1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 2<HTML> 3<HEAD> 4<TITLE>Lua 5.4 Reference Manual</TITLE> 5<LINK REL="stylesheet" TYPE="text/css" HREF="lua.css"> 6<LINK REL="stylesheet" TYPE="text/css" HREF="manual.css"> 7<META HTTP-EQUIV="content-type" CONTENT="text/html; charset=iso-8859-1"> 8</HEAD> 9 10<BODY> 11 12<H1> 13<A HREF="http://www.lua.org/"><IMG SRC="logo.gif" ALT="Lua"></A> 14Lua 5.4 Reference Manual 15</H1> 16 17<P> 18by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes 19 20<P> 21<SMALL> 22Copyright © 2020–2023 Lua.org, PUC-Rio. 23Freely available under the terms of the 24<a href="http://www.lua.org/license.html">Lua license</a>. 25</SMALL> 26 27<DIV CLASS="menubar"> 28<A HREF="contents.html#contents">contents</A> 29· 30<A HREF="contents.html#index">index</A> 31· 32<A HREF="http://www.lua.org/manual/">other versions</A> 33</DIV> 34 35<!-- ====================================================================== --> 36<p> 37 38<!-- $Id: manual.of $ --> 39 40 41 42 43<h1>1 – <a name="1">Introduction</a></h1> 44 45<p> 46Lua is a powerful, efficient, lightweight, embeddable scripting language. 47It supports procedural programming, 48object-oriented programming, functional programming, 49data-driven programming, and data description. 50 51 52<p> 53Lua combines simple procedural syntax with powerful data description 54constructs based on associative arrays and extensible semantics. 55Lua is dynamically typed, 56runs by interpreting bytecode with a register-based 57virtual machine, 58and has automatic memory management with 59a generational garbage collection, 60making it ideal for configuration, scripting, 61and rapid prototyping. 62 63 64<p> 65Lua is implemented as a library, written in <em>clean C</em>, 66the common subset of standard C and C++. 67The Lua distribution includes a host program called <code>lua</code>, 68which uses the Lua library to offer a complete, 69standalone Lua interpreter, 70for interactive or batch use. 71Lua is intended to be used both as a powerful, lightweight, 72embeddable scripting language for any program that needs one, 73and as a powerful but lightweight and efficient stand-alone language. 74 75 76<p> 77As an extension language, Lua has no notion of a "main" program: 78it works <em>embedded</em> in a host client, 79called the <em>embedding program</em> or simply the <em>host</em>. 80(Frequently, this host is the stand-alone <code>lua</code> program.) 81The host program can invoke functions to execute a piece of Lua code, 82can write and read Lua variables, 83and can register C functions to be called by Lua code. 84Through the use of C functions, Lua can be augmented to cope with 85a wide range of different domains, 86thus creating customized programming languages sharing a syntactical framework. 87 88 89<p> 90Lua is free software, 91and is provided as usual with no guarantees, 92as stated in its license. 93The implementation described in this manual is available 94at Lua's official web site, <code>www.lua.org</code>. 95 96 97<p> 98Like any other reference manual, 99this document is dry in places. 100For a discussion of the decisions behind the design of Lua, 101see the technical papers available at Lua's web site. 102For a detailed introduction to programming in Lua, 103see Roberto's book, <em>Programming in Lua</em>. 104 105 106 107<h1>2 – <a name="2">Basic Concepts</a></h1> 108 109 110 111<p> 112This section describes the basic concepts of the language. 113 114 115 116 117 118<h2>2.1 – <a name="2.1">Values and Types</a></h2> 119 120<p> 121Lua is a dynamically typed language. 122This means that 123variables do not have types; only values do. 124There are no type definitions in the language. 125All values carry their own type. 126 127 128<p> 129All values in Lua are first-class values. 130This means that all values can be stored in variables, 131passed as arguments to other functions, and returned as results. 132 133 134<p> 135There are eight basic types in Lua: 136<em>nil</em>, <em>boolean</em>, <em>number</em>, 137<em>string</em>, <em>function</em>, <em>userdata</em>, 138<em>thread</em>, and <em>table</em>. 139The type <em>nil</em> has one single value, <b>nil</b>, 140whose main property is to be different from any other value; 141it often represents the absence of a useful value. 142The type <em>boolean</em> has two values, <b>false</b> and <b>true</b>. 143Both <b>nil</b> and <b>false</b> make a condition false; 144they are collectively called <em>false values</em>. 145Any other value makes a condition true. 146Despite its name, 147<b>false</b> is frequently used as an alternative to <b>nil</b>, 148with the key difference that <b>false</b> behaves 149like a regular value in a table, 150while a <b>nil</b> in a table represents an absent key. 151 152 153<p> 154The type <em>number</em> represents both 155integer numbers and real (floating-point) numbers, 156using two subtypes: <em>integer</em> and <em>float</em>. 157Standard Lua uses 64-bit integers and double-precision (64-bit) floats, 158but you can also compile Lua so that it 159uses 32-bit integers and/or single-precision (32-bit) floats. 160The option with 32 bits for both integers and floats 161is particularly attractive 162for small machines and embedded systems. 163(See macro <code>LUA_32BITS</code> in file <code>luaconf.h</code>.) 164 165 166<p> 167Unless stated otherwise, 168any overflow when manipulating integer values <em>wrap around</em>, 169according to the usual rules of two-complement arithmetic. 170(In other words, 171the actual result is the unique representable integer 172that is equal modulo <em>2<sup>n</sup></em> to the mathematical result, 173where <em>n</em> is the number of bits of the integer type.) 174 175 176<p> 177Lua has explicit rules about when each subtype is used, 178but it also converts between them automatically as needed (see <a href="#3.4.3">§3.4.3</a>). 179Therefore, 180the programmer may choose to mostly ignore the difference 181between integers and floats 182or to assume complete control over the representation of each number. 183 184 185<p> 186The type <em>string</em> represents immutable sequences of bytes. 187 188Lua is 8-bit clean: 189strings can contain any 8-bit value, 190including embedded zeros ('<code>\0</code>'). 191Lua is also encoding-agnostic; 192it makes no assumptions about the contents of a string. 193The length of any string in Lua must fit in a Lua integer. 194 195 196<p> 197Lua can call (and manipulate) functions written in Lua and 198functions written in C (see <a href="#3.4.10">§3.4.10</a>). 199Both are represented by the type <em>function</em>. 200 201 202<p> 203The type <em>userdata</em> is provided to allow arbitrary C data to 204be stored in Lua variables. 205A userdata value represents a block of raw memory. 206There are two kinds of userdata: 207<em>full userdata</em>, 208which is an object with a block of memory managed by Lua, 209and <em>light userdata</em>, 210which is simply a C pointer value. 211Userdata has no predefined operations in Lua, 212except assignment and identity test. 213By using <em>metatables</em>, 214the programmer can define operations for full userdata values 215(see <a href="#2.4">§2.4</a>). 216Userdata values cannot be created or modified in Lua, 217only through the C API. 218This guarantees the integrity of data owned by 219the host program and C libraries. 220 221 222<p> 223The type <em>thread</em> represents independent threads of execution 224and it is used to implement coroutines (see <a href="#2.6">§2.6</a>). 225Lua threads are not related to operating-system threads. 226Lua supports coroutines on all systems, 227even those that do not support threads natively. 228 229 230<p> 231The type <em>table</em> implements associative arrays, 232that is, arrays that can have as indices not only numbers, 233but any Lua value except <b>nil</b> and NaN. 234(<em>Not a Number</em> is a special floating-point value 235used by the IEEE 754 standard to represent 236undefined numerical results, such as <code>0/0</code>.) 237Tables can be <em>heterogeneous</em>; 238that is, they can contain values of all types (except <b>nil</b>). 239Any key associated to the value <b>nil</b> is not considered part of the table. 240Conversely, any key that is not part of a table has 241an associated value <b>nil</b>. 242 243 244<p> 245Tables are the sole data-structuring mechanism in Lua; 246they can be used to represent ordinary arrays, lists, 247symbol tables, sets, records, graphs, trees, etc. 248To represent records, Lua uses the field name as an index. 249The language supports this representation by 250providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>. 251There are several convenient ways to create tables in Lua 252(see <a href="#3.4.9">§3.4.9</a>). 253 254 255<p> 256Like indices, 257the values of table fields can be of any type. 258In particular, 259because functions are first-class values, 260table fields can contain functions. 261Thus tables can also carry <em>methods</em> (see <a href="#3.4.11">§3.4.11</a>). 262 263 264<p> 265The indexing of tables follows 266the definition of raw equality in the language. 267The expressions <code>a[i]</code> and <code>a[j]</code> 268denote the same table element 269if and only if <code>i</code> and <code>j</code> are raw equal 270(that is, equal without metamethods). 271In particular, floats with integral values 272are equal to their respective integers 273(e.g., <code>1.0 == 1</code>). 274To avoid ambiguities, 275any float used as a key that is equal to an integer 276is converted to that integer. 277For instance, if you write <code>a[2.0] = true</code>, 278the actual key inserted into the table will be the integer <code>2</code>. 279 280 281<p> 282Tables, functions, threads, and (full) userdata values are <em>objects</em>: 283variables do not actually <em>contain</em> these values, 284only <em>references</em> to them. 285Assignment, parameter passing, and function returns 286always manipulate references to such values; 287these operations do not imply any kind of copy. 288 289 290<p> 291The library function <a href="#pdf-type"><code>type</code></a> returns a string describing the type 292of a given value (see <a href="#pdf-type"><code>type</code></a>). 293 294 295 296 297 298<h2>2.2 – <a name="2.2">Environments and the Global Environment</a></h2> 299 300<p> 301As we will discuss further in <a href="#3.2">§3.2</a> and <a href="#3.3.3">§3.3.3</a>, 302any reference to a free name 303(that is, a name not bound to any declaration) <code>var</code> 304is syntactically translated to <code>_ENV.var</code>. 305Moreover, every chunk is compiled in the scope of 306an external local variable named <code>_ENV</code> (see <a href="#3.3.2">§3.3.2</a>), 307so <code>_ENV</code> itself is never a free name in a chunk. 308 309 310<p> 311Despite the existence of this external <code>_ENV</code> variable and 312the translation of free names, 313<code>_ENV</code> is a completely regular name. 314In particular, 315you can define new variables and parameters with that name. 316Each reference to a free name uses the <code>_ENV</code> that is 317visible at that point in the program, 318following the usual visibility rules of Lua (see <a href="#3.5">§3.5</a>). 319 320 321<p> 322Any table used as the value of <code>_ENV</code> is called an <em>environment</em>. 323 324 325<p> 326Lua keeps a distinguished environment called the <em>global environment</em>. 327This value is kept at a special index in the C registry (see <a href="#4.3">§4.3</a>). 328In Lua, the global variable <a href="#pdf-_G"><code>_G</code></a> is initialized with this same value. 329(<a href="#pdf-_G"><code>_G</code></a> is never used internally, 330so changing its value will affect only your own code.) 331 332 333<p> 334When Lua loads a chunk, 335the default value for its <code>_ENV</code> variable 336is the global environment (see <a href="#pdf-load"><code>load</code></a>). 337Therefore, by default, 338free names in Lua code refer to entries in the global environment 339and, therefore, they are also called <em>global variables</em>. 340Moreover, all standard libraries are loaded in the global environment 341and some functions there operate on that environment. 342You can use <a href="#pdf-load"><code>load</code></a> (or <a href="#pdf-loadfile"><code>loadfile</code></a>) 343to load a chunk with a different environment. 344(In C, you have to load the chunk and then change the value 345of its first upvalue; see <a href="#lua_setupvalue"><code>lua_setupvalue</code></a>.) 346 347 348 349 350 351<h2>2.3 – <a name="2.3">Error Handling</a></h2> 352 353<p> 354Several operations in Lua can <em>raise</em> an error. 355An error interrupts the normal flow of the program, 356which can continue by <em>catching</em> the error. 357 358 359<p> 360Lua code can explicitly raise an error by calling the 361<a href="#pdf-error"><code>error</code></a> function. 362(This function never returns.) 363 364 365<p> 366To catch errors in Lua, 367you can do a <em>protected call</em>, 368using <a href="#pdf-pcall"><code>pcall</code></a> (or <a href="#pdf-xpcall"><code>xpcall</code></a>). 369The function <a href="#pdf-pcall"><code>pcall</code></a> calls a given function in <em>protected mode</em>. 370Any error while running the function stops its execution, 371and control returns immediately to <code>pcall</code>, 372which returns a status code. 373 374 375<p> 376Because Lua is an embedded extension language, 377Lua code starts running by a call 378from C code in the host program. 379(When you use Lua standalone, 380the <code>lua</code> application is the host program.) 381Usually, this call is protected; 382so, when an otherwise unprotected error occurs during 383the compilation or execution of a Lua chunk, 384control returns to the host, 385which can take appropriate measures, 386such as printing an error message. 387 388 389<p> 390Whenever there is an error, 391an <em>error object</em> 392is propagated with information about the error. 393Lua itself only generates errors whose error object is a string, 394but programs may generate errors with 395any value as the error object. 396It is up to the Lua program or its host to handle such error objects. 397For historical reasons, 398an error object is often called an <em>error message</em>, 399even though it does not have to be a string. 400 401 402<p> 403When you use <a href="#pdf-xpcall"><code>xpcall</code></a> (or <a href="#lua_pcall"><code>lua_pcall</code></a>, in C) 404you may give a <em>message handler</em> 405to be called in case of errors. 406This function is called with the original error object 407and returns a new error object. 408It is called before the error unwinds the stack, 409so that it can gather more information about the error, 410for instance by inspecting the stack and creating a stack traceback. 411This message handler is still protected by the protected call; 412so, an error inside the message handler 413will call the message handler again. 414If this loop goes on for too long, 415Lua breaks it and returns an appropriate message. 416The message handler is called only for regular runtime errors. 417It is not called for memory-allocation errors 418nor for errors while running finalizers or other message handlers. 419 420 421<p> 422Lua also offers a system of <em>warnings</em> (see <a href="#pdf-warn"><code>warn</code></a>). 423Unlike errors, warnings do not interfere 424in any way with program execution. 425They typically only generate a message to the user, 426although this behavior can be adapted from C (see <a href="#lua_setwarnf"><code>lua_setwarnf</code></a>). 427 428 429 430 431 432<h2>2.4 – <a name="2.4">Metatables and Metamethods</a></h2> 433 434<p> 435Every value in Lua can have a <em>metatable</em>. 436This <em>metatable</em> is an ordinary Lua table 437that defines the behavior of the original value 438under certain events. 439You can change several aspects of the behavior 440of a value by setting specific fields in its metatable. 441For instance, when a non-numeric value is the operand of an addition, 442Lua checks for a function in the field <code>__add</code> of the value's metatable. 443If it finds one, 444Lua calls this function to perform the addition. 445 446 447<p> 448The key for each event in a metatable is a string 449with the event name prefixed by two underscores; 450the corresponding value is called a <em>metavalue</em>. 451For most events, the metavalue must be a function, 452which is then called a <em>metamethod</em>. 453In the previous example, the key is the string "<code>__add</code>" 454and the metamethod is the function that performs the addition. 455Unless stated otherwise, 456a metamethod may in fact be any callable value, 457which is either a function or a value with a <code>__call</code> metamethod. 458 459 460<p> 461You can query the metatable of any value 462using the <a href="#pdf-getmetatable"><code>getmetatable</code></a> function. 463Lua queries metamethods in metatables using a raw access (see <a href="#pdf-rawget"><code>rawget</code></a>). 464 465 466<p> 467You can replace the metatable of tables 468using the <a href="#pdf-setmetatable"><code>setmetatable</code></a> function. 469You cannot change the metatable of other types from Lua code, 470except by using the debug library (<a href="#6.10">§6.10</a>). 471 472 473<p> 474Tables and full userdata have individual metatables, 475although multiple tables and userdata can share their metatables. 476Values of all other types share one single metatable per type; 477that is, there is one single metatable for all numbers, 478one for all strings, etc. 479By default, a value has no metatable, 480but the string library sets a metatable for the string type (see <a href="#6.4">§6.4</a>). 481 482 483<p> 484A detailed list of operations controlled by metatables is given next. 485Each event is identified by its corresponding key. 486By convention, all metatable keys used by Lua are composed by 487two underscores followed by lowercase Latin letters. 488 489 490 491<ul> 492 493<li><b><code>__add</code>: </b> 494the addition (<code>+</code>) operation. 495If any operand for an addition is not a number, 496Lua will try to call a metamethod. 497It starts by checking the first operand (even if it is a number); 498if that operand does not define a metamethod for <code>__add</code>, 499then Lua will check the second operand. 500If Lua can find a metamethod, 501it calls the metamethod with the two operands as arguments, 502and the result of the call 503(adjusted to one value) 504is the result of the operation. 505Otherwise, if no metamethod is found, 506Lua raises an error. 507</li> 508 509<li><b><code>__sub</code>: </b> 510the subtraction (<code>-</code>) operation. 511Behavior similar to the addition operation. 512</li> 513 514<li><b><code>__mul</code>: </b> 515the multiplication (<code>*</code>) operation. 516Behavior similar to the addition operation. 517</li> 518 519<li><b><code>__div</code>: </b> 520the division (<code>/</code>) operation. 521Behavior similar to the addition operation. 522</li> 523 524<li><b><code>__mod</code>: </b> 525the modulo (<code>%</code>) operation. 526Behavior similar to the addition operation. 527</li> 528 529<li><b><code>__pow</code>: </b> 530the exponentiation (<code>^</code>) operation. 531Behavior similar to the addition operation. 532</li> 533 534<li><b><code>__unm</code>: </b> 535the negation (unary <code>-</code>) operation. 536Behavior similar to the addition operation. 537</li> 538 539<li><b><code>__idiv</code>: </b> 540the floor division (<code>//</code>) operation. 541Behavior similar to the addition operation. 542</li> 543 544<li><b><code>__band</code>: </b> 545the bitwise AND (<code>&</code>) operation. 546Behavior similar to the addition operation, 547except that Lua will try a metamethod 548if any operand is neither an integer 549nor a float coercible to an integer (see <a href="#3.4.3">§3.4.3</a>). 550</li> 551 552<li><b><code>__bor</code>: </b> 553the bitwise OR (<code>|</code>) operation. 554Behavior similar to the bitwise AND operation. 555</li> 556 557<li><b><code>__bxor</code>: </b> 558the bitwise exclusive OR (binary <code>~</code>) operation. 559Behavior similar to the bitwise AND operation. 560</li> 561 562<li><b><code>__bnot</code>: </b> 563the bitwise NOT (unary <code>~</code>) operation. 564Behavior similar to the bitwise AND operation. 565</li> 566 567<li><b><code>__shl</code>: </b> 568the bitwise left shift (<code><<</code>) operation. 569Behavior similar to the bitwise AND operation. 570</li> 571 572<li><b><code>__shr</code>: </b> 573the bitwise right shift (<code>>></code>) operation. 574Behavior similar to the bitwise AND operation. 575</li> 576 577<li><b><code>__concat</code>: </b> 578the concatenation (<code>..</code>) operation. 579Behavior similar to the addition operation, 580except that Lua will try a metamethod 581if any operand is neither a string nor a number 582(which is always coercible to a string). 583</li> 584 585<li><b><code>__len</code>: </b> 586the length (<code>#</code>) operation. 587If the object is not a string, 588Lua will try its metamethod. 589If there is a metamethod, 590Lua calls it with the object as argument, 591and the result of the call 592(always adjusted to one value) 593is the result of the operation. 594If there is no metamethod but the object is a table, 595then Lua uses the table length operation (see <a href="#3.4.7">§3.4.7</a>). 596Otherwise, Lua raises an error. 597</li> 598 599<li><b><code>__eq</code>: </b> 600the equal (<code>==</code>) operation. 601Behavior similar to the addition operation, 602except that Lua will try a metamethod only when the values 603being compared are either both tables or both full userdata 604and they are not primitively equal. 605The result of the call is always converted to a boolean. 606</li> 607 608<li><b><code>__lt</code>: </b> 609the less than (<code><</code>) operation. 610Behavior similar to the addition operation, 611except that Lua will try a metamethod only when the values 612being compared are neither both numbers nor both strings. 613Moreover, the result of the call is always converted to a boolean. 614</li> 615 616<li><b><code>__le</code>: </b> 617the less equal (<code><=</code>) operation. 618Behavior similar to the less than operation. 619</li> 620 621<li><b><code>__index</code>: </b> 622The indexing access operation <code>table[key]</code>. 623This event happens when <code>table</code> is not a table or 624when <code>key</code> is not present in <code>table</code>. 625The metavalue is looked up in the metatable of <code>table</code>. 626 627 628<p> 629The metavalue for this event can be either a function, a table, 630or any value with an <code>__index</code> metavalue. 631If it is a function, 632it is called with <code>table</code> and <code>key</code> as arguments, 633and the result of the call 634(adjusted to one value) 635is the result of the operation. 636Otherwise, 637the final result is the result of indexing this metavalue with <code>key</code>. 638This indexing is regular, not raw, 639and therefore can trigger another <code>__index</code> metavalue. 640</li> 641 642<li><b><code>__newindex</code>: </b> 643The indexing assignment <code>table[key] = value</code>. 644Like the index event, 645this event happens when <code>table</code> is not a table or 646when <code>key</code> is not present in <code>table</code>. 647The metavalue is looked up in the metatable of <code>table</code>. 648 649 650<p> 651Like with indexing, 652the metavalue for this event can be either a function, a table, 653or any value with an <code>__newindex</code> metavalue. 654If it is a function, 655it is called with <code>table</code>, <code>key</code>, and <code>value</code> as arguments. 656Otherwise, 657Lua repeats the indexing assignment over this metavalue 658with the same key and value. 659This assignment is regular, not raw, 660and therefore can trigger another <code>__newindex</code> metavalue. 661 662 663<p> 664Whenever a <code>__newindex</code> metavalue is invoked, 665Lua does not perform the primitive assignment. 666If needed, 667the metamethod itself can call <a href="#pdf-rawset"><code>rawset</code></a> 668to do the assignment. 669</li> 670 671<li><b><code>__call</code>: </b> 672The call operation <code>func(args)</code>. 673This event happens when Lua tries to call a non-function value 674(that is, <code>func</code> is not a function). 675The metamethod is looked up in <code>func</code>. 676If present, 677the metamethod is called with <code>func</code> as its first argument, 678followed by the arguments of the original call (<code>args</code>). 679All results of the call 680are the results of the operation. 681This is the only metamethod that allows multiple results. 682</li> 683 684</ul> 685 686<p> 687In addition to the previous list, 688the interpreter also respects the following keys in metatables: 689<code>__gc</code> (see <a href="#2.5.3">§2.5.3</a>), 690<code>__close</code> (see <a href="#3.3.8">§3.3.8</a>), 691<code>__mode</code> (see <a href="#2.5.4">§2.5.4</a>), 692and <code>__name</code>. 693(The entry <code>__name</code>, 694when it contains a string, 695may be used by <a href="#pdf-tostring"><code>tostring</code></a> and in error messages.) 696 697 698<p> 699For the unary operators (negation, length, and bitwise NOT), 700the metamethod is computed and called with a dummy second operand, 701equal to the first one. 702This extra operand is only to simplify Lua's internals 703(by making these operators behave like a binary operation) 704and may be removed in future versions. 705For most uses this extra operand is irrelevant. 706 707 708<p> 709Because metatables are regular tables, 710they can contain arbitrary fields, 711not only the event names defined above. 712Some functions in the standard library 713(e.g., <a href="#pdf-tostring"><code>tostring</code></a>) 714use other fields in metatables for their own purposes. 715 716 717<p> 718It is a good practice to add all needed metamethods to a table 719before setting it as a metatable of some object. 720In particular, the <code>__gc</code> metamethod works only when this order 721is followed (see <a href="#2.5.3">§2.5.3</a>). 722It is also a good practice to set the metatable of an object 723right after its creation. 724 725 726 727 728 729<h2>2.5 – <a name="2.5">Garbage Collection</a></h2> 730 731 732 733<p> 734Lua performs automatic memory management. 735This means that 736you do not have to worry about allocating memory for new objects 737or freeing it when the objects are no longer needed. 738Lua manages memory automatically by running 739a <em>garbage collector</em> to collect all <em>dead</em> objects. 740All memory used by Lua is subject to automatic management: 741strings, tables, userdata, functions, threads, internal structures, etc. 742 743 744<p> 745An object is considered <em>dead</em> 746as soon as the collector can be sure the object 747will not be accessed again in the normal execution of the program. 