112 } 4113 4114 /** pick up the master that is being scanned right now, task_probe */ 4115 static struct auth_master* 4116 xfr_probe_current_master(struct auth_xfer* xfr) 4117 { 4118 if(xfr->task_probe->scan_specific) 4119 return xfr->task_probe->scan_specific; 4120 return xfr->task_probe->scan_target; 4121 } 4122 4123 /** true if at end of list, task_transfer */ 4124 static int 4125 xfr_transfer_end_of_list(struct auth_xfer* xfr) 4126 { 4127 return !xfr->task_transfer->scan_specific && 4128 !xfr->task_transfer->scan_target; 4129 } 4130 4131 /** true if at end of list, task_probe */ 4132 static int 4133 xfr_probe_end_of_list(struct auth_xfer* xfr) 4134 { 4135 return !xfr->task_probe->scan_specific && !xfr->task_probe->scan_target; 4136 } 4137 4138 /** move to next master in list, task_transfer */ 4139 static void 4140 xfr_transfer_nextmaster(struct auth_xfer* xfr) 4141 { 4142 if(!xfr->task_transfer->scan_specific && 4143 !xfr->task_transfer->scan_target) 4144 return; 4145 if(xfr->task_transfer->scan_addr) { 4146 xfr->task_transfer->scan_addr = 4147 xfr->task_transfer->scan_addr->next; 4148 if(xfr->task_transfer->scan_addr) 4149 return; 4150 } 4151 if(xfr->task_transfer->scan_specific) { 4152 xfr->task_transfer->scan_specific = NULL; 4153 xfr->task_transfer->scan_target = xfr->task_transfer->masters; 4154 if(xfr->task_transfer->scan_target && xfr->task_transfer-> 4155 scan_target->list) 4156 xfr->task_transfer->scan_addr = 4157 xfr->task_transfer->scan_target->list; 4158 return; 4159 } 4160 if(!xfr->task_transfer->scan_target) 4161 return; 4162 xfr->task_transfer->scan_target = xfr->task_transfer->scan_target->next; 4163 if(xfr->task_transfer->scan_target && xfr->task_transfer-> 4164 scan_target->list) 4165 xfr->task_transfer->scan_addr = 4166 xfr->task_transfer->scan_target->list; 4167 return; 4168 } 4169 4170 /** move to next master in list, task_probe */ 4171 static void 4172 xfr_probe_nextmaster(struct auth_xfer* xfr) 4173 { 4174 if(!xfr->task_probe->scan_specific && !xfr->task_probe->scan_target) 4175 return; 4176 if(xfr->task_probe->scan_addr) { 4177 xfr->task_probe->scan_addr = xfr->task_probe->scan_addr->next; 4178 if(xfr->task_probe->scan_addr) 4179 return; 4180 } 4181 if(xfr->task_probe->scan_specific) { 4182 xfr->task_probe->scan_specific = NULL; 4183 xfr->task_probe->scan_target = xfr->task_probe->masters; 4184 if(xfr->task_probe->scan_target && xfr->task_probe-> 4185 scan_target->list) 4186 xfr->task_probe->scan_addr = 4187 xfr->task_probe->scan_target->list; 4188 return; 4189 } 4190 if(!xfr->task_probe->scan_target) 4191 return; 4192 xfr->task_probe->scan_target = xfr->task_probe->scan_target->next; 4193 if(xfr->task_probe->scan_target && xfr->task_probe-> 4194 scan_target->list) 4195 xfr->task_probe->scan_addr = 4196 xfr->task_probe->scan_target->list; 4197 return; 4198 } 4199 4200 /** create SOA probe packet for xfr */ 4201 static void 4202 xfr_create_soa_probe_packet(struct auth_xfer* xfr, sldns_buffer* buf, 4203 uint16_t id) 4204 { 4205 struct query_info qinfo; 4206 4207 memset(&qinfo, 0, sizeof(qinfo)); 4208 qinfo.qname = xfr->name; 4209 qinfo.qname_len = xfr->namelen; 4210 qinfo.qtype = LDNS_RR_TYPE_SOA; 4211 qinfo.qclass = xfr->dclass; 4212 qinfo_query_encode(buf, &qinfo); 4213 sldns_buffer_write_u16_at(buf, 0, id); 4214 } 4215 4216 /** create IXFR/AXFR packet for xfr */ 4217 static void 4218 xfr_create_ixfr_packet(struct auth_xfer* xfr, sldns_buffer* buf, uint16_t id, 4219 struct auth_master* master) 4220 { 4221 struct query_info qinfo; 4222 uint32_t serial; 4223 int have_zone; 4224 have_zone = xfr->have_zone; 4225 serial = xfr->serial; 4226 4227 memset(&qinfo, 0, sizeof(qinfo)); 4228 qinfo.qname = xfr->name; 4229 qinfo.qname_len = xfr->namelen; 4230 xfr->task_transfer->got_xfr_serial = 0; 4231 xfr->task_transfer->rr_scan_num = 0; 4232 xfr->task_transfer->incoming_xfr_serial = 0; 4233 xfr->task_transfer->on_ixfr_is_axfr = 0; 4234 xfr->task_transfer->on_ixfr = 1; 4235 qinfo.qtype = LDNS_RR_TYPE_IXFR; 4236 if(!have_zone || xfr->task_transfer->ixfr_fail || !master->ixfr) { 4237 qinfo.qtype = LDNS_RR_TYPE_AXFR; 4238 xfr->task_transfer->ixfr_fail = 0; 4239 xfr->task_transfer->on_ixfr = 0; 4240 } 4241 4242 qinfo.qclass = xfr->dclass; 4243 qinfo_query_encode(buf, &qinfo); 4244 sldns_buffer_write_u16_at(buf, 0, id); 4245 4246 /* append serial for IXFR */ 4247 if(qinfo.qtype == LDNS_RR_TYPE_IXFR) { 4248 size_t end = sldns_buffer_limit(buf); 4249 sldns_buffer_clear(buf); 4250 sldns_buffer_set_position(buf, end); 4251 /* auth section count 1 */ 4252 sldns_buffer_write_u16_at(buf, LDNS_NSCOUNT_OFF, 1); 4253 /* write SOA */ 4254 sldns_buffer_write_u8(buf, 0xC0); /* compressed ptr to qname */ 4255 sldns_buffer_write_u8(buf, 0x0C); 4256 sldns_buffer_write_u16(buf, LDNS_RR_TYPE_SOA); 4257 sldns_buffer_write_u16(buf, qinfo.qclass); 4258 sldns_buffer_write_u32(buf, 0); /* ttl */ 4259 sldns_buffer_write_u16(buf, 22); /* rdata length */ 4260 sldns_buffer_write_u8(buf, 0); /* . */ 4261 sldns_buffer_write_u8(buf, 0); /* . */ 4262 sldns_buffer_write_u32(buf, serial); /* serial */ 4263 sldns_buffer_write_u32(buf, 0); /* refresh */ 4264 sldns_buffer_write_u32(buf, 0); /* retry */ 4265 sldns_buffer_write_u32(buf, 0); /* expire */ 4266 sldns_buffer_write_u32(buf, 0); /* minimum */ 4267 sldns_buffer_flip(buf); 4268 } 4269 } 4270 4271 /** check if returned packet is OK */ 4272 static int 4273 check_packet_ok(sldns_buffer* pkt, uint16_t qtype, struct auth_xfer* xfr, 4274 uint32_t* serial) 4275 { 4276 /* parse to see if packet worked, valid reply */ 4277 4278 /* check serial number of SOA */ 4279 if(sldns_buffer_limit(pkt) < LDNS_HEADER_SIZE) 4280 return 0; 4281 4282 /* check ID */ 4283 if(LDNS_ID_WIRE(sldns_buffer_begin(pkt)) != xfr->task_probe->id) 4284 return 0; 4285 4286 /* check flag bits and rcode */ 4287 if(!LDNS_QR_WIRE(sldns_buffer_begin(pkt))) 4288 return 0; 4289 if(LDNS_OPCODE_WIRE(sldns_buffer_begin(pkt)) != LDNS_PACKET_QUERY) 4290 return 0; 4291 if(LDNS_RCODE_WIRE(sldns_buffer_begin(pkt)) != LDNS_RCODE_NOERROR) 4292 return 0; 4293 4294 /* check qname */ 4295 if(LDNS_QDCOUNT(sldns_buffer_begin(pkt)) != 1) 4296 return 0; 4297 sldns_buffer_skip(pkt, LDNS_HEADER_SIZE); 4298 if(sldns_buffer_remaining(pkt) < xfr->namelen) 4299 return 0; 4300 if(query_dname_compare(sldns_buffer_current(pkt), xfr->name) != 0) 4301 return 0; 4302 sldns_buffer_skip(pkt, (ssize_t)xfr->namelen); 4303 4304 /* check qtype, qclass */ 4305 if(sldns_buffer_remaining(pkt) < 4) 4306 return 0; 4307 if(sldns_buffer_read_u16(pkt) != qtype) 4308 return 0; 4309 if(sldns_buffer_read_u16(pkt) != xfr->dclass) 4310 return 0; 4311 4312 if(serial) { 4313 uint16_t rdlen; 4314 /* read serial number, from answer section SOA */ 4315 if(LDNS_ANCOUNT(sldns_buffer_begin(pkt)) == 0) 4316 return 0; 4317 /* read from first record SOA record */ 4318 if(sldns_buffer_remaining(pkt) < 1) 4319 return 0; 4320 if(dname_pkt_compare(pkt, sldns_buffer_current(pkt), 4321 xfr->name) != 0) 4322 return 0; 4323 if(!pkt_dname_len(pkt)) 4324 return 0; 4325 /* type, class, ttl, rdatalen */ 4326 if(sldns_buffer_remaining(pkt) < 4+4+2) 4327 return 0; 4328 if(sldns_buffer_read_u16(pkt) != qtype) 4329 return 0; 4330 if(sldns_buffer_read_u16(pkt) != xfr->dclass) 4331 return 0; 4332 sldns_buffer_skip(pkt, 4); /* ttl */ 4333 rdlen = sldns_buffer_read_u16(pkt); 4334 if(sldns_buffer_remaining(pkt) < rdlen) 4335 return 0; 4336 if(sldns_buffer_remaining(pkt) < 1) 4337 return 0; 4338 if(!pkt_dname_len(pkt)) /* soa name */ 4339 return 0; 4340 if(sldns_buffer_remaining(pkt) < 1) 4341 return 0; 4342 if(!pkt_dname_len(pkt)) /* soa name */ 4343 return 0; 4344 if(sldns_buffer_remaining(pkt) < 20) 4345 return 0; 4346 *serial = sldns_buffer_read_u32(pkt); 4347 } 4348 return 1; 4349 } 4350 4351 /** read one line from chunks into buffer at current position */ 4352 static int 4353 chunkline_get_line(struct auth_chunk** chunk, size_t* chunk_pos, 4354 sldns_buffer* buf) 4355 { 4356 int readsome = 0; 4357 while(*chunk) { 4358 /* more text in this chunk? */ 4359 if(*chunk_pos < (*chunk)->len) { 4360 readsome = 1; 4361 while(*chunk_pos < (*chunk)->len) { 4362 char c = (char)((*chunk)->data[*chunk_pos]); 4363 (*chunk_pos)++; 4364 if(sldns_buffer_remaining(buf) < 2) { 4365 /* buffer too short */ 4366 verbose(VERB_ALGO, "http chunkline, " 4367 "line too long"); 4368 return 0; 4369 } 4370 sldns_buffer_write_u8(buf, (uint8_t)c); 4371 if(c == '\n') { 4372 /* we are done */ 4373 return 1; 4374 } 4375 } 4376 } 4377 /* move to next chunk */ 4378 *chunk = (*chunk)->next; 4379 *chunk_pos = 0; 4380 } 4381 /* no more text */ 4382 if(readsome) return 1; 4383 return 0; 4384 } 4385 4386 /** count number of open and closed parenthesis in a chunkline */ 4387 static int 4388 chunkline_count_parens(sldns_buffer* buf, size_t start) 4389 { 4390 size_t end = sldns_buffer_position(buf); 4391 size_t i; 4392 int count = 0; 4393 int squote = 0, dquote = 0; 4394 for(i=start; i<end; i++) { 4395 char c = (char)sldns_buffer_read_u8_at(buf, i); 4396 if(squote && c != '\'') continue; 4397 if(dquote && c != '"') continue; 4398 if(c == '"') 4399 dquote = !dquote; /* skip quoted part */ 4400 else if(c == '\'') 4401 squote = !squote; /* skip quoted part */ 4402 else if(c == '(') 4403 count ++; 4404 else if(c == ')') 4405 count --; 4406 else if(c == ';') { 4407 /* rest is a comment */ 4408 return count; 4409 } 4410 } 4411 return count; 4412 } 4413 4414 /** remove trailing ;... comment from a line in the chunkline buffer */ 4415 static void 4416 chunkline_remove_trailcomment(sldns_buffer* buf, size_t start) 4417 { 4418 size_t end = sldns_buffer_position(buf); 4419 size_t i; 4420 int squote = 0, dquote = 0; 4421 for(i=start; i<end; i++) { 4422 char c = (char)sldns_buffer_read_u8_at(buf, i); 4423 if(squote && c != '\'') continue; 4424 if(dquote && c != '"') continue; 4425 if(c == '"') 4426 dquote = !dquote; /* skip quoted part */ 4427 else if(c == '\'') 4428 squote = !squote; /* skip quoted part */ 4429 else if(c == ';') { 4430 /* rest is a comment */ 4431 sldns_buffer_set_position(buf, i); 4432 return; 4433 } 4434 } 4435 /* nothing to remove */ 4436 } 4437 4438 /** see if a chunkline is a comment line (or empty line) */ 4439 static int 4440 chunkline_is_comment_line_or_empty(sldns_buffer* buf) 4441 { 4442 size_t i, end = sldns_buffer_limit(buf); 4443 for(i=0; i<end; i++) { 4444 char c = (char)sldns_buffer_read_u8_at(buf, i); 4445 if(c == ';') 4446 return 1; /* comment */ 4447 else if(c != ' ' && c != '\t' && c != '\r' && c != '\n') 4448 return 0; /* not a comment */ 4449 } 4450 return 1; /* empty */ 4451 } 4452 4453 /** find a line with ( ) collated */ 4454 static int 4455 chunkline_get_line_collated(struct auth_chunk** chunk, size_t* chunk_pos, 4456 sldns_buffer* buf) 4457 { 4458 size_t pos; 4459 int parens = 0; 4460 sldns_buffer_clear(buf); 4461 pos = sldns_buffer_position(buf); 4462 if(!chunkline_get_line(chunk, chunk_pos, buf)) { 4463 if(sldns_buffer_position(buf) < sldns_buffer_limit(buf)) 4464 sldns_buffer_write_u8_at(buf, sldns_buffer_position(buf), 0); 4465 else sldns_buffer_write_u8_at(buf, sldns_buffer_position(buf)-1, 0); 4466 sldns_buffer_flip(buf); 4467 return 0; 4468 } 4469 parens += chunkline_count_parens(buf, pos); 4470 while(parens > 0) { 4471 chunkline_remove_trailcomment(buf, pos); 4472 pos = sldns_buffer_position(buf); 4473 if(!chunkline_get_line(chunk, chunk_pos, buf)) { 4474 if(sldns_buffer_position(buf) < sldns_buffer_limit(buf)) 4475 sldns_buffer_write_u8_at(buf, sldns_buffer_position(buf), 0); 4476 else sldns_buffer_write_u8_at(buf, sldns_buffer_position(buf)-1, 0); 4477 sldns_buffer_flip(buf); 4478 return 0; 4479 } 4480 parens += chunkline_count_parens(buf, pos); 4481 } 4482 4483 if(sldns_buffer_remaining(buf) < 1) { 4484 verbose(VERB_ALGO, "http chunkline: " 4485 "line too long"); 4486 return 0; 4487 } 4488 sldns_buffer_write_u8_at(buf, sldns_buffer_position(buf), 0); 4489 sldns_buffer_flip(buf); 4490 return 1; 4491 } 4492 4493 /** process $ORIGIN for http, 0 nothing, 1 done, 2 error */ 4494 static int 4495 http_parse_origin(sldns_buffer* buf, struct sldns_file_parse_state* pstate) 4496 { 4497 char* line = (char*)sldns_buffer_begin(buf); 4498 if(strncmp(line, "$ORIGIN", 7) == 0 && 4499 isspace((unsigned char)line[7])) { 4500 int s; 4501 pstate->origin_len = sizeof(pstate->origin); 4502 s = sldns_str2wire_dname_buf(sldns_strip_ws(line+8), 4503 pstate->origin, &pstate->origin_len); 4504 if(s) { 4505 pstate->origin_len = 0; 4506 return 2; 4507 } 4508 return 1; 4509 } 4510 return 0; 4511 } 4512 4513 /** process $TTL for http, 0 nothing, 1 done, 2 error */ 4514 static int 4515 http_parse_ttl(sldns_buffer* buf, struct sldns_file_parse_state* pstate) 4516 { 4517 char* line = (char*)sldns_buffer_begin(buf); 4518 if(strncmp(line, "$TTL", 4) == 0 && 4519 isspace((unsigned char)line[4])) { 4520 const char* end = NULL; 4521 int overflow = 0; 4522 pstate->default_ttl = sldns_str2period( 4523 sldns_strip_ws(line+5), &end, &overflow); 4524 if(overflow) { 4525 return 2; 4526 } 4527 return 1; 4528 } 4529 return 0; 4530 } 4531 4532 /** find noncomment RR line in chunks, collates lines if ( ) format */ 4533 static int 4534 chunkline_non_comment_RR(struct auth_chunk** chunk, size_t* chunk_pos, 4535 sldns_buffer* buf, struct sldns_file_parse_state* pstate) 4536 { 4537 int ret; 4538 while(chunkline_get_line_collated(chunk, chunk_pos, buf)) { 4539 if(chunkline_is_comment_line_or_empty(buf)) { 4540 /* a comment, go to next line */ 4541 continue; 4542 } 4543 if((ret=http_parse_origin(buf, pstate))!=0) { 4544 if(ret == 2) 4545 return 0; 4546 continue; /* $ORIGIN has been handled */ 4547 } 4548 if((ret=http_parse_ttl(buf, pstate))!=0) { 4549 if(ret == 2) 4550 return 0; 4551 continue; /* $TTL has been handled */ 4552 } 4553 return 1; 4554 } 4555 /* no noncomments, fail */ 4556 return 0; 4557 } 4558 4559 /** check syntax of chunklist zonefile, parse first RR, return false on 4560 * failure and return a string in the scratch buffer (first RR string) 4561 * on failure. */ 4562 static int 4563 http_zonefile_syntax_check(struct auth_xfer* xfr, sldns_buffer* buf) 4564 { 4565 uint8_t rr[LDNS_RR_BUF_SIZE]; 4566 size_t rr_len, dname_len = 0; 4567 struct sldns_file_parse_state pstate; 4568 struct auth_chunk* chunk; 4569 size_t chunk_pos; 4570 int e; 4571 memset(&pstate, 0, sizeof(pstate)); 4572 pstate.default_ttl = 3600; 4573 if(xfr->namelen < sizeof(pstate.origin)) { 4574 pstate.origin_len = xfr->namelen; 4575 memmove(pstate.origin, xfr->name, xfr->namelen); 4576 } 4577 chunk = xfr->task_transfer->chunks_first; 4578 chunk_pos = 0; 4579 if(!chunkline_non_comment_RR(&chunk, &chunk_pos, buf, &pstate)) { 4580 return 0; 4581 } 4582 rr_len = sizeof(rr); 4583 e=sldns_str2wire_rr_buf((char*)sldns_buffer_begin(buf), rr, &rr_len, 4584 &dname_len, pstate.default_ttl, 4585 pstate.origin_len?pstate.origin:NULL, pstate.origin_len, 4586 pstate.prev_rr_len?pstate.prev_rr:NULL, pstate.prev_rr_len); 4587 if(e != 0) { 4588 log_err("parse failure on first RR[%d]: %s", 4589 LDNS_WIREPARSE_OFFSET(e), 4590 sldns_get_errorstr_parse(LDNS_WIREPARSE_ERROR(e))); 4591 return 0; 4592 } 4593 /* check that class is correct */ 4594 if(sldns_wirerr_get_class(rr, rr_len, dname_len) != xfr->dclass) { 4595 log_err("parse failure: first record in downloaded zonefile " 4596 "from wrong RR class"); 4597 return 0; 4598 } 4599 return 1; 4600 } 4601 4602 /** sum sizes of chunklist */ 4603 static size_t 4604 chunklist_sum(struct auth_chunk* list) 4605 { 4606 struct auth_chunk* p; 4607 size_t s = 0; 4608 for(p=list; p; p=p->next) { 4609 s += p->len; 4610 } 4611 return s; 4612 } 4613 4614 /** remove newlines from collated line */ 4615 static void 4616 chunkline_newline_removal(sldns_buffer* buf) 4617 { 4618 size_t i, end=sldns_buffer_limit(buf); 4619 for(i=0; i<end; i++) { 4620 char c = (char)sldns_buffer_read_u8_at(buf, i); 4621 if(c == '\n' && i==end-1) { 4622 sldns_buffer_write_u8_at(buf, i, 0); 4623 sldns_buffer_set_limit(buf, end-1); 4624 return; 4625 } 4626 if(c == '\n') 4627 sldns_buffer_write_u8_at(buf, i, (uint8_t)' '); 4628 } 4629 } 4630 4631 /** for http download, parse and add RR to zone */ 4632 static int 4633 http_parse_add_rr(struct auth_xfer* xfr, struct auth_zone* z, 4634 sldns_buffer* buf, struct sldns_file_parse_state* pstate) 4635 { 4636 uint8_t rr[LDNS_RR_BUF_SIZE]; 4637 size_t rr_len, dname_len = 0; 4638 int e; 4639 char* line = (char*)sldns_buffer_begin(buf); 4640 rr_len = sizeof(rr); 4641 e = sldns_str2wire_rr_buf(line, rr, &rr_len, &dname_len, 4642 pstate->default_ttl, 4643 pstate->origin_len?pstate->origin:NULL, pstate->origin_len, 4644 pstate->prev_rr_len?pstate->prev_rr:NULL, pstate->prev_rr_len); 4645 if(e != 0) { 4646 log_err("%s/%s parse failure RR[%d]: %s in '%s'", 4647 xfr->task_transfer->master->host, 4648 xfr->task_transfer->master->file, 4649 LDNS_WIREPARSE_OFFSET(e), 4650 sldns_get_errorstr_parse(LDNS_WIREPARSE_ERROR(e)), 4651 line); 4652 return 0; 4653 } 4654 if(rr_len == 0) 4655 return 1; /* empty line or so */ 4656 4657 /* set prev */ 4658 if(dname_len < sizeof(pstate->prev_rr)) { 4659 memmove(pstate->prev_rr, rr, dname_len); 4660 pstate->prev_rr_len = dname_len; 4661 } 4662 4663 return az_insert_rr(z, rr, rr_len, dname_len, NULL); 4664 } 4665 4666 /** RR list iterator, returns RRs from answer section one by one from the 4667 * dns packets in the chunklist */ 4668 static void 4669 chunk_rrlist_start(struct auth_xfer* xfr, struct auth_chunk** rr_chunk, 4670 int* rr_num, size_t* rr_pos) 4671 { 4672 *rr_chunk = xfr->task_transfer->chunks_first; 4673 *rr_num = 0; 4674 *rr_pos = 0; 4675 } 4676 4677 /** RR list iterator, see if we are at the end of the list */ 4678 static int 4679 chunk_rrlist_end(struct auth_chunk* rr_chunk, int rr_num) 4680 { 4681 while(rr_chunk) { 4682 if(rr_chunk->len < LDNS_HEADER_SIZE) 4683 return 1; 4684 if(rr_num < (int)LDNS_ANCOUNT(rr_chunk->data)) 4685 return 0; 4686 /* no more RRs in this chunk */ 4687 /* continue with next chunk, see if it has RRs */ 4688 rr_chunk = rr_chunk->next; 4689 rr_num = 0; 4690 } 4691 return 1; 4692 } 4693 4694 /** RR list iterator, move to next RR */ 4695 static void 4696 chunk_rrlist_gonext(struct auth_chunk** rr_chunk, int* rr_num, 4697 size_t* rr_pos, size_t rr_nextpos) 4698 { 4699 /* already at end of chunks? */ 4700 if(!