748("Normal execution" here excludes finalizers, 749which can resurrect dead objects (see <a href="#2.5.3">§2.5.3</a>), 750and excludes also operations using the debug library.) 751Note that the time when the collector can be sure that an object 752is dead may not coincide with the programmer's expectations. 753The only guarantees are that Lua will not collect an object 754that may still be accessed in the normal execution of the program, 755and it will eventually collect an object 756that is inaccessible from Lua. 757(Here, 758<em>inaccessible from Lua</em> means that neither a variable nor 759another live object refer to the object.) 760Because Lua has no knowledge about C code, 761it never collects objects accessible through the registry (see <a href="#4.3">§4.3</a>), 762which includes the global environment (see <a href="#2.2">§2.2</a>). 763 764 765<p> 766The garbage collector (GC) in Lua can work in two modes: 767incremental and generational. 768 769 770<p> 771The default GC mode with the default parameters 772are adequate for most uses. 773However, programs that waste a large proportion of their time 774allocating and freeing memory can benefit from other settings. 775Keep in mind that the GC behavior is non-portable 776both across platforms and across different Lua releases; 777therefore, optimal settings are also non-portable. 778 779 780<p> 781You can change the GC mode and parameters by calling 782<a href="#lua_gc"><code>lua_gc</code></a> in C 783or <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> in Lua. 784You can also use these functions to control 785the collector directly (e.g., to stop and restart it). 786 787 788 789 790 791<h3>2.5.1 – <a name="2.5.1">Incremental Garbage Collection</a></h3> 792 793<p> 794In incremental mode, 795each GC cycle performs a mark-and-sweep collection in small steps 796interleaved with the program's execution. 797In this mode, 798the collector uses three numbers to control its garbage-collection cycles: 799the <em>garbage-collector pause</em>, 800the <em>garbage-collector step multiplier</em>, 801and the <em>garbage-collector step size</em>. 802 803 804<p> 805The garbage-collector pause 806controls how long the collector waits before starting a new cycle. 807The collector starts a new cycle when the use of memory 808hits <em>n%</em> of the use after the previous collection. 809Larger values make the collector less aggressive. 810Values equal to or less than 100 mean the collector will not wait to 811start a new cycle. 812A value of 200 means that the collector waits for the total memory in use 813to double before starting a new cycle. 814The default value is 200; the maximum value is 1000. 815 816 817<p> 818The garbage-collector step multiplier 819controls the speed of the collector relative to 820memory allocation, 821that is, 822how many elements it marks or sweeps for each 823kilobyte of memory allocated. 824Larger values make the collector more aggressive but also increase 825the size of each incremental step. 826You should not use values less than 100, 827because they make the collector too slow and 828can result in the collector never finishing a cycle. 829The default value is 100; the maximum value is 1000. 830 831 832<p> 833The garbage-collector step size controls the 834size of each incremental step, 835specifically how many bytes the interpreter allocates 836before performing a step. 837This parameter is logarithmic: 838A value of <em>n</em> means the interpreter will allocate <em>2<sup>n</sup></em> 839bytes between steps and perform equivalent work during the step. 840A large value (e.g., 60) makes the collector a stop-the-world 841(non-incremental) collector. 842The default value is 13, 843which means steps of approximately 8 Kbytes. 844 845 846 847 848 849<h3>2.5.2 – <a name="2.5.2">Generational Garbage Collection</a></h3> 850 851<p> 852In generational mode, 853the collector does frequent <em>minor</em> collections, 854which traverses only objects recently created. 855If after a minor collection the use of memory is still above a limit, 856the collector does a stop-the-world <em>major</em> collection, 857which traverses all objects. 858The generational mode uses two parameters: 859the <em>minor multiplier</em> and the <em>the major multiplier</em>. 860 861 862<p> 863The minor multiplier controls the frequency of minor collections. 864For a minor multiplier <em>x</em>, 865a new minor collection will be done when memory 866grows <em>x%</em> larger than the memory in use after the previous major 867collection. 868For instance, for a multiplier of 20, 869the collector will do a minor collection when the use of memory 870gets 20% larger than the use after the previous major collection. 871The default value is 20; the maximum value is 200. 872 873 874<p> 875The major multiplier controls the frequency of major collections. 876For a major multiplier <em>x</em>, 877a new major collection will be done when memory 878grows <em>x%</em> larger than the memory in use after the previous major 879collection. 880For instance, for a multiplier of 100, 881the collector will do a major collection when the use of memory 882gets larger than twice the use after the previous collection. 883The default value is 100; the maximum value is 1000. 884 885 886 887 888 889<h3>2.5.3 – <a name="2.5.3">Garbage-Collection Metamethods</a></h3> 890 891<p> 892You can set garbage-collector metamethods for tables 893and, using the C API, 894for full userdata (see <a href="#2.4">§2.4</a>). 895These metamethods, called <em>finalizers</em>, 896are called when the garbage collector detects that the 897corresponding table or userdata is dead. 898Finalizers allow you to coordinate Lua's garbage collection 899with external resource management such as closing files, 900network or database connections, 901or freeing your own memory. 902 903 904<p> 905For an object (table or userdata) to be finalized when collected, 906you must <em>mark</em> it for finalization. 907 908You mark an object for finalization when you set its metatable 909and the metatable has a <code>__gc</code> metamethod. 910Note that if you set a metatable without a <code>__gc</code> field 911and later create that field in the metatable, 912the object will not be marked for finalization. 913 914 915<p> 916When a marked object becomes dead, 917it is not collected immediately by the garbage collector. 918Instead, Lua puts it in a list. 919After the collection, 920Lua goes through that list. 921For each object in the list, 922it checks the object's <code>__gc</code> metamethod: 923If it is present, 924Lua calls it with the object as its single argument. 925 926 927<p> 928At the end of each garbage-collection cycle, 929the finalizers are called in 930the reverse order that the objects were marked for finalization, 931among those collected in that cycle; 932that is, the first finalizer to be called is the one associated 933with the object marked last in the program. 934The execution of each finalizer may occur at any point during 935the execution of the regular code. 936 937 938<p> 939Because the object being collected must still be used by the finalizer, 940that object (and other objects accessible only through it) 941must be <em>resurrected</em> by Lua. 942Usually, this resurrection is transient, 943and the object memory is freed in the next garbage-collection cycle. 944However, if the finalizer stores the object in some global place 945(e.g., a global variable), 946then the resurrection is permanent. 947Moreover, if the finalizer marks a finalizing object for finalization again, 948its finalizer will be called again in the next cycle where the 949object is dead. 950In any case, 951the object memory is freed only in a GC cycle where 952the object is dead and not marked for finalization. 953 954 955<p> 956When you close a state (see <a href="#lua_close"><code>lua_close</code></a>), 957Lua calls the finalizers of all objects marked for finalization, 958following the reverse order that they were marked. 959If any finalizer marks objects for collection during that phase, 960these marks have no effect. 961 962 963<p> 964Finalizers cannot yield nor run the garbage collector. 965Because they can run in unpredictable times, 966it is good practice to restrict each finalizer 967to the minimum necessary to properly release 968its associated resource. 969 970 971<p> 972Any error while running a finalizer generates a warning; 973the error is not propagated. 974 975 976 977 978 979<h3>2.5.4 – <a name="2.5.4">Weak Tables</a></h3> 980 981<p> 982A <em>weak table</em> is a table whose elements are 983<em>weak references</em>. 984A weak reference is ignored by the garbage collector. 985In other words, 986if the only references to an object are weak references, 987then the garbage collector will collect that object. 988 989 990<p> 991A weak table can have weak keys, weak values, or both. 992A table with weak values allows the collection of its values, 993but prevents the collection of its keys. 994A table with both weak keys and weak values allows the collection of 995both keys and values. 996In any case, if either the key or the value is collected, 997the whole pair is removed from the table. 998The weakness of a table is controlled by the 999<code>__mode</code> field of its metatable. 1000This metavalue, if present, must be one of the following strings: 1001"<code>k</code>", for a table with weak keys; 1002"<code>v</code>", for a table with weak values; 1003or "<code>kv</code>", for a table with both weak keys and values. 1004 1005 1006<p> 1007A table with weak keys and strong values 1008is also called an <em>ephemeron table</em>. 1009In an ephemeron table, 1010a value is considered reachable only if its key is reachable. 1011In particular, 1012if the only reference to a key comes through its value, 1013the pair is removed. 1014 1015 1016<p> 1017Any change in the weakness of a table may take effect only 1018at the next collect cycle. 1019In particular, if you change the weakness to a stronger mode, 1020Lua may still collect some items from that table 1021before the change takes effect. 1022 1023 1024<p> 1025Only objects that have an explicit construction 1026are removed from weak tables. 1027Values, such as numbers and light C functions, 1028are not subject to garbage collection, 1029and therefore are not removed from weak tables 1030(unless their associated values are collected). 1031Although strings are subject to garbage collection, 1032they do not have an explicit construction and 1033their equality is by value; 1034they behave more like values than like objects. 1035Therefore, they are not removed from weak tables. 1036 1037 1038<p> 1039Resurrected objects 1040(that is, objects being finalized 1041and objects accessible only through objects being finalized) 1042have a special behavior in weak tables. 1043They are removed from weak values before running their finalizers, 1044but are removed from weak keys only in the next collection 1045after running their finalizers, when such objects are actually freed. 1046This behavior allows the finalizer to access properties 1047associated with the object through weak tables. 1048 1049 1050<p> 1051If a weak table is among the resurrected objects in a collection cycle, 1052it may not be properly cleared until the next cycle. 1053 1054 1055 1056 1057 1058 1059 1060<h2>2.6 – <a name="2.6">Coroutines</a></h2> 1061 1062<p> 1063Lua supports coroutines, 1064also called <em>collaborative multithreading</em>. 1065A coroutine in Lua represents an independent thread of execution. 1066Unlike threads in multithread systems, however, 1067a coroutine only suspends its execution by explicitly calling 1068a yield function. 1069 1070 1071<p> 1072You create a coroutine by calling <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>. 1073Its sole argument is a function 1074that is the main function of the coroutine. 1075The <code>create</code> function only creates a new coroutine and 1076returns a handle to it (an object of type <em>thread</em>); 1077it does not start the coroutine. 1078 1079 1080<p> 1081You execute a coroutine by calling <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>. 1082When you first call <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>, 1083passing as its first argument 1084a thread returned by <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>, 1085the coroutine starts its execution by 1086calling its main function. 1087Extra arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> are passed 1088as arguments to that function. 1089After the coroutine starts running, 1090it runs until it terminates or <em>yields</em>. 1091 1092 1093<p> 1094A coroutine can terminate its execution in two ways: 1095normally, when its main function returns 1096(explicitly or implicitly, after the last instruction); 1097and abnormally, if there is an unprotected error. 1098In case of normal termination, 1099<a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>true</b>, 1100plus any values returned by the coroutine main function. 1101In case of errors, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>false</b> 1102plus the error object. 1103In this case, the coroutine does not unwind its stack, 1104so that it is possible to inspect it after the error 1105with the debug API. 1106 1107 1108<p> 1109A coroutine yields by calling <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>. 1110When a coroutine yields, 1111the corresponding <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns immediately, 1112even if the yield happens inside nested function calls 1113(that is, not in the main function, 1114but in a function directly or indirectly called by the main function). 1115In the case of a yield, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> also returns <b>true</b>, 1116plus any values passed to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>. 1117The next time you resume the same coroutine, 1118it continues its execution from the point where it yielded, 1119with the call to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a> returning any extra 1120arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>. 1121 1122 1123<p> 1124Like <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>, 1125the <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> function also creates a coroutine, 1126but instead of returning the coroutine itself, 1127it returns a function that, when called, resumes the coroutine. 1128Any arguments passed to this function 1129go as extra arguments to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>. 1130<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> returns all the values returned by <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>, 1131except the first one (the boolean error code). 1132Unlike <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>, 1133the function created by <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> 1134propagates any error to the caller. 1135In this case, 1136the function also closes the coroutine (see <a href="#pdf-coroutine.close"><code>coroutine.close</code></a>). 1137 1138 1139<p> 1140As an example of how coroutines work, 1141consider the following code: 1142 1143<pre> 1144 function foo (a) 1145 print("foo", a) 1146 return coroutine.yield(2*a) 1147 end 1148 1149 co = coroutine.create(function (a,b) 1150 print("co-body", a, b) 1151 local r = foo(a+1) 1152 print("co-body", r) 1153 local r, s = coroutine.yield(a+b, a-b) 1154 print("co-body", r, s) 1155 return b, "end" 1156 end) 1157 1158 print("main", coroutine.resume(co, 1, 10)) 1159 print("main", coroutine.resume(co, "r")) 1160 print("main", coroutine.resume(co, "x", "y")) 1161 print("main", coroutine.resume(co, "x", "y")) 1162</pre><p> 1163When you run it, it produces the following output: 1164 1165<pre> 1166 co-body 1 10 1167 foo 2 1168 main true 4 1169 co-body r 1170 main true 11 -9 1171 co-body x y 1172 main true 10 end 1173 main false cannot resume dead coroutine 1174</pre> 1175 1176<p> 1177You can also create and manipulate coroutines through the C API: 1178see functions <a href="#lua_newthread"><code>lua_newthread</code></a>, <a href="#lua_resume"><code>lua_resume</code></a>, 1179and <a href="#lua_yield"><code>lua_yield</code></a>. 1180 1181 1182 1183 1184 1185<h1>3 – <a name="3">The Language</a></h1> 1186 1187 1188 1189<p> 1190This section describes the lexis, the syntax, and the semantics of Lua. 1191In other words, 1192this section describes 1193which tokens are valid, 1194how they can be combined, 1195and what their combinations mean. 1196 1197 1198<p> 1199Language constructs will be explained using the usual extended BNF notation, 1200in which 1201{<em>a</em>} means 0 or more <em>a</em>'s, and 1202[<em>a</em>] means an optional <em>a</em>. 1203Non-terminals are shown like non-terminal, 1204keywords are shown like <b>kword</b>, 1205and other terminal symbols are shown like ‘<b>=</b>’. 1206The complete syntax of Lua can be found in <a href="#9">§9</a> 1207at the end of this manual. 1208 1209 1210 1211 1212 1213<h2>3.1 – <a name="3.1">Lexical Conventions</a></h2> 1214 1215<p> 1216Lua is a free-form language. 1217It ignores spaces and comments between lexical elements (tokens), 1218except as delimiters between two tokens. 1219In source code, 1220Lua recognizes as spaces the standard ASCII whitespace 1221characters space, form feed, newline, 1222carriage return, horizontal tab, and vertical tab. 1223 1224 1225<p> 1226<em>Names</em> 1227(also called <em>identifiers</em>) 1228in Lua can be any string of Latin letters, 1229Arabic-Indic digits, and underscores, 1230not beginning with a digit and 1231not being a reserved word. 1232Identifiers are used to name variables, table fields, and labels. 1233 1234 1235<p> 1236The following <em>keywords</em> are reserved 1237and cannot be used as names: 1238 1239 1240<pre> 1241 and break do else elseif end 1242 false for function goto if in 1243 local nil not or repeat return 1244 then true until while 1245</pre> 1246 1247<p> 1248Lua is a case-sensitive language: 1249<code>and</code> is a reserved word, but <code>And</code> and <code>AND</code> 1250are two different, valid names. 1251As a convention, 1252programs should avoid creating 1253names that start with an underscore followed by 1254one or more uppercase letters (such as <a href="#pdf-_VERSION"><code>_VERSION</code></a>). 1255 1256 1257<p> 1258The following strings denote other tokens: 1259 1260<pre> 1261 + - * / % ^ # 1262 & ~ | << >> // 1263 == ~= <= >= < > = 1264 ( ) { } [ ] :: 1265 ; : , . .. ... 1266</pre> 1267 1268<p> 1269A <em>short literal string</em> 1270can be delimited by matching single or double quotes, 1271and can contain the following C-like escape sequences: 1272'<code>\a</code>' (bell), 1273'<code>\b</code>' (backspace), 1274'<code>\f</code>' (form feed), 1275'<code>\n</code>' (newline), 1276'<code>\r</code>' (carriage return), 1277'<code>\t</code>' (horizontal tab), 1278'<code>\v</code>' (vertical tab), 1279'<code>\\</code>' (backslash), 1280'<code>\"</code>' (quotation mark [double quote]), 1281and '<code>\'</code>' (apostrophe [single quote]). 1282A backslash followed by a line break 1283results in a newline in the string. 1284The escape sequence '<code>\z</code>' skips the following span 1285of whitespace characters, 1286including line breaks; 1287it is particularly useful to break and indent a long literal string 1288into multiple lines without adding the newlines and spaces 1289into the string contents. 1290A short literal string cannot contain unescaped line breaks 1291nor escapes not forming a valid escape sequence. 1292 1293 1294<p> 1295We can specify any byte in a short literal string, 1296including embedded zeros, 1297by its numeric value. 1298This can be done 1299with the escape sequence <code>\x<em>XX</em></code>, 1300where <em>XX</em> is a sequence of exactly two hexadecimal digits, 1301or with the escape sequence <code>\<em>ddd</em></code>, 1302where <em>ddd</em> is a sequence of up to three decimal digits. 1303(Note that if a decimal escape sequence is to be followed by a digit, 1304it must be expressed using exactly three digits.) 1305 1306 1307<p> 1308The UTF-8 encoding of a Unicode character 1309can be inserted in a literal string with 1310the escape sequence <code>\u{<em>XXX</em>}</code> 1311(with mandatory enclosing braces), 1312where <em>XXX</em> is a sequence of one or more hexadecimal digits 1313representing the character code point. 1314This code point can be any value less than <em>2<sup>31</sup></em>. 1315(Lua uses the original UTF-8 specification here, 1316which is not restricted to valid Unicode code points.) 1317 1318 1319<p> 1320Literal strings can also be defined using a long format 1321enclosed by <em>long brackets</em>. 1322We define an <em>opening long bracket of level <em>n</em></em> as an opening 1323square bracket followed by <em>n</em> equal signs followed by another 1324opening square bracket. 1325So, an opening long bracket of level 0 is written as <code>[[</code>, 1326an opening long bracket of level 1 is written as <code>[=[</code>, 1327and so on. 1328A <em>closing long bracket</em> is defined similarly; 1329for instance, 1330a closing long bracket of level 4 is written as <code>]====]</code>. 1331A <em>long literal</em> starts with an opening long bracket of any level and 1332ends at the first closing long bracket of the same level. 1333It can contain any text except a closing bracket of the same level. 1334Literals in this bracketed form can run for several lines, 1335do not interpret any escape sequences, 1336and ignore long brackets of any other level. 1337Any kind of end-of-line sequence 1338(carriage return, newline, carriage return followed by newline, 1339or newline followed by carriage return) 1340is converted to a simple newline. 1341When the opening long bracket is immediately followed by a newline, 1342the newline is not included in the string. 1343 1344 1345<p> 1346As an example, in a system using ASCII 1347(in which '<code>a</code>' is coded as 97, 1348newline is coded as 10, and '<code>1</code>' is coded as 49), 1349the five literal strings below denote the same string: 1350 1351<pre> 1352 a = 'alo\n123"' 1353 a = "alo\n123\"" 1354 a = '\97lo\10\04923"' 1355 a = [[alo 1356 123"]] 1357 a = [==[ 1358 alo 1359 123"]==] 1360</pre> 1361 1362<p> 1363Any byte in a literal string not 1364explicitly affected by the previous rules represents itself. 1365However, Lua opens files for parsing in text mode, 1366and the system's file functions may have problems with 1367some control characters. 1368So, it is safer to represent 1369binary data as a quoted literal with 1370explicit escape sequences for the non-text characters. 1371 1372 1373<p> 1374A <em>numeric constant</em> (or <em>numeral</em>) 1375can be written with an optional fractional part 1376and an optional decimal exponent, 1377marked by a letter '<code>e</code>' or '<code>E</code>'. 1378Lua also accepts hexadecimal constants, 1379which start with <code>0x</code> or <code>0X</code>. 1380Hexadecimal constants also accept an optional fractional part 1381plus an optional binary exponent, 1382marked by a letter '<code>p</code>' or '<code>P</code>' and written in decimal. 1383(For instance, <code>0x1.fp10</code> denotes 1984, 1384which is <em>0x1f / 16</em> multiplied by <em>2<sup>10</sup></em>.) 1385 1386 1387<p> 1388A numeric constant with a radix point or an exponent 1389denotes a float; 1390otherwise, 1391if its value fits in an integer or it is a hexadecimal constant, 1392it denotes an integer; 1393otherwise (that is, a decimal integer numeral that overflows), 1394it denotes a float. 1395Hexadecimal numerals with neither a radix point nor an exponent 1396always denote an integer value; 1397if the value overflows, it <em>wraps around</em> 1398to fit into a valid integer. 1399 1400 1401<p> 1402Examples of valid integer constants are 1403 1404<pre> 1405 3 345 0xff 0xBEBADA 1406</pre><p> 1407Examples of valid float constants are 1408 1409<pre> 1410 3.0 3.1416 314.16e-2 0.31416E1 34e1 1411 0x0.1E 0xA23p-4 0X1.921FB54442D18P+1 1412</pre> 1413 1414<p> 1415A <em>comment</em> starts with a double hyphen (<code>--</code>) 1416anywhere outside a string. 1417If the text immediately after <code>--</code> is not an opening long bracket, 1418the comment is a <em>short comment</em>, 1419which runs until the end of the line. 1420Otherwise, it is a <em>long comment</em>, 1421which runs until the corresponding closing long bracket. 1422 1423 1424 1425 1426 1427<h2>3.2 – <a name="3.2">Variables</a></h2> 1428 1429<p> 1430Variables are places that store values. 1431There are three kinds of variables in Lua: 1432global variables, local variables, and table fields. 1433 1434 1435<p> 1436A single name can denote a global variable or a local variable 1437(or a function's formal parameter, 1438which is a particular kind of local variable): 1439 1440<pre> 1441 var ::= Name 1442</pre><p> 1443Name denotes identifiers (see <a href="#3.1">§3.1</a>). 1444 1445 1446<p> 1447Any variable name is assumed to be global unless explicitly declared 1448as a local (see <a href="#3.3.7">§3.3.7</a>). 1449Local variables are <em>lexically scoped</em>: 1450local variables can be freely accessed by functions 1451defined inside their scope (see <a href="#3.5">§3.5</a>). 1452 1453 1454<p> 1455Before the first assignment to a variable, its value is <b>nil</b>. 1456 1457 1458<p> 1459Square brackets are used to index a table: 1460 1461<pre> 1462 var ::= prefixexp ‘<b>[</b>’ exp ‘<b>]</b>’ 1463</pre><p> 1464The meaning of accesses to table fields can be changed via metatables 1465(see <a href="#2.4">§2.4</a>). 1466 1467 1468<p> 1469The syntax <code>var.Name</code> is just syntactic sugar for 1470<code>var["Name"]</code>: 1471 1472<pre> 1473 var ::= prefixexp ‘<b>.</b>’ Name 1474</pre> 1475 1476<p> 1477An access to a global variable <code>x</code> 1478is equivalent to <code>_ENV.x</code>. 1479Due to the way that chunks are compiled, 1480the variable <code>_ENV</code> itself is never global (see <a href="#2.2">§2.2</a>). 1481 1482 1483 1484 1485 1486<h2>3.3 – <a name="3.3">Statements</a></h2> 1487 1488 1489 1490<p> 1491Lua supports an almost conventional set of statements, 1492similar to those in other conventional languages. 1493This set includes 1494blocks, assignments, control structures, function calls, 1495and variable declarations. 1496 1497 1498 1499 1500 1501<h3>3.3.1 – <a name="3.3.1">Blocks</a></h3> 1502 1503<p> 1504A block is a list of statements, 1505which are executed sequentially: 1506 1507<pre> 1508 block ::= {stat} 1509</pre><p> 1510Lua has <em>empty statements</em> 1511that allow you to separate statements with semicolons, 1512start a block with a semicolon 1513or write two semicolons in sequence: 1514 1515<pre> 1516 stat ::= ‘<b>;</b>’ 1517</pre> 1518 1519<p> 1520Both function calls and assignments 1521can start with an open parenthesis. 1522This possibility leads to an ambiguity in Lua's grammar. 1523Consider the following fragment: 1524 1525<pre> 1526 a = b + c 1527 (print or io.write)('done') 1528</pre><p> 1529The grammar could see this fragment in two ways: 1530 1531<pre> 1532 a = b + c(print or io.write)('done') 1533 1534 a = b + c; (print or io.write)('done') 1535</pre><p> 1536The current parser always sees such constructions 1537in the first way, 1538interpreting the open parenthesis 1539as the start of the arguments to a call. 1540To avoid this ambiguity, 1541it is a good practice to always precede with a semicolon 1542statements that start with a parenthesis: 1543 1544<pre> 1545 ;(print or io.write)('done') 1546</pre> 1547 1548<p> 1549A block can be explicitly delimited to produce a single statement: 1550 1551<pre> 1552 stat ::= <b>do</b> block <b>end</b> 1553</pre><p> 1554Explicit blocks are useful 1555to control the scope of variable declarations. 1556Explicit blocks are also sometimes used to 1557add a <b>return</b> statement in the middle 1558of another block (see <a href="#3.3.4">§3.3.4</a>). 1559 1560 1561 1562 1563 1564<h3>3.3.2 – <a name="3.3.2">Chunks</a></h3> 1565 1566<p> 1567The unit of compilation of Lua is called a <em>chunk</em>. 1568Syntactically, 1569a chunk is simply a block: 1570 1571<pre> 1572 chunk ::= block 1573</pre> 1574 1575<p> 1576Lua handles a chunk as the body of an anonymous function 1577with a variable number of arguments 1578(see <a href="#3.4.11">§3.4.11</a>). 1579As such, chunks can define local variables, 1580receive arguments, and return values. 1581Moreover, such anonymous function is compiled as in the 1582scope of an external local variable called <code>_ENV</code> (see <a href="#2.2">§2.2</a>). 1583The resulting function always has <code>_ENV</code> as its only external variable, 1584even if it does not use that variable. 1585 1586 1587<p> 1588A chunk can be stored in a file or in a string inside the host program. 1589To execute a chunk, 1590Lua first <em>loads</em> it, 1591precompiling the chunk's code into instructions for a virtual machine, 1592and then Lua executes the compiled code 1593with an interpreter for the virtual machine. 1594 1595 1596<p> 1597Chunks can also be precompiled into binary form; 1598see the program <code>luac</code> and the function <a href="#pdf-string.dump"><code>string.dump</code></a> for details. 1599Programs in source and compiled forms are interchangeable; 1600Lua automatically detects the file type and acts accordingly (see <a href="#pdf-load"><code>load</code></a>). 1601 1602 1603 1604 1605 1606<h3>3.3.3 – <a name="3.3.3">Assignment</a></h3> 1607 1608<p> 1609Lua allows multiple assignments. 1610Therefore, the syntax for assignment 1611defines a list of variables on the left side 1612and a list of expressions on the right side. 1613The elements in both lists are separated by commas: 1614 1615<pre> 1616 stat ::= varlist ‘<b>=</b>’ explist 1617 varlist ::= var {‘<b>,</b>’ var} 1618 explist ::= exp {‘<b>,</b>’ exp} 1619</pre><p> 1620Expressions are discussed in <a href="#3.4">§3.4</a>. 1621 1622 1623<p> 1624Before the assignment, 1625the list of values is <em>adjusted</em> to the length of 1626the list of variables (see <a href="#3.4.12">§3.4.12</a>). 1627 1628 1629<p> 1630If a variable is both assigned and read 1631inside a multiple assignment, 1632Lua ensures that all reads get the value of the variable 1633before the assignment. 1634Thus the code 1635 1636<pre> 1637 i = 3 1638 i, a[i] = i+1, 20 1639</pre><p> 1640sets <code>a[3]</code> to 20, without affecting <code>a[4]</code> 1641because the <code>i</code> in <code>a[i]</code> is evaluated (to 3) 1642before it is assigned 4. 1643Similarly, the line 1644 1645<pre> 1646 x, y = y, x 1647</pre><p> 1648exchanges the values of <code>x</code> and <code>y</code>, 1649and 1650 1651<pre> 1652 x, y, z = y, z, x 1653</pre><p> 1654cyclically permutes the values of <code>x</code>, <code>y</code>, and <code>z</code>. 1655 1656 1657<p> 1658Note that this guarantee covers only accesses 1659syntactically inside the assignment statement. 1660If a function or a metamethod called during the assignment 1661changes the value of a variable, 1662Lua gives no guarantees about the order of that access. 1663 1664 1665<p> 1666An assignment to a global name <code>x = val</code> 1667is equivalent to the assignment 1668<code>_ENV.x = val</code> (see <a href="#2.2">§2.2</a>). 1669 1670 1671<p> 1672The meaning of assignments to table fields and 1673global variables (which are actually table fields, too) 1674can be changed via metatables (see <a href="#2.4">§2.4</a>). 1675 1676 1677 1678 1679 1680<h3>3.3.4 – <a name="3.3.4">Control Structures</a></h3><p> 1681The control structures 1682<b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and 1683familiar syntax: 1684 1685 1686 1687 1688<pre> 1689 stat ::= <b>while</b> exp <b>do</b> block <b>end</b> 1690 stat ::= <b>repeat</b> block <b>until</b> exp 1691 stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> 1692</pre><p> 1693Lua also has a <b>for</b> statement, in two flavors (see <a href="#3.3.5">§3.3.5</a>). 1694 1695 1696<p> 1697The condition expression of a 1698control structure can return any value. 1699Both <b>false</b> and <b>nil</b> test false. 1700All values different from <b>nil</b> and <b>false</b> test true. 1701In particular, the number 0 and the empty string also test true. 1702 1703 1704<p> 1705In the <b>repeat</b>–<b>until</b> loop, 1706the inner block does not end at the <b>until</b> keyword, 1707but only after the condition. 1708So, the condition can refer to local variables 1709declared inside the loop block. 1710 1711 1712<p> 1713The <b>goto</b> statement transfers the program control to a label. 1714For syntactical reasons, 1715labels in Lua are considered statements too: 1716 1717 1718 1719<pre> 1720 stat ::= <b>goto</b> Name 1721 stat ::= label 1722 label ::= ‘<b>::</b>’ Name ‘<b>::</b>’ 1723</pre> 1724 1725<p> 1726A label is visible in the entire block where it is defined, 1727except inside nested functions. 1728A goto may jump to any visible label as long as it does not 1729enter into the scope of a local variable. 1730A label should not be declared 1731where a label with the same name is visible, 1732even if this other label has been declared in an enclosing block. 1733 1734 1735<p> 1736The <b>break</b> statement terminates the execution of a 1737<b>while</b>, <b>repeat</b>, or <b>for</b> loop, 1738skipping to the next statement after the loop: 1739 1740 1741<pre> 1742 stat ::= <b>break</b> 1743</pre><p> 1744A <b>break</b> ends the innermost enclosing loop. 1745 1746 1747<p> 1748The <b>return</b> statement is used to return values 1749from a function or a chunk 1750(which is handled as an anonymous function). 1751 1752Functions can return more than one value, 1753so the syntax for the <b>return</b> statement is 1754 1755<pre> 1756 stat ::= <b>return</b> [explist] [‘<b>;</b>’] 1757</pre> 1758 1759<p> 1760The <b>return</b> statement can only be written 1761as the last statement of a block. 1762If it is necessary to <b>return</b> in the middle of a block, 1763then an explicit inner block can be used, 1764as in the idiom <code>do return end</code>, 1765because now <b>return</b> is the last statement in its (inner) block. 1766 1767 1768 1769 1770 1771<h3>3.3.5 – <a name="3.3.5">For Statement</a></h3> 1772 1773<p> 1774 1775The <b>for</b> statement has two forms: 1776one numerical and one generic. 1777 1778 1779 1780<h4>The numerical <b>for</b> loop</h4> 1781 1782<p> 1783The numerical <b>for</b> loop repeats a block of code while a 1784control variable goes through an arithmetic progression. 1785It has the following syntax: 1786 1787<pre> 1788 stat ::= <b>for</b> Name ‘<b>=</b>’ exp ‘<b>,</b>’ exp [‘<b>,</b>’ exp] <b>do</b> block <b>end</b> 1789</pre><p> 1790The given identifier (Name) defines the control variable, 1791which is a new variable local to the loop body (<em>block</em>). 1792 1793 1794<p> 1795The loop starts by evaluating once the three control expressions. 1796Their values are called respectively 1797the <em>initial value</em>, the <em>limit</em>, and the <em>step</em>. 1798If the step is absent, it defaults to 1. 1799 1800 1801<p> 1802If both the initial value and the step are integers, 1803the loop is done with integers; 1804note that the limit may not be an integer. 1805Otherwise, the three values are converted to 1806floats and the loop is done with floats. 1807Beware of floating-point accuracy in this case. 1808 1809 1810<p> 1811After that initialization, 1812the loop body is repeated with the value of the control variable 1813going through an arithmetic progression, 1814starting at the initial value, 1815with a common difference given by the step. 1816A negative step makes a decreasing sequence; 1817a step equal to zero raises an error. 1818The loop continues while the value is less than 1819or equal to the limit 1820(greater than or equal to for a negative step). 1821If the initial value is already greater than the limit 1822(or less than, if the step is negative), 1823the body is not executed. 1824 1825 1826<p> 1827For integer loops, 1828the control variable never wraps around; 1829instead, the loop ends in case of an overflow. 1830 1831 1832<p> 1833You should not change the value of the control variable 1834during the loop. 1835If you need its value after the loop, 1836assign it to another variable before exiting the loop. 1837 1838 1839 1840 1841 1842<h4>The generic <b>for</b> loop</h4> 1843 1844<p> 1845The generic <b>for</b> statement works over functions, 1846called <em>iterators</em>. 1847On each iteration, the iterator function is called to produce a new value, 1848stopping when this new value is <b>nil</b>. 1849The generic <b>for</b> loop has the following syntax: 1850 1851<pre> 1852 stat ::= <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> 1853 namelist ::= Name {‘<b>,</b>’ Name} 1854</pre><p> 1855A <b>for</b> statement like 1856 1857<pre> 1858 for <em>var_1</em>, ···, <em>var_n</em> in <em>explist</em> do <em>body</em> end 1859</pre><p> 1860works as follows. 1861 1862 1863<p> 1864The names <em>var_i</em> declare loop variables local to the loop body. 1865The first of these variables is the <em>control variable</em>. 1866 1867 1868<p> 1869The loop starts by evaluating <em>explist</em> 1870to produce four values: 1871an <em>iterator function</em>, 1872a <em>state</em>, 1873an initial value for the control variable, 1874and a <em>closing value</em>. 1875 1876 1877<p> 1878Then, at each iteration, 1879Lua calls the iterator function with two arguments: 1880the state and the control variable. 1881The results from this call are then assigned to the loop variables, 1882following the rules of multiple assignments (see <a href="#3.3.3">§3.3.3</a>). 1883If the control variable becomes <b>nil</b>, 1884the loop terminates. 1885Otherwise, the body is executed and the loop goes 1886to the next iteration. 1887 1888 1889<p> 1890The closing value behaves like a 1891to-be-closed variable (see <a href="#3.3.8">§3.3.8</a>), 1892which can be used to release resources when the loop ends. 1893Otherwise, it does not interfere with the loop. 1894 1895 1896<p> 1897You should not change the value of the control variable 1898during the loop. 1899 1900 1901 1902 1903 1904 1905 1906<h3>3.3.6 – <a name="3.3.6">Function Calls as Statements</a></h3><p> 1907To allow possible side-effects, 1908function calls can be executed as statements: 1909 1910<pre> 1911 stat ::= functioncall 1912</pre><p> 1913In this case, all returned values are thrown away. 1914Function calls are explained in <a href="#3.4.10">§3.4.10</a>. 1915 1916 1917 1918 1919 1920<h3>3.3.7 – <a name="3.3.7">Local Declarations</a></h3><p> 1921Local variables can be declared anywhere inside a block. 1922The declaration can include an initialization: 1923 1924<pre> 1925 stat ::= <b>local</b> attnamelist [‘<b>=</b>’ explist] 1926 attnamelist ::= Name attrib {‘<b>,</b>’ Name attrib} 1927</pre><p> 1928If present, an initial assignment has the same semantics 1929of a multiple assignment (see <a href="#3.3.3">§3.3.3</a>). 1930Otherwise, all variables are initialized with <b>nil</b>. 1931 1932 1933<p> 1934Each variable name may be postfixed by an attribute 1935(a name between angle brackets): 1936 1937<pre> 1938 attrib ::= [‘<b><</b>’ Name ‘<b>></b>’] 1939</pre><p> 1940There are two possible attributes: 1941<code>const</code>, which declares a constant variable, 1942that is, a variable that cannot be assigned to 1943after its initialization; 1944and <code>close</code>, which declares a to-be-closed variable (see <a href="#3.3.8">§3.3.8</a>). 1945A list of variables can contain at most one to-be-closed variable. 1946 1947 1948<p> 1949A chunk is also a block (see <a href="#3.3.2">§3.3.2</a>), 1950and so local variables can be declared in a chunk outside any explicit block. 1951 1952 1953<p> 1954The visibility rules for local variables are explained in <a href="#3.5">§3.5</a>. 1955 1956 1957 1958 1959 1960<h3>3.3.8 – <a name="3.3.8">To-be-closed Variables</a></h3> 1961 1962<p> 1963A to-be-closed variable behaves like a constant local variable, 1964except that its value is <em>closed</em> whenever the variable 1965goes out of scope, including normal block termination, 1966exiting its block by <b>break</b>/<b>goto</b>/<b>return</b>, 1967or exiting by an error. 1968 1969 1970<p> 1971Here, to <em>close</em> a value means 1972to call its <code>__close</code> metamethod. 1973When calling the metamethod, 1974the value itself is passed as the first argument 1975and the error object that caused the exit (if any) 1976is passed as a second argument; 1977if there was no error, the second argument is <b>nil</b>. 1978 1979 1980<p> 1981The value assigned to a to-be-closed variable 1982must have a <code>__close</code> metamethod 1983or be a false value. 1984(<b>nil</b> and <b>false</b> are ignored as to-be-closed values.) 1985 1986 1987<p> 1988If several to-be-closed variables go out of scope at the same event, 1989they are closed in the reverse order that they were declared. 1990 1991 1992<p> 1993If there is any error while running a closing method, 1994that error is handled like an error in the regular code 1995where the variable was defined. 1996After an error, 1997the other pending closing methods will still be called. 1998 1999 2000<p> 2001If a coroutine yields and is never resumed again, 2002some variables may never go out of scope, 2003and therefore they will never be closed. 2004(These variables are the ones created inside the coroutine 2005and in scope at the point where the coroutine yielded.) 2006Similarly, if a coroutine ends with an error, 2007it does not unwind its stack, 2008so it does not close any variable. 2009In both cases, 2010you can either use finalizers 2011or call <a href="#pdf-coroutine.close"><code>coroutine.close</code></a> to close the variables. 2012However, if the coroutine was created 2013through <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a>, 2014then its corresponding function will close the coroutine 2015in case of errors. 2016 2017 2018 2019 2020 2021 2022 2023<h2>3.4 – <a name="3.4">Expressions</a></h2> 2024 2025 2026 2027<p> 2028The basic expressions in Lua are the following: 2029 2030<pre> 2031 exp ::= prefixexp 2032 exp ::= <b>nil</b> | <b>false</b> | <b>true</b> 2033 exp ::= Numeral 2034 exp ::= LiteralString 2035 exp ::= functiondef 2036 exp ::= tableconstructor 2037 exp ::= ‘<b>...</b>’ 2038 exp ::= exp binop exp 2039 exp ::= unop exp 2040 prefixexp ::= var | functioncall | ‘<b>(</b>’ exp ‘<b>)</b>’ 2041</pre> 2042 2043<p> 2044Numerals and literal strings are explained in <a href="#3.1">§3.1</a>; 2045variables are explained in <a href="#3.2">§3.2</a>; 2046function definitions are explained in <a href="#3.4.11">§3.4.11</a>; 2047function calls are explained in <a href="#3.4.10">§3.4.10</a>; 2048table constructors are explained in <a href="#3.4.9">§3.4.9</a>. 2049Vararg expressions, 2050denoted by three dots ('<code>...</code>'), can only be used when 2051directly inside a variadic function; 2052they are explained in <a href="#3.4.11">§3.4.11</a>. 2053 2054 2055<p> 2056Binary operators comprise arithmetic operators (see <a href="#3.4.1">§3.4.1</a>), 2057bitwise operators (see <a href="#3.4.2">§3.4.2</a>), 2058relational operators (see <a href="#3.4.4">§3.4.4</a>), logical operators (see <a href="#3.4.5">§3.4.5</a>), 2059and the concatenation operator (see <a href="#3.4.6">§3.4.6</a>). 2060Unary operators comprise the unary minus (see <a href="#3.4.1">§3.4.1</a>), 2061the unary bitwise NOT (see <a href="#3.4.2">§3.4.2</a>), 2062the unary logical <b>not</b> (see <a href="#3.4.5">§3.4.5</a>), 2063and the unary <em>length operator</em> (see <a href="#3.4.7">§3.4.7</a>). 2064 2065 2066 2067 2068 2069<h3>3.4.1 – <a name="3.4.1">Arithmetic Operators</a></h3><p> 2070Lua supports the following arithmetic operators: 2071 2072<ul> 2073<li><b><code>+</code>: </b>addition</li> 2074<li><b><code>-</code>: </b>subtraction</li> 2075<li><b><code>*</code>: </b>multiplication</li> 2076<li><b><code>/</code>: </b>float division</li> 2077<li><b><code>//</code>: </b>floor division</li> 2078<li><b><code>%</code>: </b>modulo</li> 2079<li><b><code>^</code>: </b>exponentiation</li> 2080<li><b><code>-</code>: </b>unary minus</li> 2081</ul> 2082 2083<p> 2084With the exception of exponentiation and float division, 2085the arithmetic operators work as follows: 2086If both operands are integers, 2087the operation is performed over integers and the result is an integer. 2088Otherwise, if both operands are numbers, 2089then they are converted to floats, 2090the operation is performed following the machine's rules 2091for floating-point arithmetic 2092(usually the IEEE 754 standard), 2093and the result is a float. 2094(The string library coerces strings to numbers in 2095arithmetic operations; see <a href="#3.4.3">§3.4.3</a> for details.) 2096 2097 2098<p> 2099Exponentiation and float division (<code>/</code>) 2100always convert their operands to floats 2101and the result is always a float. 2102Exponentiation uses the ISO C function <code>pow</code>, 2103so that it works for non-integer exponents too. 2104 2105 2106<p> 2107Floor division (<code>//</code>) is a division 2108that rounds the quotient towards minus infinity, 2109resulting in the floor of the division of its operands. 2110 2111 2112<p> 2113Modulo is defined as the remainder of a division 2114that rounds the quotient towards minus infinity (floor division). 2115 2116 2117<p> 2118In case of overflows in integer arithmetic, 2119all operations <em>wrap around</em>. 2120 2121 2122 2123<h3>3.4.2 – <a name="3.4.2">Bitwise Operators</a></h3><p> 2124Lua supports the following bitwise operators: 2125 2126<ul> 2127<li><b><code>&</code>: </b>bitwise AND</li> 2128<li><b><code>|</code>: </b>bitwise OR</li> 2129<li><b><code>~</code>: </b>bitwise exclusive OR</li> 2130<li><b><code>>></code>: </b>right shift</li> 2131<li><b><code><<</code>: </b>left shift</li> 2132<li><b><code>~</code>: </b>unary bitwise NOT</li> 2133</ul> 2134 2135<p> 2136All bitwise operations convert its operands to integers 2137(see <a href="#3.4.3">§3.4.3</a>), 2138operate on all bits of those integers, 2139and result in an integer. 2140 2141 2142<p> 2143Both right and left shifts fill the vacant bits with zeros. 2144Negative displacements shift to the other direction; 2145displacements with absolute values equal to or higher than 2146the number of bits in an integer 2147result in zero (as all bits are shifted out). 2148 2149 2150 2151 2152 2153<h3>3.4.3 – <a name="3.4.3">Coercions and Conversions</a></h3><p> 2154Lua provides some automatic conversions between some 2155types and representations at run time. 2156Bitwise operators always convert float operands to integers. 2157Exponentiation and float division 2158always convert integer operands to floats. 2159All other arithmetic operations applied to mixed numbers 2160(integers and floats) convert the integer operand to a float. 2161The C API also converts both integers to floats and 2162floats to integers, as needed. 2163Moreover, string concatenation accepts numbers as arguments, 2164besides strings. 2165 2166 2167<p> 2168In a conversion from integer to float, 2169if the integer value has an exact representation as a float, 2170that is the result. 2171Otherwise, 2172the conversion gets the nearest higher or 2173the nearest lower representable value. 2174This kind of conversion never fails. 2175 2176 2177<p> 2178The conversion from float to integer 2179checks whether the float has an exact representation as an integer 2180(that is, the float has an integral value and 2181it is in the range of integer representation). 2182If it does, that representation is the result. 2183Otherwise, the conversion fails. 2184 2185 2186<p> 2187Several places in Lua coerce strings to numbers when necessary. 2188In particular, 2189the string library sets metamethods that try to coerce 2190strings to numbers in all arithmetic operations. 2191If the conversion fails, 2192the library calls the metamethod of the other operand 2193(if present) or it raises an error. 2194Note that bitwise operators do not do this coercion. 2195 2196 2197<p> 2198It is always a good practice not to rely on the 2199implicit coercions from strings to numbers, 2200as they are not always applied; 2201in particular, <code>"1"==1</code> is false and <code>"1"<1</code> raises an error 2202(see <a href="#3.4.4">§3.4.4</a>). 2203These coercions exist mainly for compatibility and may be removed 2204in future versions of the language. 2205 2206 2207<p> 2208A string is converted to an integer or a float 2209following its syntax and the rules of the Lua lexer. 2210The string may have also leading and trailing whitespaces and a sign. 2211All conversions from strings to numbers 2212accept both a dot and the current locale mark 2213as the radix character. 2214(The Lua lexer, however, accepts only a dot.) 2215If the string is not a valid numeral, 2216the conversion fails. 2217If necessary, the result of this first step is then converted 2218to a specific number subtype following the previous rules 2219for conversions between floats and integers. 2220 2221 2222<p> 2223The conversion from numbers to strings uses a 2224non-specified human-readable format. 2225To convert numbers to strings in any specific way, 2226use the function <a href="#pdf-string.format"><code>string.format</code></a>. 2227 2228 2229 2230 2231 2232<h3>3.4.4 – <a name="3.4.4">Relational Operators</a></h3><p> 2233Lua supports the following relational operators: 2234 2235<ul> 2236<li><b><code>==</code>: </b>equality</li> 2237<li><b><code>~=</code>: </b>inequality</li> 2238<li><b><code><</code>: </b>less than</li> 2239<li><b><code>></code>: </b>greater than</li> 2240<li><b><code><=</code>: </b>less or equal</li> 2241<li><b><code>>=</code>: </b>greater or equal</li> 2242</ul><p> 2243These operators always result in <b>false</b> or <b>true</b>. 2244 2245 2246<p> 2247Equality (<code>==</code>) first compares the type of its operands. 2248If the types are different, then the result is <b>false</b>. 2249Otherwise, the values of the operands are compared. 2250Strings are equal if they have the same byte content. 2251Numbers are equal if they denote the same mathematical value. 2252 2253 2254<p> 2255Tables, userdata, and threads 2256are compared by reference: 2257two objects are considered equal only if they are the same object. 2258Every time you create a new object 2259(a table, a userdata, or a thread), 2260this new object is different from any previously existing object. 2261A function is always equal to itself. 2262Functions with any detectable difference 2263(different behavior, different definition) are always different. 2264Functions created at different times but with no detectable differences 2265may be classified as equal or not 2266(depending on internal caching details). 2267 2268 2269<p> 2270You can change the way that Lua compares tables and userdata 2271by using the <code>__eq</code> metamethod (see <a href="#2.4">§2.4</a>). 2272 2273 2274<p> 2275Equality comparisons do not convert strings to numbers 2276or vice versa. 2277Thus, <code>"0"==0</code> evaluates to <b>false</b>, 2278and <code>t[0]</code> and <code>t["0"]</code> denote different 2279entries in a table. 2280 2281 2282<p> 2283The operator <code>~=</code> is exactly the negation of equality (<code>==</code>). 2284 2285 2286<p> 2287The order operators work as follows. 2288If both arguments are numbers, 2289then they are compared according to their mathematical values, 2290regardless of their subtypes. 2291Otherwise, if both arguments are strings, 2292then their values are compared according to the current locale. 2293Otherwise, Lua tries to call the <code>__lt</code> or the <code>__le</code> 2294metamethod (see <a href="#2.4">§2.4</a>). 2295A comparison <code>a > b</code> is translated to <code>b < a</code> 2296and <code>a >= b</code> is translated to <code>b <= a</code>. 2297 2298 2299<p> 2300Following the IEEE 754 standard, 2301the special value NaN is considered neither less than, 2302nor equal to, nor greater than any value, including itself. 2303 2304 2305 2306 2307 2308<h3>3.4.5 – <a name="3.4.5">Logical Operators</a></h3><p> 2309The logical operators in Lua are 2310<b>and</b>, <b>or</b>, and <b>not</b>. 2311Like the control structures (see <a href="#3.3.4">§3.3.4</a>), 2312all logical operators consider both <b>false</b> and <b>nil</b> as false 2313and anything else as true. 2314 2315 2316<p> 2317The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>. 2318The conjunction operator <b>and</b> returns its first argument 2319if this value is <b>false</b> or <b>nil</b>; 2320otherwise, <b>and</b> returns its second argument. 2321The disjunction operator <b>or</b> returns its first argument 2322if this value is different from <b>nil</b> and <b>false</b>; 2323otherwise, <b>or</b> returns its second argument. 2324Both <b>and</b> and <b>or</b> use short-circuit evaluation; 2325that is, 2326the second operand is evaluated only if necessary. 2327Here are some examples: 2328 2329<pre> 2330 10 or 20 --> 10 2331 10 or error() --> 10 2332 nil or "a" --> "a" 2333 nil and 10 --> nil 2334 false and error() --> false 2335 false and nil --> false 2336 false or nil --> nil 2337 10 and 20 --> 20 2338</pre> 2339 2340 2341 2342 2343<h3>3.4.6 – <a name="3.4.6">Concatenation</a></h3><p> 2344The string concatenation operator in Lua is 2345denoted by two dots ('<code>..</code>'). 2346If both operands are strings or numbers, 2347then the numbers are converted to strings 2348in a non-specified format (see <a href="#3.4.3">§3.4.3</a>). 2349Otherwise, the <code>__concat</code> metamethod is called (see <a href="#2.4">§2.4</a>). 