*rr_chunk) 4701 return; 4702 /* move within this chunk */ 4703 if((*rr_chunk)->len >= LDNS_HEADER_SIZE && 4704 (*rr_num)+1 < (int)LDNS_ANCOUNT((*rr_chunk)->data)) { 4705 (*rr_num) += 1; 4706 *rr_pos = rr_nextpos; 4707 return; 4708 } 4709 /* no more RRs in this chunk */ 4710 /* continue with next chunk, see if it has RRs */ 4711 if(*rr_chunk) 4712 *rr_chunk = (*rr_chunk)->next; 4713 while(*rr_chunk) { 4714 *rr_num = 0; 4715 *rr_pos = 0; 4716 if((*rr_chunk)->len >= LDNS_HEADER_SIZE && 4717 LDNS_ANCOUNT((*rr_chunk)->data) > 0) { 4718 return; 4719 } 4720 *rr_chunk = (*rr_chunk)->next; 4721 } 4722 } 4723 4724 /** RR iterator, get current RR information, false on parse error */ 4725 static int 4726 chunk_rrlist_get_current(struct auth_chunk* rr_chunk, int rr_num, 4727 size_t rr_pos, uint8_t** rr_dname, uint16_t* rr_type, 4728 uint16_t* rr_class, uint32_t* rr_ttl, uint16_t* rr_rdlen, 4729 uint8_t** rr_rdata, size_t* rr_nextpos) 4730 { 4731 sldns_buffer pkt; 4732 /* integrity checks on position */ 4733 if(!rr_chunk) return 0; 4734 if(rr_chunk->len < LDNS_HEADER_SIZE) return 0; 4735 if(rr_num >= (int)LDNS_ANCOUNT(rr_chunk->data)) return 0; 4736 if(rr_pos >= rr_chunk->len) return 0; 4737 4738 /* fetch rr information */ 4739 sldns_buffer_init_frm_data(&pkt, rr_chunk->data, rr_chunk->len); 4740 if(rr_pos == 0) { 4741 size_t i; 4742 /* skip question section */ 4743 sldns_buffer_set_position(&pkt, LDNS_HEADER_SIZE); 4744 for(i=0; i<LDNS_QDCOUNT(rr_chunk->data); i++) { 4745 if(pkt_dname_len(&pkt) == 0) return 0; 4746 if(sldns_buffer_remaining(&pkt) < 4) return 0; 4747 sldns_buffer_skip(&pkt, 4); /* type and class */ 4748 } 4749 } else { 4750 sldns_buffer_set_position(&pkt, rr_pos); 4751 } 4752 *rr_dname = sldns_buffer_current(&pkt); 4753 if(pkt_dname_len(&pkt) == 0) return 0; 4754 if(sldns_buffer_remaining(&pkt) < 10) return 0; 4755 *rr_type = sldns_buffer_read_u16(&pkt); 4756 *rr_class = sldns_buffer_read_u16(&pkt); 4757 *rr_ttl = sldns_buffer_read_u32(&pkt); 4758 *rr_rdlen = sldns_buffer_read_u16(&pkt); 4759 if(sldns_buffer_remaining(&pkt) < (*rr_rdlen)) return 0; 4760 *rr_rdata = sldns_buffer_current(&pkt); 4761 sldns_buffer_skip(&pkt, (ssize_t)(*rr_rdlen)); 4762 *rr_nextpos = sldns_buffer_position(&pkt); 4763 return 1; 4764 } 4765 4766 /** print log message where we are in parsing the zone transfer */ 4767 static void 4768 log_rrlist_position(const char* label, struct auth_chunk* rr_chunk, 4769 uint8_t* rr_dname, uint16_t rr_type, size_t rr_counter) 4770 { 4771 sldns_buffer pkt; 4772 size_t dlen; 4773 uint8_t buf[256]; 4774 char str[256]; 4775 char typestr[32]; 4776 sldns_buffer_init_frm_data(&pkt, rr_chunk->data, rr_chunk->len); 4777 sldns_buffer_set_position(&pkt, (size_t)(rr_dname - 4778 sldns_buffer_begin(&pkt))); 4779 if((dlen=pkt_dname_len(&pkt)) == 0) return; 4780 if(dlen >= sizeof(buf)) return; 4781 dname_pkt_copy(&pkt, buf, rr_dname); 4782 dname_str(buf, str); 4783 (void)sldns_wire2str_type_buf(rr_type, typestr, sizeof(typestr)); 4784 verbose(VERB_ALGO, "%s at[%d] %s %s", label, (int)rr_counter, 4785 str, typestr); 4786 } 4787 4788 /** check that start serial is OK for ixfr. we are at rr_counter == 0, 4789 * and we are going to check rr_counter == 1 (has to be type SOA) serial */ 4790 static int 4791 ixfr_start_serial(struct auth_chunk* rr_chunk, int rr_num, size_t rr_pos, 4792 uint8_t* rr_dname, uint16_t rr_type, uint16_t rr_class, 4793 uint32_t rr_ttl, uint16_t rr_rdlen, uint8_t* rr_rdata, 4794 size_t rr_nextpos, uint32_t transfer_serial, uint32_t xfr_serial) 4795 { 4796 uint32_t startserial; 4797 /* move forward on RR */ 4798 chunk_rrlist_gonext(&rr_chunk, &rr_num, &rr_pos, rr_nextpos); 4799 if(chunk_rrlist_end(rr_chunk, rr_num)) { 4800 /* no second SOA */ 4801 verbose(VERB_OPS, "IXFR has no second SOA record"); 4802 return 0; 4803 } 4804 if(!chunk_rrlist_get_current(rr_chunk, rr_num, rr_pos, 4805 &rr_dname, &rr_type, &rr_class, &rr_ttl, &rr_rdlen, 4806 &rr_rdata, &rr_nextpos)) { 4807 verbose(VERB_OPS, "IXFR cannot parse second SOA record"); 4808 /* failed to parse RR */ 4809 return 0; 4810 } 4811 if(rr_type != LDNS_RR_TYPE_SOA) { 4812 verbose(VERB_OPS, "IXFR second record is not type SOA"); 4813 return 0; 4814 } 4815 if(rr_rdlen < 22) { 4816 verbose(VERB_OPS, "IXFR, second SOA has short rdlength"); 4817 return 0; /* bad SOA rdlen */ 4818 } 4819 startserial = sldns_read_uint32(rr_rdata+rr_rdlen-20); 4820 if(startserial == transfer_serial) { 4821 /* empty AXFR, not an IXFR */ 4822 verbose(VERB_OPS, "IXFR second serial same as first"); 4823 return 0; 4824 } 4825 if(startserial != xfr_serial) { 4826 /* wrong start serial, it does not match the serial in 4827 * memory */ 4828 verbose(VERB_OPS, "IXFR is from serial %u to %u but %u " 4829 "in memory, rejecting the zone transfer", 4830 (unsigned)startserial, (unsigned)transfer_serial, 4831 (unsigned)xfr_serial); 4832 return 0; 4833 } 4834 /* everything OK in second SOA serial */ 4835 return 1; 4836 } 4837 4838 /** apply IXFR to zone in memory. z is locked. false on failure(mallocfail) */ 4839 static int 4840 apply_ixfr(struct auth_xfer* xfr, struct auth_zone* z, 4841 struct sldns_buffer* scratch_buffer) 4842 { 4843 struct auth_chunk* rr_chunk; 4844 int rr_num; 4845 size_t rr_pos; 4846 uint8_t* rr_dname, *rr_rdata; 4847 uint16_t rr_type, rr_class, rr_rdlen; 4848 uint32_t rr_ttl; 4849 size_t rr_nextpos; 4850 int have_transfer_serial = 0; 4851 uint32_t transfer_serial = 0; 4852 size_t rr_counter = 0; 4853 int delmode = 0; 4854 int softfail = 0; 4855 4856 /* start RR iterator over chunklist of packets */ 4857 chunk_rrlist_start(xfr, &rr_chunk, &rr_num, &rr_pos); 4858 while(!chunk_rrlist_end(rr_chunk, rr_num)) { 4859 if(!chunk_rrlist_get_current(rr_chunk, rr_num, rr_pos, 4860 &rr_dname, &rr_type, &rr_class, &rr_ttl, &rr_rdlen, 4861 &rr_rdata, &rr_nextpos)) { 4862 /* failed to parse RR */ 4863 return 0; 4864 } 4865 if(verbosity>=7) log_rrlist_position("apply ixfr", 4866 rr_chunk, rr_dname, rr_type, rr_counter); 4867 /* twiddle add/del mode and check for start and end */ 4868 if(rr_counter == 0 && rr_type != LDNS_RR_TYPE_SOA) 4869 return 0; 4870 if(rr_counter == 1 && rr_type != LDNS_RR_TYPE_SOA) { 4871 /* this is an AXFR returned from the IXFR master */ 4872 /* but that should already have been detected, by 4873 * on_ixfr_is_axfr */ 4874 return 0; 4875 } 4876 if(rr_type == LDNS_RR_TYPE_SOA) { 4877 uint32_t serial; 4878 if(rr_rdlen < 22) return 0; /* bad SOA rdlen */ 4879 serial = sldns_read_uint32(rr_rdata+rr_rdlen-20); 4880 if(have_transfer_serial == 0) { 4881 have_transfer_serial = 1; 4882 transfer_serial = serial; 4883 delmode = 1; /* gets negated below */ 4884 /* check second RR before going any further */ 4885 if(!ixfr_start_serial(rr_chunk, rr_num, rr_pos, 4886 rr_dname, rr_type, rr_class, rr_ttl, 4887 rr_rdlen, rr_rdata, rr_nextpos, 4888 transfer_serial, xfr->serial)) { 4889 return 0; 4890 } 4891 } else if(transfer_serial == serial) { 4892 have_transfer_serial++; 4893 if(rr_counter == 1) { 4894 /* empty AXFR, with SOA; SOA; */ 4895 /* should have been detected by 4896 * on_ixfr_is_axfr */ 4897 return 0; 4898 } 4899 if(have_transfer_serial == 3) { 4900 /* see serial three times for end */ 4901 /* eg. IXFR: 4902 * SOA 3 start 4903 * SOA 1 second RR, followed by del 4904 * SOA 2 followed by add 4905 * SOA 2 followed by del 4906 * SOA 3 followed by add 4907 * SOA 3 end */ 4908 /* ended by SOA record */ 4909 xfr->serial = transfer_serial; 4910 break; 4911 } 4912 } 4913 /* twiddle add/del mode */ 4914 /* switch from delete part to add part and back again 4915 * just before the soa, it gets deleted and added too 4916 * this means we switch to delete mode for the final 4917 * SOA(so skip that one) */ 4918 delmode = !delmode; 4919 } 4920 /* process this RR */ 4921 /* if the RR is deleted twice or added twice, then we 4922 * softfail, and continue with the rest of the IXFR, so 4923 * that we serve something fairly nice during the refetch */ 4924 if(verbosity>=7) log_rrlist_position((delmode?"del":"add"), 4925 rr_chunk, rr_dname, rr_type, rr_counter); 4926 if(delmode) { 4927 /* delete this RR */ 4928 int nonexist = 0; 4929 if(!az_remove_rr_decompress(z, rr_chunk->data, 4930 rr_chunk->len, scratch_buffer, rr_dname, 4931 rr_type, rr_class, rr_ttl, rr_rdata, rr_rdlen, 4932 &nonexist)) { 4933 /* failed, malloc error or so */ 4934 return 0; 4935 } 4936 if(nonexist) { 4937 /* it was removal of a nonexisting RR */ 4938 if(verbosity>=4) log_rrlist_position( 4939 "IXFR error nonexistent RR", 4940 rr_chunk, rr_dname, rr_type, rr_counter); 4941 softfail = 1; 4942 } 4943 } else if(rr_counter != 0) { 4944 /* skip first SOA RR for addition, it is added in 4945 * the addition part near the end of the ixfr, when 4946 * that serial is seen the second time. */ 4947 int duplicate = 0; 4948 /* add this RR */ 4949 if(!az_insert_rr_decompress(z, rr_chunk->data, 4950 rr_chunk->len, scratch_buffer, rr_dname, 4951 rr_type, rr_class, rr_ttl, rr_rdata, rr_rdlen, 4952 &duplicate)) { 4953 /* failed, malloc error or so */ 4954 return 0; 4955 } 4956 if(duplicate) { 4957 /* it was a duplicate */ 4958 if(verbosity>=4) log_rrlist_position( 4959 "IXFR error duplicate RR", 4960 rr_chunk, rr_dname, rr_type, rr_counter); 4961 softfail = 1; 4962 } 4963 } 4964 4965 rr_counter++; 4966 chunk_rrlist_gonext(&rr_chunk, &rr_num, &rr_pos, rr_nextpos); 4967 } 4968 if(softfail) { 4969 verbose(VERB_ALGO, "IXFR did not apply cleanly, fetching full zone"); 4970 return 0; 4971 } 4972 return 1; 4973 } 4974 4975 /** apply AXFR to zone in memory. z is locked. false on failure(mallocfail) */ 4976 static int 4977 apply_axfr(struct auth_xfer* xfr, struct auth_zone* z, 4978 struct sldns_buffer* scratch_buffer) 4979 { 4980 struct auth_chunk* rr_chunk; 4981 int rr_num; 4982 size_t rr_pos; 4983 uint8_t* rr_dname, *rr_rdata; 4984 uint16_t rr_type, rr_class, rr_rdlen; 4985 uint32_t rr_ttl; 4986 uint32_t serial = 0; 4987 size_t rr_nextpos; 4988 size_t rr_counter = 0; 4989 int have_end_soa = 0; 4990 4991 /* clear the data tree */ 4992 traverse_postorder(&z->data, auth_data_del, NULL); 4993 rbtree_init(&z->data, &auth_data_cmp); 4994 /* clear the RPZ policies */ 4995 if(z->rpz) 4996 rpz_clear(z->rpz); 4997 4998 xfr->have_zone = 0; 4999 xfr->serial = 0; 5000 5001 /* insert all RRs in to the zone */ 5002 /* insert the SOA only once, skip the last one */ 5003 /* start RR iterator over chunklist of packets */ 5004 chunk_rrlist_start(xfr, &rr_chunk, &rr_num, &rr_pos); 5005 while(!chunk_rrlist_end(rr_chunk, rr_num)) { 5006 if(!chunk_rrlist_get_current(rr_chunk, rr_num, rr_pos, 5007 &rr_dname, &rr_type, &rr_class, &rr_ttl, &rr_rdlen, 5008 &rr_rdata, &rr_nextpos)) { 5009 /* failed to parse RR */ 5010 return 0; 5011 } 5012 if(verbosity>=7) log_rrlist_position("apply_axfr", 5013 rr_chunk, rr_dname, rr_type, rr_counter); 5014 if(rr_type == LDNS_RR_TYPE_SOA) { 5015 if(rr_counter != 0) { 5016 /* end of the axfr */ 5017 have_end_soa = 1; 5018 break; 5019 } 5020 if(rr_rdlen < 22) return 0; /* bad SOA rdlen */ 5021 serial = sldns_read_uint32(rr_rdata+rr_rdlen-20); 5022 } 5023 5024 /* add this RR */ 5025 if(!az_insert_rr_decompress(z, rr_chunk->data, rr_chunk->len, 5026 scratch_buffer, rr_dname, rr_type, rr_class, rr_ttl, 5027 rr_rdata, rr_rdlen, NULL)) { 5028 /* failed, malloc error or so */ 5029 return 0; 5030 } 5031 5032 rr_counter++; 5033 chunk_rrlist_gonext(&rr_chunk, &rr_num, &rr_pos, rr_nextpos); 5034 } 5035 if(!have_end_soa) { 5036 log_err("no end SOA record for AXFR"); 5037 return 0; 5038 } 5039 5040 xfr->serial = serial; 5041 xfr->have_zone = 1; 5042 return 1; 5043 } 5044 5045 /** apply HTTP to zone in memory. z is locked. false on failure(mallocfail) */ 5046 static int 5047 apply_http(struct auth_xfer* xfr, struct auth_zone* z, 5048 struct sldns_buffer* scratch_buffer) 5049 { 5050 /* parse data in chunks */ 5051 /* parse RR's and read into memory. ignore $INCLUDE from the 5052 * downloaded file*/ 5053 struct sldns_file_parse_state pstate; 5054 struct auth_chunk* chunk; 5055 size_t chunk_pos; 5056 int ret; 5057 memset(&pstate, 0, sizeof(pstate)); 5058 pstate.default_ttl = 3600; 5059 if(xfr->namelen < sizeof(pstate.origin)) { 5060 pstate.origin_len = xfr->namelen; 5061 memmove(pstate.origin, xfr->name, xfr->namelen); 5062 } 5063 5064 if(verbosity >= VERB_ALGO) 5065 verbose(VERB_ALGO, "http download %s of size %d", 5066 xfr->task_transfer->master->file, 5067 (int)chunklist_sum(xfr->task_transfer->chunks_first)); 5068 if(xfr->task_transfer->chunks_first && verbosity >= VERB_ALGO) { 5069 char preview[1024]; 5070 if(xfr->task_transfer->chunks_first->len+1 > sizeof(preview)) { 5071 memmove(preview, xfr->task_transfer->chunks_first->data, 5072 sizeof(preview)-1); 5073 preview[sizeof(preview)-1]=0; 5074 } else { 5075 memmove(preview, xfr->task_transfer->chunks_first->data, 5076 xfr->task_transfer->chunks_first->len); 5077 preview[xfr->task_transfer->chunks_first->len]=0; 5078 } 5079 log_info("auth zone http downloaded content preview: %s", 5080 preview); 5081 } 5082 5083 /* perhaps a little syntax check before we try to apply the data? */ 5084 if(!http_zonefile_syntax_check(xfr, scratch_buffer)) { 5085 log_err("http download %s/%s does not contain a zonefile, " 5086 "but got '%s'", xfr->task_transfer->master->host, 5087 xfr->task_transfer->master->file, 5088 sldns_buffer_begin(scratch_buffer)); 5089 return 0; 5090 } 5091 5092 /* clear the data tree */ 5093 traverse_postorder(&z->data, auth_data_del, NULL); 5094 rbtree_init(&z->data, &auth_data_cmp); 5095 /* clear the RPZ policies */ 5096 if(z->rpz) 5097 rpz_clear(z->rpz); 5098 5099 xfr->have_zone = 0; 5100 xfr->serial = 0; 5101 5102 chunk = xfr->task_transfer->chunks_first; 5103 chunk_pos = 0; 5104 pstate.lineno = 0; 5105 while(chunkline_get_line_collated(&chunk, &chunk_pos, scratch_buffer)) { 5106 /* process this line */ 5107 pstate.lineno++; 5108 chunkline_newline_removal(scratch_buffer); 5109 if(chunkline_is_comment_line_or_empty(scratch_buffer)) { 5110 continue; 5111 } 5112 /* parse line and add RR */ 5113 if((ret=http_parse_origin(scratch_buffer, &pstate))!=0) { 5114 if(ret == 2) { 5115 verbose(VERB_ALGO, "error parsing ORIGIN on line [%s:%d] %s", 5116 xfr->task_transfer->master->file, 5117 pstate.lineno, 5118 sldns_buffer_begin(scratch_buffer)); 5119 return 0; 5120 } 5121 continue; /* $ORIGIN has been handled */ 5122 } 5123 if((ret=http_parse_ttl(scratch_buffer, &pstate))!=0) { 5124 if(ret == 2) { 5125 verbose(VERB_ALGO, "error parsing TTL on line [%s:%d] %s", 5126 xfr->task_transfer->master->file, 5127 pstate.lineno, 5128 sldns_buffer_begin(scratch_buffer)); 5129 return 0; 5130 } 5131 continue; /* $TTL has been handled */ 5132 } 5133 if(!http_parse_add_rr(xfr, z, scratch_buffer, &pstate)) { 5134 verbose(VERB_ALGO, "error parsing line [%s:%d] %s", 5135 xfr->task_transfer->master->file, 5136 pstate.lineno, 5137 sldns_buffer_begin(scratch_buffer)); 5138 return 0; 5139 } 5140 } 5141 return 1; 5142 } 5143 5144 /** write http chunks to zonefile to create downloaded file */ 5145 static int 5146 auth_zone_write_chunks(struct auth_xfer* xfr, const char* fname) 5147 { 5148 FILE* out; 5149 struct auth_chunk* p; 5150 out = fopen(fname, "w"); 5151 if(!out) { 5152 log_err("could not open %s: %s", fname, strerror(errno)); 5153 return 0; 5154 } 5155 for(p = xfr->task_transfer->chunks_first; p ; p = p->next) { 5156 if(!write_out(out, (char*)p->data, p->len)) { 5157 log_err("could not write http download to %s", fname); 5158 fclose(out); 5159 return 0; 5160 } 5161 } 5162 fclose(out); 5163 return 1; 5164 } 5165 5166 /** write to zonefile after zone has been updated */ 5167 static void 5168 xfr_write_after_update(struct auth_xfer* xfr, struct module_env* env) 5169 { 5170 struct config_file* cfg = env->cfg; 5171 struct auth_zone* z; 5172 char tmpfile[1024]; 5173 char* zfilename; 5174 lock_basic_unlock(&xfr->lock); 5175 5176 /* get lock again, so it is a readlock and concurrently queries 5177 * can be answered */ 5178 lock_rw_rdlock(&env->auth_zones->lock); 5179 z = auth_zone_find(env->auth_zones, xfr->name, xfr->namelen, 5180 xfr->dclass); 5181 if(!z) { 5182 lock_rw_unlock(&env->auth_zones->lock); 5183 /* the zone is gone, ignore xfr results */ 5184 lock_basic_lock(&xfr->lock); 5185 return; 5186 } 5187 lock_rw_rdlock(&z->lock); 5188 lock_basic_lock(&xfr->lock); 5189 lock_rw_unlock(&env->auth_zones->lock); 5190 5191 if(z->zonefile == NULL || z->zonefile[0] == 0) { 5192 lock_rw_unlock(&z->lock); 5193 /* no write needed, no zonefile set */ 5194 return; 5195 } 5196 zfilename = z->zonefile; 5197 if(cfg->chrootdir && cfg->chrootdir[0] && strncmp(zfilename, 5198 cfg->chrootdir, strlen(cfg->chrootdir)) == 0) 5199 zfilename += strlen(cfg->chrootdir); 5200 if(verbosity >= VERB_ALGO) { 5201 char nm[255+1]; 5202 dname_str(z->name, nm); 5203 verbose(VERB_ALGO, "write zonefile %s for %s", zfilename, nm); 5204 } 5205 5206 /* write to tempfile first */ 5207 if((size_t)strlen(zfilename) + 16 > sizeof(tmpfile)) { 5208 verbose(VERB_ALGO, "tmpfilename too long, cannot update " 5209 " zonefile %s", zfilename); 5210 lock_rw_unlock(&z->lock); 5211 return; 5212 } 5213 snprintf(tmpfile, sizeof(tmpfile), "%s.tmp%u", zfilename, 5214 (unsigned)getpid()); 5215 if(xfr->task_transfer->master->http) { 5216 /* use the stored chunk list to write them */ 5217 if(!auth_zone_write_chunks(xfr, tmpfile)) { 5218 unlink(tmpfile); 5219 lock_rw_unlock(&z->lock); 5220 return; 5221 } 5222 } else if(!auth_zone_write_file(z, tmpfile)) { 5223 unlink(tmpfile); 5224 lock_rw_unlock(&z->lock); 5225 return; 5226 } 5227 #ifdef UB_ON_WINDOWS 5228 (void)unlink(zfilename); /* windows does not replace file with rename() */ 5229 #endif 5230 if(rename(tmpfile, zfilename) < 0) { 5231 log_err("could not rename(%s, %s): %s", tmpfile, zfilename, 5232 strerror(errno)); 5233 unlink(tmpfile); 5234 lock_rw_unlock(&z->lock); 5235 return; 5236 } 5237 lock_rw_unlock(&z->lock); 5238 } 5239 5240 /** reacquire locks and structures. Starts with no locks, ends 5241 * with xfr and z locks, if fail, no z lock */ 5242 static int xfr_process_reacquire_locks(struct auth_xfer* xfr, 5243 struct module_env* env, struct auth_zone** z) 5244 { 5245 /* release xfr lock, then, while holding az->lock grab both 5246 * z->lock and xfr->lock */ 5247 lock_rw_rdlock(&env->auth_zones->lock); 5248 *z = auth_zone_find(env->auth_zones, xfr->name, xfr->namelen, 5249 xfr->dclass); 5250 if(!*z) { 5251 lock_rw_unlock(&env->auth_zones->lock); 5252 lock_basic_lock(&xfr->lock); 5253 *z = NULL; 5254 return 0; 5255 } 5256 lock_rw_wrlock(&(*z)->lock); 5257 lock_basic_lock(&xfr->lock); 5258 lock_rw_unlock(&env->auth_zones->lock); 5259 return 1; 5260 } 5261 5262 /** process chunk list and update zone in memory, 5263 * return false if it did not work */ 5264 static int 5265 xfr_process_chunk_list(struct auth_xfer* xfr, struct module_env* env, 5266 int* ixfr_fail) 5267 { 5268 struct auth_zone* z; 5269 5270 /* obtain locks and structures */ 5271 lock_basic_unlock(&xfr->lock); 5272 if(!xfr_process_reacquire_locks(xfr, env, &z)) { 5273 /* the zone is gone, ignore xfr results */ 5274 return 0; 5275 } 5276 /* holding xfr and z locks */ 5277 5278 /* apply data */ 5279 if(xfr->task_transfer->master->http) { 5280 if(!apply_http(xfr, z, env->scratch_buffer)) { 5281 lock_rw_unlock(&z->lock); 5282 verbose(VERB_ALGO, "http from %s: could not store data", 5283 xfr->task_transfer->master->host); 5284 return 0; 5285 } 5286 } else if(xfr->task_transfer->on_ixfr && 5287 !xfr->task_transfer->on_ixfr_is_axfr) { 5288 if(!apply_ixfr(xfr, z, env->scratch_buffer)) { 5289 lock_rw_unlock(&z->lock); 5290 verbose(VERB_ALGO, "xfr from %s: could not store IXFR" 5291 " data", xfr->task_transfer->master->host); 5292 *ixfr_fail = 1; 5293 return 0; 5294 } 5295 } else { 5296 if(!apply_axfr(xfr, z, env->scratch_buffer)) { 5297 lock_rw_unlock(&z->lock); 5298 verbose(VERB_ALGO, "xfr from %s: could not store AXFR" 5299 " data", xfr->task_transfer->master->host); 5300 return 0; 5301 } 5302 } 5303 xfr->zone_expired = 0; 5304 z->zone_expired = 0; 5305 if(!xfr_find_soa(z, xfr)) { 5306 lock_rw_unlock(&z->lock); 5307 verbose(VERB_ALGO, "xfr from %s: no SOA in zone after update" 5308 " (or malformed RR)", xfr->task_transfer->master->host); 5309 return 0; 5310 } 5311 5312 /* release xfr lock while verifying zonemd because it may have 5313 * to spawn lookups in the state machines */ 5314 lock_basic_unlock(&xfr->lock); 5315 /* holding z lock */ 5316 auth_zone_verify_zonemd(z, env, &env->mesh->mods, NULL, 0, 0); 5317 if(z->zone_expired) { 5318 char zname[256]; 5319 /* ZONEMD must have failed */ 5320 /* reacquire locks, so we hold xfr lock on exit of routine, 5321 * and both xfr and z again after releasing xfr for potential 5322 * state machine mesh callbacks */ 5323 lock_rw_unlock(&z->lock); 5324 if(!xfr_process_reacquire_locks(xfr, env, &z)) 5325 return 0; 5326 dname_str(xfr->name, zname); 5327 verbose(VERB_ALGO, "xfr from %s: ZONEMD failed for %s, transfer is failed", xfr->task_transfer->master->host, zname); 5328 xfr->zone_expired = 1; 5329 lock_rw_unlock(&z->lock); 5330 return 0; 5331 } 5332 /* reacquire locks, so we hold xfr lock on exit of routine, 5333 * and both xfr and z again after releasing xfr for potential 5334 * state machine mesh callbacks */ 5335 lock_rw_unlock(&z->lock); 5336 if(!xfr_process_reacquire_locks(xfr, env, &z)) 5337 return 0; 5338 /* holding xfr and z locks */ 5339 5340 if(xfr->have_zone) 5341 xfr->lease_time = *env->now; 5342 5343 if(z->rpz) 5344 rpz_finish_config(z->rpz); 5345 5346 /* unlock */ 5347 lock_rw_unlock(&z->lock); 5348 5349 if(verbosity >= VERB_QUERY && xfr->have_zone) { 5350 char zname[256]; 5351 dname_str(xfr->name, zname); 5352 verbose(VERB_QUERY, "auth zone %s updated to serial %u", zname, 5353 (unsigned)xfr->serial); 5354 } 5355 /* see if we need to write to a zonefile */ 5356 xfr_write_after_update(xfr, env); 5357 return 1; 5358 } 5359 5360 /** disown task_transfer. caller must hold xfr.lock */ 5361 static void 5362 xfr_transfer_disown(struct auth_xfer* xfr) 5363 { 5364 /* remove timer (from this worker's event base) */ 5365 comm_timer_delete(xfr->task_transfer->timer); 5366 xfr->task_transfer->timer = NULL; 5367 /* remove the commpoint */ 5368 comm_point_delete(xfr->task_transfer->cp); 5369 xfr->task_transfer->cp = NULL; 5370 /* we don't own this item anymore */ 5371 xfr->task_transfer->worker = NULL; 5372 xfr->task_transfer->env = NULL; 5373 } 5374 5375 /** lookup a host name for its addresses, if needed */ 5376 static int 5377 xfr_transfer_lookup_host(struct auth_xfer* xfr, struct module_env* env) 5378 { 5379 struct sockaddr_storage addr; 5380 socklen_t addrlen = 0; 5381 struct auth_master* master = xfr->task_transfer->lookup_target; 5382 struct query_info qinfo; 5383 uint16_t qflags = BIT_RD; 5384 uint8_t dname[LDNS_MAX_DOMAINLEN+1]; 5385 struct edns_data edns; 5386 sldns_buffer* buf = env->scratch_buffer; 5387 if(!master) return 0; 5388 if(extstrtoaddr(master->host, &addr, &addrlen, UNBOUND_DNS_PORT)) { 5389 /* not needed, host is in IP addr format */ 5390 return 0; 5391 } 5392 if(master->allow_notify) 5393 return 0; /* allow-notifies are not transferred from, no 5394 lookup is needed */ 5395 5396 /* use mesh_new_callback to probe for non-addr hosts, 5397 * and then wait for them to be looked up (in cache, or query) */ 5398 qinfo.qname_len = sizeof(dname); 5399 if(sldns_str2wire_dname_buf(master->host, dname, &qinfo.qname_len) 5400 != 0) { 5401 log_err("cannot parse host name of master %s", master->host); 5402 return 0; 5403 } 5404 qinfo.qname = dname; 5405 qinfo.qclass = xfr->dclass; 5406 qinfo.qtype = LDNS_RR_TYPE_A; 5407 if(xfr->task_transfer->lookup_aaaa) 5408 qinfo.qtype = LDNS_RR_TYPE_AAAA; 5409 qinfo.local_alias = NULL; 5410 if(verbosity >= VERB_ALGO) { 5411 char buf1[512]; 5412 char buf2[LDNS_MAX_DOMAINLEN+1]; 5413 dname_str(xfr->name, buf2); 5414 snprintf(buf1, sizeof(buf1), "auth zone %s: master lookup" 5415 " for task_transfer", buf2); 5416 log_query_info(VERB_ALGO, buf1, &qinfo); 5417 } 5418 edns.edns_present = 1; 5419 edns.ext_rcode = 0; 5420 edns.edns_version = 0; 5421 edns.bits = EDNS_DO; 5422 edns.opt_list_in = NULL; 5423 edns.opt_list_out = NULL; 5424 edns.opt_list_inplace_cb_out = NULL; 5425 edns.padding_block_size = 0; 5426 edns.cookie_present = 0; 5427 edns.cookie_valid = 0; 5428 if(sldns_buffer_capacity(buf) < 65535) 5429 edns.udp_size = (uint16_t)sldns_buffer_capacity(buf); 5430 else edns.udp_size = 65535; 5431 5432 /* unlock xfr during mesh_new_callback() because the callback can be 5433 * called straight away */ 5434 lock_basic_unlock(&xfr->lock); 5435 if(!mesh_new_callback(env->mesh, &qinfo, qflags, &edns, buf, 0, 5436 &auth_xfer_transfer_lookup_callback, xfr, 0)) { 5437 lock_basic_lock(&xfr->lock); 5438 log_err("out of memory lookup up master %s", master->host); 5439 return 0; 5440 } 5441 lock_basic_lock(&xfr->lock); 5442 return 1; 5443 } 5444 5445 /** initiate TCP to the target and fetch zone. 5446 * returns true if that was successfully started, and timeout setup. */ 5447 static int 5448 xfr_transfer_init_fetch(struct auth_xfer* xfr, struct module_env* env) 5449 { 5450 struct sockaddr_storage addr; 5451 socklen_t addrlen = 0; 5452 struct auth_master* master = xfr->task_transfer->master; 5453 char *auth_name = NULL; 5454 struct timeval t; 5455 int timeout; 5456 if(!master) return 0; 5457 if(master->allow_notify) return 0; /* only for notify */ 5458 5459 /* get master addr */ 5460 if(xfr->task_transfer->scan_addr) { 5461 addrlen = xfr->task_transfer->scan_addr->addrlen; 5462 memmove(&addr, &xfr->task_transfer->scan_addr->addr, addrlen); 5463 } else { 5464 if(!authextstrtoaddr(master->host, &addr, &addrlen, &auth_name)) { 5465 /* the ones that are not in addr format are supposed 5466 * to be looked up. The lookup has failed however, 5467 * so skip them */ 5468 char zname[255+1]; 5469 dname_str(xfr->name, zname); 5470 log_err("%s: failed lookup, cannot transfer from master %s", 5471 zname, master->host); 5472 return 0; 5473 } 5474 } 5475 5476 /* remove previous TCP connection (if any) */ 5477 if(xfr->task_transfer->cp) { 5478 comm_point_delete(xfr->task_transfer->cp); 5479 xfr->task_transfer->cp = NULL; 5480 } 5481 if(!xfr->task_transfer->timer) { 5482 xfr->task_transfer->timer = comm_timer_create(env->worker_base, 5483 auth_xfer_transfer_timer_callback, xfr); 5484 if(!xfr->task_transfer->timer) { 5485 log_err("malloc failure"); 5486 return 0; 5487 } 5488 } 5489 timeout = AUTH_TRANSFER_TIMEOUT; 5490 #ifndef S_SPLINT_S 5491 t.tv_sec = timeout/1000; 5492 t.tv_usec = (timeout%1000)*1000; 5493 #endif 5494 5495 if(master->http) { 5496 /* perform http fetch */ 5497 /* store http port number into sockaddr, 5498 * unless someone used unbound's host@port notation */ 5499 xfr->task_transfer->on_ixfr = 0; 5500 if(strchr(master->host, '@') == NULL) 5501 sockaddr_store_port(&addr, addrlen, master->port); 5502 xfr->task_transfer->cp = outnet_comm_point_for_http( 5503 env->outnet, auth_xfer_transfer_http_callback, xfr, 5504 &addr, addrlen, -1, master->ssl, master->host, 5505 master->file, env->cfg); 5506 if(!xfr->task_transfer->cp) { 5507 char zname[255+1], as[256]; 5508 dname_str(xfr->name, zname); 5509 addr_to_str(&addr, addrlen, as, sizeof(as)); 5510 verbose(VERB_ALGO, "cannot create http cp " 5511 "connection for %s to %s", zname, as); 5512 return 0; 5513 } 5514 comm_timer_set(xfr->task_transfer->timer, &t); 5515 if(verbosity >= VERB_ALGO) { 5516 char zname[255+1], as[256]; 5517 dname_str(xfr->name, zname); 5518 addr_to_str(&addr, addrlen, as, sizeof(as)); 5519 verbose(VERB_ALGO, "auth zone %s transfer next HTTP fetch from %s started", zname, as); 5520 } 5521 /* Create or refresh the list of allow_notify addrs */ 5522 probe_copy_masters_for_allow_notify(xfr); 5523 return 1; 5524 } 5525 5526 /* perform AXFR/IXFR */ 5527 /* set the packet to be written */ 5528 /* create new ID */ 5529 xfr->task_transfer->id = GET_RANDOM_ID(env->rnd); 5530 xfr_create_ixfr_packet(xfr, env->scratch_buffer, 5531 xfr->task_transfer->id, master); 5532 5533 /* connect on fd */ 5534 xfr->task_transfer->cp = outnet_comm_point_for_tcp(env->outnet, 5535 auth_xfer_transfer_tcp_callback, xfr, &addr, addrlen, 5536 env->scratch_buffer, -1, 5537 auth_name != NULL, auth_name); 5538 if(!xfr->task_transfer->cp) { 5539 char zname[255+1], as[256]; 5540 dname_str(xfr->name, zname); 5541 addr_to_str(&addr, addrlen, as, sizeof(as)); 5542 verbose(VERB_ALGO, "cannot create tcp cp connection for " 5543 "xfr %s to %s", zname, as); 5544 return 0; 5545 } 5546 comm_timer_set(xfr->task_transfer->timer, &t); 5547 if(verbosity >= VERB_ALGO) { 5548 char zname[255+1], as[256]; 5549 dname_str(xfr->name, zname); 5550 addr_to_str(&addr, addrlen, as, sizeof(as)); 5551 verbose(VERB_ALGO, "auth zone %s transfer next %s fetch from %s started", zname, 5552 (xfr->task_transfer->on_ixfr?"IXFR":"AXFR"), as); 5553 } 5554 return 1; 5555 } 5556 5557 /** perform next lookup, next transfer TCP, or end and resume wait time task */ 5558 static void 5559 xfr_transfer_nexttarget_or_end(struct auth_xfer* xfr, struct module_env* env) 5560 { 5561 log_assert(xfr->task_transfer->worker == env->worker); 5562 5563 /* are we performing lookups? */ 5564 while(xfr->task_transfer->lookup_target) { 5565 if(xfr_transfer_lookup_host(xfr, env)) { 5566 /* wait for lookup to finish, 5567 * note that the hostname may be in unbound's cache 5568 * and we may then get an instant cache response, 5569 * and that calls the callback just like a full 5570 * lookup and lookup failures also call callback */ 5571 if(verbosity >= VERB_ALGO) { 5572 char zname[255+1]; 5573 dname_str(xfr->name, zname); 5574 verbose(VERB_ALGO, "auth zone %s transfer next target lookup", zname); 5575 } 5576 lock_basic_unlock(&xfr->lock); 5577 return; 5578 } 5579 xfr_transfer_move_to_next_lookup(xfr, env); 5580 } 5581 5582 /* initiate TCP and fetch the zone from the master */ 5583 /* and set timeout on it */ 5584 while(!xfr_transfer_end_of_list(xfr)) { 5585 xfr->task_transfer->master = xfr_transfer_current_master(xfr); 5586 if(xfr_transfer_init_fetch(xfr, env)) { 5587 /* successfully started, wait for callback */ 5588 lock_basic_unlock(&xfr->lock); 5589 return; 5590 } 5591 /* failed to fetch, next master */ 5592 xfr_transfer_nextmaster(xfr); 5593 } 5594 if(verbosity >= VERB_ALGO) { 5595 char zname[255+1]; 5596 dname_str(xfr->name, zname); 5597 verbose(VERB_ALGO, "auth zone %s transfer failed, wait", zname); 5598 } 5599 5600 /* we failed to fetch the zone, move to wait task 5601 * use the shorter retry timeout */ 5602 xfr_transfer_disown(xfr); 5603 5604 /* pick up the nextprobe task and wait */ 5605 if(xfr->task_nextprobe->worker == NULL) 5606 xfr_set_timeout(xfr, env, 1, 0); 5607 lock_basic_unlock(&xfr->lock); 5608 } 5609 5610 /** add addrs from A or AAAA rrset to the master */ 5611 static void 5612 xfr_master_add_addrs(struct auth_master* m, struct ub_packed_rrset_key* rrset, 5613 uint16_t rrtype) 5614 { 5615 size_t i; 5616 struct packed_rrset_data* data; 5617 if(!m || !rrset) return; 5618 if(rrtype != LDNS_RR_TYPE_A && rrtype != LDNS_RR_TYPE_AAAA) 5619 return; 5620 data = (struct packed_rrset_data*)rrset->entry.data; 5621 for(i=0; i<data->count; i++) { 5622 struct auth_addr* a; 5623 size_t len = data->rr_len[i] - 2; 5624 uint8_t* rdata = data->rr_data[i]+2; 5625 if(rrtype == LDNS_RR_TYPE_A && len != INET_SIZE) 5626 continue; /* wrong length for A */ 5627 if(rrtype == LDNS_RR_TYPE_AAAA && len != INET6_SIZE) 5628 continue; /* wrong length for AAAA */ 5629 5630 /* add and alloc it */ 5631 a = (struct auth_addr*)calloc(1, sizeof(*a)); 5632 if(!a) { 5633 log_err("out of memory"); 5634 return; 5635 } 5636 if(rrtype == LDNS_RR_TYPE_A) { 5637 struct sockaddr_in* sa; 5638 a->addrlen = (socklen_t)sizeof(*sa); 5639 sa = (struct sockaddr_in*)&a->addr; 5640 sa->sin_family = AF_INET; 5641 sa->sin_port = (in_port_t)htons(UNBOUND_DNS_PORT); 5642 memmove(&sa->sin_addr, rdata, INET_SIZE); 5643 } else { 5644 struct sockaddr_in6* sa; 5645 a->addrlen = (socklen_t)sizeof(*sa); 5646 sa = (struct sockaddr_in6*)&a->addr; 5647 sa->sin6_family = AF_INET6; 5648 sa->sin6_port = (in_port_t)htons(UNBOUND_DNS_PORT); 5649 memmove(&sa->sin6_addr, rdata, INET6_SIZE); 5650 } 5651 if(verbosity >= VERB_ALGO) { 5652 char s[64]; 5653 addr_to_str(&a->addr, a->addrlen, s, sizeof(s)); 5654 verbose(VERB_ALGO, "auth host %s lookup %s", 5655 m->host, s); 5656 } 5657 /* append to list */ 5658 a->next = m->list; 5659 m->list = a; 5660 } 5661 } 5662 5663 /** callback for task_transfer lookup of host name, of A or AAAA */ 5664 void auth_xfer_transfer_lookup_callback(void* arg, int rcode, sldns_buffer* buf, 5665 enum sec_status ATTR_UNUSED(sec), char* ATTR_UNUSED(why_bogus), 5666 int ATTR_UNUSED(was_ratelimited)) 5667 { 5668 struct auth_xfer* xfr = (struct auth_xfer*)arg; 5669 struct module_env* env; 5670 log_assert(xfr->task_transfer); 5671 lock_basic_lock(&xfr->lock); 5672 env = xfr->task_transfer->env; 5673 if(!env || env->outnet->want_to_quit) { 5674 lock_basic_unlock(&xfr->lock); 5675 return; /* stop on quit */ 5676 } 5677 5678 /* process result */ 5679 if(rcode == LDNS_RCODE_NOERROR) { 5680 uint16_t wanted_qtype = LDNS_RR_TYPE_A; 5681 struct regional* temp = env->scratch; 5682 struct query_info rq; 5683 struct reply_info* rep; 5684 if(xfr->task_transfer->lookup_aaaa) 5685 wanted_qtype = LDNS_RR_TYPE_AAAA; 5686 memset(&rq, 0, sizeof(rq)); 5687 rep = parse_reply_in_temp_region(buf, temp, &rq); 5688 if(rep && rq.qtype == wanted_qtype && 5689 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR) { 5690 /* parsed successfully */ 5691 struct ub_packed_rrset_key* answer = 5692 reply_find_answer_rrset(&rq, rep); 5693 if(answer) { 5694 xfr_master_add_addrs(xfr->task_transfer-> 5695 lookup_target, answer, wanted_qtype); 5696 } else { 5697 if(verbosity >= VERB_ALGO) { 5698 char zname[255+1]; 5699 dname_str(xfr->name, zname); 5700 verbose(VERB_ALGO, "auth zone %s host %s type %s transfer lookup has nodata", zname, xfr->task_transfer->lookup_target->host, (xfr->task_transfer->lookup_aaaa?"AAAA":"A")); 5701 } 5702 } 5703 } else { 5704 if(verbosity >= VERB_ALGO) { 5705 char zname[255+1]; 5706 dname_str(xfr->name, zname); 5707 verbose(VERB_ALGO, "auth zone %s host %s type %s transfer lookup has no answer", zname, xfr->task_transfer->lookup_target->host, (xfr->task_transfer->lookup_aaaa?"AAAA":"A")); 5708 } 5709 } 5710 regional_free_all(temp); 5711 } else { 5712 if(verbosity >= VERB_ALGO) { 5713 char zname[255+1]; 5714 dname_str(xfr->name, zname); 5715 verbose(VERB_ALGO, "auth zone %s host %s type %s transfer lookup failed", zname, xfr->task_transfer->lookup_target->host, (xfr->task_transfer->lookup_aaaa?"AAAA":"A")); 5716 } 5717 } 5718 if(xfr->task_transfer->lookup_target->list && 5719 xfr->task_transfer->lookup_target == xfr_transfer_current_master(xfr)) 5720 xfr->task_transfer->scan_addr = xfr->task_transfer->lookup_target->list; 5721 5722 /* move to lookup AAAA after A lookup, move to next hostname lookup, 5723 * or move to fetch the zone, or, if nothing to do, end task_transfer */ 5724 xfr_transfer_move_to_next_lookup(xfr, env); 5725 xfr_transfer_nexttarget_or_end(xfr, env); 5726 } 5727 5728 /** check if xfer (AXFR or IXFR) packet is OK. 5729 * return false if we lost connection (SERVFAIL, or unreadable). 5730 * return false if we need to move from IXFR to AXFR, with gonextonfail 5731 * set to false, so the same master is tried again, but with AXFR. 5732 * return true if fine to link into data. 5733 * return true with transferdone=true when the transfer has ended. 