2350 2351 2352 2353 2354 2355<h3>3.4.7 – <a name="3.4.7">The Length Operator</a></h3> 2356 2357<p> 2358The length operator is denoted by the unary prefix operator <code>#</code>. 2359 2360 2361<p> 2362The length of a string is its number of bytes. 2363(That is the usual meaning of string length when each 2364character is one byte.) 2365 2366 2367<p> 2368The length operator applied on a table 2369returns a border in that table. 2370A <em>border</em> in a table <code>t</code> is any non-negative integer 2371that satisfies the following condition: 2372 2373<pre> 2374 (border == 0 or t[border] ~= nil) and 2375 (t[border + 1] == nil or border == math.maxinteger) 2376</pre><p> 2377In words, 2378a border is any positive integer index present in the table 2379that is followed by an absent index, 2380plus two limit cases: 2381zero, when index 1 is absent; 2382and the maximum value for an integer, when that index is present. 2383Note that keys that are not positive integers 2384do not interfere with borders. 2385 2386 2387<p> 2388A table with exactly one border is called a <em>sequence</em>. 2389For instance, the table <code>{10, 20, 30, 40, 50}</code> is a sequence, 2390as it has only one border (5). 2391The table <code>{10, 20, 30, nil, 50}</code> has two borders (3 and 5), 2392and therefore it is not a sequence. 2393(The <b>nil</b> at index 4 is called a <em>hole</em>.) 2394The table <code>{nil, 20, 30, nil, nil, 60, nil}</code> 2395has three borders (0, 3, and 6), 2396so it is not a sequence, too. 2397The table <code>{}</code> is a sequence with border 0. 2398 2399 2400<p> 2401When <code>t</code> is a sequence, 2402<code>#t</code> returns its only border, 2403which corresponds to the intuitive notion of the length of the sequence. 2404When <code>t</code> is not a sequence, 2405<code>#t</code> can return any of its borders. 2406(The exact one depends on details of 2407the internal representation of the table, 2408which in turn can depend on how the table was populated and 2409the memory addresses of its non-numeric keys.) 2410 2411 2412<p> 2413The computation of the length of a table 2414has a guaranteed worst time of <em>O(log n)</em>, 2415where <em>n</em> is the largest integer key in the table. 2416 2417 2418<p> 2419A program can modify the behavior of the length operator for 2420any value but strings through the <code>__len</code> metamethod (see <a href="#2.4">§2.4</a>). 2421 2422 2423 2424 2425 2426<h3>3.4.8 – <a name="3.4.8">Precedence</a></h3><p> 2427Operator precedence in Lua follows the table below, 2428from lower to higher priority: 2429 2430<pre> 2431 or 2432 and 2433 < > <= >= ~= == 2434 | 2435 ~ 2436 & 2437 << >> 2438 .. 2439 + - 2440 * / // % 2441 unary operators (not # - ~) 2442 ^ 2443</pre><p> 2444As usual, 2445you can use parentheses to change the precedences of an expression. 2446The concatenation ('<code>..</code>') and exponentiation ('<code>^</code>') 2447operators are right associative. 2448All other binary operators are left associative. 2449 2450 2451 2452 2453 2454<h3>3.4.9 – <a name="3.4.9">Table Constructors</a></h3><p> 2455Table constructors are expressions that create tables. 2456Every time a constructor is evaluated, a new table is created. 2457A constructor can be used to create an empty table 2458or to create a table and initialize some of its fields. 2459The general syntax for constructors is 2460 2461<pre> 2462 tableconstructor ::= ‘<b>{</b>’ [fieldlist] ‘<b>}</b>’ 2463 fieldlist ::= field {fieldsep field} [fieldsep] 2464 field ::= ‘<b>[</b>’ exp ‘<b>]</b>’ ‘<b>=</b>’ exp | Name ‘<b>=</b>’ exp | exp 2465 fieldsep ::= ‘<b>,</b>’ | ‘<b>;</b>’ 2466</pre> 2467 2468<p> 2469Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry 2470with key <code>exp1</code> and value <code>exp2</code>. 2471A field of the form <code>name = exp</code> is equivalent to 2472<code>["name"] = exp</code>. 2473Fields of the form <code>exp</code> are equivalent to 2474<code>[i] = exp</code>, where <code>i</code> are consecutive integers 2475starting with 1; 2476fields in the other formats do not affect this counting. 2477For example, 2478 2479<pre> 2480 a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 } 2481</pre><p> 2482is equivalent to 2483 2484<pre> 2485 do 2486 local t = {} 2487 t[f(1)] = g 2488 t[1] = "x" -- 1st exp 2489 t[2] = "y" -- 2nd exp 2490 t.x = 1 -- t["x"] = 1 2491 t[3] = f(x) -- 3rd exp 2492 t[30] = 23 2493 t[4] = 45 -- 4th exp 2494 a = t 2495 end 2496</pre> 2497 2498<p> 2499The order of the assignments in a constructor is undefined. 2500(This order would be relevant only when there are repeated keys.) 2501 2502 2503<p> 2504If the last field in the list has the form <code>exp</code> 2505and the expression is a multires expression, 2506then all values returned by this expression enter the list consecutively 2507(see <a href="#3.4.12">§3.4.12</a>). 2508 2509 2510<p> 2511The field list can have an optional trailing separator, 2512as a convenience for machine-generated code. 2513 2514 2515 2516 2517 2518<h3>3.4.10 – <a name="3.4.10">Function Calls</a></h3><p> 2519A function call in Lua has the following syntax: 2520 2521<pre> 2522 functioncall ::= prefixexp args 2523</pre><p> 2524In a function call, 2525first prefixexp and args are evaluated. 2526If the value of prefixexp has type <em>function</em>, 2527then this function is called 2528with the given arguments. 2529Otherwise, if present, 2530the prefixexp <code>__call</code> metamethod is called: 2531its first argument is the value of prefixexp, 2532followed by the original call arguments 2533(see <a href="#2.4">§2.4</a>). 2534 2535 2536<p> 2537The form 2538 2539<pre> 2540 functioncall ::= prefixexp ‘<b>:</b>’ Name args 2541</pre><p> 2542can be used to emulate methods. 2543A call <code>v:name(<em>args</em>)</code> 2544is syntactic sugar for <code>v.name(v,<em>args</em>)</code>, 2545except that <code>v</code> is evaluated only once. 2546 2547 2548<p> 2549Arguments have the following syntax: 2550 2551<pre> 2552 args ::= ‘<b>(</b>’ [explist] ‘<b>)</b>’ 2553 args ::= tableconstructor 2554 args ::= LiteralString 2555</pre><p> 2556All argument expressions are evaluated before the call. 2557A call of the form <code>f{<em>fields</em>}</code> is 2558syntactic sugar for <code>f({<em>fields</em>})</code>; 2559that is, the argument list is a single new table. 2560A call of the form <code>f'<em>string</em>'</code> 2561(or <code>f"<em>string</em>"</code> or <code>f[[<em>string</em>]]</code>) 2562is syntactic sugar for <code>f('<em>string</em>')</code>; 2563that is, the argument list is a single literal string. 2564 2565 2566<p> 2567A call of the form <code>return <em>functioncall</em></code> not in the 2568scope of a to-be-closed variable is called a <em>tail call</em>. 2569Lua implements <em>proper tail calls</em> 2570(or <em>proper tail recursion</em>): 2571In a tail call, 2572the called function reuses the stack entry of the calling function. 2573Therefore, there is no limit on the number of nested tail calls that 2574a program can execute. 2575However, a tail call erases any debug information about the 2576calling function. 2577Note that a tail call only happens with a particular syntax, 2578where the <b>return</b> has one single function call as argument, 2579and it is outside the scope of any to-be-closed variable. 2580This syntax makes the calling function return exactly 2581the returns of the called function, 2582without any intervening action. 2583So, none of the following examples are tail calls: 2584 2585<pre> 2586 return (f(x)) -- results adjusted to 1 2587 return 2 * f(x) -- result multiplied by 2 2588 return x, f(x) -- additional results 2589 f(x); return -- results discarded 2590 return x or f(x) -- results adjusted to 1 2591</pre> 2592 2593 2594 2595 2596<h3>3.4.11 – <a name="3.4.11">Function Definitions</a></h3> 2597 2598<p> 2599The syntax for function definition is 2600 2601<pre> 2602 functiondef ::= <b>function</b> funcbody 2603 funcbody ::= ‘<b>(</b>’ [parlist] ‘<b>)</b>’ block <b>end</b> 2604</pre> 2605 2606<p> 2607The following syntactic sugar simplifies function definitions: 2608 2609<pre> 2610 stat ::= <b>function</b> funcname funcbody 2611 stat ::= <b>local</b> <b>function</b> Name funcbody 2612 funcname ::= Name {‘<b>.</b>’ Name} [‘<b>:</b>’ Name] 2613</pre><p> 2614The statement 2615 2616<pre> 2617 function f () <em>body</em> end 2618</pre><p> 2619translates to 2620 2621<pre> 2622 f = function () <em>body</em> end 2623</pre><p> 2624The statement 2625 2626<pre> 2627 function t.a.b.c.f () <em>body</em> end 2628</pre><p> 2629translates to 2630 2631<pre> 2632 t.a.b.c.f = function () <em>body</em> end 2633</pre><p> 2634The statement 2635 2636<pre> 2637 local function f () <em>body</em> end 2638</pre><p> 2639translates to 2640 2641<pre> 2642 local f; f = function () <em>body</em> end 2643</pre><p> 2644not to 2645 2646<pre> 2647 local f = function () <em>body</em> end 2648</pre><p> 2649(This only makes a difference when the body of the function 2650contains references to <code>f</code>.) 2651 2652 2653<p> 2654A function definition is an executable expression, 2655whose value has type <em>function</em>. 2656When Lua precompiles a chunk, 2657all its function bodies are precompiled too, 2658but they are not created yet. 2659Then, whenever Lua executes the function definition, 2660the function is <em>instantiated</em> (or <em>closed</em>). 2661This function instance, or <em>closure</em>, 2662is the final value of the expression. 2663 2664 2665<p> 2666Parameters act as local variables that are 2667initialized with the argument values: 2668 2669<pre> 2670 parlist ::= namelist [‘<b>,</b>’ ‘<b>...</b>’] | ‘<b>...</b>’ 2671</pre><p> 2672When a Lua function is called, 2673it adjusts its list of arguments to 2674the length of its list of parameters (see <a href="#3.4.12">§3.4.12</a>), 2675unless the function is a <em>variadic function</em>, 2676which is indicated by three dots ('<code>...</code>') 2677at the end of its parameter list. 2678A variadic function does not adjust its argument list; 2679instead, it collects all extra arguments and supplies them 2680to the function through a <em>vararg expression</em>, 2681which is also written as three dots. 2682The value of this expression is a list of all actual extra arguments, 2683similar to a function with multiple results (see <a href="#3.4.12">§3.4.12</a>). 2684 2685 2686<p> 2687As an example, consider the following definitions: 2688 2689<pre> 2690 function f(a, b) end 2691 function g(a, b, ...) end 2692 function r() return 1,2,3 end 2693</pre><p> 2694Then, we have the following mapping from arguments to parameters and 2695to the vararg expression: 2696 2697<pre> 2698 CALL PARAMETERS 2699 2700 f(3) a=3, b=nil 2701 f(3, 4) a=3, b=4 2702 f(3, 4, 5) a=3, b=4 2703 f(r(), 10) a=1, b=10 2704 f(r()) a=1, b=2 2705 2706 g(3) a=3, b=nil, ... --> (nothing) 2707 g(3, 4) a=3, b=4, ... --> (nothing) 2708 g(3, 4, 5, 8) a=3, b=4, ... --> 5 8 2709 g(5, r()) a=5, b=1, ... --> 2 3 2710</pre> 2711 2712<p> 2713Results are returned using the <b>return</b> statement (see <a href="#3.3.4">§3.3.4</a>). 2714If control reaches the end of a function 2715without encountering a <b>return</b> statement, 2716then the function returns with no results. 2717 2718 2719<p> 2720 2721There is a system-dependent limit on the number of values 2722that a function may return. 2723This limit is guaranteed to be greater than 1000. 2724 2725 2726<p> 2727The <em>colon</em> syntax 2728is used to emulate <em>methods</em>, 2729adding an implicit extra parameter <code>self</code> to the function. 2730Thus, the statement 2731 2732<pre> 2733 function t.a.b.c:f (<em>params</em>) <em>body</em> end 2734</pre><p> 2735is syntactic sugar for 2736 2737<pre> 2738 t.a.b.c.f = function (self, <em>params</em>) <em>body</em> end 2739</pre> 2740 2741 2742 2743 2744<h3>3.4.12 – <a name="3.4.12">Lists of expressions, multiple results, 2745and adjustment</a></h3> 2746 2747<p> 2748Both function calls and vararg expressions can result in multiple values. 2749These expressions are called <em>multires expressions</em>. 2750 2751 2752<p> 2753When a multires expression is used as the last element 2754of a list of expressions, 2755all results from the expression are added to the 2756list of values produced by the list of expressions. 2757Note that a single expression 2758in a place that expects a list of expressions 2759is the last expression in that (singleton) list. 2760 2761 2762<p> 2763These are the places where Lua expects a list of expressions: 2764 2765<ul> 2766 2767<li>A <b>return</b> statement, 2768for instance <code>return e1, e2, e3</code> (see <a href="#3.3.4">§3.3.4</a>).</li> 2769 2770<li>A table constructor, 2771for instance <code>{e1, e2, e3}</code> (see <a href="#3.4.9">§3.4.9</a>).</li> 2772 2773<li>The arguments of a function call, 2774for instance <code>foo(e1, e2, e3)</code> (see <a href="#3.4.10">§3.4.10</a>).</li> 2775 2776<li>A multiple assignment, 2777for instance <code>a , b, c = e1, e2, e3</code> (see <a href="#3.3.3">§3.3.3</a>).</li> 2778 2779<li>A local declaration, 2780for instance <code>local a , b, c = e1, e2, e3</code> (see <a href="#3.3.7">§3.3.7</a>).</li> 2781 2782<li>The initial values in a generic <b>for</b> loop, 2783for instance <code>for k in e1, e2, e3 do ... end</code> (see <a href="#3.3.5">§3.3.5</a>).</li> 2784 2785</ul><p> 2786In the last four cases, 2787the list of values from the list of expressions 2788must be <em>adjusted</em> to a specific length: 2789the number of parameters in a call to a non-variadic function 2790(see <a href="#3.4.11">§3.4.11</a>), 2791the number of variables in a multiple assignment or 2792a local declaration, 2793and exactly four values for a generic <b>for</b> loop. 2794The <em>adjustment</em> follows these rules: 2795If there are more values than needed, 2796the extra values are thrown away; 2797if there are fewer values than needed, 2798the list is extended with <b>nil</b>'s. 2799When the list of expressions ends with a multires expression, 2800all results from that expression enter the list of values 2801before the adjustment. 2802 2803 2804<p> 2805When a multires expression is used 2806in a list of expressions without being the last element, 2807or in a place where the syntax expects a single expression, 2808Lua adjusts the result list of that expression to one element. 2809As a particular case, 2810the syntax expects a single expression inside a parenthesized expression; 2811therefore, adding parentheses around a multires expression 2812forces it to produce exactly one result. 2813 2814 2815<p> 2816We seldom need to use a vararg expression in a place 2817where the syntax expects a single expression. 2818(Usually it is simpler to add a regular parameter before 2819the variadic part and use that parameter.) 2820When there is such a need, 2821we recommend assigning the vararg expression 2822to a single variable and using that variable 2823in its place. 2824 2825 2826<p> 2827Here are some examples of uses of mutlres expressions. 2828In all cases, when the construction needs 2829"the n-th result" and there is no such result, 2830it uses a <b>nil</b>. 2831 2832<pre> 2833 print(x, f()) -- prints x and all results from f(). 2834 print(x, (f())) -- prints x and the first result from f(). 2835 print(f(), x) -- prints the first result from f() and x. 2836 print(1 + f()) -- prints 1 added to the first result from f(). 2837 local x = ... -- x gets the first vararg argument. 2838 x,y = ... -- x gets the first vararg argument, 2839 -- y gets the second vararg argument. 2840 x,y,z = w, f() -- x gets w, y gets the first result from f(), 2841 -- z gets the second result from f(). 2842 x,y,z = f() -- x gets the first result from f(), 2843 -- y gets the second result from f(), 2844 -- z gets the third result from f(). 2845 x,y,z = f(), g() -- x gets the first result from f(), 2846 -- y gets the first result from g(), 2847 -- z gets the second result from g(). 2848 x,y,z = (f()) -- x gets the first result from f(), y and z get nil. 2849 return f() -- returns all results from f(). 2850 return x, ... -- returns x and all received vararg arguments. 2851 return x,y,f() -- returns x, y, and all results from f(). 2852 {f()} -- creates a list with all results from f(). 2853 {...} -- creates a list with all vararg arguments. 2854 {f(), 5} -- creates a list with the first result from f() and 5. 2855</pre> 2856 2857 2858 2859 2860 2861 2862<h2>3.5 – <a name="3.5">Visibility Rules</a></h2> 2863 2864<p> 2865 2866Lua is a lexically scoped language. 2867The scope of a local variable begins at the first statement after 2868its declaration and lasts until the last non-void statement 2869of the innermost block that includes the declaration. 2870(<em>Void statements</em> are labels and empty statements.) 2871Consider the following example: 2872 2873<pre> 2874 x = 10 -- global variable 2875 do -- new block 2876 local x = x -- new 'x', with value 10 2877 print(x) --> 10 2878 x = x+1 2879 do -- another block 2880 local x = x+1 -- another 'x' 2881 print(x) --> 12 2882 end 2883 print(x) --> 11 2884 end 2885 print(x) --> 10 (the global one) 2886</pre> 2887 2888<p> 2889Notice that, in a declaration like <code>local x = x</code>, 2890the new <code>x</code> being declared is not in scope yet, 2891and so the second <code>x</code> refers to the outside variable. 2892 2893 2894<p> 2895Because of the lexical scoping rules, 2896local variables can be freely accessed by functions 2897defined inside their scope. 2898A local variable used by an inner function is called an <em>upvalue</em> 2899(or <em>external local variable</em>, or simply <em>external variable</em>) 2900inside the inner function. 2901 2902 2903<p> 2904Notice that each execution of a <b>local</b> statement 2905defines new local variables. 2906Consider the following example: 2907 2908<pre> 2909 a = {} 2910 local x = 20 2911 for i = 1, 10 do 2912 local y = 0 2913 a[i] = function () y = y + 1; return x + y end 2914 end 2915</pre><p> 2916The loop creates ten closures 2917(that is, ten instances of the anonymous function). 2918Each of these closures uses a different <code>y</code> variable, 2919while all of them share the same <code>x</code>. 2920 2921 2922 2923 2924 2925<h1>4 – <a name="4">The Application Program Interface</a></h1> 2926 2927 2928 2929<p> 2930 2931This section describes the C API for Lua, that is, 2932the set of C functions available to the host program to communicate 2933with Lua. 2934All API functions and related types and constants 2935are declared in the header file <a name="pdf-lua.h"><code>lua.h</code></a>. 2936 2937 2938<p> 2939Even when we use the term "function", 2940any facility in the API may be provided as a macro instead. 2941Except where stated otherwise, 2942all such macros use each of their arguments exactly once 2943(except for the first argument, which is always a Lua state), 2944and so do not generate any hidden side-effects. 2945 2946 2947<p> 2948As in most C libraries, 2949the Lua API functions do not check their arguments 2950for validity or consistency. 2951However, you can change this behavior by compiling Lua 2952with the macro <a name="pdf-LUA_USE_APICHECK"><code>LUA_USE_APICHECK</code></a> defined. 2953 2954 2955<p> 2956The Lua library is fully reentrant: 2957it has no global variables. 2958It keeps all information it needs in a dynamic structure, 2959called the <em>Lua state</em>. 2960 2961 2962<p> 2963Each Lua state has one or more threads, 2964which correspond to independent, cooperative lines of execution. 2965The type <a href="#lua_State"><code>lua_State</code></a> (despite its name) refers to a thread. 2966(Indirectly, through the thread, it also refers to the 2967Lua state associated to the thread.) 2968 2969 2970<p> 2971A pointer to a thread must be passed as the first argument to 2972every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>, 2973which creates a Lua state from scratch and returns a pointer 2974to the <em>main thread</em> in the new state. 2975 2976 2977 2978 2979 2980<h2>4.1 – <a name="4.1">The Stack</a></h2> 2981 2982 2983 2984<p> 2985Lua uses a <em>virtual stack</em> to pass values to and from C. 2986Each element in this stack represents a Lua value 2987(<b>nil</b>, number, string, etc.). 2988Functions in the API can access this stack through the 2989Lua state parameter that they receive. 2990 2991 2992<p> 2993Whenever Lua calls C, the called function gets a new stack, 2994which is independent of previous stacks and of stacks of 2995C functions that are still active. 2996This stack initially contains any arguments to the C function 2997and it is where the C function can store temporary 2998Lua values and must push its results 2999to be returned to the caller (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>). 3000 3001 3002<p> 3003For convenience, 3004most query operations in the API do not follow a strict stack discipline. 3005Instead, they can refer to any element in the stack 3006by using an <em>index</em>: 3007A positive index represents an absolute stack position, 3008starting at 1 as the bottom of the stack; 3009a negative index represents an offset relative to the top of the stack. 3010More specifically, if the stack has <em>n</em> elements, 3011then index 1 represents the first element 3012(that is, the element that was pushed onto the stack first) 3013and 3014index <em>n</em> represents the last element; 3015index -1 also represents the last element 3016(that is, the element at the top) 3017and index <em>-n</em> represents the first element. 3018 3019 3020 3021 3022 3023<h3>4.1.1 – <a name="4.1.1">Stack Size</a></h3> 3024 3025<p> 3026When you interact with the Lua API, 3027you are responsible for ensuring consistency. 3028In particular, 3029<em>you are responsible for controlling stack overflow</em>. 3030When you call any API function, 3031you must ensure the stack has enough room to accommodate the results. 3032 3033 3034<p> 3035There is one exception to the above rule: 3036When you call a Lua function 3037without a fixed number of results (see <a href="#lua_call"><code>lua_call</code></a>), 3038Lua ensures that the stack has enough space for all results. 3039However, it does not ensure any extra space. 3040So, before pushing anything on the stack after such a call 3041you should use <a href="#lua_checkstack"><code>lua_checkstack</code></a>. 3042 3043 3044<p> 3045Whenever Lua calls C, 3046it ensures that the stack has space for 3047at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> extra elements; 3048that is, you can safely push up to <code>LUA_MINSTACK</code> values into it. 3049<code>LUA_MINSTACK</code> is defined as 20, 3050so that usually you do not have to worry about stack space 3051unless your code has loops pushing elements onto the stack. 3052Whenever necessary, 3053you can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a> 3054to ensure that the stack has enough space for pushing new elements. 3055 3056 3057 3058 3059 3060<h3>4.1.2 – <a name="4.1.2">Valid and Acceptable Indices</a></h3> 3061 3062<p> 3063Any function in the API that receives stack indices 3064works only with <em>valid indices</em> or <em>acceptable indices</em>. 3065 3066 3067<p> 3068A <em>valid index</em> is an index that refers to a 3069position that stores a modifiable Lua value. 3070It comprises stack indices between 1 and the stack top 3071(<code>1 ≤ abs(index) ≤ top</code>) 3072 3073plus <em>pseudo-indices</em>, 3074which represent some positions that are accessible to C code 3075but that are not in the stack. 3076Pseudo-indices are used to access the registry (see <a href="#4.3">§4.3</a>) 3077and the upvalues of a C function (see <a href="#4.2">§4.2</a>). 3078 3079 3080<p> 3081Functions that do not need a specific mutable position, 3082but only a value (e.g., query functions), 3083can be called with acceptable indices. 3084An <em>acceptable index</em> can be any valid index, 3085but it also can be any positive index after the stack top 3086within the space allocated for the stack, 3087that is, indices up to the stack size. 3088(Note that 0 is never an acceptable index.) 3089Indices to upvalues (see <a href="#4.2">§4.2</a>) greater than the real number 3090of upvalues in the current C function are also acceptable (but invalid). 3091Except when noted otherwise, 3092functions in the API work with acceptable indices. 3093 3094 3095<p> 3096Acceptable indices serve to avoid extra tests 3097against the stack top when querying the stack. 3098For instance, a C function can query its third argument 3099without the need to check whether there is a third argument, 3100that is, without the need to check whether 3 is a valid index. 3101 3102 3103<p> 3104For functions that can be called with acceptable indices, 3105any non-valid index is treated as if it 3106contains a value of a virtual type <a name="pdf-LUA_TNONE"><code>LUA_TNONE</code></a>, 3107which behaves like a nil value. 3108 3109 3110 3111 3112 3113<h3>4.1.3 – <a name="4.1.3">Pointers to strings</a></h3> 3114 3115<p> 3116Several functions in the API return pointers (<code>const char*</code>) 3117to Lua strings in the stack. 3118(See <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, <a href="#lua_pushlstring"><code>lua_pushlstring</code></a>, 3119<a href="#lua_pushstring"><code>lua_pushstring</code></a>, and <a href="#lua_tolstring"><code>lua_tolstring</code></a>. 3120See also <a href="#luaL_checklstring"><code>luaL_checklstring</code></a>, <a href="#luaL_checkstring"><code>luaL_checkstring</code></a>, 3121and <a href="#luaL_tolstring"><code>luaL_tolstring</code></a> in the auxiliary library.) 3122 3123 3124<p> 3125In general, 3126Lua's garbage collection can free or move internal memory 3127and then invalidate pointers to internal strings. 3128To allow a safe use of these pointers, 3129the API guarantees that any pointer to a string in a stack index 3130is valid while the string value at that index is not removed from the stack. 3131(It can be moved to another index, though.) 3132When the index is a pseudo-index (referring to an upvalue), 3133the pointer is valid while the corresponding call is active and 3134the corresponding upvalue is not modified. 3135 3136 3137<p> 3138Some functions in the debug interface 3139also return pointers to strings, 3140namely <a href="#lua_getlocal"><code>lua_getlocal</code></a>, <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>, 3141<a href="#lua_setlocal"><code>lua_setlocal</code></a>, and <a href="#lua_setupvalue"><code>lua_setupvalue</code></a>. 3142For these functions, the pointer is guaranteed to 3143be valid while the caller function is active and 3144the given closure (if one was given) is in the stack. 3145 3146 3147<p> 3148Except for these guarantees, 3149the garbage collector is free to invalidate 3150any pointer to internal strings. 3151 3152 3153 3154 3155 3156 3157 3158<h2>4.2 – <a name="4.2">C Closures</a></h2> 3159 3160<p> 3161When a C function is created, 3162it is possible to associate some values with it, 3163thus creating a <em>C closure</em> 3164(see <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>); 3165these values are called <em>upvalues</em> and are 3166accessible to the function whenever it is called. 