5734 */ 5735 static int 5736 check_xfer_packet(sldns_buffer* pkt, struct auth_xfer* xfr, 5737 int* gonextonfail, int* transferdone) 5738 { 5739 uint8_t* wire = sldns_buffer_begin(pkt); 5740 int i; 5741 if(sldns_buffer_limit(pkt) < LDNS_HEADER_SIZE) { 5742 verbose(VERB_ALGO, "xfr to %s failed, packet too small", 5743 xfr->task_transfer->master->host); 5744 return 0; 5745 } 5746 if(!LDNS_QR_WIRE(wire)) { 5747 verbose(VERB_ALGO, "xfr to %s failed, packet has no QR flag", 5748 xfr->task_transfer->master->host); 5749 return 0; 5750 } 5751 if(LDNS_TC_WIRE(wire)) { 5752 verbose(VERB_ALGO, "xfr to %s failed, packet has TC flag", 5753 xfr->task_transfer->master->host); 5754 return 0; 5755 } 5756 /* check ID */ 5757 if(LDNS_ID_WIRE(wire) != xfr->task_transfer->id) { 5758 verbose(VERB_ALGO, "xfr to %s failed, packet wrong ID", 5759 xfr->task_transfer->master->host); 5760 return 0; 5761 } 5762 if(LDNS_RCODE_WIRE(wire) != LDNS_RCODE_NOERROR) { 5763 char rcode[32]; 5764 sldns_wire2str_rcode_buf((int)LDNS_RCODE_WIRE(wire), rcode, 5765 sizeof(rcode)); 5766 /* if we are doing IXFR, check for fallback */ 5767 if(xfr->task_transfer->on_ixfr) { 5768 if(LDNS_RCODE_WIRE(wire) == LDNS_RCODE_NOTIMPL || 5769 LDNS_RCODE_WIRE(wire) == LDNS_RCODE_SERVFAIL || 5770 LDNS_RCODE_WIRE(wire) == LDNS_RCODE_REFUSED || 5771 LDNS_RCODE_WIRE(wire) == LDNS_RCODE_FORMERR) { 5772 verbose(VERB_ALGO, "xfr to %s, fallback " 5773 "from IXFR to AXFR (with rcode %s)", 5774 xfr->task_transfer->master->host, 5775 rcode); 5776 xfr->task_transfer->ixfr_fail = 1; 5777 *gonextonfail = 0; 5778 return 0; 5779 } 5780 } 5781 verbose(VERB_ALGO, "xfr to %s failed, packet with rcode %s", 5782 xfr->task_transfer->master->host, rcode); 5783 return 0; 5784 } 5785 if(LDNS_OPCODE_WIRE(wire) != LDNS_PACKET_QUERY) { 5786 verbose(VERB_ALGO, "xfr to %s failed, packet with bad opcode", 5787 xfr->task_transfer->master->host); 5788 return 0; 5789 } 5790 if(LDNS_QDCOUNT(wire) > 1) { 5791 verbose(VERB_ALGO, "xfr to %s failed, packet has qdcount %d", 5792 xfr->task_transfer->master->host, 5793 (int)LDNS_QDCOUNT(wire)); 5794 return 0; 5795 } 5796 5797 /* check qname */ 5798 sldns_buffer_set_position(pkt, LDNS_HEADER_SIZE); 5799 for(i=0; i<(int)LDNS_QDCOUNT(wire); i++) { 5800 size_t pos = sldns_buffer_position(pkt); 5801 uint16_t qtype, qclass; 5802 if(pkt_dname_len(pkt) == 0) { 5803 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5804 "malformed dname", 5805 xfr->task_transfer->master->host); 5806 return 0; 5807 } 5808 if(dname_pkt_compare(pkt, sldns_buffer_at(pkt, pos), 5809 xfr->name) != 0) { 5810 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5811 "wrong qname", 5812 xfr->task_transfer->master->host); 5813 return 0; 5814 } 5815 if(sldns_buffer_remaining(pkt) < 4) { 5816 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5817 "truncated query RR", 5818 xfr->task_transfer->master->host); 5819 return 0; 5820 } 5821 qtype = sldns_buffer_read_u16(pkt); 5822 qclass = sldns_buffer_read_u16(pkt); 5823 if(qclass != xfr->dclass) { 5824 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5825 "wrong qclass", 5826 xfr->task_transfer->master->host); 5827 return 0; 5828 } 5829 if(xfr->task_transfer->on_ixfr) { 5830 if(qtype != LDNS_RR_TYPE_IXFR) { 5831 verbose(VERB_ALGO, "xfr to %s failed, packet " 5832 "with wrong qtype, expected IXFR", 5833 xfr->task_transfer->master->host); 5834 return 0; 5835 } 5836 } else { 5837 if(qtype != LDNS_RR_TYPE_AXFR) { 5838 verbose(VERB_ALGO, "xfr to %s failed, packet " 5839 "with wrong qtype, expected AXFR", 5840 xfr->task_transfer->master->host); 5841 return 0; 5842 } 5843 } 5844 } 5845 5846 /* check parse of RRs in packet, store first SOA serial 5847 * to be able to detect last SOA (with that serial) to see if done */ 5848 /* also check for IXFR 'zone up to date' reply */ 5849 for(i=0; i<(int)LDNS_ANCOUNT(wire); i++) { 5850 size_t pos = sldns_buffer_position(pkt); 5851 uint16_t tp, rdlen; 5852 if(pkt_dname_len(pkt) == 0) { 5853 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5854 "malformed dname in answer section", 5855 xfr->task_transfer->master->host); 5856 return 0; 5857 } 5858 if(sldns_buffer_remaining(pkt) < 10) { 5859 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5860 "truncated RR", 5861 xfr->task_transfer->master->host); 5862 return 0; 5863 } 5864 tp = sldns_buffer_read_u16(pkt); 5865 (void)sldns_buffer_read_u16(pkt); /* class */ 5866 (void)sldns_buffer_read_u32(pkt); /* ttl */ 5867 rdlen = sldns_buffer_read_u16(pkt); 5868 if(sldns_buffer_remaining(pkt) < rdlen) { 5869 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5870 "truncated RR rdata", 5871 xfr->task_transfer->master->host); 5872 return 0; 5873 } 5874 5875 /* RR parses (haven't checked rdata itself), now look at 5876 * SOA records to see serial number */ 5877 if(xfr->task_transfer->rr_scan_num == 0 && 5878 tp != LDNS_RR_TYPE_SOA) { 5879 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5880 "malformed zone transfer, no start SOA", 5881 xfr->task_transfer->master->host); 5882 return 0; 5883 } 5884 if(xfr->task_transfer->rr_scan_num == 1 && 5885 tp != LDNS_RR_TYPE_SOA) { 5886 /* second RR is not a SOA record, this is not an IXFR 5887 * the master is replying with an AXFR */ 5888 xfr->task_transfer->on_ixfr_is_axfr = 1; 5889 } 5890 if(tp == LDNS_RR_TYPE_SOA) { 5891 uint32_t serial; 5892 if(rdlen < 22) { 5893 verbose(VERB_ALGO, "xfr to %s failed, packet " 5894 "with SOA with malformed rdata", 5895 xfr->task_transfer->master->host); 5896 return 0; 5897 } 5898 if(dname_pkt_compare(pkt, sldns_buffer_at(pkt, pos), 5899 xfr->name) != 0) { 5900 verbose(VERB_ALGO, "xfr to %s failed, packet " 5901 "with SOA with wrong dname", 5902 xfr->task_transfer->master->host); 5903 return 0; 5904 } 5905 5906 /* read serial number of SOA */ 5907 serial = sldns_buffer_read_u32_at(pkt, 5908 sldns_buffer_position(pkt)+rdlen-20); 5909 5910 /* check for IXFR 'zone has SOA x' reply */ 5911 if(xfr->task_transfer->on_ixfr && 5912 xfr->task_transfer->rr_scan_num == 0 && 5913 LDNS_ANCOUNT(wire)==1) { 5914 verbose(VERB_ALGO, "xfr to %s ended, " 5915 "IXFR reply that zone has serial %u," 5916 " fallback from IXFR to AXFR", 5917 xfr->task_transfer->master->host, 5918 (unsigned)serial); 5919 xfr->task_transfer->ixfr_fail = 1; 5920 *gonextonfail = 0; 5921 return 0; 5922 } 5923 5924 /* if first SOA, store serial number */ 5925 if(xfr->task_transfer->got_xfr_serial == 0) { 5926 xfr->task_transfer->got_xfr_serial = 1; 5927 xfr->task_transfer->incoming_xfr_serial = 5928 serial; 5929 verbose(VERB_ALGO, "xfr %s: contains " 5930 "SOA serial %u", 5931 xfr->task_transfer->master->host, 5932 (unsigned)serial); 5933 /* see if end of AXFR */ 5934 } else if(!xfr->task_transfer->on_ixfr || 5935 xfr->task_transfer->on_ixfr_is_axfr) { 5936 /* second SOA with serial is the end 5937 * for AXFR */ 5938 *transferdone = 1; 5939 verbose(VERB_ALGO, "xfr %s: last AXFR packet", 5940 xfr->task_transfer->master->host); 5941 /* for IXFR, count SOA records with that serial */ 5942 } else if(xfr->task_transfer->incoming_xfr_serial == 5943 serial && xfr->task_transfer->got_xfr_serial 5944 == 1) { 5945 xfr->task_transfer->got_xfr_serial++; 5946 /* if not first soa, if serial==firstserial, the 5947 * third time we are at the end, for IXFR */ 5948 } else if(xfr->task_transfer->incoming_xfr_serial == 5949 serial && xfr->task_transfer->got_xfr_serial 5950 == 2) { 5951 verbose(VERB_ALGO, "xfr %s: last IXFR packet", 5952 xfr->task_transfer->master->host); 5953 *transferdone = 1; 5954 /* continue parse check, if that succeeds, 5955 * transfer is done */ 5956 } 5957 } 5958 xfr->task_transfer->rr_scan_num++; 5959 5960 /* skip over RR rdata to go to the next RR */ 5961 sldns_buffer_skip(pkt, (ssize_t)rdlen); 5962 } 5963 5964 /* check authority section */ 5965 /* we skip over the RRs checking packet format */ 5966 for(i=0; i<(int)LDNS_NSCOUNT(wire); i++) { 5967 uint16_t rdlen; 5968 if(pkt_dname_len(pkt) == 0) { 5969 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5970 "malformed dname in authority section", 5971 xfr->task_transfer->master->host); 5972 return 0; 5973 } 5974 if(sldns_buffer_remaining(pkt) < 10) { 5975 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5976 "truncated RR", 5977 xfr->task_transfer->master->host); 5978 return 0; 5979 } 5980 (void)sldns_buffer_read_u16(pkt); /* type */ 5981 (void)sldns_buffer_read_u16(pkt); /* class */ 5982 (void)sldns_buffer_read_u32(pkt); /* ttl */ 5983 rdlen = sldns_buffer_read_u16(pkt); 5984 if(sldns_buffer_remaining(pkt) < rdlen) { 5985 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5986 "truncated RR rdata", 5987 xfr->task_transfer->master->host); 5988 return 0; 5989 } 5990 /* skip over RR rdata to go to the next RR */ 5991 sldns_buffer_skip(pkt, (ssize_t)rdlen); 5992 } 5993 5994 /* check additional section */ 5995 for(i=0; i<(int)LDNS_ARCOUNT(wire); i++) { 5996 uint16_t rdlen; 5997 if(pkt_dname_len(pkt) == 0) { 5998 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5999 "malformed dname in additional section", 6000 xfr->task_transfer->master->host); 6001 return 0; 6002 } 6003 if(sldns_buffer_remaining(pkt) < 10) { 6004 verbose(VERB_ALGO, "xfr to %s failed, packet with " 6005 "truncated RR", 6006 xfr->task_transfer->master->host); 6007 return 0; 6008 } 6009 (void)sldns_buffer_read_u16(pkt); /* type */ 6010 (void)sldns_buffer_read_u16(pkt); /* class */ 6011 (void)sldns_buffer_read_u32(pkt); /* ttl */ 6012 rdlen = sldns_buffer_read_u16(pkt); 6013 if(sldns_buffer_remaining(pkt) < rdlen) { 6014 verbose(VERB_ALGO, "xfr to %s failed, packet with " 6015 "truncated RR rdata", 6016 xfr->task_transfer->master->host); 6017 return 0; 6018 } 6019 /* skip over RR rdata to go to the next RR */ 6020 sldns_buffer_skip(pkt, (ssize_t)rdlen); 6021 } 6022 6023 return 1; 6024 } 6025 6026 /** Link the data from this packet into the worklist of transferred data */ 6027 static int 6028 xfer_link_data(sldns_buffer* pkt, struct auth_xfer* xfr) 6029 { 6030 /* alloc it */ 6031 struct auth_chunk* e; 6032 e = (struct auth_chunk*)calloc(1, sizeof(*e)); 6033 if(!e) return 0; 6034 e->next = NULL; 6035 e->len = sldns_buffer_limit(pkt); 6036 e->data = memdup(sldns_buffer_begin(pkt), e->len); 6037 if(!e->data) { 6038 free(e); 6039 return 0; 6040 } 6041 6042 /* alloc succeeded, link into list */ 6043 if(!xfr->task_transfer->chunks_first) 6044 xfr->task_transfer->chunks_first = e; 6045 if(xfr->task_transfer->chunks_last) 6046 xfr->task_transfer->chunks_last->next = e; 6047 xfr->task_transfer->chunks_last = e; 6048 return 1; 6049 } 6050 6051 /** task transfer. the list of data is complete. process it and if failed 6052 * move to next master, if succeeded, end the task transfer */ 6053 static void 6054 process_list_end_transfer(struct auth_xfer* xfr, struct module_env* env) 6055 { 6056 int ixfr_fail = 0; 6057 if(xfr_process_chunk_list(xfr, env, &ixfr_fail)) { 6058 /* it worked! */ 6059 auth_chunks_delete(xfr->task_transfer); 6060 6061 /* we fetched the zone, move to wait task */ 6062 xfr_transfer_disown(xfr); 6063 6064 if(xfr->notify_received && (!xfr->notify_has_serial || 6065 (xfr->notify_has_serial && 6066 xfr_serial_means_update(xfr, xfr->notify_serial)))) { 6067 uint32_t sr = xfr->notify_serial; 6068 int has_sr = xfr->notify_has_serial; 6069 /* we received a notify while probe/transfer was 6070 * in progress. start a new probe and transfer */ 6071 xfr->notify_received = 0; 6072 xfr->notify_has_serial = 0; 6073 xfr->notify_serial = 0; 6074 if(!xfr_start_probe(xfr, env, NULL)) { 6075 /* if we couldn't start it, already in 6076 * progress; restore notify serial, 6077 * while xfr still locked */ 6078 xfr->notify_received = 1; 6079 xfr->notify_has_serial = has_sr; 6080 xfr->notify_serial = sr; 6081 lock_basic_unlock(&xfr->lock); 6082 } 6083 return; 6084 } else { 6085 /* pick up the nextprobe task and wait (normail wait time) */ 6086 if(xfr->task_nextprobe->worker == NULL) 6087 xfr_set_timeout(xfr, env, 0, 0); 6088 } 6089 lock_basic_unlock(&xfr->lock); 6090 return; 6091 } 6092 /* processing failed */ 6093 /* when done, delete data from list */ 6094 auth_chunks_delete(xfr->task_transfer); 6095 if(ixfr_fail) { 6096 xfr->task_transfer->ixfr_fail = 1; 6097 } else { 6098 xfr_transfer_nextmaster(xfr); 6099 } 6100 xfr_transfer_nexttarget_or_end(xfr, env); 6101 } 6102 6103 /** callback for the task_transfer timer */ 6104 void 6105 auth_xfer_transfer_timer_callback(void* arg) 6106 { 6107 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6108 struct module_env* env; 6109 int gonextonfail = 1; 6110 log_assert(xfr->task_transfer); 6111 lock_basic_lock(&xfr->lock); 6112 env = xfr->task_transfer->env; 6113 if(!env || env->outnet->want_to_quit) { 6114 lock_basic_unlock(&xfr->lock); 6115 return; /* stop on quit */ 6116 } 6117 6118 verbose(VERB_ALGO, "xfr stopped, connection timeout to %s", 6119 xfr->task_transfer->master->host); 6120 6121 /* see if IXFR caused the failure, if so, try AXFR */ 6122 if(xfr->task_transfer->on_ixfr) { 6123 xfr->task_transfer->ixfr_possible_timeout_count++; 6124 if(xfr->task_transfer->ixfr_possible_timeout_count >= 6125 NUM_TIMEOUTS_FALLBACK_IXFR) { 6126 verbose(VERB_ALGO, "xfr to %s, fallback " 6127 "from IXFR to AXFR (because of timeouts)", 6128 xfr->task_transfer->master->host); 6129 xfr->task_transfer->ixfr_fail = 1; 6130 gonextonfail = 0; 6131 } 6132 } 6133 6134 /* delete transferred data from list */ 6135 auth_chunks_delete(xfr->task_transfer); 6136 comm_point_delete(xfr->task_transfer->cp); 6137 xfr->task_transfer->cp = NULL; 6138 if(gonextonfail) 6139 xfr_transfer_nextmaster(xfr); 6140 xfr_transfer_nexttarget_or_end(xfr, env); 6141 } 6142 6143 /** callback for task_transfer tcp connections */ 6144 int 6145 auth_xfer_transfer_tcp_callback(struct comm_point* c, void* arg, int err, 6146 struct comm_reply* ATTR_UNUSED(repinfo)) 6147 { 6148 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6149 struct module_env* env; 6150 int gonextonfail = 1; 6151 int transferdone = 0; 6152 log_assert(xfr->task_transfer); 6153 lock_basic_lock(&xfr->lock); 6154 env = xfr->task_transfer->env; 6155 if(!env || env->outnet->want_to_quit) { 6156 lock_basic_unlock(&xfr->lock); 6157 return 0; /* stop on quit */ 6158 } 6159 /* stop the timer */ 6160 comm_timer_disable(xfr->task_transfer->timer); 6161 6162 if(err != NETEVENT_NOERROR) { 6163 /* connection failed, closed, or timeout */ 6164 /* stop this transfer, cleanup 6165 * and continue task_transfer*/ 6166 verbose(VERB_ALGO, "xfr stopped, connection lost to %s", 6167 xfr->task_transfer->master->host); 6168 6169 /* see if IXFR caused the failure, if so, try AXFR */ 6170 if(xfr->task_transfer->on_ixfr) { 6171 xfr->task_transfer->ixfr_possible_timeout_count++; 6172 if(xfr->task_transfer->ixfr_possible_timeout_count >= 6173 NUM_TIMEOUTS_FALLBACK_IXFR) { 6174 verbose(VERB_ALGO, "xfr to %s, fallback " 6175 "from IXFR to AXFR (because of timeouts)", 6176 xfr->task_transfer->master->host); 6177 xfr->task_transfer->ixfr_fail = 1; 6178 gonextonfail = 0; 6179 } 6180 } 6181 6182 failed: 6183 /* delete transferred data from list */ 6184 auth_chunks_delete(xfr->task_transfer); 6185 comm_point_delete(xfr->task_transfer->cp); 6186 xfr->task_transfer->cp = NULL; 6187 if(gonextonfail) 6188 xfr_transfer_nextmaster(xfr); 6189 xfr_transfer_nexttarget_or_end(xfr, env); 6190 return 0; 6191 } 6192 /* note that IXFR worked without timeout */ 6193 if(xfr->task_transfer->on_ixfr) 6194 xfr->task_transfer->ixfr_possible_timeout_count = 0; 6195 6196 /* handle returned packet */ 6197 /* if it fails, cleanup and end this transfer */ 6198 /* if it needs to fallback from IXFR to AXFR, do that */ 6199 if(!check_xfer_packet(c->buffer, xfr, &gonextonfail, &transferdone)) { 6200 goto failed; 6201 } 6202 /* if it is good, link it into the list of data */ 6203 /* if the link into list of data fails (malloc fail) cleanup and end */ 6204 if(!xfer_link_data(c->buffer, xfr)) { 6205 verbose(VERB_ALGO, "xfr stopped to %s, malloc failed", 6206 xfr->task_transfer->master->host); 6207 goto failed; 6208 } 6209 /* if the transfer is done now, disconnect and process the list */ 6210 if(transferdone) { 6211 comm_point_delete(xfr->task_transfer->cp); 6212 xfr->task_transfer->cp = NULL; 6213 process_list_end_transfer(xfr, env); 6214 return 0; 6215 } 6216 6217 /* if we want to read more messages, setup the commpoint to read 6218 * a DNS packet, and the timeout */ 6219 lock_basic_unlock(&xfr->lock); 6220 c->tcp_is_reading = 1; 6221 sldns_buffer_clear(c->buffer); 6222 comm_point_start_listening(c, -1, AUTH_TRANSFER_TIMEOUT); 6223 return 0; 6224 } 6225 6226 /** callback for task_transfer http connections */ 6227 int 6228 auth_xfer_transfer_http_callback(struct comm_point* c, void* arg, int err, 6229 struct comm_reply* repinfo) 6230 { 6231 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6232 struct module_env* env; 6233 log_assert(xfr->task_transfer); 6234 lock_basic_lock(&xfr->lock); 6235 env = xfr->task_transfer->env; 6236 if(!env || env->outnet->want_to_quit) { 6237 lock_basic_unlock(&xfr->lock); 6238 return 0; /* stop on quit */ 6239 } 6240 verbose(VERB_ALGO, "auth zone transfer http callback"); 6241 /* stop the timer */ 6242 comm_timer_disable(xfr->task_transfer->timer); 6243 6244 if(err != NETEVENT_NOERROR && err != NETEVENT_DONE) { 6245 /* connection failed, closed, or timeout */ 6246 /* stop this transfer, cleanup 6247 * and continue task_transfer*/ 6248 verbose(VERB_ALGO, "http stopped, connection lost to %s", 6249 xfr->task_transfer->master->host); 6250 failed: 6251 /* delete transferred data from list */ 6252 auth_chunks_delete(xfr->task_transfer); 6253 if(repinfo) repinfo->c = NULL; /* signal cp deleted to 6254 the routine calling this callback */ 6255 comm_point_delete(xfr->task_transfer->cp); 6256 xfr->task_transfer->cp = NULL; 6257 xfr_transfer_nextmaster(xfr); 6258 xfr_transfer_nexttarget_or_end(xfr, env); 6259 return 0; 6260 } 6261 6262 /* if it is good, link it into the list of data */ 6263 /* if the link into list of data fails (malloc fail) cleanup and end */ 6264 if(sldns_buffer_limit(c->buffer) > 0) { 6265 verbose(VERB_ALGO, "auth zone http queued up %d bytes", 6266 (int)sldns_buffer_limit(c->buffer)); 6267 if(!xfer_link_data(c->buffer, xfr)) { 6268 verbose(VERB_ALGO, "http stopped to %s, malloc failed", 6269 xfr->task_transfer->master->host); 6270 goto failed; 6271 } 6272 } 6273 /* if the transfer is done now, disconnect and process the list */ 6274 if(err == NETEVENT_DONE) { 6275 if(repinfo) repinfo->c = NULL; /* signal cp deleted to 6276 the routine calling this callback */ 6277 comm_point_delete(xfr->task_transfer->cp); 6278 xfr->task_transfer->cp = NULL; 6279 process_list_end_transfer(xfr, env); 6280 return 0; 6281 } 6282 6283 /* if we want to read more messages, setup the commpoint to read 6284 * a DNS packet, and the timeout */ 6285 lock_basic_unlock(&xfr->lock); 6286 c->tcp_is_reading = 1; 6287 sldns_buffer_clear(c->buffer); 6288 comm_point_start_listening(c, -1, AUTH_TRANSFER_TIMEOUT); 6289 return 0; 6290 } 6291 6292 6293 /** start transfer task by this worker , xfr is locked. */ 6294 static void 6295 xfr_start_transfer(struct auth_xfer* xfr, struct module_env* env, 6296 struct auth_master* master) 6297 { 6298 log_assert(xfr->task_transfer != NULL); 6299 log_assert(xfr->task_transfer->worker == NULL); 6300 log_assert(xfr->task_transfer->chunks_first == NULL); 6301 log_assert(xfr->task_transfer->chunks_last == NULL); 6302 xfr->task_transfer->worker = env->worker; 6303 xfr->task_transfer->env = env; 6304 6305 /* init transfer process */ 6306 /* find that master in the transfer's list of masters? */ 6307 xfr_transfer_start_list(xfr, master); 6308 /* start lookup for hostnames in transfer master list */ 6309 xfr_transfer_start_lookups(xfr); 6310 6311 /* initiate TCP, and set timeout on it */ 6312 xfr_transfer_nexttarget_or_end(xfr, env); 6313 } 6314 6315 /** disown task_probe. caller must hold xfr.lock */ 6316 static void 6317 xfr_probe_disown(struct auth_xfer* xfr) 6318 { 6319 /* remove timer (from this worker's event base) */ 6320 comm_timer_delete(xfr->task_probe->timer); 6321 xfr->task_probe->timer = NULL; 6322 /* remove the commpoint */ 6323 comm_point_delete(xfr->task_probe->cp); 6324 xfr->task_probe->cp = NULL; 6325 /* we don't own this item anymore */ 6326 xfr->task_probe->worker = NULL; 6327 xfr->task_probe->env = NULL; 6328 } 6329 6330 /** send the UDP probe to the master, this is part of task_probe */ 6331 static int 6332 xfr_probe_send_probe(struct auth_xfer* xfr, struct module_env* env, 6333 int timeout) 6334 { 6335 struct sockaddr_storage addr; 6336 socklen_t addrlen = 0; 6337 struct timeval t; 6338 /* pick master */ 6339 struct auth_master* master = xfr_probe_current_master(xfr); 6340 char *auth_name = NULL; 6341 if(!master) return 0; 6342 if(master->allow_notify) return 0; /* only for notify */ 6343 if(master->http) return 0; /* only masters get SOA UDP probe, 6344 not urls, if those are in this list */ 6345 6346 /* get master addr */ 6347 if(xfr->task_probe->scan_addr) { 6348 addrlen = xfr->task_probe->scan_addr->addrlen; 6349 memmove(&addr, &xfr->task_probe->scan_addr->addr, addrlen); 6350 } else { 6351 if(!authextstrtoaddr(master->host, &addr, &addrlen, &auth_name)) { 6352 /* the ones that are not in addr format are supposed 6353 * to be looked up. The lookup has failed however, 6354 * so skip them */ 6355 char zname[255+1]; 6356 dname_str(xfr->name, zname); 6357 log_err("%s: failed lookup, cannot probe to master %s", 6358 zname, master->host); 6359 return 0; 6360 } 6361 if (auth_name != NULL) { 6362 if (addr.ss_family == AF_INET 6363 && (int)ntohs(((struct sockaddr_in *)&addr)->sin_port) 6364 == env->cfg->ssl_port) 6365 ((struct sockaddr_in *)&addr)->sin_port 6366 = htons((uint16_t)env->cfg->port); 6367 else if (addr.ss_family == AF_INET6 6368 && (int)ntohs(((struct sockaddr_in6 *)&addr)->sin6_port) 6369 == env->cfg->ssl_port) 6370 ((struct sockaddr_in6 *)&addr)->sin6_port 6371 = htons((uint16_t)env->cfg->port); 6372 } 6373 } 6374 6375 /* create packet */ 6376 /* create new ID for new probes, but not on timeout retries, 6377 * this means we'll accept replies to previous retries to same ip */ 6378 if(timeout == AUTH_PROBE_TIMEOUT) 6379 xfr->task_probe->id = GET_RANDOM_ID(env->rnd); 6380 xfr_create_soa_probe_packet(xfr, env->scratch_buffer, 6381 xfr->task_probe->id); 6382 /* we need to remove the cp if we have a different ip4/ip6 type now */ 6383 if(xfr->task_probe->cp && 6384 ((xfr->task_probe->cp_is_ip6 && !addr_is_ip6(&addr, addrlen)) || 6385 (!xfr->task_probe->cp_is_ip6 && addr_is_ip6(&addr, addrlen))) 6386 ) { 6387 comm_point_delete(xfr->task_probe->cp); 6388 xfr->task_probe->cp = NULL; 6389 } 6390 if(!xfr->task_probe->cp) { 6391 if(addr_is_ip6(&addr, addrlen)) 6392 xfr->task_probe->cp_is_ip6 = 1; 6393 else xfr->task_probe->cp_is_ip6 = 0; 6394 xfr->task_probe->cp = outnet_comm_point_for_udp(env->outnet, 6395 auth_xfer_probe_udp_callback, xfr, &addr, addrlen); 6396 if(!xfr->task_probe->cp) { 6397 char zname[255+1], as[256]; 6398 dname_str(xfr->name, zname); 6399 addr_to_str(&addr, addrlen, as, sizeof(as)); 6400 verbose(VERB_ALGO, "cannot create udp cp for " 6401 "probe %s to %s", zname, as); 6402 return 0; 6403 } 6404 } 6405 if(!xfr->task_probe->timer) { 6406 xfr->task_probe->timer = comm_timer_create(env->worker_base, 6407 auth_xfer_probe_timer_callback, xfr); 6408 if(!xfr->task_probe->timer) { 6409 log_err("malloc failure"); 6410 return 0; 6411 } 6412 } 6413 6414 /* send udp packet */ 6415 if(!comm_point_send_udp_msg(xfr->task_probe->cp, env->scratch_buffer, 6416 (struct sockaddr*)&addr, addrlen, 0)) { 6417 char zname[255+1], as[256]; 6418 dname_str(xfr->name, zname); 6419 addr_to_str(&addr, addrlen, as, sizeof(as)); 6420 verbose(VERB_ALGO, "failed to send soa probe for %s to %s", 6421 zname, as); 6422 return 0; 6423 } 6424 if(verbosity >= VERB_ALGO) { 6425 char zname[255+1], as[256]; 6426 dname_str(xfr->name, zname); 6427 addr_to_str(&addr, addrlen, as, sizeof(as)); 6428 verbose(VERB_ALGO, "auth zone %s soa probe sent to %s", zname, 6429 as); 6430 } 6431 xfr->task_probe->timeout = timeout; 6432 #ifndef S_SPLINT_S 6433 t.tv_sec = timeout/1000; 6434 t.tv_usec = (timeout%1000)*1000; 6435 #endif 6436 comm_timer_set(xfr->task_probe->timer, &t); 6437 6438 return 1; 6439 } 6440 6441 /** callback for task_probe timer */ 6442 void 6443 auth_xfer_probe_timer_callback(void* arg) 6444 { 6445 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6446 struct module_env* env; 6447 log_assert(xfr->task_probe); 6448 lock_basic_lock(&xfr->lock); 6449 env = xfr->task_probe->env; 6450 if(!env || env->outnet->want_to_quit) { 6451 lock_basic_unlock(&xfr->lock); 6452 return; /* stop on quit */ 6453 } 6454 6455 if(verbosity >= VERB_ALGO) { 6456 char zname[255+1]; 6457 dname_str(xfr->name, zname); 6458 verbose(VERB_ALGO, "auth zone %s soa probe timeout", zname); 6459 } 6460 if(xfr->task_probe->timeout <= AUTH_PROBE_TIMEOUT_STOP) { 6461 /* try again with bigger timeout */ 6462 if(xfr_probe_send_probe(xfr, env, xfr->task_probe->timeout*2)) { 6463 lock_basic_unlock(&xfr->lock); 6464 return; 6465 } 6466 } 6467 /* delete commpoint so a new one is created, with a fresh port nr */ 6468 comm_point_delete(xfr->task_probe->cp); 6469 xfr->task_probe->cp = NULL; 6470 6471 /* too many timeouts (or fail to send), move to next or end */ 6472 xfr_probe_nextmaster(xfr); 6473 xfr_probe_send_or_end(xfr, env); 6474 } 6475 6476 /** callback for task_probe udp packets */ 6477 int 6478 auth_xfer_probe_udp_callback(struct comm_point* c, void* arg, int err, 6479 struct comm_reply* repinfo) 6480 { 6481 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6482 struct module_env* env; 6483 log_assert(xfr->task_probe); 6484 lock_basic_lock(&xfr->lock); 6485 env = xfr->task_probe->env; 6486 if(!env || env->outnet->want_to_quit) { 6487 lock_basic_unlock(&xfr->lock); 6488 return 0; /* stop on quit */ 6489 } 6490 6491 /* the comm_point_udp_callback is in a for loop for NUM_UDP_PER_SELECT 6492 * and we set rep.c=NULL to stop if from looking inside the commpoint*/ 6493 repinfo->c = NULL; 6494 /* stop the timer */ 6495 comm_timer_disable(xfr->task_probe->timer); 6496 6497 /* see if we got a packet and what that means */ 6498 if(err == NETEVENT_NOERROR) { 6499 uint32_t serial = 0; 6500 if(check_packet_ok(c->buffer, LDNS_RR_TYPE_SOA, xfr, 6501 &serial)) { 6502 /* successful lookup */ 6503 if(verbosity >= VERB_ALGO) { 6504 char buf[256]; 6505 dname_str(xfr->name, buf); 6506 verbose(VERB_ALGO, "auth zone %s: soa probe " 6507 "serial is %u", buf, (unsigned)serial); 6508 } 6509 /* see if this serial indicates that the zone has 6510 * to be updated */ 6511 if(xfr_serial_means_update(xfr, serial)) { 6512 /* if updated, start the transfer task, if needed */ 6513 verbose(VERB_ALGO, "auth_zone updated, start transfer"); 6514 if(xfr->task_transfer->worker == NULL) { 6515 struct auth_master* master = 6516 xfr_probe_current_master(xfr); 6517 /* if we have download URLs use them 6518 * in preference to this master we 6519 * just probed the SOA from */ 6520 if(xfr->task_transfer->masters && 6521 xfr->task_transfer->masters->http) 6522 master = NULL; 6523 xfr_probe_disown(xfr); 6524 xfr_start_transfer(xfr, env, master); 6525 return 0; 6526 6527 } 6528 /* other tasks are running, we don't do this anymore */ 6529 xfr_probe_disown(xfr); 6530 lock_basic_unlock(&xfr->lock); 6531 /* return, we don't sent a reply to this udp packet, 6532 * and we setup the tasks to do next */ 6533 return 0; 6534 } else { 6535 verbose(VERB_ALGO, "auth_zone master reports unchanged soa serial"); 6536 /* we if cannot find updates amongst the 6537 * masters, this means we then have a new lease 6538 * on the zone */ 6539 xfr->task_probe->have_new_lease = 1; 6540 } 6541 } else { 6542 if(verbosity >= VERB_ALGO) { 6543 char buf[256]; 6544 dname_str(xfr->name, buf); 6545 verbose(VERB_ALGO, "auth zone %s: bad reply to soa probe", buf); 6546 } 6547 } 6548 } else { 6549 if(verbosity >= VERB_ALGO) { 6550 char buf[256]; 6551 dname_str(xfr->name, buf); 6552 verbose(VERB_ALGO, "auth zone %s: soa probe failed", buf); 6553 } 6554 } 6555 6556 /* failed lookup or not an update */ 6557 /* delete commpoint so a new one is created, with a fresh port nr */ 6558 comm_point_delete(xfr->task_probe->cp); 6559 xfr->task_probe->cp = NULL; 6560 6561 /* if the result was not a successful probe, we need 6562 * to send the next one */ 6563 xfr_probe_nextmaster(xfr); 6564 xfr_probe_send_or_end(xfr, env); 6565 return 0; 6566 } 6567 6568 /** lookup a host name for its addresses, if needed */ 6569 static int 6570 xfr_probe_lookup_host(struct auth_xfer* xfr, struct module_env* env) 6571 { 6572 struct sockaddr_storage addr; 6573 socklen_t addrlen = 0; 6574 struct auth_master* master = xfr->task_probe->lookup_target; 6575 struct query_info qinfo; 6576 uint16_t qflags = BIT_RD; 6577 uint8_t dname[LDNS_MAX_DOMAINLEN+1]; 6578 struct edns_data edns; 6579 sldns_buffer* buf = env->scratch_buffer; 6580 if(!master) return 0; 6581 if(extstrtoaddr(master->host, &addr, &addrlen, UNBOUND_DNS_PORT)) { 6582 /* not needed, host is in IP addr format */ 6583 return 0; 6584 } 6585 if(master->allow_notify && !master->http && 6586 strchr(master->host, '/') != NULL && 6587 strchr(master->host, '/') == strrchr(master->host, '/')) { 6588 return 0; /* is IP/prefix format, not something to look up */ 6589 } 6590 6591 /* use mesh_new_callback to probe for non-addr hosts, 6592 * and then wait for them to be looked up (in cache, or query) */ 6593 qinfo.qname_len = sizeof(dname); 6594 if(sldns_str2wire_dname_buf(master->host, dname, &qinfo.qname_len) 6595 != 0) { 6596 log_err("cannot parse host name of master %s", master->host); 6597 return 0; 6598 } 6599 qinfo.qname = dname; 6600 qinfo.qclass = xfr->dclass; 6601 qinfo.qtype = LDNS_RR_TYPE_A; 6602 if(xfr->task_probe->lookup_aaaa) 6603 qinfo.qtype = LDNS_RR_TYPE_AAAA; 6604 qinfo.local_alias = NULL; 6605 if(verbosity >= VERB_ALGO) { 6606 char buf1[512]; 6607 char buf2[LDNS_MAX_DOMAINLEN+1]; 6608 dname_str(xfr->name, buf2); 6609 snprintf(buf1, sizeof(buf1), "auth zone %s: master lookup" 6610 " for task_probe", buf2); 6611 log_query_info(VERB_ALGO, buf1, &qinfo); 6612 } 6613 edns.edns_present = 1; 6614 edns.ext_rcode = 0; 6615 edns.edns_version = 0; 6616 edns.bits = EDNS_DO; 6617 edns.opt_list_in = NULL; 6618 edns.opt_list_out = NULL; 6619 edns.opt_list_inplace_cb_out = NULL; 6620 edns.padding_block_size = 0; 6621 edns.cookie_present = 0; 6622 edns.cookie_valid = 0; 6623 if(sldns_buffer_capacity(buf) < 65535) 6624 edns.udp_size = (uint16_t)sldns_buffer_capacity(buf); 6625 else edns.udp_size = 65535; 6626 6627 /* unlock xfr during mesh_new_callback() because the callback can be 6628 * called straight away */ 6629 lock_basic_unlock(&xfr->lock); 6630 if(!mesh_new_callback(env->mesh, &qinfo, qflags, &edns, buf, 0, 6631 &auth_xfer_probe_lookup_callback, xfr, 0)) { 6632 lock_basic_lock(&xfr->lock); 6633 log_err("out of memory lookup up master %s", master->host); 6634 return 0; 6635 } 6636 lock_basic_lock(&xfr->lock); 6637 return 1; 6638 } 6639 6640 /** move to sending the probe packets, next if fails. task_probe */ 6641 static void 6642 xfr_probe_send_or_end(struct auth_xfer* xfr, struct module_env* env) 6643 { 6644 /* are we doing hostname lookups? */ 6645 while(xfr->task_probe->lookup_target) { 6646 if(xfr_probe_lookup_host(xfr, env)) { 6647 /* wait for lookup to finish, 6648 * note that the hostname may be in unbound's cache 6649 * and we may then get an instant cache response, 6650 * and that calls the callback just like a full 6651 * lookup and lookup failures also call callback */ 6652 if(verbosity >= VERB_ALGO) { 6653 char zname[255+1]; 6654 dname_str(xfr->name, zname); 6655 verbose(VERB_ALGO, "auth zone %s probe next target lookup", zname); 6656 } 6657 lock_basic_unlock(&xfr->lock); 6658 return; 6659 } 6660 xfr_probe_move_to_next_lookup(xfr, env); 6661 } 6662 /* probe of list has ended. Create or refresh the list of of 6663 * allow_notify addrs */ 6664 probe_copy_masters_for_allow_notify(xfr); 6665 if(verbosity >= VERB_ALGO) { 6666 char zname[255+1]; 6667 dname_str(xfr->name, zname); 6668 verbose(VERB_ALGO, "auth zone %s probe: notify addrs updated", zname); 6669 } 6670 if(xfr->task_probe->only_lookup) { 6671 /* only wanted lookups for copy, stop probe and start wait */ 6672 xfr->task_probe->only_lookup = 0; 6673 if(verbosity >= VERB_ALGO) { 6674 char zname[255+1]; 6675 dname_str(xfr->name, zname); 6676 verbose(VERB_ALGO, "auth zone %s probe: finished only_lookup", zname); 6677 } 6678 xfr_probe_disown(xfr); 6679 if(xfr->task_nextprobe->worker == NULL) 6680 xfr_set_timeout(xfr, env, 0, 0); 6681 lock_basic_unlock(&xfr->lock); 6682 return; 6683 } 6684 6685 /* send probe packets */ 6686 while(!xfr_probe_end_of_list(xfr)) { 6687 if(xfr_probe_send_probe(xfr, env, AUTH_PROBE_TIMEOUT)) { 6688 /* successfully sent probe, wait for callback */ 6689 lock_basic_unlock(&xfr->lock); 6690 return; 6691 } 6692 /* failed to send probe, next master */ 6693 xfr_probe_nextmaster(xfr); 6694 } 6695 6696 /* done with probe sequence, wait */ 6697 if(xfr->task_probe->have_new_lease) { 6698 /* if zone not updated, start the wait timer again */ 6699 if(verbosity >= VERB_ALGO) { 6700 char zname[255+1]; 6701 dname_str(xfr->name, zname); 6702 verbose(VERB_ALGO, "auth_zone %s unchanged, new lease, wait", zname); 6703 } 6704 xfr_probe_disown(xfr); 6705 if(xfr->have_zone) 6706 xfr->lease_time = *env->now; 6707 if(xfr->task_nextprobe->worker == NULL) 6708 xfr_set_timeout(xfr, env, 0, 0); 6709 } else { 6710 if(verbosity >= VERB_ALGO) { 6711 char zname[255+1]; 6712 dname_str(xfr->name, zname); 6713 verbose(VERB_ALGO, "auth zone %s soa probe failed, wait to retry", zname); 6714 } 6715 /* we failed to send this as well, move to the wait task, 6716 * use the shorter retry timeout */ 6717 xfr_probe_disown(xfr); 6718 /* pick up the nextprobe task and wait */ 6719 if(xfr->task_nextprobe->worker == NULL) 6720 xfr_set_timeout(xfr, env, 1, 0); 6721 } 6722 6723 lock_basic_unlock(&xfr->lock); 6724 } 6725 6726 /** callback for task_probe lookup of host name, of A or AAAA */ 6727 void auth_xfer_probe_lookup_callback(void* arg, int rcode, sldns_buffer* buf, 6728 enum sec_status ATTR_UNUSED(sec), char* ATTR_UNUSED(why_bogus), 6729 int ATTR_UNUSED(was_ratelimited)) 6730 { 6731 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6732 struct module_env* env; 6733 log_assert(xfr->task_probe); 6734 lock_basic_lock(&xfr->lock); 6735 env = xfr->task_probe->env; 6736 if(!env || env->outnet->want_to_quit) { 6737 lock_basic_unlock(&xfr->lock); 6738 return; /* stop on quit */ 6739 } 6740 6741 /* process result */ 6742 if(rcode == LDNS_RCODE_NOERROR) { 6743 uint16_t wanted_qtype = LDNS_RR_TYPE_A; 6744 struct regional* temp = env->scratch; 6745 struct query_info rq; 6746 struct reply_info* rep; 6747 if(xfr->task_probe->lookup_aaaa) 6748 wanted_qtype = LDNS_RR_TYPE_AAAA; 6749 memset(&rq, 0, sizeof(rq)); 6750 rep = parse_reply_in_temp_region(buf, temp, &rq); 6751 if(rep && rq.qtype == wanted_qtype && 6752 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR) { 6753 /* parsed successfully */ 6754 struct ub_packed_rrset_key* answer = 6755 reply_find_answer_rrset(&rq, rep); 6756 if(answer) { 6757 xfr_master_add_addrs(xfr->task_probe-> 6758 lookup_target, answer, wanted_qtype); 6759 } else { 6760 if(verbosity >= VERB_ALGO) { 6761 char zname[255+1]; 6762 dname_str(xfr->name, zname); 6763 verbose(VERB_ALGO, "auth zone %s host %s type %s probe lookup has nodata", zname, xfr->task_probe->lookup_target->host, (xfr->task_probe->lookup_aaaa?"AAAA":"A")); 6764 } 6765 } 6766 } else { 6767 if(verbosity >= VERB_ALGO) { 6768 char zname[255+1]; 6769 dname_str(xfr->name, zname); 6770 verbose(VERB_ALGO, "auth zone %s host %s type %s probe lookup has no address", zname, xfr->task_probe->lookup_target->host, (xfr->task_probe->lookup_aaaa?"AAAA":"A")); 6771 } 6772 } 6773 regional_free_all(temp); 6774 } else { 6775 if(verbosity >= VERB_ALGO) { 6776 char zname[255+1]; 6777 dname_str(xfr->name, zname); 6778 verbose(VERB_ALGO, "auth zone %s host %s type %s probe lookup failed", zname, xfr->task_probe->lookup_target->host, (xfr->task_probe->lookup_aaaa?"AAAA":"A")); 6779 } 6780 } 6781 if(xfr->task_probe->lookup_target->list && 6782 xfr->task_probe->lookup_target == xfr_probe_current_master(xfr)) 6783 xfr->task_probe->scan_addr = xfr->task_probe->lookup_target->list; 6784 6785 /* move to lookup AAAA after A lookup, move to next hostname lookup, 6786 * or move to send the probes, or, if nothing to do, end task_probe */ 6787 xfr_probe_move_to_next_lookup(xfr, env); 6788 xfr_probe_send_or_end(xfr, env); 6789 } 6790 6791 /** disown task_nextprobe. caller must hold xfr.lock */ 6792 static void 6793 xfr_nextprobe_disown(struct auth_xfer* xfr) 6794 { 6795 /* delete the timer, because the next worker to pick this up may 6796 * not have the same event base */ 6797 comm_timer_delete(xfr->task_nextprobe->timer); 6798 xfr->task_nextprobe->timer = NULL; 6799 xfr->task_nextprobe->next_probe = 0; 6800 /* we don't own this item anymore */ 6801 xfr->task_nextprobe->worker = NULL; 6802 xfr->task_nextprobe->env = NULL; 6803 } 6804 6805 /** xfer nextprobe timeout callback, this is part of task_nextprobe */ 6806 void 6807 auth_xfer_timer(void* arg) 6808 { 6809 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6810 struct module_env* env; 6811 log_assert(xfr->task_nextprobe); 6812 lock_basic_lock(&xfr->lock); 6813 env = xfr->task_nextprobe->env; 6814 if(!env || env->outnet->want_to_quit) { 6815 lock_basic_unlock(&xfr->lock); 6816 return; /* stop on quit */ 6817 } 6818 6819 /* see if zone has expired, and if so, also set auth_zone expired */ 6820 if(xfr->have_zone && !xfr->zone_expired && 6821 *env->now >= xfr->lease_time + xfr->expiry) { 6822 lock_basic_unlock(&xfr->lock); 6823 auth_xfer_set_expired(xfr, env, 1); 6824 lock_basic_lock(&xfr->lock); 6825 } 6826 6827 xfr_nextprobe_disown(xfr); 6828 6829 if(!xfr_start_probe(xfr, env, NULL)) { 6830 /* not started because already in progress */ 6831 lock_basic_unlock(&xfr->lock); 6832 } 6833 } 6834 6835 /** return true if there are probe (SOA UDP query) targets in the master list*/ 6836 static int 6837 have_probe_targets(struct auth_master* list) 6838 { 6839 struct auth_master* p; 6840 for(p=list; p; p = p->next) { 6841 if(!p->allow_notify && p->host) 6842 return 1; 6843 } 6844 return 0; 6845 } 6846 6847 /** start task_probe if possible, if no masters for probe start task_transfer 6848 * returns true if task has been started, and false if the task is already 6849 * in progress. */ 6850 static int 6851 xfr_start_probe(struct auth_xfer* xfr, struct module_env* env, 6852 struct auth_master* spec) 6853 { 6854 /* see if we need to start a probe (or maybe it is already in 6855 * progress (due to notify)) */ 6856 if(xfr->task_probe->worker == NULL) { 6857 if(!have_probe_targets(xfr->task_probe->masters) && 6858 !(xfr->task_probe->only_lookup && 6859 xfr->task_probe->masters != NULL)) { 6860 /* useless to pick up task_probe, no masters to 6861 * probe. Instead attempt to pick up task transfer */ 6862 if(xfr->task_transfer->worker == NULL) { 6863 xfr_start_transfer(xfr, env, spec); 6864 return 1; 6865 } 6866 /* task transfer already in progress */ 6867 return 0; 6868 } 6869 6870 /* pick up the probe task ourselves */ 6871 xfr->task_probe->worker = env->worker; 6872 xfr->task_probe->env = env; 6873 xfr->task_probe->cp = NULL; 6874 6875 /* start the task */ 6876 /* have not seen a new lease yet, this scan */ 6877 xfr->task_probe->have_new_lease = 0; 6878 /* if this was a timeout, no specific first master to scan */ 6879 /* otherwise, spec is nonNULL the notified master, scan 6880 * first and also transfer first from it */ 6881 xfr_probe_start_list(xfr, spec); 6882 /* setup to start the lookup of hostnames of masters afresh */ 6883 xfr_probe_start_lookups(xfr); 6884 /* send the probe packet or next send, or end task */ 6885 xfr_probe_send_or_end(xfr, env); 6886 return 1; 6887 } 6888 return 0; 6889 } 6890 6891 /** for task_nextprobe. 