3167 3168 3169<p> 3170Whenever a C function is called, 3171its upvalues are located at specific pseudo-indices. 3172These pseudo-indices are produced by the macro 3173<a href="#lua_upvalueindex"><code>lua_upvalueindex</code></a>. 3174The first upvalue associated with a function is at index 3175<code>lua_upvalueindex(1)</code>, and so on. 3176Any access to <code>lua_upvalueindex(<em>n</em>)</code>, 3177where <em>n</em> is greater than the number of upvalues of the 3178current function 3179(but not greater than 256, 3180which is one plus the maximum number of upvalues in a closure), 3181produces an acceptable but invalid index. 3182 3183 3184<p> 3185A C closure can also change the values 3186of its corresponding upvalues. 3187 3188 3189 3190 3191 3192<h2>4.3 – <a name="4.3">Registry</a></h2> 3193 3194<p> 3195Lua provides a <em>registry</em>, 3196a predefined table that can be used by any C code to 3197store whatever Lua values it needs to store. 3198The registry table is always accessible at pseudo-index 3199<a name="pdf-LUA_REGISTRYINDEX"><code>LUA_REGISTRYINDEX</code></a>. 3200Any C library can store data into this table, 3201but it must take care to choose keys 3202that are different from those used 3203by other libraries, to avoid collisions. 3204Typically, you should use as key a string containing your library name, 3205or a light userdata with the address of a C object in your code, 3206or any Lua object created by your code. 3207As with variable names, 3208string keys starting with an underscore followed by 3209uppercase letters are reserved for Lua. 3210 3211 3212<p> 3213The integer keys in the registry are used 3214by the reference mechanism (see <a href="#luaL_ref"><code>luaL_ref</code></a>) 3215and by some predefined values. 3216Therefore, integer keys in the registry 3217must not be used for other purposes. 3218 3219 3220<p> 3221When you create a new Lua state, 3222its registry comes with some predefined values. 3223These predefined values are indexed with integer keys 3224defined as constants in <code>lua.h</code>. 3225The following constants are defined: 3226 3227<ul> 3228<li><b><a name="pdf-LUA_RIDX_MAINTHREAD"><code>LUA_RIDX_MAINTHREAD</code></a>: </b> At this index the registry has 3229the main thread of the state. 3230(The main thread is the one created together with the state.) 3231</li> 3232 3233<li><b><a name="pdf-LUA_RIDX_GLOBALS"><code>LUA_RIDX_GLOBALS</code></a>: </b> At this index the registry has 3234the global environment. 3235</li> 3236</ul> 3237 3238 3239 3240 3241<h2>4.4 – <a name="4.4">Error Handling in C</a></h2> 3242 3243 3244 3245<p> 3246Internally, Lua uses the C <code>longjmp</code> facility to handle errors. 3247(Lua will use exceptions if you compile it as C++; 3248search for <code>LUAI_THROW</code> in the source code for details.) 3249When Lua faces any error, 3250such as a memory allocation error or a type error, 3251it <em>raises</em> an error; 3252that is, it does a long jump. 3253A <em>protected environment</em> uses <code>setjmp</code> 3254to set a recovery point; 3255any error jumps to the most recent active recovery point. 3256 3257 3258<p> 3259Inside a C function you can raise an error explicitly 3260by calling <a href="#lua_error"><code>lua_error</code></a>. 3261 3262 3263<p> 3264Most functions in the API can raise an error, 3265for instance due to a memory allocation error. 3266The documentation for each function indicates whether 3267it can raise errors. 3268 3269 3270<p> 3271If an error happens outside any protected environment, 3272Lua calls a <em>panic function</em> (see <a href="#lua_atpanic"><code>lua_atpanic</code></a>) 3273and then calls <code>abort</code>, 3274thus exiting the host application. 3275Your panic function can avoid this exit by 3276never returning 3277(e.g., doing a long jump to your own recovery point outside Lua). 3278 3279 3280<p> 3281The panic function, 3282as its name implies, 3283is a mechanism of last resort. 3284Programs should avoid it. 3285As a general rule, 3286when a C function is called by Lua with a Lua state, 3287it can do whatever it wants on that Lua state, 3288as it should be already protected. 3289However, 3290when C code operates on other Lua states 3291(e.g., a Lua-state argument to the function, 3292a Lua state stored in the registry, or 3293the result of <a href="#lua_newthread"><code>lua_newthread</code></a>), 3294it should use them only in API calls that cannot raise errors. 3295 3296 3297<p> 3298The panic function runs as if it were a message handler (see <a href="#2.3">§2.3</a>); 3299in particular, the error object is on the top of the stack. 3300However, there is no guarantee about stack space. 3301To push anything on the stack, 3302the panic function must first check the available space (see <a href="#4.1.1">§4.1.1</a>). 3303 3304 3305 3306 3307 3308<h3>4.4.1 – <a name="4.4.1">Status Codes</a></h3> 3309 3310<p> 3311Several functions that report errors in the API use the following 3312status codes to indicate different kinds of errors or other conditions: 3313 3314<ul> 3315 3316<li><b><a name="pdf-LUA_OK"><code>LUA_OK</code></a> (0): </b> no errors.</li> 3317 3318<li><b><a name="pdf-LUA_ERRRUN"><code>LUA_ERRRUN</code></a>: </b> a runtime error.</li> 3319 3320<li><b><a name="pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b> 3321memory allocation error. 3322For such errors, Lua does not call the message handler. 3323</li> 3324 3325<li><b><a name="pdf-LUA_ERRERR"><code>LUA_ERRERR</code></a>: </b> error while running the message handler.</li> 3326 3327<li><b><a name="pdf-LUA_ERRSYNTAX"><code>LUA_ERRSYNTAX</code></a>: </b> syntax error during precompilation.</li> 3328 3329<li><b><a name="pdf-LUA_YIELD"><code>LUA_YIELD</code></a>: </b> the thread (coroutine) yields.</li> 3330 3331<li><b><a name="pdf-LUA_ERRFILE"><code>LUA_ERRFILE</code></a>: </b> a file-related error; 3332e.g., it cannot open or read the file.</li> 3333 3334</ul><p> 3335These constants are defined in the header file <code>lua.h</code>. 3336 3337 3338 3339 3340 3341 3342 3343<h2>4.5 – <a name="4.5">Handling Yields in C</a></h2> 3344 3345<p> 3346Internally, Lua uses the C <code>longjmp</code> facility to yield a coroutine. 3347Therefore, if a C function <code>foo</code> calls an API function 3348and this API function yields 3349(directly or indirectly by calling another function that yields), 3350Lua cannot return to <code>foo</code> any more, 3351because the <code>longjmp</code> removes its frame from the C stack. 3352 3353 3354<p> 3355To avoid this kind of problem, 3356Lua raises an error whenever it tries to yield across an API call, 3357except for three functions: 3358<a href="#lua_yieldk"><code>lua_yieldk</code></a>, <a href="#lua_callk"><code>lua_callk</code></a>, and <a href="#lua_pcallk"><code>lua_pcallk</code></a>. 3359All those functions receive a <em>continuation function</em> 3360(as a parameter named <code>k</code>) to continue execution after a yield. 3361 3362 3363<p> 3364We need to set some terminology to explain continuations. 3365We have a C function called from Lua which we will call 3366the <em>original function</em>. 3367This original function then calls one of those three functions in the C API, 3368which we will call the <em>callee function</em>, 3369that then yields the current thread. 3370This can happen when the callee function is <a href="#lua_yieldk"><code>lua_yieldk</code></a>, 3371or when the callee function is either <a href="#lua_callk"><code>lua_callk</code></a> or <a href="#lua_pcallk"><code>lua_pcallk</code></a> 3372and the function called by them yields. 3373 3374 3375<p> 3376Suppose the running thread yields while executing the callee function. 3377After the thread resumes, 3378it eventually will finish running the callee function. 3379However, 3380the callee function cannot return to the original function, 3381because its frame in the C stack was destroyed by the yield. 3382Instead, Lua calls a <em>continuation function</em>, 3383which was given as an argument to the callee function. 3384As the name implies, 3385the continuation function should continue the task 3386of the original function. 3387 3388 3389<p> 3390As an illustration, consider the following function: 3391 3392<pre> 3393 int original_function (lua_State *L) { 3394 ... /* code 1 */ 3395 status = lua_pcall(L, n, m, h); /* calls Lua */ 3396 ... /* code 2 */ 3397 } 3398</pre><p> 3399Now we want to allow 3400the Lua code being run by <a href="#lua_pcall"><code>lua_pcall</code></a> to yield. 3401First, we can rewrite our function like here: 3402 3403<pre> 3404 int k (lua_State *L, int status, lua_KContext ctx) { 3405 ... /* code 2 */ 3406 } 3407 3408 int original_function (lua_State *L) { 3409 ... /* code 1 */ 3410 return k(L, lua_pcall(L, n, m, h), ctx); 3411 } 3412</pre><p> 3413In the above code, 3414the new function <code>k</code> is a 3415<em>continuation function</em> (with type <a href="#lua_KFunction"><code>lua_KFunction</code></a>), 3416which should do all the work that the original function 3417was doing after calling <a href="#lua_pcall"><code>lua_pcall</code></a>. 3418Now, we must inform Lua that it must call <code>k</code> if the Lua code 3419being executed by <a href="#lua_pcall"><code>lua_pcall</code></a> gets interrupted in some way 3420(errors or yielding), 3421so we rewrite the code as here, 3422replacing <a href="#lua_pcall"><code>lua_pcall</code></a> by <a href="#lua_pcallk"><code>lua_pcallk</code></a>: 3423 3424<pre> 3425 int original_function (lua_State *L) { 3426 ... /* code 1 */ 3427 return k(L, lua_pcallk(L, n, m, h, ctx2, k), ctx1); 3428 } 3429</pre><p> 3430Note the external, explicit call to the continuation: 3431Lua will call the continuation only if needed, that is, 3432in case of errors or resuming after a yield. 3433If the called function returns normally without ever yielding, 3434<a href="#lua_pcallk"><code>lua_pcallk</code></a> (and <a href="#lua_callk"><code>lua_callk</code></a>) will also return normally. 3435(Of course, instead of calling the continuation in that case, 3436you can do the equivalent work directly inside the original function.) 3437 3438 3439<p> 3440Besides the Lua state, 3441the continuation function has two other parameters: 3442the final status of the call and the context value (<code>ctx</code>) that 3443was passed originally to <a href="#lua_pcallk"><code>lua_pcallk</code></a>. 3444Lua does not use this context value; 3445it only passes this value from the original function to the 3446continuation function. 3447For <a href="#lua_pcallk"><code>lua_pcallk</code></a>, 3448the status is the same value that would be returned by <a href="#lua_pcallk"><code>lua_pcallk</code></a>, 3449except that it is <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when being executed after a yield 3450(instead of <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>). 3451For <a href="#lua_yieldk"><code>lua_yieldk</code></a> and <a href="#lua_callk"><code>lua_callk</code></a>, 3452the status is always <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when Lua calls the continuation. 3453(For these two functions, 3454Lua will not call the continuation in case of errors, 3455because they do not handle errors.) 3456Similarly, when using <a href="#lua_callk"><code>lua_callk</code></a>, 3457you should call the continuation function 3458with <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> as the status. 3459(For <a href="#lua_yieldk"><code>lua_yieldk</code></a>, there is not much point in calling 3460directly the continuation function, 3461because <a href="#lua_yieldk"><code>lua_yieldk</code></a> usually does not return.) 3462 3463 3464<p> 3465Lua treats the continuation function as if it were the original function. 3466The continuation function receives the same Lua stack 3467from the original function, 3468in the same state it would be if the callee function had returned. 3469(For instance, 3470after a <a href="#lua_callk"><code>lua_callk</code></a> the function and its arguments are 3471removed from the stack and replaced by the results from the call.) 3472It also has the same upvalues. 3473Whatever it returns is handled by Lua as if it were the return 3474of the original function. 3475 3476 3477 3478 3479 3480<h2>4.6 – <a name="4.6">Functions and Types</a></h2> 3481 3482<p> 3483Here we list all functions and types from the C API in 3484alphabetical order. 3485Each function has an indicator like this: 3486<span class="apii">[-o, +p, <em>x</em>]</span> 3487 3488 3489<p> 3490The first field, <code>o</code>, 3491is how many elements the function pops from the stack. 3492The second field, <code>p</code>, 3493is how many elements the function pushes onto the stack. 3494(Any function always pushes its results after popping its arguments.) 3495A field in the form <code>x|y</code> means the function can push (or pop) 3496<code>x</code> or <code>y</code> elements, 3497depending on the situation; 3498an interrogation mark '<code>?</code>' means that 3499we cannot know how many elements the function pops/pushes 3500by looking only at its arguments. 3501(For instance, they may depend on what is in the stack.) 3502The third field, <code>x</code>, 3503tells whether the function may raise errors: 3504'<code>-</code>' means the function never raises any error; 3505'<code>m</code>' means the function may raise only out-of-memory errors; 3506'<code>v</code>' means the function may raise the errors explained in the text; 3507'<code>e</code>' means the function can run arbitrary Lua code, 3508either directly or through metamethods, 3509and therefore may raise any errors. 3510 3511 3512 3513<hr><h3><a name="lua_absindex"><code>lua_absindex</code></a></h3><p> 3514<span class="apii">[-0, +0, –]</span> 3515<pre>int lua_absindex (lua_State *L, int idx);</pre> 3516 3517<p> 3518Converts the acceptable index <code>idx</code> 3519into an equivalent absolute index 3520(that is, one that does not depend on the stack size). 3521 3522 3523 3524 3525 3526<hr><h3><a name="lua_Alloc"><code>lua_Alloc</code></a></h3> 3527<pre>typedef void * (*lua_Alloc) (void *ud, 3528 void *ptr, 3529 size_t osize, 3530 size_t nsize);</pre> 3531 3532<p> 3533The type of the memory-allocation function used by Lua states. 3534The allocator function must provide a 3535functionality similar to <code>realloc</code>, 3536but not exactly the same. 3537Its arguments are 3538<code>ud</code>, an opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>; 3539<code>ptr</code>, a pointer to the block being allocated/reallocated/freed; 3540<code>osize</code>, the original size of the block or some code about what 3541is being allocated; 3542and <code>nsize</code>, the new size of the block. 3543 3544 3545<p> 3546When <code>ptr</code> is not <code>NULL</code>, 3547<code>osize</code> is the size of the block pointed by <code>ptr</code>, 3548that is, the size given when it was allocated or reallocated. 3549 3550 3551<p> 3552When <code>ptr</code> is <code>NULL</code>, 3553<code>osize</code> encodes the kind of object that Lua is allocating. 3554<code>osize</code> is any of 3555<a href="#pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>, <a href="#pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>, <a href="#pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>, 3556<a href="#pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>, or <a href="#pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a> when (and only when) 3557Lua is creating a new object of that type. 3558When <code>osize</code> is some other value, 3559Lua is allocating memory for something else. 3560 3561 3562<p> 3563Lua assumes the following behavior from the allocator function: 3564 3565 3566<p> 3567When <code>nsize</code> is zero, 3568the allocator must behave like <code>free</code> 3569and then return <code>NULL</code>. 3570 3571 3572<p> 3573When <code>nsize</code> is not zero, 3574the allocator must behave like <code>realloc</code>. 3575In particular, the allocator returns <code>NULL</code> 3576if and only if it cannot fulfill the request. 3577 3578 3579<p> 3580Here is a simple implementation for the allocator function. 3581It is used in the auxiliary library by <a href="#luaL_newstate"><code>luaL_newstate</code></a>. 3582 3583<pre> 3584 static void *l_alloc (void *ud, void *ptr, size_t osize, 3585 size_t nsize) { 3586 (void)ud; (void)osize; /* not used */ 3587 if (nsize == 0) { 3588 free(ptr); 3589 return NULL; 3590 } 3591 else 3592 return realloc(ptr, nsize); 3593 } 3594</pre><p> 3595Note that ISO C ensures 3596that <code>free(NULL)</code> has no effect and that 3597<code>realloc(NULL,size)</code> is equivalent to <code>malloc(size)</code>. 3598 3599 3600 3601 3602 3603<hr><h3><a name="lua_arith"><code>lua_arith</code></a></h3><p> 3604<span class="apii">[-(2|1), +1, <em>e</em>]</span> 3605<pre>void lua_arith (lua_State *L, int op);</pre> 3606 3607<p> 3608Performs an arithmetic or bitwise operation over the two values 3609(or one, in the case of negations) 3610at the top of the stack, 3611with the value on the top being the second operand, 3612pops these values, and pushes the result of the operation. 3613The function follows the semantics of the corresponding Lua operator 3614(that is, it may call metamethods). 3615 3616 3617<p> 3618The value of <code>op</code> must be one of the following constants: 3619 3620<ul> 3621 3622<li><b><a name="pdf-LUA_OPADD"><code>LUA_OPADD</code></a>: </b> performs addition (<code>+</code>)</li> 3623<li><b><a name="pdf-LUA_OPSUB"><code>LUA_OPSUB</code></a>: </b> performs subtraction (<code>-</code>)</li> 3624<li><b><a name="pdf-LUA_OPMUL"><code>LUA_OPMUL</code></a>: </b> performs multiplication (<code>*</code>)</li> 3625<li><b><a name="pdf-LUA_OPDIV"><code>LUA_OPDIV</code></a>: </b> performs float division (<code>/</code>)</li> 3626<li><b><a name="pdf-LUA_OPIDIV"><code>LUA_OPIDIV</code></a>: </b> performs floor division (<code>//</code>)</li> 3627<li><b><a name="pdf-LUA_OPMOD"><code>LUA_OPMOD</code></a>: </b> performs modulo (<code>%</code>)</li> 3628<li><b><a name="pdf-LUA_OPPOW"><code>LUA_OPPOW</code></a>: </b> performs exponentiation (<code>^</code>)</li> 3629<li><b><a name="pdf-LUA_OPUNM"><code>LUA_OPUNM</code></a>: </b> performs mathematical negation (unary <code>-</code>)</li> 3630<li><b><a name="pdf-LUA_OPBNOT"><code>LUA_OPBNOT</code></a>: </b> performs bitwise NOT (<code>~</code>)</li> 3631<li><b><a name="pdf-LUA_OPBAND"><code>LUA_OPBAND</code></a>: </b> performs bitwise AND (<code>&</code>)</li> 3632<li><b><a name="pdf-LUA_OPBOR"><code>LUA_OPBOR</code></a>: </b> performs bitwise OR (<code>|</code>)</li> 3633<li><b><a name="pdf-LUA_OPBXOR"><code>LUA_OPBXOR</code></a>: </b> performs bitwise exclusive OR (<code>~</code>)</li> 3634<li><b><a name="pdf-LUA_OPSHL"><code>LUA_OPSHL</code></a>: </b> performs left shift (<code><<</code>)</li> 3635<li><b><a name="pdf-LUA_OPSHR"><code>LUA_OPSHR</code></a>: </b> performs right shift (<code>>></code>)</li> 3636 3637</ul> 3638 3639 3640 3641 3642<hr><h3><a name="lua_atpanic"><code>lua_atpanic</code></a></h3><p> 3643<span class="apii">[-0, +0, –]</span> 3644<pre>lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);</pre> 3645 3646<p> 3647Sets a new panic function and returns the old one (see <a href="#4.4">§4.4</a>). 3648 3649 3650 3651 3652 3653<hr><h3><a name="lua_call"><code>lua_call</code></a></h3><p> 3654<span class="apii">[-(nargs+1), +nresults, <em>e</em>]</span> 3655<pre>void lua_call (lua_State *L, int nargs, int nresults);</pre> 3656 3657<p> 3658Calls a function. 3659Like regular Lua calls, 3660<code>lua_call</code> respects the <code>__call</code> metamethod. 3661So, here the word "function" 3662means any callable value. 3663 3664 3665<p> 3666To do a call you must use the following protocol: 3667first, the function to be called is pushed onto the stack; 3668then, the arguments to the call are pushed 3669in direct order; 3670that is, the first argument is pushed first. 3671Finally you call <a href="#lua_call"><code>lua_call</code></a>; 3672<code>nargs</code> is the number of arguments that you pushed onto the stack. 3673When the function returns, 3674all arguments and the function value are popped 3675and the call results are pushed onto the stack. 3676The number of results is adjusted to <code>nresults</code>, 3677unless <code>nresults</code> is <a name="pdf-LUA_MULTRET"><code>LUA_MULTRET</code></a>. 3678In this case, all results from the function are pushed; 3679Lua takes care that the returned values fit into the stack space, 3680but it does not ensure any extra space in the stack. 3681The function results are pushed onto the stack in direct order 3682(the first result is pushed first), 3683so that after the call the last result is on the top of the stack. 3684 3685 3686<p> 3687Any error while calling and running the function is propagated upwards 3688(with a <code>longjmp</code>). 3689 3690 3691<p> 3692The following example shows how the host program can do the 3693equivalent to this Lua code: 3694 3695<pre> 3696 a = f("how", t.x, 14) 3697</pre><p> 3698Here it is in C: 3699 3700<pre> 3701 lua_getglobal(L, "f"); /* function to be called */ 3702 lua_pushliteral(L, "how"); /* 1st argument */ 3703 lua_getglobal(L, "t"); /* table to be indexed */ 3704 lua_getfield(L, -1, "x"); /* push result of t.x (2nd arg) */ 3705 lua_remove(L, -2); /* remove 't' from the stack */ 3706 lua_pushinteger(L, 14); /* 3rd argument */ 3707 lua_call(L, 3, 1); /* call 'f' with 3 arguments and 1 result */ 3708 lua_setglobal(L, "a"); /* set global 'a' */ 3709</pre><p> 3710Note that the code above is <em>balanced</em>: 3711at its end, the stack is back to its original configuration. 3712This is considered good programming practice. 3713 3714 3715 3716 3717 3718<hr><h3><a name="lua_callk"><code>lua_callk</code></a></h3><p> 3719<span class="apii">[-(nargs + 1), +nresults, <em>e</em>]</span> 3720<pre>void lua_callk (lua_State *L, 3721 int nargs, 3722 int nresults, 3723 lua_KContext ctx, 3724 lua_KFunction k);</pre> 3725 3726<p> 3727This function behaves exactly like <a href="#lua_call"><code>lua_call</code></a>, 3728but allows the called function to yield (see <a href="#4.5">§4.5</a>). 3729 3730 3731 3732 3733 3734<hr><h3><a name="lua_CFunction"><code>lua_CFunction</code></a></h3> 3735<pre>typedef int (*lua_CFunction) (lua_State *L);</pre> 3736 3737<p> 3738Type for C functions. 3739 3740 3741<p> 3742In order to communicate properly with Lua, 3743a C function must use the following protocol, 3744which defines the way parameters and results are passed: 3745a C function receives its arguments from Lua in its stack 3746in direct order (the first argument is pushed first). 3747So, when the function starts, 3748<code>lua_gettop(L)</code> returns the number of arguments received by the function. 3749The first argument (if any) is at index 1 3750and its last argument is at index <code>lua_gettop(L)</code>. 3751To return values to Lua, a C function just pushes them onto the stack, 3752in direct order (the first result is pushed first), 3753and returns in C the number of results. 3754Any other value in the stack below the results will be properly 3755discarded by Lua. 3756Like a Lua function, a C function called by Lua can also return 3757many results. 3758 3759 3760<p> 3761As an example, the following function receives a variable number 3762of numeric arguments and returns their average and their sum: 3763 3764<pre> 3765 static int foo (lua_State *L) { 3766 int n = lua_gettop(L); /* number of arguments */ 3767 lua_Number sum = 0.0; 3768 int i; 3769 for (i = 1; i <= n; i++) { 3770 if (!lua_isnumber(L, i)) { 3771 lua_pushliteral(L, "incorrect argument"); 3772 lua_error(L); 3773 } 3774 sum += lua_tonumber(L, i); 3775 } 3776 lua_pushnumber(L, sum/n); /* first result */ 3777 lua_pushnumber(L, sum); /* second result */ 3778 return 2; /* number of results */ 3779 } 3780</pre> 3781 3782 3783 3784 3785<hr><h3><a name="lua_checkstack"><code>lua_checkstack</code></a></h3><p> 3786<span class="apii">[-0, +0, –]</span> 3787<pre>int lua_checkstack (lua_State *L, int n);</pre> 3788 3789<p> 3790Ensures that the stack has space for at least <code>n</code> extra elements, 3791that is, that you can safely push up to <code>n</code> values into it. 3792It returns false if it cannot fulfill the request, 3793either because it would cause the stack 3794to be greater than a fixed maximum size 3795(typically at least several thousand elements) or 3796because it cannot allocate memory for the extra space. 3797This function never shrinks the stack; 3798if the stack already has space for the extra elements, 3799it is left unchanged. 3800 3801 3802 3803 3804 3805<hr><h3><a name="lua_close"><code>lua_close</code></a></h3><p> 3806<span class="apii">[-0, +0, –]</span> 3807<pre>void lua_close (lua_State *L);</pre> 3808 3809<p> 3810Close all active to-be-closed variables in the main thread, 3811release all objects in the given Lua state 3812(calling the corresponding garbage-collection metamethods, if any), 3813and frees all dynamic memory used by this state. 3814 3815 3816<p> 3817On several platforms, you may not need to call this function, 3818because all resources are naturally released when the host program ends. 3819On the other hand, long-running programs that create multiple states, 3820such as daemons or web servers, 3821will probably need to close states as soon as they are not needed. 3822 3823 3824 3825 3826 3827<hr><h3><a name="lua_closeslot"><code>lua_closeslot</code></a></h3><p> 3828<span class="apii">[-0, +0, <em>e</em>]</span> 3829<pre>void lua_closeslot (lua_State *L, int index);</pre> 3830 3831<p> 3832Close the to-be-closed slot at the given index and set its value to <b>nil</b>. 3833The index must be the last index previously marked to be closed 3834(see <a href="#lua_toclose"><code>lua_toclose</code></a>) that is still active (that is, not closed yet). 3835 3836 3837<p> 3838A <code>__close</code> metamethod cannot yield 3839when called through this function. 3840 3841 3842<p> 3843(This function was introduced in release 5.4.3.) 3844 3845 3846 3847 3848 3849<hr><h3><a name="lua_closethread"><code>lua_closethread</code></a></h3><p> 3850<span class="apii">[-0, +?, –]</span> 3851<pre>int lua_closethread (lua_State *L, lua_State *from);</pre> 3852 3853<p> 3854Resets a thread, cleaning its call stack and closing all pending 3855to-be-closed variables. 3856Returns a status code: 3857<a href="#pdf-LUA_OK"><code>LUA_OK</code></a> for no errors in the thread 3858(either the original error that stopped the thread or 3859errors in closing methods), 3860or an error status otherwise. 3861In case of error, 3862leaves the error object on the top of the stack. 3863 3864 3865<p> 3866The parameter <code>from</code> represents the coroutine that is resetting <code>L</code>. 