6892 * determine next timeout for auth_xfer. Also (re)sets timer. 6893 * @param xfr: task structure 6894 * @param env: module environment, with worker and time. 6895 * @param failure: set true if timer should be set for failure retry. 6896 * @param lookup_only: only perform lookups when timer done, 0 sec timeout 6897 */ 6898 static void 6899 xfr_set_timeout(struct auth_xfer* xfr, struct module_env* env, 6900 int failure, int lookup_only) 6901 { 6902 struct timeval tv; 6903 log_assert(xfr->task_nextprobe != NULL); 6904 log_assert(xfr->task_nextprobe->worker == NULL || 6905 xfr->task_nextprobe->worker == env->worker); 6906 /* normally, nextprobe = startoflease + refresh, 6907 * but if expiry is sooner, use that one. 6908 * after a failure, use the retry timer instead. */ 6909 xfr->task_nextprobe->next_probe = *env->now; 6910 if(xfr->lease_time && !failure) 6911 xfr->task_nextprobe->next_probe = xfr->lease_time; 6912 6913 if(!failure) { 6914 xfr->task_nextprobe->backoff = 0; 6915 } else { 6916 if(xfr->task_nextprobe->backoff == 0) 6917 xfr->task_nextprobe->backoff = 3; 6918 else xfr->task_nextprobe->backoff *= 2; 6919 if(xfr->task_nextprobe->backoff > AUTH_TRANSFER_MAX_BACKOFF) 6920 xfr->task_nextprobe->backoff = 6921 AUTH_TRANSFER_MAX_BACKOFF; 6922 } 6923 6924 if(xfr->have_zone) { 6925 time_t wait = xfr->refresh; 6926 if(failure) wait = xfr->retry; 6927 if(xfr->expiry < wait) 6928 xfr->task_nextprobe->next_probe += xfr->expiry; 6929 else xfr->task_nextprobe->next_probe += wait; 6930 if(failure) 6931 xfr->task_nextprobe->next_probe += 6932 xfr->task_nextprobe->backoff; 6933 /* put the timer exactly on expiry, if possible */ 6934 if(xfr->lease_time && xfr->lease_time+xfr->expiry < 6935 xfr->task_nextprobe->next_probe && 6936 xfr->lease_time+xfr->expiry > *env->now) 6937 xfr->task_nextprobe->next_probe = 6938 xfr->lease_time+xfr->expiry; 6939 } else { 6940 xfr->task_nextprobe->next_probe += 6941 xfr->task_nextprobe->backoff; 6942 } 6943 6944 if(!xfr->task_nextprobe->timer) { 6945 xfr->task_nextprobe->timer = comm_timer_create( 6946 env->worker_base, auth_xfer_timer, xfr); 6947 if(!xfr->task_nextprobe->timer) { 6948 /* failed to malloc memory. likely zone transfer 6949 * also fails for that. skip the timeout */ 6950 char zname[255+1]; 6951 dname_str(xfr->name, zname); 6952 log_err("cannot allocate timer, no refresh for %s", 6953 zname); 6954 return; 6955 } 6956 } 6957 xfr->task_nextprobe->worker = env->worker; 6958 xfr->task_nextprobe->env = env; 6959 if(*(xfr->task_nextprobe->env->now) <= xfr->task_nextprobe->next_probe) 6960 tv.tv_sec = xfr->task_nextprobe->next_probe - 6961 *(xfr->task_nextprobe->env->now); 6962 else tv.tv_sec = 0; 6963 if(tv.tv_sec != 0 && lookup_only && xfr->task_probe->masters) { 6964 /* don't lookup_only, if lookup timeout is 0 anyway, 6965 * or if we don't have masters to lookup */ 6966 tv.tv_sec = 0; 6967 if(xfr->task_probe->worker == NULL) 6968 xfr->task_probe->only_lookup = 1; 6969 } 6970 if(verbosity >= VERB_ALGO) { 6971 char zname[255+1]; 6972 dname_str(xfr->name, zname); 6973 verbose(VERB_ALGO, "auth zone %s timeout in %d seconds", 6974 zname, (int)tv.tv_sec); 6975 } 6976 tv.tv_usec = 0; 6977 comm_timer_set(xfr->task_nextprobe->timer, &tv); 6978 } 6979 6980 /** initial pick up of worker timeouts, ties events to worker event loop */ 6981 void 6982 auth_xfer_pickup_initial(struct auth_zones* az, struct module_env* env) 6983 { 6984 struct auth_xfer* x; 6985 lock_rw_wrlock(&az->lock); 6986 RBTREE_FOR(x, struct auth_xfer*, &az->xtree) { 6987 lock_basic_lock(&x->lock); 6988 /* set lease_time, because we now have timestamp in env, 6989 * (not earlier during startup and apply_cfg), and this 6990 * notes the start time when the data was acquired */ 6991 if(x->have_zone) 6992 x->lease_time = *env->now; 6993 if(x->task_nextprobe && x->task_nextprobe->worker == NULL) { 6994 xfr_set_timeout(x, env, 0, 1); 6995 } 6996 lock_basic_unlock(&x->lock); 6997 } 6998 lock_rw_unlock(&az->lock); 6999 } 7000 7001 void auth_zones_cleanup(struct auth_zones* az) 7002 { 7003 struct auth_xfer* x; 7004 lock_rw_wrlock(&az->lock); 7005 RBTREE_FOR(x, struct auth_xfer*, &az->xtree) { 7006 lock_basic_lock(&x->lock); 7007 if(x->task_nextprobe && x->task_nextprobe->worker != NULL) { 7008 xfr_nextprobe_disown(x); 7009 } 7010 if(x->task_probe && x->task_probe->worker != NULL) { 7011 xfr_probe_disown(x); 7012 } 7013 if(x->task_transfer && x->task_transfer->worker != NULL) { 7014 auth_chunks_delete(x->task_transfer); 7015 xfr_transfer_disown(x); 7016 } 7017 lock_basic_unlock(&x->lock); 7018 } 7019 lock_rw_unlock(&az->lock); 7020 } 7021 7022 /** 7023 * malloc the xfer and tasks 7024 * @param z: auth_zone with name of zone. 7025 */ 7026 static struct auth_xfer* 7027 auth_xfer_new(struct auth_zone* z) 7028 { 7029 struct auth_xfer* xfr; 7030 xfr = (struct auth_xfer*)calloc(1, sizeof(*xfr)); 7031 if(!xfr) return NULL; 7032 xfr->name = memdup(z->name, z->namelen); 7033 if(!xfr->name) { 7034 free(xfr); 7035 return NULL; 7036 } 7037 xfr->node.key = xfr; 7038 xfr->namelen = z->namelen; 7039 xfr->namelabs = z->namelabs; 7040 xfr->dclass = z->dclass; 7041 7042 xfr->task_nextprobe = (struct auth_nextprobe*)calloc(1, 7043 sizeof(struct auth_nextprobe)); 7044 if(!xfr->task_nextprobe) { 7045 free(xfr->name); 7046 free(xfr); 7047 return NULL; 7048 } 7049 xfr->task_probe = (struct auth_probe*)calloc(1, 7050 sizeof(struct auth_probe)); 7051 if(!xfr->task_probe) { 7052 free(xfr->task_nextprobe); 7053 free(xfr->name); 7054 free(xfr); 7055 return NULL; 7056 } 7057 xfr->task_transfer = (struct auth_transfer*)calloc(1, 7058 sizeof(struct auth_transfer)); 7059 if(!xfr->task_transfer) { 7060 free(xfr->task_probe); 7061 free(xfr->task_nextprobe); 7062 free(xfr->name); 7063 free(xfr); 7064 return NULL; 7065 } 7066 7067 lock_basic_init(&xfr->lock); 7068 lock_protect(&xfr->lock, &xfr->name, sizeof(xfr->name)); 7069 lock_protect(&xfr->lock, &xfr->namelen, sizeof(xfr->namelen)); 7070 lock_protect(&xfr->lock, xfr->name, xfr->namelen); 7071 lock_protect(&xfr->lock, &xfr->namelabs, sizeof(xfr->namelabs)); 7072 lock_protect(&xfr->lock, &xfr->dclass, sizeof(xfr->dclass)); 7073 lock_protect(&xfr->lock, &xfr->notify_received, sizeof(xfr->notify_received)); 7074 lock_protect(&xfr->lock, &xfr->notify_serial, sizeof(xfr->notify_serial)); 7075 lock_protect(&xfr->lock, &xfr->zone_expired, sizeof(xfr->zone_expired)); 7076 lock_protect(&xfr->lock, &xfr->have_zone, sizeof(xfr->have_zone)); 7077 lock_protect(&xfr->lock, &xfr->serial, sizeof(xfr->serial)); 7078 lock_protect(&xfr->lock, &xfr->retry, sizeof(xfr->retry)); 7079 lock_protect(&xfr->lock, &xfr->refresh, sizeof(xfr->refresh)); 7080 lock_protect(&xfr->lock, &xfr->expiry, sizeof(xfr->expiry)); 7081 lock_protect(&xfr->lock, &xfr->lease_time, sizeof(xfr->lease_time)); 7082 lock_protect(&xfr->lock, &xfr->task_nextprobe->worker, 7083 sizeof(xfr->task_nextprobe->worker)); 7084 lock_protect(&xfr->lock, &xfr->task_probe->worker, 7085 sizeof(xfr->task_probe->worker)); 7086 lock_protect(&xfr->lock, &xfr->task_transfer->worker, 7087 sizeof(xfr->task_transfer->worker)); 7088 lock_basic_lock(&xfr->lock); 7089 return xfr; 7090 } 7091 7092 /** Create auth_xfer structure. 7093 * This populates the have_zone, soa values, and so on times. 7094 * and sets the timeout, if a zone transfer is needed a short timeout is set. 7095 * For that the auth_zone itself must exist (and read in zonefile) 7096 * returns false on alloc failure. */ 7097 struct auth_xfer* 7098 auth_xfer_create(struct auth_zones* az, struct auth_zone* z) 7099 { 7100 struct auth_xfer* xfr; 7101 7102 /* malloc it */ 7103 xfr = auth_xfer_new(z); 7104 if(!xfr) { 7105 log_err("malloc failure"); 7106 return NULL; 7107 } 7108 /* insert in tree */ 7109 (void)rbtree_insert(&az->xtree, &xfr->node); 7110 return xfr; 7111 } 7112 7113 /** create new auth_master structure */ 7114 static struct auth_master* 7115 auth_master_new(struct auth_master*** list) 7116 { 7117 struct auth_master *m; 7118 m = (struct auth_master*)calloc(1, sizeof(*m)); 7119 if(!m) { 7120 log_err("malloc failure"); 7121 return NULL; 7122 } 7123 /* set first pointer to m, or next pointer of previous element to m */ 7124 (**list) = m; 7125 /* store m's next pointer as future point to store at */ 7126 (*list) = &(m->next); 7127 return m; 7128 } 7129 7130 /** dup_prefix : create string from initial part of other string, malloced */ 7131 static char* 7132 dup_prefix(char* str, size_t num) 7133 { 7134 char* result; 7135 size_t len = strlen(str); 7136 if(len < num) num = len; /* not more than strlen */ 7137 result = (char*)malloc(num+1); 7138 if(!result) { 7139 log_err("malloc failure"); 7140 return result; 7141 } 7142 memmove(result, str, num); 7143 result[num] = 0; 7144 return result; 7145 } 7146 7147 /** dup string and print error on error */ 7148 static char* 7149 dup_all(char* str) 7150 { 7151 char* result = strdup(str); 7152 if(!result) { 7153 log_err("malloc failure"); 7154 return NULL; 7155 } 7156 return result; 7157 } 7158 7159 /** find first of two characters */ 7160 static char* 7161 str_find_first_of_chars(char* s, char a, char b) 7162 { 7163 char* ra = strchr(s, a); 7164 char* rb = strchr(s, b); 7165 if(!ra) return rb; 7166 if(!rb) return ra; 7167 if(ra < rb) return ra; 7168 return rb; 7169 } 7170 7171 /** parse URL into host and file parts, false on malloc or parse error */ 7172 static int 7173 parse_url(char* url, char** host, char** file, int* port, int* ssl) 7174 { 7175 char* p = url; 7176 /* parse http://www.example.com/file.htm 7177 * or http://127.0.0.1 (index.html) 7178 * or https://[::1@1234]/a/b/c/d */ 7179 *ssl = 1; 7180 *port = AUTH_HTTPS_PORT; 7181 7182 /* parse http:// or https:// */ 7183 if(strncmp(p, "http://", 7) == 0) { 7184 p += 7; 7185 *ssl = 0; 7186 *port = AUTH_HTTP_PORT; 7187 } else if(strncmp(p, "https://", 8) == 0) { 7188 p += 8; 7189 } else if(strstr(p, "://") && strchr(p, '/') > strstr(p, "://") && 7190 strchr(p, ':') >= strstr(p, "://")) { 7191 char* uri = dup_prefix(p, (size_t)(strstr(p, "://")-p)); 7192 log_err("protocol %s:// not supported (for url %s)", 7193 uri?uri:"", p); 7194 free(uri); 7195 return 0; 7196 } 7197 7198 /* parse hostname part */ 7199 if(p[0] == '[') { 7200 char* end = strchr(p, ']'); 7201 p++; /* skip over [ */ 7202 if(end) { 7203 *host = dup_prefix(p, (size_t)(end-p)); 7204 if(!*host) return 0; 7205 p = end+1; /* skip over ] */ 7206 } else { 7207 *host = dup_all(p); 7208 if(!*host) return 0; 7209 p = end; 7210 } 7211 } else { 7212 char* end = str_find_first_of_chars(p, ':', '/'); 7213 if(end) { 7214 *host = dup_prefix(p, (size_t)(end-p)); 7215 if(!*host) return 0; 7216 } else { 7217 *host = dup_all(p); 7218 if(!*host) return 0; 7219 } 7220 p = end; /* at next : or / or NULL */ 7221 } 7222 7223 /* parse port number */ 7224 if(p && p[0] == ':') { 7225 char* end = NULL; 7226 *port = strtol(p+1, &end, 10); 7227 p = end; 7228 } 7229 7230 /* parse filename part */ 7231 while(p && *p == '/') 7232 p++; 7233 if(!p || p[0] == 0) 7234 *file = strdup("/"); 7235 else *file = strdup(p); 7236 if(!*file) { 7237 log_err("malloc failure"); 7238 return 0; 7239 } 7240 return 1; 7241 } 7242 7243 int 7244 xfer_set_masters(struct auth_master** list, struct config_auth* c, 7245 int with_http) 7246 { 7247 struct auth_master* m; 7248 struct config_strlist* p; 7249 /* list points to the first, or next pointer for the new element */ 7250 while(*list) { 7251 list = &( (*list)->next ); 7252 } 7253 if(with_http) 7254 for(p = c->urls; p; p = p->next) { 7255 m = auth_master_new(&list); 7256 if(!m) return 0; 7257 m->http = 1; 7258 if(!parse_url(p->str, &m->host, &m->file, &m->port, &m->ssl)) 7259 return 0; 7260 } 7261 for(p = c->masters; p; p = p->next) { 7262 m = auth_master_new(&list); 7263 if(!m) return 0; 7264 m->ixfr = 1; /* this flag is not configurable */ 7265 m->host = strdup(p->str); 7266 if(!m->host) { 7267 log_err("malloc failure"); 7268 return 0; 7269 } 7270 } 7271 for(p = c->allow_notify; p; p = p->next) { 7272 m = auth_master_new(&list); 7273 if(!m) return 0; 7274 m->allow_notify = 1; 7275 m->host = strdup(p->str); 7276 if(!m->host) { 7277 log_err("malloc failure"); 7278 return 0; 7279 } 7280 } 7281 return 1; 7282 } 7283 7284 #define SERIAL_BITS 32 7285 int 7286 compare_serial(uint32_t a, uint32_t b) 7287 { 7288 const uint32_t cutoff = ((uint32_t) 1 << (SERIAL_BITS - 1)); 7289 7290 if (a == b) { 7291 return 0; 7292 } else if ((a < b && b - a < cutoff) || (a > b && a - b > cutoff)) { 7293 return -1; 7294 } else { 7295 return 1; 7296 } 7297 } 7298 7299 int zonemd_hashalgo_supported(int hashalgo) 7300 { 7301 if(hashalgo == ZONEMD_ALGO_SHA384) return 1; 7302 if(hashalgo == ZONEMD_ALGO_SHA512) return 1; 7303 return 0; 7304 } 7305 7306 int zonemd_scheme_supported(int scheme) 7307 { 7308 if(scheme == ZONEMD_SCHEME_SIMPLE) return 1; 7309 return 0; 7310 } 7311 7312 /** initialize hash for hashing with zonemd hash algo */ 7313 static struct secalgo_hash* zonemd_digest_init(int hashalgo, char** reason) 7314 { 7315 struct secalgo_hash *h; 7316 if(hashalgo == ZONEMD_ALGO_SHA384) { 7317 /* sha384 */ 7318 h = secalgo_hash_create_sha384(); 7319 if(!h) 7320 *reason = "digest sha384 could not be created"; 7321 return h; 7322 } else if(hashalgo == ZONEMD_ALGO_SHA512) { 7323 /* sha512 */ 7324 h = secalgo_hash_create_sha512(); 7325 if(!h) 7326 *reason = "digest sha512 could not be created"; 7327 return h; 7328 } 7329 /* unknown hash algo */ 7330 *reason = "unsupported algorithm"; 7331 return NULL; 7332 } 7333 7334 /** update the hash for zonemd */ 7335 static int zonemd_digest_update(int hashalgo, struct secalgo_hash* h, 7336 uint8_t* data, size_t len, char** reason) 7337 { 7338 if(hashalgo == ZONEMD_ALGO_SHA384) { 7339 if(!secalgo_hash_update(h, data, len)) { 7340 *reason = "digest sha384 failed"; 7341 return 0; 7342 } 7343 return 1; 7344 } else if(hashalgo == ZONEMD_ALGO_SHA512) { 7345 if(!secalgo_hash_update(h, data, len)) { 7346 *reason = "digest sha512 failed"; 7347 return 0; 7348 } 7349 return 1; 7350 } 7351 /* unknown hash algo */ 7352 *reason = "unsupported algorithm"; 7353 return 0; 7354 } 7355 7356 /** finish the hash for zonemd */ 7357 static int zonemd_digest_finish(int hashalgo, struct secalgo_hash* h, 7358 uint8_t* result, size_t hashlen, size_t* resultlen, char** reason) 7359 { 7360 if(hashalgo == ZONEMD_ALGO_SHA384) { 7361 if(hashlen < 384/8) { 7362 *reason = "digest buffer too small for sha384"; 7363 return 0; 7364 } 7365 if(!secalgo_hash_final(h, result, hashlen, resultlen)) { 7366 *reason = "digest sha384 finish failed"; 7367 return 0; 7368 } 7369 return 1; 7370 } else if(hashalgo == ZONEMD_ALGO_SHA512) { 7371 if(hashlen < 512/8) { 7372 *reason = "digest buffer too small for sha512"; 7373 return 0; 7374 } 7375 if(!secalgo_hash_final(h, result, hashlen, resultlen)) { 7376 *reason = "digest sha512 finish failed"; 7377 return 0; 7378 } 7379 return 1; 7380 } 7381 /* unknown algo */ 7382 *reason = "unsupported algorithm"; 7383 return 0; 7384 } 7385 7386 /** add rrsets from node to the list */ 7387 static size_t authdata_rrsets_to_list(struct auth_rrset** array, 7388 size_t arraysize, struct auth_rrset* first) 7389 { 7390 struct auth_rrset* rrset = first; 7391 size_t num = 0; 7392 while(rrset) { 7393 if(num >= arraysize) 7394 return num; 7395 array[num] = rrset; 7396 num++; 7397 rrset = rrset->next; 7398 } 7399 return num; 7400 } 7401 7402 /** compare rr list entries */ 7403 static int rrlist_compare(const void* arg1, const void* arg2) 7404 { 7405 struct auth_rrset* r1 = *(struct auth_rrset**)arg1; 7406 struct auth_rrset* r2 = *(struct auth_rrset**)arg2; 7407 uint16_t t1, t2; 7408 if(r1 == NULL) t1 = LDNS_RR_TYPE_RRSIG; 7409 else t1 = r1->type; 7410 if(r2 == NULL) t2 = LDNS_RR_TYPE_RRSIG; 7411 else t2 = r2->type; 7412 if(t1 < t2) 7413 return -1; 7414 if(t1 > t2) 7415 return 1; 7416 return 0; 7417 } 7418 7419 /** add type RRSIG to rr list if not one there already, 7420 * this is to perform RRSIG collate processing at that point. */ 7421 static void addrrsigtype_if_needed(struct auth_rrset** array, 7422 size_t arraysize, size_t* rrnum, struct auth_data* node) 7423 { 7424 if(az_domain_rrset(node, LDNS_RR_TYPE_RRSIG)) 7425 return; /* already one there */ 7426 if((*rrnum) >= arraysize) 7427 return; /* array too small? */ 7428 array[*rrnum] = NULL; /* nothing there, but need entry in list */ 7429 (*rrnum)++; 7430 } 7431 7432 /** collate the RRs in an RRset using the simple scheme */ 7433 static int zonemd_simple_rrset(struct auth_zone* z, int hashalgo, 7434 struct secalgo_hash* h, struct auth_data* node, 7435 struct auth_rrset* rrset, struct regional* region, 7436 struct sldns_buffer* buf, char** reason) 7437 { 7438 /* canonicalize */ 7439 struct ub_packed_rrset_key key; 7440 memset(&key, 0, sizeof(key)); 7441 key.entry.key = &key; 7442 key.entry.data = rrset->data; 7443 key.rk.dname = node->name; 7444 key.rk.dname_len = node->namelen; 7445 key.rk.type = htons(rrset->type); 7446 key.rk.rrset_class = htons(z->dclass); 7447 if(!rrset_canonicalize_to_buffer(region, buf, &key)) { 7448 *reason = "out of memory"; 7449 return 0; 7450 } 7451 regional_free_all(region); 7452 7453 /* hash */ 7454 if(!zonemd_digest_update(hashalgo, h, sldns_buffer_begin(buf), 7455 sldns_buffer_limit(buf), reason)) { 7456 return 0; 7457 } 7458 return 1; 7459 } 7460 7461 /** count number of RRSIGs in a domain name rrset list */ 7462 static size_t zonemd_simple_count_rrsig(struct auth_rrset* rrset, 7463 struct auth_rrset** rrlist, size_t rrnum, 7464 struct auth_zone* z, struct auth_data* node) 7465 { 7466 size_t i, count = 0; 7467 if(rrset) { 7468 size_t j; 7469 for(j = 0; j<rrset->data->count; j++) { 7470 if(rrsig_rdata_get_type_covered(rrset->data-> 7471 rr_data[j], rrset->data->rr_len[j]) == 7472 LDNS_RR_TYPE_ZONEMD && 7473 query_dname_compare(z->name, node->name)==0) { 7474 /* omit RRSIGs over type ZONEMD at apex */ 7475 continue; 7476 } 7477 count++; 7478 } 7479 } 7480 for(i=0; i<rrnum; i++) { 7481 if(rrlist[i] && rrlist[i]->type == LDNS_RR_TYPE_ZONEMD && 7482 query_dname_compare(z->name, node->name)==0) { 7483 /* omit RRSIGs over type ZONEMD at apex */ 7484 continue; 7485 } 7486 count += (rrlist[i]?rrlist[i]->data->rrsig_count:0); 7487 } 7488 return count; 7489 } 7490 7491 /** allocate sparse rrset data for the number of entries in tepm region */ 7492 static int zonemd_simple_rrsig_allocs(struct regional* region, 7493 struct packed_rrset_data* data, size_t count) 7494 { 7495 data->rr_len = regional_alloc(region, sizeof(*data->rr_len) * count); 7496 if(!data->rr_len) { 7497 return 0; 7498 } 7499 data->rr_ttl = regional_alloc(region, sizeof(*data->rr_ttl) * count); 7500 if(!data->rr_ttl) { 7501 return 0; 7502 } 7503 data->rr_data = regional_alloc(region, sizeof(*data->rr_data) * count); 7504 if(!data->rr_data) { 7505 return 0; 7506 } 7507 return 1; 7508 } 7509 7510 /** add the RRSIGs from the rrs in the domain into the data */ 7511 static void add_rrlist_rrsigs_into_data(struct packed_rrset_data* data, 7512 size_t* done, struct auth_rrset** rrlist, size_t rrnum, 7513 struct auth_zone* z, struct auth_data* node) 7514 { 7515 size_t i; 7516 for(i=0; i<rrnum; i++) { 7517 size_t j; 7518 if(!rrlist[i]) 7519 continue; 7520 if(rrlist[i]->type == LDNS_RR_TYPE_ZONEMD && 7521 query_dname_compare(z->name, node->name)==0) { 7522 /* omit RRSIGs over type ZONEMD at apex */ 7523 continue; 7524 } 7525 for(j = 0; j<rrlist[i]->data->rrsig_count; j++) { 7526 data->rr_len[*done] = rrlist[i]->data->rr_len[rrlist[i]->data->count + j]; 7527 data->rr_ttl[*done] = rrlist[i]->data->rr_ttl[rrlist[i]->data->count + j]; 7528 /* reference the rdata in the rrset, no need to 7529 * copy it, it is no longer needed at the end of 7530 * the routine */ 7531 data->rr_data[*done] = rrlist[i]->data->rr_data[rrlist[i]->data->count + j]; 7532 (*done)++; 7533 } 7534 } 7535 } 7536 7537 static void add_rrset_into_data(struct packed_rrset_data* data, 7538 size_t* done, struct auth_rrset* rrset, 7539 struct auth_zone* z, struct auth_data* node) 7540 { 7541 if(rrset) { 7542 size_t j; 7543 for(j = 0; j<rrset->data->count; j++) { 7544 if(rrsig_rdata_get_type_covered(rrset->data-> 7545 rr_data[j], rrset->data->rr_len[j]) == 7546 LDNS_RR_TYPE_ZONEMD && 7547 query_dname_compare(z->name, node->name)==0) { 7548 /* omit RRSIGs over type ZONEMD at apex */ 7549 continue; 7550 } 7551 data->rr_len[*done] = rrset->data->rr_len[j]; 7552 data->rr_ttl[*done] = rrset->data->rr_ttl[j]; 7553 /* reference the rdata in the rrset, no need to 7554 * copy it, it is no longer need at the end of 7555 * the routine */ 7556 data->rr_data[*done] = rrset->data->rr_data[j]; 7557 (*done)++; 7558 } 7559 } 7560 } 7561 7562 /** collate the RRSIGs using the simple scheme */ 7563 static int zonemd_simple_rrsig(struct auth_zone* z, int hashalgo, 7564 struct secalgo_hash* h, struct auth_data* node, 7565 struct auth_rrset* rrset, struct auth_rrset** rrlist, size_t rrnum, 7566 struct regional* region, struct sldns_buffer* buf, char** reason) 7567 { 7568 /* the rrset pointer can be NULL, this means it is type RRSIG and 7569 * there is no ordinary type RRSIG there. The RRSIGs are stored 7570 * with the RRsets in their data. 7571 * 7572 * The RRset pointer can be nonNULL. This happens if there is 7573 * no RR that is covered by the RRSIG for the domain. Then this 7574 * RRSIG RR is stored in an rrset of type RRSIG. The other RRSIGs 7575 * are stored in the rrset entries for the RRs in the rr list for 7576 * the domain node. We need to collate the rrset's data, if any, and 7577 * the rrlist's rrsigs */ 7578 /* if this is the apex, omit RRSIGs that cover type ZONEMD */ 7579 /* build rrsig rrset */ 7580 size_t done = 0; 7581 struct ub_packed_rrset_key key; 7582 struct packed_rrset_data data; 7583 memset(&key, 0, sizeof(key)); 7584 memset(&data, 0, sizeof(data)); 7585 key.entry.key = &key; 7586 key.entry.data = &data; 7587 key.rk.dname = node->name; 7588 key.rk.dname_len = node->namelen; 7589 key.rk.type = htons(LDNS_RR_TYPE_RRSIG); 7590 key.rk.rrset_class = htons(z->dclass); 7591 data.count = zonemd_simple_count_rrsig(rrset, rrlist, rrnum, z, node); 7592 if(!zonemd_simple_rrsig_allocs(region, &data, data.count)) { 7593 *reason = "out of memory"; 7594 regional_free_all(region); 7595 return 0; 7596 } 7597 /* all the RRSIGs stored in the other rrsets for this domain node */ 7598 add_rrlist_rrsigs_into_data(&data, &done, rrlist, rrnum, z, node); 7599 /* plus the RRSIGs stored in an rrset of type RRSIG for this node */ 7600 add_rrset_into_data(&data, &done, rrset, z, node); 7601 7602 /* canonicalize */ 7603 if(!rrset_canonicalize_to_buffer(region, buf, &key)) { 7604 *reason = "out of memory"; 7605 regional_free_all(region); 7606 return 0; 7607 } 7608 regional_free_all(region); 7609 7610 /* hash */ 7611 if(!zonemd_digest_update(hashalgo, h, sldns_buffer_begin(buf), 7612 sldns_buffer_limit(buf), reason)) { 7613 return 0; 7614 } 7615 return 1; 7616 } 7617 7618 /** collate a domain's rrsets using the simple scheme */ 7619 static int zonemd_simple_domain(struct auth_zone* z, int hashalgo, 7620 struct secalgo_hash* h, struct auth_data* node, 7621 struct regional* region, struct sldns_buffer* buf, char** reason) 7622 { 7623 const size_t rrlistsize = 65536; 7624 struct auth_rrset* rrlist[rrlistsize]; 7625 size_t i, rrnum = 0; 7626 /* see if the domain is out of scope, the zone origin, 7627 * that would be omitted */ 7628 if(!dname_subdomain_c(node->name, z->name)) 7629 return 1; /* continue */ 7630 /* loop over the rrsets in ascending order. */ 7631 rrnum = authdata_rrsets_to_list(rrlist, rrlistsize, node->rrsets); 7632 addrrsigtype_if_needed(rrlist, rrlistsize, &rrnum, node); 7633 qsort(rrlist, rrnum, sizeof(*rrlist), rrlist_compare); 7634 for(i=0; i<rrnum; i++) { 7635 if(rrlist[i] && rrlist[i]->type == LDNS_RR_TYPE_ZONEMD && 7636 query_dname_compare(z->name, node->name) == 0) { 7637 /* omit type ZONEMD at apex */ 7638 continue; 7639 } 7640 if(rrlist[i] == NULL || rrlist[i]->type == 7641 LDNS_RR_TYPE_RRSIG) { 7642 if(!zonemd_simple_rrsig(z, hashalgo, h, node, 7643 rrlist[i], rrlist, rrnum, region, buf, reason)) 7644 return 0; 7645 } else if(!zonemd_simple_rrset(z, hashalgo, h, node, 7646 rrlist[i], region, buf, reason)) { 7647 return 0; 7648 } 7649 } 7650 return 1; 7651 } 7652 7653 /** collate the zone using the simple scheme */ 7654 static int zonemd_simple_collate(struct auth_zone* z, int hashalgo, 7655 struct secalgo_hash* h, struct regional* region, 7656 struct sldns_buffer* buf, char** reason) 7657 { 7658 /* our tree is sorted in canonical order, so we can just loop over 7659 * the tree */ 7660 struct auth_data* n; 7661 RBTREE_FOR(n, struct auth_data*, &z->data) { 7662 if(!zonemd_simple_domain(z, hashalgo, h, n, region, buf, 7663 reason)) 7664 return 0; 7665 } 7666 return 1; 7667 } 7668 7669 int auth_zone_generate_zonemd_hash(struct auth_zone* z, int scheme, 7670 int hashalgo, uint8_t* hash, size_t hashlen, size_t* resultlen, 7671 struct regional* region, struct sldns_buffer* buf, char** reason) 7672 { 7673 struct secalgo_hash* h = zonemd_digest_init(hashalgo, reason); 7674 if(!h) { 7675 if(!*reason) 7676 *reason = "digest init fail"; 7677 return 0; 7678 } 7679 if(scheme == ZONEMD_SCHEME_SIMPLE) { 7680 if(!zonemd_simple_collate(z, hashalgo, h, region, buf, reason)) { 7681 if(!*reason) *reason = "scheme simple collate fail"; 7682 secalgo_hash_delete(h); 7683 return 0; 7684 } 7685 } 7686 if(!zonemd_digest_finish(hashalgo, h, hash, hashlen, resultlen, 7687 reason)) { 7688 secalgo_hash_delete(h); 7689 *reason = "digest finish fail"; 7690 return 0; 7691 } 7692 secalgo_hash_delete(h); 7693 return 1; 7694 } 7695 7696 int auth_zone_generate_zonemd_check(struct auth_zone* z, int scheme, 7697 int hashalgo, uint8_t* hash, size_t hashlen, struct regional* region, 7698 struct sldns_buffer* buf, char** reason) 7699 { 7700 uint8_t gen[512]; 7701 size_t genlen = 0; 7702 *reason = NULL; 7703 if(!zonemd_hashalgo_supported(hashalgo)) { 7704 /* allow it */ 7705 *reason = "unsupported algorithm"; 7706 return 1; 7707 } 7708 if(!zonemd_scheme_supported(scheme)) { 7709 /* allow it */ 7710 *reason = "unsupported scheme"; 7711 return 1; 7712 } 7713 if(hashlen < 12) { 7714 /* the ZONEMD draft requires digests to fail if too small */ 7715 *reason = "digest length too small, less than 12"; 7716 return 0; 7717 } 7718 /* generate digest */ 7719 if(!auth_zone_generate_zonemd_hash(z, scheme, hashalgo, gen, 7720 sizeof(gen), &genlen, region, buf, reason)) { 7721 /* reason filled in by zonemd hash routine */ 7722 return 0; 7723 } 7724 /* check digest length */ 7725 if(hashlen != genlen) { 7726 *reason = "incorrect digest length"; 7727 if(verbosity >= VERB_ALGO) { 7728 verbose(VERB_ALGO, "zonemd scheme=%d hashalgo=%d", 7729 scheme, hashalgo); 7730 log_hex("ZONEMD should be ", gen, genlen); 7731 log_hex("ZONEMD to check is", hash, hashlen); 7732 } 7733 return 0; 7734 } 7735 /* check digest */ 7736 if(memcmp(hash, gen, genlen) != 0) { 7737 *reason = "incorrect digest"; 7738 if(verbosity >= VERB_ALGO) { 7739 verbose(VERB_ALGO, "zonemd scheme=%d hashalgo=%d", 7740 scheme, hashalgo); 7741 log_hex("ZONEMD should be ", gen, genlen); 7742 log_hex("ZONEMD to check is", hash, hashlen); 7743 } 7744 return 0; 7745 } 7746 return 1; 7747 } 7748 7749 /** log auth zone message with zone name in front. */ 7750 static void auth_zone_log(uint8_t* name, enum verbosity_value level, 7751 const char* format, ...) ATTR_FORMAT(printf, 3, 4); 7752 static void auth_zone_log(uint8_t* name, enum verbosity_value level, 7753 const char* format, ...) 7754 { 7755 va_list args; 7756 va_start(args, format); 7757 if(verbosity >= level) { 7758 char str[255+1]; 7759 char msg[MAXSYSLOGMSGLEN]; 7760 dname_str(name, str); 7761 vsnprintf(msg, sizeof(msg), format, args); 7762 verbose(level, "auth zone %s %s", str, msg); 7763 } 7764 va_end(args); 7765 } 7766 7767 /** ZONEMD, dnssec verify the rrset with the dnskey */ 7768 static int zonemd_dnssec_verify_rrset(struct auth_zone* z, 7769 struct module_env* env, struct module_stack* mods, 7770 struct ub_packed_rrset_key* dnskey, struct auth_data* node, 7771 struct auth_rrset* rrset, char** why_bogus, uint8_t* sigalg) 7772 { 7773 struct ub_packed_rrset_key pk; 7774 enum sec_status sec; 7775 struct val_env* ve; 7776 int m; 7777 int verified = 0; 7778 m = modstack_find(mods, "validator"); 7779 if(m == -1) { 7780 auth_zone_log(z->name, VERB_ALGO, "zonemd dnssec verify: have " 7781 "DNSKEY chain of trust, but no validator module"); 7782 return 0; 7783 } 7784 ve = (struct val_env*)env->modinfo[m]; 7785 7786 memset(&pk, 0, sizeof(pk)); 7787 pk.entry.key = &pk; 7788 pk.entry.data = rrset->data; 7789 pk.rk.dname = node->name; 7790 pk.rk.dname_len = node->namelen; 7791 pk.rk.type = htons(rrset->type); 7792 pk.rk.rrset_class = htons(z->dclass); 7793 if(verbosity >= VERB_ALGO) { 7794 char typestr[32]; 7795 typestr[0]=0; 7796 sldns_wire2str_type_buf(rrset->type, typestr, sizeof(typestr)); 7797 auth_zone_log(z->name, VERB_ALGO, 7798 "zonemd: verify %s RRset with DNSKEY", typestr); 7799 } 7800 sec = dnskeyset_verify_rrset(env, ve, &pk, dnskey, sigalg, why_bogus, NULL, 7801 LDNS_SECTION_ANSWER, NULL, &verified); 7802 if(sec == sec_status_secure) { 7803 return 1; 7804 } 7805 if(why_bogus) 7806 auth_zone_log(z->name, VERB_ALGO, "DNSSEC verify was bogus: %s", *why_bogus); 7807 return 0; 7808 } 7809 7810 /** check for nsec3, the RR with params equal, if bitmap has the type */ 7811 static int nsec3_of_param_has_type(struct auth_rrset* nsec3, int algo, 7812 size_t iter, uint8_t* salt, size_t saltlen, uint16_t rrtype) 7813 { 7814 int i, count = (int)nsec3->data->count; 7815 struct ub_packed_rrset_key pk; 7816 memset(&pk, 0, sizeof(pk)); 7817 pk.entry.data = nsec3->data; 7818 for(i=0; i<count; i++) { 7819 int rralgo; 7820 size_t rriter, rrsaltlen; 7821 uint8_t* rrsalt; 7822 if(!nsec3_get_params(&pk, i, &rralgo, &rriter, &rrsalt, 7823 &rrsaltlen)) 7824 continue; /* no parameters, malformed */ 7825 if(rralgo != algo || rriter != iter || rrsaltlen != saltlen) 7826 continue; /* different parameters */ 7827 if(saltlen != 0) { 7828 if(rrsalt == NULL || salt == NULL) 7829 continue; 7830 if(memcmp(rrsalt, salt, saltlen) != 0) 7831 continue; /* different salt parameters */ 7832 } 7833 if(nsec3_has_type(&pk, i, rrtype)) 7834 return 1; 7835 } 7836 return 0; 7837 } 7838 7839 /** Verify the absence of ZONEMD with DNSSEC by checking NSEC, NSEC3 type flag. 7840 * return false on failure, reason contains description of failure. */ 7841 static int zonemd_check_dnssec_absence(struct auth_zone* z, 7842 struct module_env* env, struct module_stack* mods, 7843 struct ub_packed_rrset_key* dnskey, struct auth_data* apex, 7844 char** reason, char** why_bogus, uint8_t* sigalg) 7845 { 7846 struct auth_rrset* nsec = NULL; 7847 if(!apex) { 7848 *reason = "zone has no apex domain but ZONEMD missing"; 7849 return 0; 7850 } 7851 nsec = az_domain_rrset(apex, LDNS_RR_TYPE_NSEC); 7852 if(nsec) { 7853 struct ub_packed_rrset_key pk; 7854 /* dnssec verify the NSEC */ 7855 if(!zonemd_dnssec_verify_rrset(z, env, mods, dnskey, apex, 7856 nsec, why_bogus, sigalg)) { 7857 *reason = "DNSSEC verify failed for NSEC RRset"; 7858 return 0; 7859 } 7860 /* check type bitmap */ 7861 memset(&pk, 0, sizeof(pk)); 7862 pk.entry.data = nsec->data; 7863 if(nsec_has_type(&pk, LDNS_RR_TYPE_ZONEMD)) { 7864 *reason = "DNSSEC NSEC bitmap says type ZONEMD exists"; 7865 return 0; 7866 } 7867 auth_zone_log(z->name, VERB_ALGO, "zonemd DNSSEC NSEC verification of absence of ZONEMD secure"); 7868 } else { 7869 /* NSEC3 perhaps ? */ 7870 int algo; 7871 size_t iter, saltlen; 7872 uint8_t* salt; 7873 struct auth_rrset* nsec3param = az_domain_rrset(apex, 7874 LDNS_RR_TYPE_NSEC3PARAM); 7875 struct auth_data* match; 7876 struct auth_rrset* nsec3; 7877 if(!nsec3param) { 7878 *reason = "zone has no NSEC information but ZONEMD missing"; 7879 return 0; 7880 } 7881 if(!az_nsec3_param(z, &algo, &iter, &salt, &saltlen)) { 7882 *reason = "zone has no NSEC information but ZONEMD missing"; 7883 return 0; 7884 } 7885 /* find the NSEC3 record */ 7886 match = az_nsec3_find_exact(z, z->name, z->namelen, algo, 7887 iter, salt, saltlen); 7888 if(!match) { 7889 *reason = "zone has no NSEC3 domain for the apex but ZONEMD missing"; 7890 return 0; 7891 } 7892 nsec3 = az_domain_rrset(match, LDNS_RR_TYPE_NSEC3); 7893 if(!nsec3) { 7894 *reason = "zone has no NSEC3 RRset for the apex but ZONEMD missing"; 7895 return 0; 7896 } 7897 /* dnssec verify the NSEC3 */ 7898 if(!zonemd_dnssec_verify_rrset(z, env, mods, dnskey, match, 7899 nsec3, why_bogus, sigalg)) { 7900 *reason = "DNSSEC verify failed for NSEC3 RRset"; 7901 return 0; 7902 } 7903 /* check type bitmap */ 7904 if(nsec3_of_param_has_type(nsec3, algo, iter, salt, saltlen, 7905 LDNS_RR_TYPE_ZONEMD)) { 7906 *reason = "DNSSEC NSEC3 bitmap says type ZONEMD exists"; 7907 return 0; 7908 } 7909 auth_zone_log(z->name, VERB_ALGO, "zonemd DNSSEC NSEC3 verification of absence of ZONEMD secure"); 7910 } 7911 7912 return 1; 7913 } 7914 7915 /** Verify the SOA and ZONEMD DNSSEC signatures. 7916 * return false on failure, reason contains description of failure. */ 7917 static int zonemd_check_dnssec_soazonemd(struct auth_zone* z, 7918 struct module_env* env, struct module_stack* mods, 7919 struct ub_packed_rrset_key* dnskey, struct auth_data* apex, 7920 struct auth_rrset* zonemd_rrset, char** reason, char** why_bogus, 7921 uint8_t* sigalg) 7922 { 7923 struct auth_rrset* soa; 7924 if(!apex) { 7925 *reason = "zone has no apex domain"; 7926 return 0; 7927 } 7928 soa = az_domain_rrset(apex, LDNS_RR_TYPE_SOA); 7929 if(!soa) { 7930 *reason = "zone has no SOA RRset"; 7931 return 0; 7932 } 7933 if(!zonemd_dnssec_verify_rrset(z, env, mods, dnskey, apex, soa, 7934 why_bogus, sigalg)) { 7935 *reason = "DNSSEC verify failed for SOA RRset"; 7936 return 0; 7937 } 7938 if(!zonemd_dnssec_verify_rrset(z, env, mods, dnskey, apex, 7939 zonemd_rrset, why_bogus, sigalg)) { 7940 *reason = "DNSSEC verify failed for ZONEMD RRset"; 7941 return 0; 7942 } 7943 auth_zone_log(z->name, VERB_ALGO, "zonemd DNSSEC verification of SOA and ZONEMD RRsets secure"); 7944 return 1; 7945 } 7946 7947 /** 7948 * Fail the ZONEMD verification. 7949 * @param z: auth zone that fails. 7950 * @param env: environment with config, to ignore failure or not. 7951 * @param reason: failure string description. 7952 * @param why_bogus: failure string for DNSSEC verification failure. 7953 * @param result: strdup result in here if not NULL. 7954 */ 7955 static void auth_zone_zonemd_fail(struct auth_zone* z, struct module_env* env, 7956 char* reason, char* why_bogus, char** result) 7957 { 7958 char zstr[255+1]; 7959 /* if fail: log reason, and depending on config also take action 7960 * and drop the zone, eg. it is gone from memory, set zone_expired */ 7961 dname_str(z->name, zstr); 7962 if(!reason) reason = "verification failed"; 7963 if(result) { 7964 if(why_bogus) { 7965 char res[1024]; 7966 snprintf(res, sizeof(res), "%s: %s", reason, 7967 why_bogus); 7968 *result = strdup(res); 7969 } else { 7970 *result = strdup(reason); 7971 } 7972 if(!*result) log_err("out of memory"); 7973 } else { 7974 log_warn("auth zone %s: ZONEMD verification failed: %s", zstr, reason); 7975 } 7976 7977 if(env->cfg->zonemd_permissive_mode) { 7978 verbose(VERB_ALGO, "zonemd-permissive-mode enabled, " 7979 "not blocking zone %s", zstr); 7980 return; 7981 } 7982 7983 /* expired means the zone gives servfail and is not used by 7984 * lookup if fallback_enabled*/ 7985 z->zone_expired = 1; 7986 } 7987 7988 /** 7989 * Verify the zonemd with DNSSEC and hash check, with given key. 7990 * @param z: auth zone. 7991 * @param env: environment with config and temp buffers. 7992 * @param mods: module stack with validator env for verification. 7993 * @param dnskey: dnskey that we can use, or NULL. If nonnull, the key 7994 * has been verified and is the start of the chain of trust. 7995 * @param is_insecure: if true, the dnskey is not used, the zone is insecure. 7996 * And dnssec is not used. It is DNSSEC secure insecure or not under 7997 * a trust anchor. 7998 * @param sigalg: if nonNULL provide algorithm downgrade protection. 7999 * Otherwise one algorithm is enough. Must have space of ALGO_NEEDS_MAX+1. 