3867If there is no such coroutine, 3868this parameter can be <code>NULL</code>. 3869 3870 3871<p> 3872(This function was introduced in release 5.4.6.) 3873 3874 3875 3876 3877 3878<hr><h3><a name="lua_compare"><code>lua_compare</code></a></h3><p> 3879<span class="apii">[-0, +0, <em>e</em>]</span> 3880<pre>int lua_compare (lua_State *L, int index1, int index2, int op);</pre> 3881 3882<p> 3883Compares two Lua values. 3884Returns 1 if the value at index <code>index1</code> satisfies <code>op</code> 3885when compared with the value at index <code>index2</code>, 3886following the semantics of the corresponding Lua operator 3887(that is, it may call metamethods). 3888Otherwise returns 0. 3889Also returns 0 if any of the indices is not valid. 3890 3891 3892<p> 3893The value of <code>op</code> must be one of the following constants: 3894 3895<ul> 3896 3897<li><b><a name="pdf-LUA_OPEQ"><code>LUA_OPEQ</code></a>: </b> compares for equality (<code>==</code>)</li> 3898<li><b><a name="pdf-LUA_OPLT"><code>LUA_OPLT</code></a>: </b> compares for less than (<code><</code>)</li> 3899<li><b><a name="pdf-LUA_OPLE"><code>LUA_OPLE</code></a>: </b> compares for less or equal (<code><=</code>)</li> 3900 3901</ul> 3902 3903 3904 3905 3906<hr><h3><a name="lua_concat"><code>lua_concat</code></a></h3><p> 3907<span class="apii">[-n, +1, <em>e</em>]</span> 3908<pre>void lua_concat (lua_State *L, int n);</pre> 3909 3910<p> 3911Concatenates the <code>n</code> values at the top of the stack, 3912pops them, and leaves the result on the top. 3913If <code>n</code> is 1, the result is the single value on the stack 3914(that is, the function does nothing); 3915if <code>n</code> is 0, the result is the empty string. 3916Concatenation is performed following the usual semantics of Lua 3917(see <a href="#3.4.6">§3.4.6</a>). 3918 3919 3920 3921 3922 3923<hr><h3><a name="lua_copy"><code>lua_copy</code></a></h3><p> 3924<span class="apii">[-0, +0, –]</span> 3925<pre>void lua_copy (lua_State *L, int fromidx, int toidx);</pre> 3926 3927<p> 3928Copies the element at index <code>fromidx</code> 3929into the valid index <code>toidx</code>, 3930replacing the value at that position. 3931Values at other positions are not affected. 3932 3933 3934 3935 3936 3937<hr><h3><a name="lua_createtable"><code>lua_createtable</code></a></h3><p> 3938<span class="apii">[-0, +1, <em>m</em>]</span> 3939<pre>void lua_createtable (lua_State *L, int narr, int nrec);</pre> 3940 3941<p> 3942Creates a new empty table and pushes it onto the stack. 3943Parameter <code>narr</code> is a hint for how many elements the table 3944will have as a sequence; 3945parameter <code>nrec</code> is a hint for how many other elements 3946the table will have. 3947Lua may use these hints to preallocate memory for the new table. 3948This preallocation may help performance when you know in advance 3949how many elements the table will have. 3950Otherwise you can use the function <a href="#lua_newtable"><code>lua_newtable</code></a>. 3951 3952 3953 3954 3955 3956<hr><h3><a name="lua_dump"><code>lua_dump</code></a></h3><p> 3957<span class="apii">[-0, +0, –]</span> 3958<pre>int lua_dump (lua_State *L, 3959 lua_Writer writer, 3960 void *data, 3961 int strip);</pre> 3962 3963<p> 3964Dumps a function as a binary chunk. 3965Receives a Lua function on the top of the stack 3966and produces a binary chunk that, 3967if loaded again, 3968results in a function equivalent to the one dumped. 3969As it produces parts of the chunk, 3970<a href="#lua_dump"><code>lua_dump</code></a> calls function <code>writer</code> (see <a href="#lua_Writer"><code>lua_Writer</code></a>) 3971with the given <code>data</code> 3972to write them. 3973 3974 3975<p> 3976If <code>strip</code> is true, 3977the binary representation may not include all debug information 3978about the function, 3979to save space. 3980 3981 3982<p> 3983The value returned is the error code returned by the last 3984call to the writer; 39850 means no errors. 3986 3987 3988<p> 3989This function does not pop the Lua function from the stack. 3990 3991 3992 3993 3994 3995<hr><h3><a name="lua_error"><code>lua_error</code></a></h3><p> 3996<span class="apii">[-1, +0, <em>v</em>]</span> 3997<pre>int lua_error (lua_State *L);</pre> 3998 3999<p> 4000Raises a Lua error, 4001using the value on the top of the stack as the error object. 4002This function does a long jump, 4003and therefore never returns 4004(see <a href="#luaL_error"><code>luaL_error</code></a>). 4005 4006 4007 4008 4009 4010<hr><h3><a name="lua_gc"><code>lua_gc</code></a></h3><p> 4011<span class="apii">[-0, +0, –]</span> 4012<pre>int lua_gc (lua_State *L, int what, ...);</pre> 4013 4014<p> 4015Controls the garbage collector. 4016 4017 4018<p> 4019This function performs several tasks, 4020according to the value of the parameter <code>what</code>. 4021For options that need extra arguments, 4022they are listed after the option. 4023 4024<ul> 4025 4026<li><b><code>LUA_GCCOLLECT</code>: </b> 4027Performs a full garbage-collection cycle. 4028</li> 4029 4030<li><b><code>LUA_GCSTOP</code>: </b> 4031Stops the garbage collector. 4032</li> 4033 4034<li><b><code>LUA_GCRESTART</code>: </b> 4035Restarts the garbage collector. 4036</li> 4037 4038<li><b><code>LUA_GCCOUNT</code>: </b> 4039Returns the current amount of memory (in Kbytes) in use by Lua. 4040</li> 4041 4042<li><b><code>LUA_GCCOUNTB</code>: </b> 4043Returns the remainder of dividing the current amount of bytes of 4044memory in use by Lua by 1024. 4045</li> 4046 4047<li><b><code>LUA_GCSTEP</code> <code>(int stepsize)</code>: </b> 4048Performs an incremental step of garbage collection, 4049corresponding to the allocation of <code>stepsize</code> Kbytes. 4050</li> 4051 4052<li><b><code>LUA_GCISRUNNING</code>: </b> 4053Returns a boolean that tells whether the collector is running 4054(i.e., not stopped). 4055</li> 4056 4057<li><b><code>LUA_GCINC</code> (int pause, int stepmul, stepsize): </b> 4058Changes the collector to incremental mode 4059with the given parameters (see <a href="#2.5.1">§2.5.1</a>). 4060Returns the previous mode (<code>LUA_GCGEN</code> or <code>LUA_GCINC</code>). 4061</li> 4062 4063<li><b><code>LUA_GCGEN</code> (int minormul, int majormul): </b> 4064Changes the collector to generational mode 4065with the given parameters (see <a href="#2.5.2">§2.5.2</a>). 4066Returns the previous mode (<code>LUA_GCGEN</code> or <code>LUA_GCINC</code>). 4067</li> 4068 4069</ul><p> 4070For more details about these options, 4071see <a href="#pdf-collectgarbage"><code>collectgarbage</code></a>. 4072 4073 4074<p> 4075This function should not be called by a finalizer. 4076 4077 4078 4079 4080 4081<hr><h3><a name="lua_getallocf"><code>lua_getallocf</code></a></h3><p> 4082<span class="apii">[-0, +0, –]</span> 4083<pre>lua_Alloc lua_getallocf (lua_State *L, void **ud);</pre> 4084 4085<p> 4086Returns the memory-allocation function of a given state. 4087If <code>ud</code> is not <code>NULL</code>, Lua stores in <code>*ud</code> the 4088opaque pointer given when the memory-allocator function was set. 4089 4090 4091 4092 4093 4094<hr><h3><a name="lua_getfield"><code>lua_getfield</code></a></h3><p> 4095<span class="apii">[-0, +1, <em>e</em>]</span> 4096<pre>int lua_getfield (lua_State *L, int index, const char *k);</pre> 4097 4098<p> 4099Pushes onto the stack the value <code>t[k]</code>, 4100where <code>t</code> is the value at the given index. 4101As in Lua, this function may trigger a metamethod 4102for the "index" event (see <a href="#2.4">§2.4</a>). 4103 4104 4105<p> 4106Returns the type of the pushed value. 4107 4108 4109 4110 4111 4112<hr><h3><a name="lua_getextraspace"><code>lua_getextraspace</code></a></h3><p> 4113<span class="apii">[-0, +0, –]</span> 4114<pre>void *lua_getextraspace (lua_State *L);</pre> 4115 4116<p> 4117Returns a pointer to a raw memory area associated with the 4118given Lua state. 4119The application can use this area for any purpose; 4120Lua does not use it for anything. 4121 4122 4123<p> 4124Each new thread has this area initialized with a copy 4125of the area of the main thread. 4126 4127 4128<p> 4129By default, this area has the size of a pointer to void, 4130but you can recompile Lua with a different size for this area. 4131(See <code>LUA_EXTRASPACE</code> in <code>luaconf.h</code>.) 4132 4133 4134 4135 4136 4137<hr><h3><a name="lua_getglobal"><code>lua_getglobal</code></a></h3><p> 4138<span class="apii">[-0, +1, <em>e</em>]</span> 4139<pre>int lua_getglobal (lua_State *L, const char *name);</pre> 4140 4141<p> 4142Pushes onto the stack the value of the global <code>name</code>. 4143Returns the type of that value. 4144 4145 4146 4147 4148 4149<hr><h3><a name="lua_geti"><code>lua_geti</code></a></h3><p> 4150<span class="apii">[-0, +1, <em>e</em>]</span> 4151<pre>int lua_geti (lua_State *L, int index, lua_Integer i);</pre> 4152 4153<p> 4154Pushes onto the stack the value <code>t[i]</code>, 4155where <code>t</code> is the value at the given index. 4156As in Lua, this function may trigger a metamethod 4157for the "index" event (see <a href="#2.4">§2.4</a>). 4158 4159 4160<p> 4161Returns the type of the pushed value. 4162 4163 4164 4165 4166 4167<hr><h3><a name="lua_getmetatable"><code>lua_getmetatable</code></a></h3><p> 4168<span class="apii">[-0, +(0|1), –]</span> 4169<pre>int lua_getmetatable (lua_State *L, int index);</pre> 4170 4171<p> 4172If the value at the given index has a metatable, 4173the function pushes that metatable onto the stack and returns 1. 4174Otherwise, 4175the function returns 0 and pushes nothing on the stack. 4176 4177 4178 4179 4180 4181<hr><h3><a name="lua_gettable"><code>lua_gettable</code></a></h3><p> 4182<span class="apii">[-1, +1, <em>e</em>]</span> 4183<pre>int lua_gettable (lua_State *L, int index);</pre> 4184 4185<p> 4186Pushes onto the stack the value <code>t[k]</code>, 4187where <code>t</code> is the value at the given index 4188and <code>k</code> is the value on the top of the stack. 4189 4190 4191<p> 4192This function pops the key from the stack, 4193pushing the resulting value in its place. 4194As in Lua, this function may trigger a metamethod 4195for the "index" event (see <a href="#2.4">§2.4</a>). 4196 4197 4198<p> 4199Returns the type of the pushed value. 4200 4201 4202 4203 4204 4205<hr><h3><a name="lua_gettop"><code>lua_gettop</code></a></h3><p> 4206<span class="apii">[-0, +0, –]</span> 4207<pre>int lua_gettop (lua_State *L);</pre> 4208 4209<p> 4210Returns the index of the top element in the stack. 4211Because indices start at 1, 4212this result is equal to the number of elements in the stack; 4213in particular, 0 means an empty stack. 4214 4215 4216 4217 4218 4219<hr><h3><a name="lua_getiuservalue"><code>lua_getiuservalue</code></a></h3><p> 4220<span class="apii">[-0, +1, –]</span> 4221<pre>int lua_getiuservalue (lua_State *L, int index, int n);</pre> 4222 4223<p> 4224Pushes onto the stack the <code>n</code>-th user value associated with the 4225full userdata at the given index and 4226returns the type of the pushed value. 4227 4228 4229<p> 4230If the userdata does not have that value, 4231pushes <b>nil</b> and returns <a href="#pdf-LUA_TNONE"><code>LUA_TNONE</code></a>. 4232 4233 4234 4235 4236 4237<hr><h3><a name="lua_insert"><code>lua_insert</code></a></h3><p> 4238<span class="apii">[-1, +1, –]</span> 4239<pre>void lua_insert (lua_State *L, int index);</pre> 4240 4241<p> 4242Moves the top element into the given valid index, 4243shifting up the elements above this index to open space. 4244This function cannot be called with a pseudo-index, 4245because a pseudo-index is not an actual stack position. 4246 4247 4248 4249 4250 4251<hr><h3><a name="lua_Integer"><code>lua_Integer</code></a></h3> 4252<pre>typedef ... lua_Integer;</pre> 4253 4254<p> 4255The type of integers in Lua. 4256 4257 4258<p> 4259By default this type is <code>long long</code>, 4260(usually a 64-bit two-complement integer), 4261but that can be changed to <code>long</code> or <code>int</code> 4262(usually a 32-bit two-complement integer). 4263(See <code>LUA_INT_TYPE</code> in <code>luaconf.h</code>.) 4264 4265 4266<p> 4267Lua also defines the constants 4268<a name="pdf-LUA_MININTEGER"><code>LUA_MININTEGER</code></a> and <a name="pdf-LUA_MAXINTEGER"><code>LUA_MAXINTEGER</code></a>, 4269with the minimum and the maximum values that fit in this type. 4270 4271 4272 4273 4274 4275<hr><h3><a name="lua_isboolean"><code>lua_isboolean</code></a></h3><p> 4276<span class="apii">[-0, +0, –]</span> 4277<pre>int lua_isboolean (lua_State *L, int index);</pre> 4278 4279<p> 4280Returns 1 if the value at the given index is a boolean, 4281and 0 otherwise. 4282 4283 4284 4285 4286 4287<hr><h3><a name="lua_iscfunction"><code>lua_iscfunction</code></a></h3><p> 4288<span class="apii">[-0, +0, –]</span> 4289<pre>int lua_iscfunction (lua_State *L, int index);</pre> 4290 4291<p> 4292Returns 1 if the value at the given index is a C function, 4293and 0 otherwise. 4294 4295 4296 4297 4298 4299<hr><h3><a name="lua_isfunction"><code>lua_isfunction</code></a></h3><p> 4300<span class="apii">[-0, +0, –]</span> 4301<pre>int lua_isfunction (lua_State *L, int index);</pre> 4302 4303<p> 4304Returns 1 if the value at the given index is a function 4305(either C or Lua), and 0 otherwise. 4306 4307 4308 4309 4310 4311<hr><h3><a name="lua_isinteger"><code>lua_isinteger</code></a></h3><p> 4312<span class="apii">[-0, +0, –]</span> 4313<pre>int lua_isinteger (lua_State *L, int index);</pre> 4314 4315<p> 4316Returns 1 if the value at the given index is an integer 4317(that is, the value is a number and is represented as an integer), 4318and 0 otherwise. 4319 4320 4321 4322 4323 4324<hr><h3><a name="lua_islightuserdata"><code>lua_islightuserdata</code></a></h3><p> 4325<span class="apii">[-0, +0, –]</span> 4326<pre>int lua_islightuserdata (lua_State *L, int index);</pre> 4327 4328<p> 4329Returns 1 if the value at the given index is a light userdata, 4330and 0 otherwise. 4331 4332 4333 4334 4335 4336<hr><h3><a name="lua_isnil"><code>lua_isnil</code></a></h3><p> 4337<span class="apii">[-0, +0, –]</span> 4338<pre>int lua_isnil (lua_State *L, int index);</pre> 4339 4340<p> 4341Returns 1 if the value at the given index is <b>nil</b>, 4342and 0 otherwise. 4343 4344 4345 4346 4347 4348<hr><h3><a name="lua_isnone"><code>lua_isnone</code></a></h3><p> 4349<span class="apii">[-0, +0, –]</span> 4350<pre>int lua_isnone (lua_State *L, int index);</pre> 4351 4352<p> 4353Returns 1 if the given index is not valid, 4354and 0 otherwise. 4355 4356 4357 4358 4359 4360<hr><h3><a name="lua_isnoneornil"><code>lua_isnoneornil</code></a></h3><p> 4361<span class="apii">[-0, +0, –]</span> 4362<pre>int lua_isnoneornil (lua_State *L, int index);</pre> 4363 4364<p> 4365Returns 1 if the given index is not valid 4366or if the value at this index is <b>nil</b>, 4367and 0 otherwise. 4368 4369 4370 4371 4372 4373<hr><h3><a name="lua_isnumber"><code>lua_isnumber</code></a></h3><p> 4374<span class="apii">[-0, +0, –]</span> 4375<pre>int lua_isnumber (lua_State *L, int index);</pre> 4376 4377<p> 4378Returns 1 if the value at the given index is a number 4379or a string convertible to a number, 4380and 0 otherwise. 4381 4382 4383 4384 4385 4386<hr><h3><a name="lua_isstring"><code>lua_isstring</code></a></h3><p> 4387<span class="apii">[-0, +0, –]</span> 4388<pre>int lua_isstring (lua_State *L, int index);</pre> 4389 4390<p> 4391Returns 1 if the value at the given index is a string 4392or a number (which is always convertible to a string), 4393and 0 otherwise. 4394 4395 4396 4397 4398 4399<hr><h3><a name="lua_istable"><code>lua_istable</code></a></h3><p> 4400<span class="apii">[-0, +0, –]</span> 4401<pre>int lua_istable (lua_State *L, int index);</pre> 4402 4403<p> 4404Returns 1 if the value at the given index is a table, 4405and 0 otherwise. 4406 4407 4408 4409 4410 4411<hr><h3><a name="lua_isthread"><code>lua_isthread</code></a></h3><p> 4412<span class="apii">[-0, +0, –]</span> 4413<pre>int lua_isthread (lua_State *L, int index);</pre> 4414 4415<p> 4416Returns 1 if the value at the given index is a thread, 4417and 0 otherwise. 4418 4419 4420 4421 4422 4423<hr><h3><a name="lua_isuserdata"><code>lua_isuserdata</code></a></h3><p> 4424<span class="apii">[-0, +0, –]</span> 4425<pre>int lua_isuserdata (lua_State *L, int index);</pre> 4426 4427<p> 4428Returns 1 if the value at the given index is a userdata 4429(either full or light), and 0 otherwise. 4430 4431 4432 4433 4434 4435<hr><h3><a name="lua_isyieldable"><code>lua_isyieldable</code></a></h3><p> 4436<span class="apii">[-0, +0, –]</span> 4437<pre>int lua_isyieldable (lua_State *L);</pre> 4438 4439<p> 4440Returns 1 if the given coroutine can yield, 4441and 0 otherwise. 4442 4443 4444 4445 4446 4447<hr><h3><a name="lua_KContext"><code>lua_KContext</code></a></h3> 4448<pre>typedef ... lua_KContext;</pre> 4449 4450<p> 4451The type for continuation-function contexts. 4452It must be a numeric type. 4453This type is defined as <code>intptr_t</code> 4454when <code>intptr_t</code> is available, 4455so that it can store pointers too. 4456Otherwise, it is defined as <code>ptrdiff_t</code>. 4457 4458 4459 4460 4461 4462<hr><h3><a name="lua_KFunction"><code>lua_KFunction</code></a></h3> 4463<pre>typedef int (*lua_KFunction) (lua_State *L, int status, lua_KContext ctx);</pre> 4464 4465<p> 4466Type for continuation functions (see <a href="#4.5">§4.5</a>). 4467 4468 4469 4470 4471 4472<hr><h3><a name="lua_len"><code>lua_len</code></a></h3><p> 4473<span class="apii">[-0, +1, <em>e</em>]</span> 4474<pre>void lua_len (lua_State *L, int index);</pre> 4475 4476<p> 4477Returns the length of the value at the given index. 4478It is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">§3.4.7</a>) and 4479may trigger a metamethod for the "length" event (see <a href="#2.4">§2.4</a>). 4480The result is pushed on the stack. 4481 4482 4483 4484 4485 4486<hr><h3><a name="lua_load"><code>lua_load</code></a></h3><p> 4487<span class="apii">[-0, +1, –]</span> 4488<pre>int lua_load (lua_State *L, 4489 lua_Reader reader, 4490 void *data, 4491 const char *chunkname, 4492 const char *mode);</pre> 4493 4494<p> 4495Loads a Lua chunk without running it. 4496If there are no errors, 4497<code>lua_load</code> pushes the compiled chunk as a Lua 4498function on top of the stack. 4499Otherwise, it pushes an error message. 4500 4501 4502<p> 4503The <code>lua_load</code> function uses a user-supplied <code>reader</code> function 4504to read the chunk (see <a href="#lua_Reader"><code>lua_Reader</code></a>). 4505The <code>data</code> argument is an opaque value passed to the reader function. 4506 4507 4508<p> 4509The <code>chunkname</code> argument gives a name to the chunk, 4510which is used for error messages and in debug information (see <a href="#4.7">§4.7</a>). 4511 4512 4513<p> 4514<code>lua_load</code> automatically detects whether the chunk is text or binary 4515and loads it accordingly (see program <code>luac</code>). 4516The string <code>mode</code> works as in function <a href="#pdf-load"><code>load</code></a>, 4517with the addition that 4518a <code>NULL</code> value is equivalent to the string "<code>bt</code>". 4519 4520 4521<p> 4522<code>lua_load</code> uses the stack internally, 4523so the reader function must always leave the stack 4524unmodified when returning. 4525 4526 4527<p> 4528<code>lua_load</code> can return 4529<a href="#pdf-LUA_OK"><code>LUA_OK</code></a>, <a href="#pdf-LUA_ERRSYNTAX"><code>LUA_ERRSYNTAX</code></a>, or <a href="#pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>. 4530The function may also return other values corresponding to 4531errors raised by the read function (see <a href="#4.4.1">§4.4.1</a>). 4532 4533 4534<p> 4535If the resulting function has upvalues, 4536its first upvalue is set to the value of the global environment 4537stored at index <code>LUA_RIDX_GLOBALS</code> in the registry (see <a href="#4.3">§4.3</a>). 4538When loading main chunks, 4539this upvalue will be the <code>_ENV</code> variable (see <a href="#2.2">§2.2</a>). 4540Other upvalues are initialized with <b>nil</b>. 4541 4542 4543 4544 4545 4546<hr><h3><a name="lua_newstate"><code>lua_newstate</code></a></h3><p> 4547<span class="apii">[-0, +0, –]</span> 4548<pre>lua_State *lua_newstate (lua_Alloc f, void *ud);</pre> 4549 4550<p> 4551Creates a new independent state and returns its main thread. 4552Returns <code>NULL</code> if it cannot create the state 4553(due to lack of memory). 4554The argument <code>f</code> is the allocator function; 4555Lua will do all memory allocation for this state 4556through this function (see <a href="#lua_Alloc"><code>lua_Alloc</code></a>). 4557The second argument, <code>ud</code>, is an opaque pointer that Lua 4558passes to the allocator in every call. 4559 4560 4561 4562 4563 4564<hr><h3><a name="lua_newtable"><code>lua_newtable</code></a></h3><p> 4565<span class="apii">[-0, +1, <em>m</em>]</span> 4566<pre>void lua_newtable (lua_State *L);</pre> 4567 4568<p> 4569Creates a new empty table and pushes it onto the stack. 4570It is equivalent to <code>lua_createtable(L, 0, 0)</code>. 4571 4572 4573 4574 4575 4576<hr><h3><a name="lua_newthread"><code>lua_newthread</code></a></h3><p> 4577<span class="apii">[-0, +1, <em>m</em>]</span> 4578<pre>lua_State *lua_newthread (lua_State *L);</pre> 4579 4580<p> 4581Creates a new thread, pushes it on the stack, 4582and returns a pointer to a <a href="#lua_State"><code>lua_State</code></a> that represents this new thread. 4583The new thread returned by this function shares with the original thread 4584its global environment, 4585but has an independent execution stack. 4586 4587 4588<p> 4589Threads are subject to garbage collection, 4590like any Lua object. 4591 4592 4593 4594 4595 4596<hr><h3><a name="lua_newuserdatauv"><code>lua_newuserdatauv</code></a></h3><p> 4597<span class="apii">[-0, +1, <em>m</em>]</span> 4598<pre>void *lua_newuserdatauv (lua_State *L, size_t size, int nuvalue);</pre> 4599 4600<p> 4601This function creates and pushes on the stack a new full userdata, 4602with <code>nuvalue</code> associated Lua values, called <code>user values</code>, 4603plus an associated block of raw memory with <code>size</code> bytes. 4604(The user values can be set and read with the functions 4605<a href="#lua_setiuservalue"><code>lua_setiuservalue</code></a> and <a href="#lua_getiuservalue"><code>lua_getiuservalue</code></a>.) 4606 4607 4608<p> 4609The function returns the address of the block of memory. 4610Lua ensures that this address is valid as long as 4611the corresponding userdata is alive (see <a href="#2.5">§2.5</a>). 4612Moreover, if the userdata is marked for finalization (see <a href="#2.5.3">§2.5.3</a>), 4613its address is valid at least until the call to its finalizer. 4614 4615 4616 4617 4618 4619<hr><h3><a name="lua_next"><code>lua_next</code></a></h3><p> 4620<span class="apii">[-1, +(2|0), <em>v</em>]</span> 4621<pre>int lua_next (lua_State *L, int index);</pre> 4622 4623<p> 4624Pops a key from the stack, 4625and pushes a key–value pair from the table at the given index, 4626the "next" pair after the given key. 4627If there are no more elements in the table, 4628then <a href="#lua_next"><code>lua_next</code></a> returns 0 and pushes nothing. 4629 4630 4631<p> 4632A typical table traversal looks like this: 4633 4634<pre> 4635 /* table is in the stack at index 't' */ 4636 lua_pushnil(L); /* first key */ 4637 while (lua_next(L, t) != 0) { 4638 /* uses 'key' (at index -2) and 'value' (at index -1) */ 4639 printf("%s - %s\n", 4640 lua_typename(L, lua_type(L, -2)), 4641 lua_typename(L, lua_type(L, -1))); 4642 /* removes 'value'; keeps 'key' for next iteration */ 4643 lua_pop(L, 1); 4644 } 4645</pre> 4646 4647<p> 4648While traversing a table, 4649avoid calling <a href="#lua_tolstring"><code>lua_tolstring</code></a> directly on a key, 4650unless you know that the key is actually a string. 4651Recall that <a href="#lua_tolstring"><code>lua_tolstring</code></a> may change 4652the value at the given index; 4653this confuses the next call to <a href="#lua_next"><code>lua_next</code></a>. 4654 4655 4656<p> 4657This function may raise an error if the given key 4658is neither <b>nil</b> nor present in the table. 4659See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying 4660the table during its traversal. 4661 4662 4663 4664 4665 4666<hr><h3><a name="lua_Number"><code>lua_Number</code></a></h3> 4667<pre>typedef ... lua_Number;</pre> 4668 4669<p> 4670The type of floats in Lua. 4671 4672 4673<p> 4674By default this type is double, 4675but that can be changed to a single float or a long double. 4676(See <code>LUA_FLOAT_TYPE</code> in <code>luaconf.h</code>.) 4677 4678 4679 4680 4681 4682<hr><h3><a name="lua_numbertointeger"><code>lua_numbertointeger</code></a></h3> 4683<pre>int lua_numbertointeger (lua_Number n, lua_Integer *p);</pre> 4684 4685<p> 4686Tries to convert a Lua float to a Lua integer; 4687the float <code>n</code> must have an integral value. 4688If that value is within the range of Lua integers, 4689it is converted to an integer and assigned to <code>*p</code>. 4690The macro results in a boolean indicating whether the 4691conversion was successful. 4692(Note that this range test can be tricky to do 4693correctly without this macro, due to rounding.) 4694 4695 4696<p> 4697This macro may evaluate its arguments more than once. 4698 4699 4700 4701 4702 4703<hr><h3><a name="lua_pcall"><code>lua_pcall</code></a></h3><p> 4704<span class="apii">[-(nargs + 1), +(nresults|1), –]</span> 4705<pre>int lua_pcall (lua_State *L, int nargs, int nresults, int msgh);</pre> 4706 4707<p> 4708Calls a function (or a callable object) in protected mode. 4709 4710 4711<p> 4712Both <code>nargs</code> and <code>nresults</code> have the same meaning as 4713in <a href="#lua_call"><code>lua_call</code></a>. 4714If there are no errors during the call, 4715<a href="#lua_pcall"><code>lua_pcall</code></a> behaves exactly like <a href="#lua_call"><code>lua_call</code></a>. 4716However, if there is any error, 4717<a href="#lua_pcall"><code>lua_pcall</code></a> catches it, 4718pushes a single value on the stack (the error object), 4719and returns an error code. 4720Like <a href="#lua_call"><code>lua_call</code></a>, 4721<a href="#lua_pcall"><code>lua_pcall</code></a> always removes the function 4722and its arguments from the stack. 4723 4724 4725<p> 4726If <code>msgh</code> is 0, 4727then the error object returned on the stack 4728is exactly the original error object. 4729Otherwise, <code>msgh</code> is the stack index of a 4730<em>message handler</em>. 4731(This index cannot be a pseudo-index.) 4732In case of runtime errors, 4733this handler will be called with the error object 4734and its return value will be the object 4735returned on the stack by <a href="#lua_pcall"><code>lua_pcall</code></a>. 4736 4737 4738<p> 4739Typically, the message handler is used to add more debug 4740information to the error object, such as a stack traceback. 4741Such information cannot be gathered after the return of <a href="#lua_pcall"><code>lua_pcall</code></a>, 4742since by then the stack has unwound. 4743 4744 4745<p> 4746The <a href="#lua_pcall"><code>lua_pcall</code></a> function returns one of the following status codes: 4747<a href="#pdf-LUA_OK"><code>LUA_OK</code></a>, <a href="#pdf-LUA_ERRRUN"><code>LUA_ERRRUN</code></a>, <a href="#pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>, or <a href="#pdf-LUA_ERRERR"><code>LUA_ERRERR</code></a>. 4748 4749 4750 4751 4752 4753<hr><h3><a name="lua_pcallk"><code>lua_pcallk</code></a></h3><p> 4754<span class="apii">[-(nargs + 1), +(nresults|1), –]</span> 4755<pre>int lua_pcallk (lua_State *L, 4756 int nargs, 4757 int nresults, 4758 int msgh, 4759 lua_KContext ctx, 4760 lua_KFunction k);</pre> 4761 4762<p> 4763This function behaves exactly like <a href="#lua_pcall"><code>lua_pcall</code></a>, 4764except that it allows the called function to yield (see <a href="#4.5">§4.5</a>). 4765 4766 4767 4768 4769 4770<hr><h3><a name="lua_pop"><code>lua_pop</code></a></h3><p> 4771<span class="apii">[-n, +0, <em>e</em>]</span> 4772<pre>void lua_pop (lua_State *L, int n);</pre> 4773 4774<p> 4775Pops <code>n</code> elements from the stack. 4776It is implemented as a macro over <a href="#lua_settop"><code>lua_settop</code></a>. 4777 4778 4779 4780 4781 4782<hr><h3><a name="lua_pushboolean"><code>lua_pushboolean</code></a></h3><p> 4783<span class="apii">[-0, +1, –]</span> 4784<pre>void lua_pushboolean (lua_State *L, int b);</pre> 4785 4786<p> 4787Pushes a boolean value with value <code>b</code> onto the stack. 4788 4789 4790 4791 4792 4793<hr><h3><a name="lua_pushcclosure"><code>lua_pushcclosure</code></a></h3><p> 4794<span class="apii">[-n, +1, <em>m</em>]</span> 4795<pre>void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);</pre> 4796 4797<p> 4798Pushes a new C closure onto the stack. 4799This function receives a pointer to a C function 4800and pushes onto the stack a Lua value of type <code>function</code> that, 4801when called, invokes the corresponding C function. 4802The parameter <code>n</code> tells how many upvalues this function will have 4803(see <a href="#4.2">§4.2</a>). 4804 4805 4806<p> 4807Any function to be callable by Lua must 4808follow the correct protocol to receive its parameters 4809and return its results (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>). 4810 4811 4812<p> 4813When a C function is created, 4814it is possible to associate some values with it, 4815the so called upvalues; 4816these upvalues are then accessible to the function whenever it is called. 4817This association is called a C closure (see <a href="#4.2">§4.2</a>). 4818To create a C closure, 4819first the initial values for its upvalues must be pushed onto the stack. 4820(When there are multiple upvalues, the first value is pushed first.) 4821Then <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> 4822is called to create and push the C function onto the stack, 4823with the argument <code>n</code> telling how many values will be 4824associated with the function. 4825<a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> also pops these values from the stack. 4826 4827 4828<p> 4829The maximum value for <code>n</code> is 255. 4830 4831 4832<p> 4833When <code>n</code> is zero, 4834this function creates a <em>light C function</em>, 4835which is just a pointer to the C function. 4836In that case, it never raises a memory error. 4837 4838 4839 4840 4841 4842<hr><h3><a name="lua_pushcfunction"><code>lua_pushcfunction</code></a></h3><p> 4843<span class="apii">[-0, +1, –]</span> 4844<pre>void lua_pushcfunction (lua_State *L, lua_CFunction f);</pre> 4845 4846<p> 4847Pushes a C function onto the stack. 4848This function is equivalent to <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> with no upvalues. 4849 4850 4851 4852 4853 4854<hr><h3><a name="lua_pushfstring"><code>lua_pushfstring</code></a></h3><p> 4855<span class="apii">[-0, +1, <em>v</em>]</span> 4856<pre>const char *lua_pushfstring (lua_State *L, const char *fmt, ...);</pre> 4857 4858<p> 4859Pushes onto the stack a formatted string 4860and returns a pointer to this string (see <a href="#4.1.3">§4.1.3</a>). 4861It is similar to the ISO C function <code>sprintf</code>, 4862but has two important differences. 4863First, 4864you do not have to allocate space for the result; 4865the result is a Lua string and Lua takes care of memory allocation 4866(and deallocation, through garbage collection). 4867Second, 4868the conversion specifiers are quite restricted. 4869There are no flags, widths, or precisions. 4870The conversion specifiers can only be 4871'<code>%%</code>' (inserts the character '<code>%</code>'), 4872'<code>%s</code>' (inserts a zero-terminated string, with no size restrictions), 4873'<code>%f</code>' (inserts a <a href="#lua_Number"><code>lua_Number</code></a>), 4874'<code>%I</code>' (inserts a <a href="#lua_Integer"><code>lua_Integer</code></a>), 4875'<code>%p</code>' (inserts a pointer), 4876'<code>%d</code>' (inserts an <code>int</code>), 4877'<code>%c</code>' (inserts an <code>int</code> as a one-byte character), and 4878'<code>%U</code>' (inserts a <code>long int</code> as a UTF-8 byte sequence). 4879 4880 4881<p> 4882This function may raise errors due to memory overflow 4883or an invalid conversion specifier. 4884 4885 4886 4887 4888 4889<hr><h3><a name="lua_pushglobaltable"><code>lua_pushglobaltable</code></a></h3><p> 4890<span class="apii">[-0, +1, –]</span> 4891<pre>void lua_pushglobaltable (lua_State *L);</pre> 4892 4893<p> 4894Pushes the global environment onto the stack. 4895 4896 4897 4898 4899 4900<hr><h3><a name="lua_pushinteger"><code>lua_pushinteger</code></a></h3><p> 4901<span class="apii">[-0, +1, –]</span> 4902<pre>void lua_pushinteger (lua_State *L, lua_Integer n);</pre> 4903 4904<p> 4905Pushes an integer with value <code>n</code> onto the stack. 4906 4907 4908 4909 4910 4911<hr><h3><a name="lua_pushlightuserdata"><code>lua_pushlightuserdata</code></a></h3><p> 4912<span class="apii">[-0, +1, –]</span> 4913<pre>void lua_pushlightuserdata (lua_State *L, void *p);</pre> 4914 4915<p> 4916Pushes a light userdata onto the stack. 4917 4918 4919<p> 4920Userdata represent C values in Lua. 4921A <em>light userdata</em> represents a pointer, a <code>void*</code>. 4922It is a value (like a number): 4923you do not create it, it has no individual metatable, 4924and it is not collected (as it was never created). 4925A light userdata is equal to "any" 4926light userdata with the same C address. 4927 4928 4929 4930 4931 4932<hr><h3><a name="lua_pushliteral"><code>lua_pushliteral</code></a></h3><p> 4933<span class="apii">[-0, +1, <em>m</em>]</span> 4934<pre>const char *lua_pushliteral (lua_State *L, const char *s);</pre> 4935 4936<p> 4937This macro is equivalent to <a href="#lua_pushstring"><code>lua_pushstring</code></a>, 4938but should be used only when <code>s</code> is a literal string. 4939(Lua may optimize this case.) 4940 4941 4942 4943 4944 4945<hr><h3><a name="lua_pushlstring"><code>lua_pushlstring</code></a></h3><p> 4946<span class="apii">[-0, +1, <em>m</em>]</span> 4947<pre>const char *lua_pushlstring (lua_State *L, const char *s, size_t len);</pre> 4948 4949<p> 4950Pushes the string pointed to by <code>s</code> with size <code>len</code> 4951onto the stack. 4952Lua will make or reuse an internal copy of the given string, 4953so the memory at <code>s</code> can be freed or reused immediately after 4954the function returns. 4955The string can contain any binary data, 4956including embedded zeros. 4957 4958 4959<p> 4960Returns a pointer to the internal copy of the string (see <a href="#4.1.3">§4.1.3</a>). 4961 4962 4963 4964 4965 4966<hr><h3><a name="lua_pushnil"><code>lua_pushnil</code></a></h3><p> 4967<span class="apii">[-0, +1, –]</span> 4968<pre>void lua_pushnil (lua_State *L);</pre> 4969 4970<p> 4971Pushes a nil value onto the stack. 4972 4973 4974 4975 4976 4977<hr><h3><a name="lua_pushnumber"><code>lua_pushnumber</code></a></h3><p> 4978<span class="apii">[-0, +1, –]</span> 4979<pre>void lua_pushnumber (lua_State *L, lua_Number n);</pre> 4980 4981<p> 4982Pushes a float with value <code>n</code> onto the stack. 4983 4984 4985 4986 4987 4988<hr><h3><a name="lua_pushstring"><code>lua_pushstring</code></a></h3><p> 4989<span class="apii">[-0, +1, <em>m</em>]</span> 4990<pre>const char *lua_pushstring (lua_State *L, const char *s);</pre> 4991 4992<p> 4993Pushes the zero-terminated string pointed to by <code>s</code> 4994onto the stack. 4995Lua will make or reuse an internal copy of the given string, 4996so the memory at <code>s</code> can be freed or reused immediately after 4997the function returns. 4998 4999 5000<p> 5001Returns a pointer to the internal copy of the string (see <a href="#4.1.3">§4.1.3</a>). 5002 5003 5004<p> 5005If <code>s</code> is <code>NULL</code>, pushes <b>nil</b> and returns <code>NULL</code>. 5006 5007 5008 5009 5010 5011<hr><h3><a name="lua_pushthread"><code>lua_pushthread</code></a></h3><p> 5012<span class="apii">[-0, +1, –]</span> 5013<pre>int lua_pushthread (lua_State *L);</pre> 5014 5015<p> 5016Pushes the thread represented by <code>L</code> onto the stack. 5017Returns 1 if this thread is the main thread of its state. 5018 5019 5020 5021 5022 5023<hr><h3><a name="lua_pushvalue"><code>lua_pushvalue</code></a></h3><p> 5024<span class="apii">[-0, +1, –]</span> 5025<pre>void lua_pushvalue (lua_State *L, int index);</pre> 5026 5027<p> 5028Pushes a copy of the element at the given index 5029onto the stack. 5030 5031 5032 5033 5034 5035<hr><h3><a name="lua_pushvfstring"><code>lua_pushvfstring</code></a></h3><p> 5036<span class="apii">[-0, +1, <em>v</em>]</span> 5037<pre>const char *lua_pushvfstring (lua_State *L, 5038 const char *fmt, 5039 va_list argp);</pre> 5040 5041<p> 5042Equivalent to <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, except that it receives a <code>va_list</code> 5043instead of a variable number of arguments. 5044 5045 5046 5047 5048 5049<hr><h3><a name="lua_rawequal"><code>lua_rawequal</code></a></h3><p> 5050<span class="apii">[-0, +0, –]</span> 5051<pre>int lua_rawequal (lua_State *L, int index1, int index2);</pre> 5052 5053<p> 5054Returns 1 if the two values in indices <code>index1</code> and 5055<code>index2</code> are primitively equal 5056(that is, equal without calling the <code>__eq</code> metamethod). 5057Otherwise returns 0. 5058Also returns 0 if any of the indices are not valid. 5059 5060 5061 5062 5063 5064<hr><h3><a name="lua_rawget"><code>lua_rawget</code></a></h3><p> 5065<span class="apii">[-1, +1, –]</span> 5066<pre>int lua_rawget (lua_State *L, int index);</pre> 5067 5068<p> 5069Similar to <a href="#lua_gettable"><code>lua_gettable</code></a>, but does a raw access 5070(i.e., without metamethods). 5071The value at <code>index</code> must be a table. 5072 5073 5074 5075 5076 5077<hr><h3><a name="lua_rawgeti"><code>lua_rawgeti</code></a></h3><p> 5078<span class="apii">[-0, +1, –]</span> 5079<pre>int lua_rawgeti (lua_State *L, int index, lua_Integer n);</pre> 5080 5081<p> 5082Pushes onto the stack the value <code>t[n]</code>, 5083where <code>t</code> is the table at the given index. 5084The access is raw, 5085that is, it does not use the <code>__index</code> metavalue. 5086 5087 5088<p> 5089Returns the type of the pushed value. 5090 5091 5092 5093 5094 5095<hr><h3><a name="lua_rawgetp"><code>lua_rawgetp</code></a></h3><p> 5096<span class="apii">[-0, +1, –]</span> 5097<pre>int lua_rawgetp (lua_State *L, int index, const void *p);</pre> 5098 5099<p> 5100Pushes onto the stack the value <code>t[k]</code>, 5101where <code>t</code> is the table at the given index and 5102<code>k</code> is the pointer <code>p</code> represented as a light userdata. 5103The access is raw; 5104that is, it does not use the <code>__index</code> metavalue. 5105 5106 5107<p> 5108Returns the type of the pushed value. 5109 5110 5111 5112 5113 5114<hr><h3><a name="lua_rawlen"><code>lua_rawlen</code></a></h3><p> 5115<span class="apii">[-0, +0, –]</span> 5116<pre>lua_Unsigned lua_rawlen (lua_State *L, int index);</pre> 5117 5118<p> 5119Returns the raw "length" of the value at the given index: 5120for strings, this is the string length; 5121for tables, this is the result of the length operator ('<code>#</code>') 5122with no metamethods; 5123for userdata, this is the size of the block of memory allocated 5124for the userdata. 5125For other values, this call returns 0. 5126 5127 5128 5129 5130 5131<hr><h3><a name="lua_rawset"><code>lua_rawset</code></a></h3><p> 5132<span class="apii">[-2, +0, <em>m</em>]</span> 5133<pre>void lua_rawset (lua_State *L, int index);</pre> 5134 5135<p> 5136Similar to <a href="#lua_settable"><code>lua_settable</code></a>, but does a raw assignment 5137(i.e., without metamethods). 5138The value at <code>index</code> must be a table. 5139 5140 5141 5142 5143 5144<hr><h3><a name="lua_rawseti"><code>lua_rawseti</code></a></h3><p> 5145<span class="apii">[-1, +0, <em>m</em>]</span> 5146<pre>void lua_rawseti (lua_State *L, int index, lua_Integer i);</pre> 5147 5148<p> 5149Does the equivalent of <code>t[i] = v</code>, 5150where <code>t</code> is the table at the given index 5151and <code>v</code> is the value on the top of the stack. 5152 5153 5154<p> 5155This function pops the value from the stack. 5156The assignment is raw, 5157that is, it does not use the <code>__newindex</code> metavalue. 5158 5159 5160 5161 5162 5163<hr><h3><a name="lua_rawsetp"><code>lua_rawsetp</code></a></h3><p> 5164<span class="apii">[-1, +0, <em>m</em>]</span> 5165<pre>void lua_rawsetp (lua_State *L, int index, const void *p);</pre> 5166 5167<p> 5168Does the equivalent of <code>t[p] = v</code>, 5169where <code>t</code> is the table at the given index, 5170<code>p</code> is encoded as a light userdata, 5171and <code>v</code> is the value on the top of the stack. 5172 5173 5174<p> 5175This function pops the value from the stack. 5176The assignment is raw, 5177that is, it does not use the <code>__newindex</code> metavalue. 5178 5179 5180 5181 5182 5183<hr><h3><a name="lua_Reader"><code>lua_Reader</code></a></h3> 5184<pre>typedef const char * (*lua_Reader) (lua_State *L, 5185 void *data, 5186 size_t *size);</pre> 5187 5188<p> 5189The reader function used by <a href="#lua_load"><code>lua_load</code></a>. 5190Every time <a href="#lua_load"><code>lua_load</code></a> needs another piece of the chunk, 5191it calls the reader, 5192passing along its <code>data</code> parameter. 5193The reader must return a pointer to a block of memory 5194with a new piece of the chunk 5195and set <code>size</code> to the block size. 5196The block must exist until the reader function is called again. 5197To signal the end of the chunk, 5198the reader must return <code>NULL</code> or set <code>size</code> to zero. 5199The reader function may return pieces of any size greater than zero. 5200 5201 5202 5203 5204 5205<hr><h3><a name="lua_register"><code>lua_register</code></a></h3><p> 5206<span class="apii">[-0, +0, <em>e</em>]</span> 5207<pre>void lua_register (lua_State *L, const char *name, lua_CFunction f);</pre> 5208 5209<p> 5210Sets the C function <code>f</code> as the new value of global <code>name</code>. 5211It is defined as a macro: 5212 5213<pre> 5214 #define lua_register(L,n,f) \ 5215 (lua_pushcfunction(L, f), lua_setglobal(L, n)) 5216</pre> 5217 5218 5219 5220 5221<hr><h3><a name="lua_remove"><code>lua_remove</code></a></h3><p> 5222<span class="apii">[-1, +0, –]</span> 5223<pre>void lua_remove (lua_State *L, int index);</pre> 5224 5225<p> 5226Removes the element at the given valid index, 5227shifting down the elements above this index to fill the gap. 5228This function cannot be called with a pseudo-index, 5229because a pseudo-index is not an actual stack position. 5230 5231 5232 5233 5234 5235<hr><h3><a name="lua_replace"><code>lua_replace</code></a></h3><p> 5236<span class="apii">[-1, +0, –]</span> 5237<pre>void lua_replace (lua_State *L, int index);</pre> 5238 5239<p> 5240Moves the top element into the given valid index 5241without shifting any element 5242(therefore replacing the value at that given index), 5243and then pops the top element. 5244 5245 5246 5247 5248 5249<hr><h3><a name="lua_resetthread"><code>lua_resetthread</code></a></h3><p> 5250<span class="apii">[-0, +?, –]</span> 5251<pre>int lua_resetthread (lua_State *L);</pre> 5252 5253<p> 5254This function is deprecated; 5255it is equivalent to <a href="#lua_closethread"><code>lua_closethread</code></a> with 5256<code>from</code> being <code>NULL</code>. 5257 5258 5259 5260 5261 5262<hr><h3><a name="lua_resume"><code>lua_resume</code></a></h3><p> 5263<span class="apii">[-?, +?, –]</span> 5264<pre>int lua_resume (lua_State *L, lua_State *from, int nargs, 5265 int *nresults);</pre> 5266 5267<p> 5268Starts and resumes a coroutine in the given thread <code>L</code>. 5269 5270 5271<p> 5272To start a coroutine, 5273you push the main function plus any arguments 5274onto the empty stack of the thread. 5275then you call <a href="#lua_resume"><code>lua_resume</code></a>, 5276with <code>nargs</code> being the number of arguments. 5277This call returns when the coroutine suspends or finishes its execution. 5278When it returns, 5279<code>*nresults</code> is updated and 5280the top of the stack contains 5281the <code>*nresults</code> values passed to <a href="#lua_yield"><code>lua_yield</code></a> 5282or returned by the body function. 5283<a href="#lua_resume"><code>lua_resume</code></a> returns 5284<a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the coroutine yields, 5285<a href="#pdf-LUA_OK"><code>LUA_OK</code></a> if the coroutine finishes its execution 5286without errors, 5287or an error code in case of errors (see <a href="#4.4.1">§4.4.1</a>). 5288In case of errors, 5289the error object is on the top of the stack. 5290 5291 5292<p> 5293To resume a coroutine, 5294you remove the <code>*nresults</code> yielded values from its stack, 5295push the values to be passed as results from <code>yield</code>, 5296and then call <a href="#lua_resume"><code>lua_resume</code></a>. 5297 5298 5299<p> 5300The parameter <code>from</code> represents the coroutine that is resuming <code>L</code>. 5301If there is no such coroutine, 5302this parameter can be <code>NULL</code>. 5303 5304 5305 5306 5307 5308<hr><h3><a name="lua_rotate"><code>lua_rotate</code></a></h3><p> 5309<span class="apii">[-0, +0, –]</span> 5310<pre>void lua_rotate (lua_State *L, int idx, int n);</pre> 5311 5312<p> 5313Rotates the stack elements between the valid index <code>idx</code> 5314and the top of the stack. 5315The elements are rotated <code>n</code> positions in the direction of the top, 5316for a positive <code>n</code>, 5317or <code>-n</code> positions in the direction of the bottom, 5318for a negative <code>n</code>. 5319The absolute value of <code>n</code> must not be greater than the size 5320of the slice being rotated. 5321This function cannot be called with a pseudo-index, 5322because a pseudo-index is not an actual stack position. 5323 5324 5325 5326 5327 5328<hr><h3><a name="lua_setallocf"><code>lua_setallocf</code></a></h3><p> 5329<span class="apii">[-0, +0, –]</span> 5330<pre>void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);</pre> 5331 5332<p> 5333Changes the allocator function of a given state to <code>f</code> 5334with user data <code>ud</code>. 5335 5336 5337 5338 5339 5340<hr><h3><a name="lua_setfield"><code>lua_setfield</code></a></h3><p> 5341<span class="apii">[-1, +0, <em>e</em>]</span> 5342<pre>void lua_setfield (lua_State *L, int index, const char *k);</pre> 5343 5344<p> 5345Does the equivalent to <code>t[k] = v</code>, 5346where <code>t</code> is the value at the given index 5347and <code>v</code> is the value on the top of the stack. 5348 5349 5350<p> 5351This function pops the value from the stack. 5352As in Lua, this function may trigger a metamethod 5353for the "newindex" event (see <a href="#2.4">§2.4</a>). 5354 5355 5356 5357 5358 5359<hr><h3><a name="lua_setglobal"><code>lua_setglobal</code></a></h3><p> 5360<span class="apii">[-1, +0, <em>e</em>]</span> 5361<pre>void lua_setglobal (lua_State *L, const char *name);</pre> 5362 5363<p> 5364Pops a value from the stack and 5365sets it as the new value of global <code>name</code>. 5366 5367 5368 5369 5370 5371<hr><h3><a name="lua_seti"><code>lua_seti</code></a></h3><p> 5372<span class="apii">[-1, +0, <em>e</em>]</span> 5373<pre>void lua_seti (lua_State *L, int index, lua_Integer n);</pre> 5374 5375<p> 5376Does the equivalent to <code>t[n] = v</code>, 5377where <code>t</code> is the value at the given index 5378and <code>v</code> is the value on the top of the stack. 5379 5380 5381<p> 5382This function pops the value from the stack. 5383As in Lua, this function may trigger a metamethod 5384for the "newindex" event (see <a href="#2.4">§2.4</a>). 5385 5386 5387 5388 5389 5390<hr><h3><a name="lua_setiuservalue"><code>lua_setiuservalue</code></a></h3><p> 5391<span class="apii">[-1, +0, –]</span> 5392<pre>int lua_setiuservalue (lua_State *L, int index, int n);</pre> 5393 5394<p> 5395Pops a value from the stack and sets it as 5396the new <code>n</code>-th user value associated to the 5397full userdata at the given index. 5398Returns 0 if the userdata does not have that value. 5399 5400 5401 5402 5403 5404<hr><h3><a name="lua_setmetatable"><code>lua_setmetatable</code></a></h3><p> 5405<span class="apii">[-1, +0, –]</span> 5406<pre>int lua_setmetatable (lua_State *L, int index);</pre> 5407 5408<p> 5409Pops a table or <b>nil</b> from the stack and 5410sets that value as the new metatable for the value at the given index. 5411(<b>nil</b> means no metatable.) 5412 5413 5414<p> 5415(For historical reasons, this function returns an <code>int</code>, 5416which now is always 1.) 5417 5418 5419 5420 5421 5422<hr><h3><a name="lua_settable"><code>lua_settable</code></a></h3><p> 5423<span class="apii">[-2, +0, <em>e</em>]</span> 5424<pre>void lua_settable (lua_State *L, int index);</pre> 5425 5426<p> 5427Does the equivalent to <code>t[k] = v</code>, 5428where <code>t</code> is the value at the given index, 5429<code>v</code> is the value on the top of the stack, 5430and <code>k</code> is the value just below the top. 5431 5432 5433<p> 5434This function pops both the key and the value from the stack. 5435As in Lua, this function may trigger a metamethod 5436for the "newindex" event (see <a href="#2.4">§2.4</a>). 5437 5438 5439 5440 5441 5442<hr><h3><a name="lua_settop"><code>lua_settop</code></a></h3><p> 5443<span class="apii">[-?, +?, <em>e</em>]</span> 5444<pre>void lua_settop (lua_State *L, int index);</pre> 5445 5446<p> 5447Accepts any index, or 0, 5448and sets the stack top to this index. 5449If the new top is greater than the old one, 5450then the new elements are filled with <b>nil</b>. 5451If <code>index</code> is 0, then all stack elements are removed. 5452 5453 5454<p> 5455This function can run arbitrary code when removing an index 5456marked as to-be-closed from the stack. 5457 5458 5459 5460 5461 5462<hr><h3><a name="lua_setwarnf"><code>lua_setwarnf</code></a></h3><p> 5463<span class="apii">[-0, +0, –]</span> 5464<pre>void lua_setwarnf (lua_State *L, lua_WarnFunction f, void *ud);</pre> 5465 5466<p> 5467Sets the warning function to be used by Lua to emit warnings 5468(see <a href="#lua_WarnFunction"><code>lua_WarnFunction</code></a>). 5469The <code>ud</code> parameter sets the value <code>ud</code> passed to 5470the warning function. 5471 5472 5473 5474 5475 5476<hr><h3><a name="lua_State"><code>lua_State</code></a></h3> 5477<pre>typedef struct lua_State lua_State;</pre> 5478 5479<p> 5480An opaque structure that points to a thread and indirectly 5481(through the thread) to the whole state of a Lua interpreter. 5482The Lua library is fully reentrant: 5483it has no global variables. 5484All information about a state is accessible through this structure. 5485 5486 5487<p> 5488A pointer to this structure must be passed as the first argument to 5489every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>, 5490which creates a Lua state from scratch. 5491 5492 5493 5494 5495 5496<hr><h3><a name="lua_status"><code>lua_status</code></a></h3><p> 5497<span class="apii">[-0, +0, –]</span> 5498<pre>int lua_status (lua_State *L);</pre> 5499 5500<p> 5501Returns the status of the thread <code>L</code>. 5502 5503 5504<p> 5505The status can be <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> for a normal thread, 5506an error code if the thread finished the execution 5507of a <a href="#lua_resume"><code>lua_resume</code></a> with an error, 5508or <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the thread is suspended. 5509 5510 5511<p> 5512You can call functions only in threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>. 5513You can resume threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> 5514(to start a new coroutine) or <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> 5515(to resume a coroutine). 5516 5517 5518 5519 5520 5521<hr><h3><a name="lua_stringtonumber"><code>lua_stringtonumber</code></a></h3><p> 5522<span class="apii">[-0, +1, –]</span> 5523<pre>size_t lua_stringtonumber (lua_State *L, const char *s);</pre> 5524 5525<p> 5526Converts the zero-terminated string <code>s</code> to a number, 5527pushes that number into the stack, 5528and returns the total size of the string, 5529that is, its length plus one. 5530The conversion can result in an integer or a float, 5531according to the lexical conventions of Lua (see <a href="#3.1">§3.1</a>). 5532The string may have leading and trailing whitespaces and a sign. 5533If the string is not a valid numeral, 5534returns 0 and pushes nothing. 5535(Note that the result can be used as a boolean, 5536true if the conversion succeeds.) 5537 5538 5539 5540 5541 5542<hr><h3><a name="lua_toboolean"><code>lua_toboolean</code></a></h3><p> 5543<span class="apii">[-0, +0, –]</span> 5544<pre>int lua_toboolean (lua_State *L, int index);</pre> 5545 5546<p> 5547Converts the Lua value at the given index to a C boolean 5548value (0 or 1). 5549Like all tests in Lua, 5550<a href="#lua_toboolean"><code>lua_toboolean</code></a> returns true for any Lua value 5551different from <b>false</b> and <b>nil</b>; 5552otherwise it returns false. 5553(If you want to accept only actual boolean values, 5554use <a href="#lua_isboolean"><code>lua_isboolean</code></a> to test the value's type.) 5555 5556 5557 5558 5559 5560<hr><h3><a name="lua_tocfunction"><code>lua_tocfunction</code></a></h3><p> 5561<span class="apii">[-0, +0, –]</span> 5562<pre>lua_CFunction lua_tocfunction (lua_State *L, int index);</pre> 5563 5564<p> 5565Converts a value at the given index to a C function. 5566That value must be a C function; 5567otherwise, returns <code>NULL</code>. 5568 5569 5570 5571 5572 5573<hr><h3><a name="lua_toclose"><code>lua_toclose</code></a></h3><p> 5574<span class="apii">[-0, +0, <em>m</em>]</span> 5575<pre>void lua_toclose (lua_State *L, int index);</pre> 5576 5577<p> 5578Marks the given index in the stack as a 5579to-be-closed slot (see <a href="#3.3.8">§3.3.8</a>). 