8000 * @param result: if not NULL result reason copied here. 8001 */ 8002 static void 8003 auth_zone_verify_zonemd_with_key(struct auth_zone* z, struct module_env* env, 8004 struct module_stack* mods, struct ub_packed_rrset_key* dnskey, 8005 int is_insecure, char** result, uint8_t* sigalg) 8006 { 8007 char* reason = NULL, *why_bogus = NULL; 8008 struct auth_data* apex = NULL; 8009 struct auth_rrset* zonemd_rrset = NULL; 8010 int zonemd_absent = 0, zonemd_absence_dnssecok = 0; 8011 8012 /* see if ZONEMD is present or absent. */ 8013 apex = az_find_name(z, z->name, z->namelen); 8014 if(!apex) { 8015 zonemd_absent = 1; 8016 } else { 8017 zonemd_rrset = az_domain_rrset(apex, LDNS_RR_TYPE_ZONEMD); 8018 if(!zonemd_rrset || zonemd_rrset->data->count==0) { 8019 zonemd_absent = 1; 8020 zonemd_rrset = NULL; 8021 } 8022 } 8023 8024 /* if no DNSSEC, done. */ 8025 /* if no ZONEMD, and DNSSEC, use DNSKEY to verify NSEC or NSEC3 for 8026 * zone apex. Check ZONEMD bit is turned off or else fail */ 8027 /* if ZONEMD, and DNSSEC, check DNSSEC signature on SOA and ZONEMD, 8028 * or else fail */ 8029 if(!dnskey && !is_insecure) { 8030 auth_zone_zonemd_fail(z, env, "DNSKEY missing", NULL, result); 8031 return; 8032 } else if(!zonemd_rrset && dnskey && !is_insecure) { 8033 /* fetch, DNSSEC verify, and check NSEC/NSEC3 */ 8034 if(!zonemd_check_dnssec_absence(z, env, mods, dnskey, apex, 8035 &reason, &why_bogus, sigalg)) { 8036 auth_zone_zonemd_fail(z, env, reason, why_bogus, result); 8037 return; 8038 } 8039 zonemd_absence_dnssecok = 1; 8040 } else if(zonemd_rrset && dnskey && !is_insecure) { 8041 /* check DNSSEC verify of SOA and ZONEMD */ 8042 if(!zonemd_check_dnssec_soazonemd(z, env, mods, dnskey, apex, 8043 zonemd_rrset, &reason, &why_bogus, sigalg)) { 8044 auth_zone_zonemd_fail(z, env, reason, why_bogus, result); 8045 return; 8046 } 8047 } 8048 8049 if(zonemd_absent && z->zonemd_reject_absence) { 8050 auth_zone_zonemd_fail(z, env, "ZONEMD absent and that is not allowed by config", NULL, result); 8051 return; 8052 } 8053 if(zonemd_absent && zonemd_absence_dnssecok) { 8054 auth_zone_log(z->name, VERB_ALGO, "DNSSEC verified nonexistence of ZONEMD"); 8055 if(result) { 8056 *result = strdup("DNSSEC verified nonexistence of ZONEMD"); 8057 if(!*result) log_err("out of memory"); 8058 } 8059 return; 8060 } 8061 if(zonemd_absent) { 8062 auth_zone_log(z->name, VERB_ALGO, "no ZONEMD present"); 8063 if(result) { 8064 *result = strdup("no ZONEMD present"); 8065 if(!*result) log_err("out of memory"); 8066 } 8067 return; 8068 } 8069 8070 /* check ZONEMD checksum and report or else fail. */ 8071 if(!auth_zone_zonemd_check_hash(z, env, &reason)) { 8072 auth_zone_zonemd_fail(z, env, reason, NULL, result); 8073 return; 8074 } 8075 8076 /* success! log the success */ 8077 if(reason) 8078 auth_zone_log(z->name, VERB_ALGO, "ZONEMD %s", reason); 8079 else auth_zone_log(z->name, VERB_ALGO, "ZONEMD verification successful"); 8080 if(result) { 8081 if(reason) 8082 *result = strdup(reason); 8083 else *result = strdup("ZONEMD verification successful"); 8084 if(!*result) log_err("out of memory"); 8085 } 8086 } 8087 8088 /** 8089 * verify the zone DNSKEY rrset from the trust anchor 8090 * This is possible because the anchor is for the zone itself, and can 8091 * thus apply straight to the zone DNSKEY set. 8092 * @param z: the auth zone. 8093 * @param env: environment with time and temp buffers. 8094 * @param mods: module stack for validator environment for dnssec validation. 8095 * @param anchor: trust anchor to use 8096 * @param is_insecure: returned, true if the zone is securely insecure. 8097 * @param why_bogus: if the routine fails, returns the failure reason. 8098 * @param keystorage: where to store the ub_packed_rrset_key that is created 8099 * on success. A pointer to it is returned on success. 8100 * @return the dnskey RRset, reference to zone data and keystorage, or 8101 * NULL on failure. 8102 */ 8103 static struct ub_packed_rrset_key* 8104 zonemd_get_dnskey_from_anchor(struct auth_zone* z, struct module_env* env, 8105 struct module_stack* mods, struct trust_anchor* anchor, 8106 int* is_insecure, char** why_bogus, 8107 struct ub_packed_rrset_key* keystorage) 8108 { 8109 struct auth_data* apex; 8110 struct auth_rrset* dnskey_rrset; 8111 enum sec_status sec; 8112 struct val_env* ve; 8113 int m; 8114 8115 apex = az_find_name(z, z->name, z->namelen); 8116 if(!apex) { 8117 *why_bogus = "have trust anchor, but zone has no apex domain for DNSKEY"; 8118 return 0; 8119 } 8120 dnskey_rrset = az_domain_rrset(apex, LDNS_RR_TYPE_DNSKEY); 8121 if(!dnskey_rrset || dnskey_rrset->data->count==0) { 8122 *why_bogus = "have trust anchor, but zone has no DNSKEY"; 8123 return 0; 8124 } 8125 8126 m = modstack_find(mods, "validator"); 8127 if(m == -1) { 8128 *why_bogus = "have trust anchor, but no validator module"; 8129 return 0; 8130 } 8131 ve = (struct val_env*)env->modinfo[m]; 8132 8133 memset(keystorage, 0, sizeof(*keystorage)); 8134 keystorage->entry.key = keystorage; 8135 keystorage->entry.data = dnskey_rrset->data; 8136 keystorage->rk.dname = apex->name; 8137 keystorage->rk.dname_len = apex->namelen; 8138 keystorage->rk.type = htons(LDNS_RR_TYPE_DNSKEY); 8139 keystorage->rk.rrset_class = htons(z->dclass); 8140 auth_zone_log(z->name, VERB_QUERY, 8141 "zonemd: verify DNSKEY RRset with trust anchor"); 8142 sec = val_verify_DNSKEY_with_TA(env, ve, keystorage, anchor->ds_rrset, 8143 anchor->dnskey_rrset, NULL, why_bogus, NULL, NULL); 8144 regional_free_all(env->scratch); 8145 if(sec == sec_status_secure) { 8146 /* success */ 8147 *is_insecure = 0; 8148 return keystorage; 8149 } else if(sec == sec_status_insecure) { 8150 /* insecure */ 8151 *is_insecure = 1; 8152 } else { 8153 /* bogus */ 8154 *is_insecure = 0; 8155 auth_zone_log(z->name, VERB_ALGO, 8156 "zonemd: verify DNSKEY RRset with trust anchor failed: %s", *why_bogus); 8157 } 8158 return NULL; 8159 } 8160 8161 /** verify the DNSKEY from the zone with looked up DS record */ 8162 static struct ub_packed_rrset_key* 8163 auth_zone_verify_zonemd_key_with_ds(struct auth_zone* z, 8164 struct module_env* env, struct module_stack* mods, 8165 struct ub_packed_rrset_key* ds, int* is_insecure, char** why_bogus, 8166 struct ub_packed_rrset_key* keystorage, uint8_t* sigalg) 8167 { 8168 struct auth_data* apex; 8169 struct auth_rrset* dnskey_rrset; 8170 enum sec_status sec; 8171 struct val_env* ve; 8172 int m; 8173 8174 /* fetch DNSKEY from zone data */ 8175 apex = az_find_name(z, z->name, z->namelen); 8176 if(!apex) { 8177 *why_bogus = "in verifywithDS, zone has no apex"; 8178 return NULL; 8179 } 8180 dnskey_rrset = az_domain_rrset(apex, LDNS_RR_TYPE_DNSKEY); 8181 if(!dnskey_rrset || dnskey_rrset->data->count==0) { 8182 *why_bogus = "in verifywithDS, zone has no DNSKEY"; 8183 return NULL; 8184 } 8185 8186 m = modstack_find(mods, "validator"); 8187 if(m == -1) { 8188 *why_bogus = "in verifywithDS, have no validator module"; 8189 return NULL; 8190 } 8191 ve = (struct val_env*)env->modinfo[m]; 8192 8193 memset(keystorage, 0, sizeof(*keystorage)); 8194 keystorage->entry.key = keystorage; 8195 keystorage->entry.data = dnskey_rrset->data; 8196 keystorage->rk.dname = apex->name; 8197 keystorage->rk.dname_len = apex->namelen; 8198 keystorage->rk.type = htons(LDNS_RR_TYPE_DNSKEY); 8199 keystorage->rk.rrset_class = htons(z->dclass); 8200 auth_zone_log(z->name, VERB_QUERY, "zonemd: verify zone DNSKEY with DS"); 8201 sec = val_verify_DNSKEY_with_DS(env, ve, keystorage, ds, sigalg, 8202 why_bogus, NULL, NULL); 8203 regional_free_all(env->scratch); 8204 if(sec == sec_status_secure) { 8205 /* success */ 8206 return keystorage; 8207 } else if(sec == sec_status_insecure) { 8208 /* insecure */ 8209 *is_insecure = 1; 8210 } else { 8211 /* bogus */ 8212 *is_insecure = 0; 8213 if(*why_bogus == NULL) 8214 *why_bogus = "verify failed"; 8215 auth_zone_log(z->name, VERB_ALGO, 8216 "zonemd: verify DNSKEY RRset with DS failed: %s", 8217 *why_bogus); 8218 } 8219 return NULL; 8220 } 8221 8222 /** callback for ZONEMD lookup of DNSKEY */ 8223 void auth_zonemd_dnskey_lookup_callback(void* arg, int rcode, sldns_buffer* buf, 8224 enum sec_status sec, char* why_bogus, int ATTR_UNUSED(was_ratelimited)) 8225 { 8226 struct auth_zone* z = (struct auth_zone*)arg; 8227 struct module_env* env; 8228 char* reason = NULL, *ds_bogus = NULL, *typestr="DNSKEY"; 8229 struct ub_packed_rrset_key* dnskey = NULL, *ds = NULL; 8230 int is_insecure = 0, downprot; 8231 struct ub_packed_rrset_key keystorage; 8232 uint8_t sigalg[ALGO_NEEDS_MAX+1]; 8233 8234 lock_rw_wrlock(&z->lock); 8235 env = z->zonemd_callback_env; 8236 /* release the env variable so another worker can pick up the 8237 * ZONEMD verification task if it wants to */ 8238 z->zonemd_callback_env = NULL; 8239 if(!env || env->outnet->want_to_quit || z->zone_deleted) { 8240 lock_rw_unlock(&z->lock); 8241 return; /* stop on quit */ 8242 } 8243 if(z->zonemd_callback_qtype == LDNS_RR_TYPE_DS) 8244 typestr = "DS"; 8245 downprot = env->cfg->harden_algo_downgrade; 8246 8247 /* process result */ 8248 if(sec == sec_status_bogus) { 8249 reason = why_bogus; 8250 if(!reason) { 8251 if(z->zonemd_callback_qtype == LDNS_RR_TYPE_DNSKEY) 8252 reason = "lookup of DNSKEY was bogus"; 8253 else reason = "lookup of DS was bogus"; 8254 } 8255 auth_zone_log(z->name, VERB_ALGO, 8256 "zonemd lookup of %s was bogus: %s", typestr, reason); 8257 } else if(rcode == LDNS_RCODE_NOERROR) { 8258 uint16_t wanted_qtype = z->zonemd_callback_qtype; 8259 struct regional* temp = env->scratch; 8260 struct query_info rq; 8261 struct reply_info* rep; 8262 memset(&rq, 0, sizeof(rq)); 8263 rep = parse_reply_in_temp_region(buf, temp, &rq); 8264 if(rep && rq.qtype == wanted_qtype && 8265 query_dname_compare(z->name, rq.qname) == 0 && 8266 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR) { 8267 /* parsed successfully */ 8268 struct ub_packed_rrset_key* answer = 8269 reply_find_answer_rrset(&rq, rep); 8270 if(answer && sec == sec_status_secure) { 8271 if(z->zonemd_callback_qtype == LDNS_RR_TYPE_DNSKEY) 8272 dnskey = answer; 8273 else ds = answer; 8274 auth_zone_log(z->name, VERB_ALGO, 8275 "zonemd lookup of %s was secure", typestr); 8276 } else if(sec == sec_status_secure && !answer) { 8277 is_insecure = 1; 8278 auth_zone_log(z->name, VERB_ALGO, 8279 "zonemd lookup of %s has no content, but is secure, treat as insecure", typestr); 8280 } else if(sec == sec_status_insecure) { 8281 is_insecure = 1; 8282 auth_zone_log(z->name, VERB_ALGO, 8283 "zonemd lookup of %s was insecure", typestr); 8284 } else if(sec == sec_status_indeterminate) { 8285 is_insecure = 1; 8286 auth_zone_log(z->name, VERB_ALGO, 8287 "zonemd lookup of %s was indeterminate, treat as insecure", typestr); 8288 } else { 8289 auth_zone_log(z->name, VERB_ALGO, 8290 "zonemd lookup of %s has nodata", typestr); 8291 if(z->zonemd_callback_qtype == LDNS_RR_TYPE_DNSKEY) 8292 reason = "lookup of DNSKEY has nodata"; 8293 else reason = "lookup of DS has nodata"; 8294 } 8295 } else if(rep && rq.qtype == wanted_qtype && 8296 query_dname_compare(z->name, rq.qname) == 0 && 8297 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN && 8298 sec == sec_status_secure) { 8299 /* secure nxdomain, so the zone is like some RPZ zone 8300 * that does not exist in the wider internet, with 8301 * a secure nxdomain answer outside of it. So we 8302 * treat the zonemd zone without a dnssec chain of 8303 * trust, as insecure. */ 8304 is_insecure = 1; 8305 auth_zone_log(z->name, VERB_ALGO, 8306 "zonemd lookup of %s was secure NXDOMAIN, treat as insecure", typestr); 8307 } else if(rep && rq.qtype == wanted_qtype && 8308 query_dname_compare(z->name, rq.qname) == 0 && 8309 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN && 8310 sec == sec_status_insecure) { 8311 is_insecure = 1; 8312 auth_zone_log(z->name, VERB_ALGO, 8313 "zonemd lookup of %s was insecure NXDOMAIN, treat as insecure", typestr); 8314 } else if(rep && rq.qtype == wanted_qtype && 8315 query_dname_compare(z->name, rq.qname) == 0 && 8316 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN && 8317 sec == sec_status_indeterminate) { 8318 is_insecure = 1; 8319 auth_zone_log(z->name, VERB_ALGO, 8320 "zonemd lookup of %s was indeterminate NXDOMAIN, treat as insecure", typestr); 8321 } else { 8322 auth_zone_log(z->name, VERB_ALGO, 8323 "zonemd lookup of %s has no answer", typestr); 8324 if(z->zonemd_callback_qtype == LDNS_RR_TYPE_DNSKEY) 8325 reason = "lookup of DNSKEY has no answer"; 8326 else reason = "lookup of DS has no answer"; 8327 } 8328 } else { 8329 auth_zone_log(z->name, VERB_ALGO, 8330 "zonemd lookup of %s failed", typestr); 8331 if(z->zonemd_callback_qtype == LDNS_RR_TYPE_DNSKEY) 8332 reason = "lookup of DNSKEY failed"; 8333 else reason = "lookup of DS failed"; 8334 } 8335 8336 if(!reason && !is_insecure && !dnskey && ds) { 8337 dnskey = auth_zone_verify_zonemd_key_with_ds(z, env, 8338 &env->mesh->mods, ds, &is_insecure, &ds_bogus, 8339 &keystorage, downprot?sigalg:NULL); 8340 if(!dnskey && !is_insecure && !reason) 8341 reason = "DNSKEY verify with DS failed"; 8342 } 8343 8344 if(reason) { 8345 auth_zone_zonemd_fail(z, env, reason, ds_bogus, NULL); 8346 lock_rw_unlock(&z->lock); 8347 return; 8348 } 8349 8350 auth_zone_verify_zonemd_with_key(z, env, &env->mesh->mods, dnskey, 8351 is_insecure, NULL, downprot?sigalg:NULL); 8352 regional_free_all(env->scratch); 8353 lock_rw_unlock(&z->lock); 8354 } 8355 8356 /** lookup DNSKEY for ZONEMD verification */ 8357 static int 8358 zonemd_lookup_dnskey(struct auth_zone* z, struct module_env* env) 8359 { 8360 struct query_info qinfo; 8361 uint16_t qflags = BIT_RD; 8362 struct edns_data edns; 8363 sldns_buffer* buf = env->scratch_buffer; 8364 int fetch_ds = 0; 8365 8366 if(!z->fallback_enabled) { 8367 /* we cannot actually get the DNSKEY, because it is in the 8368 * zone we have ourselves, and it is not served yet 8369 * (possibly), so fetch type DS */ 8370 fetch_ds = 1; 8371 } 8372 if(z->zonemd_callback_env) { 8373 /* another worker is already working on the callback 8374 * for the DNSKEY lookup for ZONEMD verification. 8375 * We do not also have to do ZONEMD verification, let that 8376 * worker do it */ 8377 auth_zone_log(z->name, VERB_ALGO, 8378 "zonemd needs lookup of %s and that already is worked on by another worker", (fetch_ds?"DS":"DNSKEY")); 8379 return 1; 8380 } 8381 8382 /* use mesh_new_callback to lookup the DNSKEY, 8383 * and then wait for them to be looked up (in cache, or query) */ 8384 qinfo.qname_len = z->namelen; 8385 qinfo.qname = z->name; 8386 qinfo.qclass = z->dclass; 8387 if(fetch_ds) 8388 qinfo.qtype = LDNS_RR_TYPE_DS; 8389 else qinfo.qtype = LDNS_RR_TYPE_DNSKEY; 8390 qinfo.local_alias = NULL; 8391 if(verbosity >= VERB_ALGO) { 8392 char buf1[512]; 8393 char buf2[LDNS_MAX_DOMAINLEN+1]; 8394 dname_str(z->name, buf2); 8395 snprintf(buf1, sizeof(buf1), "auth zone %s: lookup %s " 8396 "for zonemd verification", buf2, 8397 (fetch_ds?"DS":"DNSKEY")); 8398 log_query_info(VERB_ALGO, buf1, &qinfo); 8399 } 8400 edns.edns_present = 1; 8401 edns.ext_rcode = 0; 8402 edns.edns_version = 0; 8403 edns.bits = EDNS_DO; 8404 edns.opt_list_in = NULL; 8405 edns.opt_list_out = NULL; 8406 edns.opt_list_inplace_cb_out = NULL; 8407 if(sldns_buffer_capacity(buf) < 65535) 8408 edns.udp_size = (uint16_t)sldns_buffer_capacity(buf); 8409 else edns.udp_size = 65535; 8410 8411 /* store the worker-specific module env for the callback. 8412 * We can then reference this when the callback executes */ 8413 z->zonemd_callback_env = env; 8414 z->zonemd_callback_qtype = qinfo.qtype; 8415 /* the callback can be called straight away */ 8416 lock_rw_unlock(&z->lock); 8417 if(!mesh_new_callback(env->mesh, &qinfo, qflags, &edns, buf, 0, 8418 &auth_zonemd_dnskey_lookup_callback, z, 0)) { 8419 lock_rw_wrlock(&z->lock); 8420 log_err("out of memory lookup of %s for zonemd", 8421 (fetch_ds?"DS":"DNSKEY")); 8422 return 0; 8423 } 8424 lock_rw_wrlock(&z->lock); 8425 return 1; 8426 } 8427 8428 void auth_zone_verify_zonemd(struct auth_zone* z, struct module_env* env, 8429 struct module_stack* mods, char** result, int offline, int only_online) 8430 { 8431 char* reason = NULL, *why_bogus = NULL; 8432 struct trust_anchor* anchor = NULL; 8433 struct ub_packed_rrset_key* dnskey = NULL; 8434 struct ub_packed_rrset_key keystorage; 8435 int is_insecure = 0; 8436 /* verify the ZONEMD if present. 8437 * If not present check if absence is allowed by DNSSEC */ 8438 if(!z->zonemd_check) 8439 return; 8440 if(z->data.count == 0) 8441 return; /* no data */ 8442 8443 /* if zone is under a trustanchor */ 8444 /* is it equal to trustanchor - get dnskey's verified */ 8445 /* else, find chain of trust by fetching DNSKEYs lookup for zone */ 8446 /* result if that, if insecure, means no DNSSEC for the ZONEMD, 8447 * otherwise we have the zone DNSKEY for the DNSSEC verification. */ 8448 if(env->anchors) 8449 anchor = anchors_lookup(env->anchors, z->name, z->namelen, 8450 z->dclass); 8451 if(anchor && anchor->numDS == 0 && anchor->numDNSKEY == 0) { 8452 /* domain-insecure trust anchor for unsigned zones */ 8453 lock_basic_unlock(&anchor->lock); 8454 if(only_online) 8455 return; 8456 dnskey = NULL; 8457 is_insecure = 1; 8458 } else if(anchor && query_dname_compare(z->name, anchor->name) == 0) { 8459 if(only_online) { 8460 lock_basic_unlock(&anchor->lock); 8461 return; 8462 } 8463 /* equal to trustanchor, no need for online lookups */ 8464 dnskey = zonemd_get_dnskey_from_anchor(z, env, mods, anchor, 8465 &is_insecure, &why_bogus, &keystorage); 8466 lock_basic_unlock(&anchor->lock); 8467 if(!dnskey && !reason && !is_insecure) { 8468 reason = "verify DNSKEY RRset with trust anchor failed"; 8469 } 8470 } else if(anchor) { 8471 lock_basic_unlock(&anchor->lock); 8472 /* perform online lookups */ 8473 if(offline) 8474 return; 8475 /* setup online lookups, and wait for them */ 8476 if(zonemd_lookup_dnskey(z, env)) { 8477 /* wait for the lookup */ 8478 return; 8479 } 8480 reason = "could not lookup DNSKEY for chain of trust"; 8481 } else { 8482 /* the zone is not under a trust anchor */ 8483 if(only_online) 8484 return; 8485 dnskey = NULL; 8486 is_insecure = 1; 8487 } 8488 8489 if(reason) { 8490 auth_zone_zonemd_fail(z, env, reason, why_bogus, result); 8491 return; 8492 } 8493 8494 auth_zone_verify_zonemd_with_key(z, env, mods, dnskey, is_insecure, 8495 result, NULL); 8496 regional_free_all(env->scratch); 8497 } 8498 8499 void auth_zones_pickup_zonemd_verify(struct auth_zones* az, 8500 struct module_env* env) 8501 { 8502 struct auth_zone key; 8503 uint8_t savezname[255+1]; 8504 size_t savezname_len; 8505 struct auth_zone* z; 8506 key.node.key = &key; 8507 lock_rw_rdlock(&az->lock); 8508 RBTREE_FOR(z, struct auth_zone*, &az->ztree) { 8509 lock_rw_wrlock(&z->lock); 8510 if(!z->zonemd_check) { 8511 lock_rw_unlock(&z->lock); 8512 continue; 8513 } 8514 key.dclass = z->dclass; 8515 key.namelabs = z->namelabs; 8516 if(z->namelen > sizeof(savezname)) { 8517 lock_rw_unlock(&z->lock); 8518 log_err("auth_zones_pickup_zonemd_verify: zone name too long"); 8519 continue; 8520 } 8521 savezname_len = z->namelen; 8522 memmove(savezname, z->name, z->namelen); 8523 lock_rw_unlock(&az->lock); 8524 auth_zone_verify_zonemd(z, env, &env->mesh->mods, NULL, 0, 1); 8525 lock_rw_unlock(&z->lock); 8526 lock_rw_rdlock(&az->lock); 8527 /* find the zone we had before, it is not deleted, 8528 * because we have a flag for that that is processed at 8529 * apply_cfg time */ 8530 key.namelen = savezname_len; 8531 key.name = savezname; 8532 z = (struct auth_zone*)rbtree_search(&az->ztree, &key); 8533 if(!z) 8534 break; 8535 } 8536 lock_rw_unlock(&az->lock); 8537 } 8538