5580Like a to-be-closed variable in Lua, 5581the value at that slot in the stack will be closed 5582when it goes out of scope. 5583Here, in the context of a C function, 5584to go out of scope means that the running function returns to Lua, 5585or there is an error, 5586or the slot is removed from the stack through 5587<a href="#lua_settop"><code>lua_settop</code></a> or <a href="#lua_pop"><code>lua_pop</code></a>, 5588or there is a call to <a href="#lua_closeslot"><code>lua_closeslot</code></a>. 5589A slot marked as to-be-closed should not be removed from the stack 5590by any other function in the API except <a href="#lua_settop"><code>lua_settop</code></a> or <a href="#lua_pop"><code>lua_pop</code></a>, 5591unless previously deactivated by <a href="#lua_closeslot"><code>lua_closeslot</code></a>. 5592 5593 5594<p> 5595This function should not be called for an index 5596that is equal to or below an active to-be-closed slot. 5597 5598 5599<p> 5600Note that, both in case of errors and of a regular return, 5601by the time the <code>__close</code> metamethod runs, 5602the C stack was already unwound, 5603so that any automatic C variable declared in the calling function 5604(e.g., a buffer) will be out of scope. 5605 5606 5607 5608 5609 5610<hr><h3><a name="lua_tointeger"><code>lua_tointeger</code></a></h3><p> 5611<span class="apii">[-0, +0, –]</span> 5612<pre>lua_Integer lua_tointeger (lua_State *L, int index);</pre> 5613 5614<p> 5615Equivalent to <a href="#lua_tointegerx"><code>lua_tointegerx</code></a> with <code>isnum</code> equal to <code>NULL</code>. 5616 5617 5618 5619 5620 5621<hr><h3><a name="lua_tointegerx"><code>lua_tointegerx</code></a></h3><p> 5622<span class="apii">[-0, +0, –]</span> 5623<pre>lua_Integer lua_tointegerx (lua_State *L, int index, int *isnum);</pre> 5624 5625<p> 5626Converts the Lua value at the given index 5627to the signed integral type <a href="#lua_Integer"><code>lua_Integer</code></a>. 5628The Lua value must be an integer, 5629or a number or string convertible to an integer (see <a href="#3.4.3">§3.4.3</a>); 5630otherwise, <code>lua_tointegerx</code> returns 0. 5631 5632 5633<p> 5634If <code>isnum</code> is not <code>NULL</code>, 5635its referent is assigned a boolean value that 5636indicates whether the operation succeeded. 5637 5638 5639 5640 5641 5642<hr><h3><a name="lua_tolstring"><code>lua_tolstring</code></a></h3><p> 5643<span class="apii">[-0, +0, <em>m</em>]</span> 5644<pre>const char *lua_tolstring (lua_State *L, int index, size_t *len);</pre> 5645 5646<p> 5647Converts the Lua value at the given index to a C string. 5648If <code>len</code> is not <code>NULL</code>, 5649it sets <code>*len</code> with the string length. 5650The Lua value must be a string or a number; 5651otherwise, the function returns <code>NULL</code>. 5652If the value is a number, 5653then <code>lua_tolstring</code> also 5654<em>changes the actual value in the stack to a string</em>. 5655(This change confuses <a href="#lua_next"><code>lua_next</code></a> 5656when <code>lua_tolstring</code> is applied to keys during a table traversal.) 5657 5658 5659<p> 5660<code>lua_tolstring</code> returns a pointer 5661to a string inside the Lua state (see <a href="#4.1.3">§4.1.3</a>). 5662This string always has a zero ('<code>\0</code>') 5663after its last character (as in C), 5664but can contain other zeros in its body. 5665 5666 5667 5668 5669 5670<hr><h3><a name="lua_tonumber"><code>lua_tonumber</code></a></h3><p> 5671<span class="apii">[-0, +0, –]</span> 5672<pre>lua_Number lua_tonumber (lua_State *L, int index);</pre> 5673 5674<p> 5675Equivalent to <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> with <code>isnum</code> equal to <code>NULL</code>. 5676 5677 5678 5679 5680 5681<hr><h3><a name="lua_tonumberx"><code>lua_tonumberx</code></a></h3><p> 5682<span class="apii">[-0, +0, –]</span> 5683<pre>lua_Number lua_tonumberx (lua_State *L, int index, int *isnum);</pre> 5684 5685<p> 5686Converts the Lua value at the given index 5687to the C type <a href="#lua_Number"><code>lua_Number</code></a> (see <a href="#lua_Number"><code>lua_Number</code></a>). 5688The Lua value must be a number or a string convertible to a number 5689(see <a href="#3.4.3">§3.4.3</a>); 5690otherwise, <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> returns 0. 5691 5692 5693<p> 5694If <code>isnum</code> is not <code>NULL</code>, 5695its referent is assigned a boolean value that 5696indicates whether the operation succeeded. 5697 5698 5699 5700 5701 5702<hr><h3><a name="lua_topointer"><code>lua_topointer</code></a></h3><p> 5703<span class="apii">[-0, +0, –]</span> 5704<pre>const void *lua_topointer (lua_State *L, int index);</pre> 5705 5706<p> 5707Converts the value at the given index to a generic 5708C pointer (<code>void*</code>). 5709The value can be a userdata, a table, a thread, a string, or a function; 5710otherwise, <code>lua_topointer</code> returns <code>NULL</code>. 5711Different objects will give different pointers. 5712There is no way to convert the pointer back to its original value. 5713 5714 5715<p> 5716Typically this function is used only for hashing and debug information. 5717 5718 5719 5720 5721 5722<hr><h3><a name="lua_tostring"><code>lua_tostring</code></a></h3><p> 5723<span class="apii">[-0, +0, <em>m</em>]</span> 5724<pre>const char *lua_tostring (lua_State *L, int index);</pre> 5725 5726<p> 5727Equivalent to <a href="#lua_tolstring"><code>lua_tolstring</code></a> with <code>len</code> equal to <code>NULL</code>. 5728 5729 5730 5731 5732 5733<hr><h3><a name="lua_tothread"><code>lua_tothread</code></a></h3><p> 5734<span class="apii">[-0, +0, –]</span> 5735<pre>lua_State *lua_tothread (lua_State *L, int index);</pre> 5736 5737<p> 5738Converts the value at the given index to a Lua thread 5739(represented as <code>lua_State*</code>). 5740This value must be a thread; 5741otherwise, the function returns <code>NULL</code>. 5742 5743 5744 5745 5746 5747<hr><h3><a name="lua_touserdata"><code>lua_touserdata</code></a></h3><p> 5748<span class="apii">[-0, +0, –]</span> 5749<pre>void *lua_touserdata (lua_State *L, int index);</pre> 5750 5751<p> 5752If the value at the given index is a full userdata, 5753returns its memory-block address. 5754If the value is a light userdata, 5755returns its value (a pointer). 5756Otherwise, returns <code>NULL</code>. 5757 5758 5759 5760 5761 5762<hr><h3><a name="lua_type"><code>lua_type</code></a></h3><p> 5763<span class="apii">[-0, +0, –]</span> 5764<pre>int lua_type (lua_State *L, int index);</pre> 5765 5766<p> 5767Returns the type of the value in the given valid index, 5768or <code>LUA_TNONE</code> for a non-valid but acceptable index. 5769The types returned by <a href="#lua_type"><code>lua_type</code></a> are coded by the following constants 5770defined in <code>lua.h</code>: 5771<a name="pdf-LUA_TNIL"><code>LUA_TNIL</code></a>, 5772<a name="pdf-LUA_TNUMBER"><code>LUA_TNUMBER</code></a>, 5773<a name="pdf-LUA_TBOOLEAN"><code>LUA_TBOOLEAN</code></a>, 5774<a name="pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>, 5775<a name="pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>, 5776<a name="pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>, 5777<a name="pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>, 5778<a name="pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a>, 5779and 5780<a name="pdf-LUA_TLIGHTUSERDATA"><code>LUA_TLIGHTUSERDATA</code></a>. 5781 5782 5783 5784 5785 5786<hr><h3><a name="lua_typename"><code>lua_typename</code></a></h3><p> 5787<span class="apii">[-0, +0, –]</span> 5788<pre>const char *lua_typename (lua_State *L, int tp);</pre> 5789 5790<p> 5791Returns the name of the type encoded by the value <code>tp</code>, 5792which must be one the values returned by <a href="#lua_type"><code>lua_type</code></a>. 5793 5794 5795 5796 5797 5798<hr><h3><a name="lua_Unsigned"><code>lua_Unsigned</code></a></h3> 5799<pre>typedef ... lua_Unsigned;</pre> 5800 5801<p> 5802The unsigned version of <a href="#lua_Integer"><code>lua_Integer</code></a>. 5803 5804 5805 5806 5807 5808<hr><h3><a name="lua_upvalueindex"><code>lua_upvalueindex</code></a></h3><p> 5809<span class="apii">[-0, +0, –]</span> 5810<pre>int lua_upvalueindex (int i);</pre> 5811 5812<p> 5813Returns the pseudo-index that represents the <code>i</code>-th upvalue of 5814the running function (see <a href="#4.2">§4.2</a>). 5815<code>i</code> must be in the range <em>[1,256]</em>. 5816 5817 5818 5819 5820 5821<hr><h3><a name="lua_version"><code>lua_version</code></a></h3><p> 5822<span class="apii">[-0, +0, –]</span> 5823<pre>lua_Number lua_version (lua_State *L);</pre> 5824 5825<p> 5826Returns the version number of this core. 5827 5828 5829 5830 5831 5832<hr><h3><a name="lua_WarnFunction"><code>lua_WarnFunction</code></a></h3> 5833<pre>typedef void (*lua_WarnFunction) (void *ud, const char *msg, int tocont);</pre> 5834 5835<p> 5836The type of warning functions, called by Lua to emit warnings. 5837The first parameter is an opaque pointer 5838set by <a href="#lua_setwarnf"><code>lua_setwarnf</code></a>. 5839The second parameter is the warning message. 5840The third parameter is a boolean that 5841indicates whether the message is 5842to be continued by the message in the next call. 5843 5844 5845<p> 5846See <a href="#pdf-warn"><code>warn</code></a> for more details about warnings. 5847 5848 5849 5850 5851 5852<hr><h3><a name="lua_warning"><code>lua_warning</code></a></h3><p> 5853<span class="apii">[-0, +0, –]</span> 5854<pre>void lua_warning (lua_State *L, const char *msg, int tocont);</pre> 5855 5856<p> 5857Emits a warning with the given message. 5858A message in a call with <code>tocont</code> true should be 5859continued in another call to this function. 5860 5861 5862<p> 5863See <a href="#pdf-warn"><code>warn</code></a> for more details about warnings. 5864 5865 5866 5867 5868 5869<hr><h3><a name="lua_Writer"><code>lua_Writer</code></a></h3> 5870<pre>typedef int (*lua_Writer) (lua_State *L, 5871 const void* p, 5872 size_t sz, 5873 void* ud);</pre> 5874 5875<p> 5876The type of the writer function used by <a href="#lua_dump"><code>lua_dump</code></a>. 5877Every time <a href="#lua_dump"><code>lua_dump</code></a> produces another piece of chunk, 5878it calls the writer, 5879passing along the buffer to be written (<code>p</code>), 5880its size (<code>sz</code>), 5881and the <code>ud</code> parameter supplied to <a href="#lua_dump"><code>lua_dump</code></a>. 5882 5883 5884<p> 5885The writer returns an error code: 58860 means no errors; 5887any other value means an error and stops <a href="#lua_dump"><code>lua_dump</code></a> from 5888calling the writer again. 5889 5890 5891 5892 5893 5894<hr><h3><a name="lua_xmove"><code>lua_xmove</code></a></h3><p> 5895<span class="apii">[-?, +?, –]</span> 5896<pre>void lua_xmove (lua_State *from, lua_State *to, int n);</pre> 5897 5898<p> 5899Exchange values between different threads of the same state. 5900 5901 5902<p> 5903This function pops <code>n</code> values from the stack <code>from</code>, 5904and pushes them onto the stack <code>to</code>. 5905 5906 5907 5908 5909 5910<hr><h3><a name="lua_yield"><code>lua_yield</code></a></h3><p> 5911<span class="apii">[-?, +?, <em>v</em>]</span> 5912<pre>int lua_yield (lua_State *L, int nresults);</pre> 5913 5914<p> 5915This function is equivalent to <a href="#lua_yieldk"><code>lua_yieldk</code></a>, 5916but it has no continuation (see <a href="#4.5">§4.5</a>). 5917Therefore, when the thread resumes, 5918it continues the function that called 5919the function calling <code>lua_yield</code>. 5920To avoid surprises, 5921this function should be called only in a tail call. 5922 5923 5924 5925 5926 5927<hr><h3><a name="lua_yieldk"><code>lua_yieldk</code></a></h3><p> 5928<span class="apii">[-?, +?, <em>v</em>]</span> 5929<pre>int lua_yieldk (lua_State *L, 5930 int nresults, 5931 lua_KContext ctx, 5932 lua_KFunction k);</pre> 5933 5934<p> 5935Yields a coroutine (thread). 5936 5937 5938<p> 5939When a C function calls <a href="#lua_yieldk"><code>lua_yieldk</code></a>, 5940the running coroutine suspends its execution, 5941and the call to <a href="#lua_resume"><code>lua_resume</code></a> that started this coroutine returns. 5942The parameter <code>nresults</code> is the number of values from the stack 5943that will be passed as results to <a href="#lua_resume"><code>lua_resume</code></a>. 5944 5945 5946<p> 5947When the coroutine is resumed again, 5948Lua calls the given continuation function <code>k</code> to continue 5949the execution of the C function that yielded (see <a href="#4.5">§4.5</a>). 5950This continuation function receives the same stack 5951from the previous function, 5952with the <code>n</code> results removed and 5953replaced by the arguments passed to <a href="#lua_resume"><code>lua_resume</code></a>. 5954Moreover, 5955the continuation function receives the value <code>ctx</code> 5956that was passed to <a href="#lua_yieldk"><code>lua_yieldk</code></a>. 5957 5958 5959<p> 5960Usually, this function does not return; 5961when the coroutine eventually resumes, 5962it continues executing the continuation function. 5963However, there is one special case, 5964which is when this function is called 5965from inside a line or a count hook (see <a href="#4.7">§4.7</a>). 5966In that case, <code>lua_yieldk</code> should be called with no continuation 5967(probably in the form of <a href="#lua_yield"><code>lua_yield</code></a>) and no results, 5968and the hook should return immediately after the call. 5969Lua will yield and, 5970when the coroutine resumes again, 5971it will continue the normal execution 5972of the (Lua) function that triggered the hook. 5973 5974 5975<p> 5976This function can raise an error if it is called from a thread 5977with a pending C call with no continuation function 5978(what is called a <em>C-call boundary</em>), 5979or it is called from a thread that is not running inside a resume 5980(typically the main thread). 5981 5982 5983 5984 5985 5986 5987 5988<h2>4.7 – <a name="4.7">The Debug Interface</a></h2> 5989 5990<p> 5991Lua has no built-in debugging facilities. 5992Instead, it offers a special interface 5993by means of functions and <em>hooks</em>. 5994This interface allows the construction of different 5995kinds of debuggers, profilers, and other tools 5996that need "inside information" from the interpreter. 5997 5998 5999 6000<hr><h3><a name="lua_Debug"><code>lua_Debug</code></a></h3> 6001<pre>typedef struct lua_Debug { 6002 int event; 6003 const char *name; /* (n) */ 6004 const char *namewhat; /* (n) */ 6005 const char *what; /* (S) */ 6006 const char *source; /* (S) */ 6007 size_t srclen; /* (S) */ 6008 int currentline; /* (l) */ 6009 int linedefined; /* (S) */ 6010 int lastlinedefined; /* (S) */ 6011 unsigned char nups; /* (u) number of upvalues */ 6012 unsigned char nparams; /* (u) number of parameters */ 6013 char isvararg; /* (u) */ 6014 char istailcall; /* (t) */ 6015 unsigned short ftransfer; /* (r) index of first value transferred */ 6016 unsigned short ntransfer; /* (r) number of transferred values */ 6017 char short_src[LUA_IDSIZE]; /* (S) */ 6018 /* private part */ 6019 <em>other fields</em> 6020} lua_Debug;</pre> 6021 6022<p> 6023A structure used to carry different pieces of 6024information about a function or an activation record. 6025<a href="#lua_getstack"><code>lua_getstack</code></a> fills only the private part 6026of this structure, for later use. 6027To fill the other fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information, 6028you must call <a href="#lua_getinfo"><code>lua_getinfo</code></a> with an appropriate parameter. 6029(Specifically, to get a field, 6030you must add the letter between parentheses in the field's comment 6031to the parameter <code>what</code> of <a href="#lua_getinfo"><code>lua_getinfo</code></a>.) 6032 6033 6034<p> 6035The fields of <a href="#lua_Debug"><code>lua_Debug</code></a> have the following meaning: 6036 6037<ul> 6038 6039<li><b><code>source</code>: </b> 6040the source of the chunk that created the function. 6041If <code>source</code> starts with a '<code>@</code>', 6042it means that the function was defined in a file where 6043the file name follows the '<code>@</code>'. 6044If <code>source</code> starts with a '<code>=</code>', 6045the remainder of its contents describes the source in a user-dependent manner. 6046Otherwise, 6047the function was defined in a string where 6048<code>source</code> is that string. 6049</li> 6050 6051<li><b><code>srclen</code>: </b> 6052The length of the string <code>source</code>. 6053</li> 6054 6055<li><b><code>short_src</code>: </b> 6056a "printable" version of <code>source</code>, to be used in error messages. 6057</li> 6058 6059<li><b><code>linedefined</code>: </b> 6060the line number where the definition of the function starts. 6061</li> 6062 6063<li><b><code>lastlinedefined</code>: </b> 6064the line number where the definition of the function ends. 6065</li> 6066 6067<li><b><code>what</code>: </b> 6068the string <code>"Lua"</code> if the function is a Lua function, 6069<code>"C"</code> if it is a C function, 6070<code>"main"</code> if it is the main part of a chunk. 6071</li> 6072 6073<li><b><code>currentline</code>: </b> 6074the current line where the given function is executing. 6075When no line information is available, 6076<code>currentline</code> is set to -1. 6077</li> 6078 6079<li><b><code>name</code>: </b> 6080a reasonable name for the given function. 6081Because functions in Lua are first-class values, 6082they do not have a fixed name: 6083some functions can be the value of multiple global variables, 6084while others can be stored only in a table field. 6085The <code>lua_getinfo</code> function checks how the function was 6086called to find a suitable name. 6087If it cannot find a name, 6088then <code>name</code> is set to <code>NULL</code>. 6089</li> 6090 6091<li><b><code>namewhat</code>: </b> 6092explains the <code>name</code> field. 6093The value of <code>namewhat</code> can be 6094<code>"global"</code>, <code>"local"</code>, <code>"method"</code>, 6095<code>"field"</code>, <code>"upvalue"</code>, or <code>""</code> (the empty string), 6096according to how the function was called. 6097(Lua uses the empty string when no other option seems to apply.) 6098</li> 6099 6100<li><b><code>istailcall</code>: </b> 6101true if this function invocation was called by a tail call. 6102In this case, the caller of this level is not in the stack. 6103</li> 6104 6105<li><b><code>nups</code>: </b> 6106the number of upvalues of the function. 6107</li> 6108 6109<li><b><code>nparams</code>: </b> 6110the number of parameters of the function 6111(always 0 for C functions). 6112</li> 6113 6114<li><b><code>isvararg</code>: </b> 6115true if the function is a variadic function 6116(always true for C functions). 6117</li> 6118 6119<li><b><code>ftransfer</code>: </b> 6120the index in the stack of the first value being "transferred", 6121that is, parameters in a call or return values in a return. 6122(The other values are in consecutive indices.) 6123Using this index, you can access and modify these values 6124through <a href="#lua_getlocal"><code>lua_getlocal</code></a> and <a href="#lua_setlocal"><code>lua_setlocal</code></a>. 6125This field is only meaningful during a 6126call hook, denoting the first parameter, 6127or a return hook, denoting the first value being returned. 6128(For call hooks, this value is always 1.) 6129</li> 6130 6131<li><b><code>ntransfer</code>: </b> 6132The number of values being transferred (see previous item). 6133(For calls of Lua functions, 6134this value is always equal to <code>nparams</code>.) 6135</li> 6136 6137</ul> 6138 6139 6140 6141 6142<hr><h3><a name="lua_gethook"><code>lua_gethook</code></a></h3><p> 6143<span class="apii">[-0, +0, –]</span> 6144<pre>lua_Hook lua_gethook (lua_State *L);</pre> 6145 6146<p> 6147Returns the current hook function. 6148 6149 6150 6151 6152 6153<hr><h3><a name="lua_gethookcount"><code>lua_gethookcount</code></a></h3><p> 6154<span class="apii">[-0, +0, –]</span> 6155<pre>int lua_gethookcount (lua_State *L);</pre> 6156 6157<p> 6158Returns the current hook count. 6159 6160 6161 6162 6163 6164<hr><h3><a name="lua_gethookmask"><code>lua_gethookmask</code></a></h3><p> 6165<span class="apii">[-0, +0, –]</span> 6166<pre>int lua_gethookmask (lua_State *L);</pre> 6167 6168<p> 6169Returns the current hook mask. 6170 6171 6172 6173 6174 6175<hr><h3><a name="lua_getinfo"><code>lua_getinfo</code></a></h3><p> 6176<span class="apii">[-(0|1), +(0|1|2), <em>m</em>]</span> 6177<pre>int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);</pre> 6178 6179<p> 6180Gets information about a specific function or function invocation. 6181 6182 6183<p> 6184To get information about a function invocation, 6185the parameter <code>ar</code> must be a valid activation record that was 6186filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or 6187given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>). 6188 6189 6190<p> 6191To get information about a function, you push it onto the stack 6192and start the <code>what</code> string with the character '<code>></code>'. 6193(In that case, 6194<code>lua_getinfo</code> pops the function from the top of the stack.) 6195For instance, to know in which line a function <code>f</code> was defined, 6196you can write the following code: 6197 6198<pre> 6199 lua_Debug ar; 6200 lua_getglobal(L, "f"); /* get global 'f' */ 6201 lua_getinfo(L, ">S", &ar); 6202 printf("%d\n", ar.linedefined); 6203</pre> 6204 6205<p> 6206Each character in the string <code>what</code> 6207selects some fields of the structure <code>ar</code> to be filled or 6208a value to be pushed on the stack. 6209(These characters are also documented in the declaration of 6210the structure <a href="#lua_Debug"><code>lua_Debug</code></a>, 6211between parentheses in the comments following each field.) 6212 6213<ul> 6214 6215<li><b>'<code>f</code>': </b> 6216pushes onto the stack the function that is 6217running at the given level; 6218</li> 6219 6220<li><b>'<code>l</code>': </b> fills in the field <code>currentline</code>; 6221</li> 6222 6223<li><b>'<code>n</code>': </b> fills in the fields <code>name</code> and <code>namewhat</code>; 6224</li> 6225 6226<li><b>'<code>r</code>': </b> fills in the fields <code>ftransfer</code> and <code>ntransfer</code>; 6227</li> 6228 6229<li><b>'<code>S</code>': </b> 6230fills in the fields <code>source</code>, <code>short_src</code>, 6231<code>linedefined</code>, <code>lastlinedefined</code>, and <code>what</code>; 6232</li> 6233 6234<li><b>'<code>t</code>': </b> fills in the field <code>istailcall</code>; 6235</li> 6236 6237<li><b>'<code>u</code>': </b> fills in the fields 6238<code>nups</code>, <code>nparams</code>, and <code>isvararg</code>; 6239</li> 6240 6241<li><b>'<code>L</code>': </b> 6242pushes onto the stack a table whose indices are 6243the lines on the function with some associated code, 6244that is, the lines where you can put a break point. 6245(Lines with no code include empty lines and comments.) 6246If this option is given together with option '<code>f</code>', 6247its table is pushed after the function. 6248This is the only option that can raise a memory error. 6249</li> 6250 6251</ul> 6252 6253<p> 6254This function returns 0 to signal an invalid option in <code>what</code>; 6255even then the valid options are handled correctly. 6256 6257 6258 6259 6260 6261<hr><h3><a name="lua_getlocal"><code>lua_getlocal</code></a></h3><p> 6262<span class="apii">[-0, +(0|1), –]</span> 6263<pre>const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);</pre> 6264 6265<p> 6266Gets information about a local variable or a temporary value 6267of a given activation record or a given function. 6268 6269 6270<p> 6271In the first case, 6272the parameter <code>ar</code> must be a valid activation record that was 6273filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or 6274given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>). 6275The index <code>n</code> selects which local variable to inspect; 6276see <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for details about variable indices 6277and names. 6278 6279 6280<p> 6281<a href="#lua_getlocal"><code>lua_getlocal</code></a> pushes the variable's value onto the stack 6282and returns its name. 6283 6284 6285<p> 6286In the second case, <code>ar</code> must be <code>NULL</code> and the function 6287to be inspected must be on the top of the stack. 6288In this case, only parameters of Lua functions are visible 6289(as there is no information about what variables are active) 6290and no values are pushed onto the stack. 6291 6292 6293<p> 6294Returns <code>NULL</code> (and pushes nothing) 6295when the index is greater than 6296the number of active local variables. 6297 6298 6299 6300 6301 6302<hr><h3><a name="lua_getstack"><code>lua_getstack</code></a></h3><p> 6303<span class="apii">[-0, +0, –]</span> 6304<pre>int lua_getstack (lua_State *L, int level, lua_Debug *ar);</pre> 6305 6306<p> 6307Gets information about the interpreter runtime stack. 6308 6309 6310<p> 6311This function fills parts of a <a href="#lua_Debug"><code>lua_Debug</code></a> structure with 6312an identification of the <em>activation record</em> 6313of the function executing at a given level. 6314Level 0 is the current running function, 6315whereas level <em>n+1</em> is the function that has called level <em>n</em> 6316(except for tail calls, which do not count in the stack). 6317When called with a level greater than the stack depth, 6318<a href="#lua_getstack"><code>lua_getstack</code></a> returns 0; 6319otherwise it returns 1. 6320 6321 6322 6323 6324 6325<hr><h3><a name="lua_getupvalue"><code>lua_getupvalue</code></a></h3><p> 6326<span class="apii">[-0, +(0|1), –]</span> 6327<pre>const char *lua_getupvalue (lua_State *L, int funcindex, int n);</pre> 6328 6329<p> 6330Gets information about the <code>n</code>-th upvalue 6331of the closure at index <code>funcindex</code>. 6332It pushes the upvalue's value onto the stack 6333and returns its name. 6334Returns <code>NULL</code> (and pushes nothing) 6335when the index <code>n</code> is greater than the number of upvalues. 6336 6337 6338<p> 6339See <a href="#pdf-debug.getupvalue"><code>debug.getupvalue</code></a> for more information about upvalues. 6340 6341 6342 6343 6344 6345<hr><h3><a name="lua_Hook"><code>lua_Hook</code></a></h3> 6346<pre>typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);</pre> 6347 6348<p> 6349Type for debugging hook functions. 6350 6351 6352<p> 6353Whenever a hook is called, its <code>ar</code> argument has its field 6354<code>event</code> set to the specific event that triggered the hook. 6355Lua identifies these events with the following constants: 6356<a name="pdf-LUA_HOOKCALL"><code>LUA_HOOKCALL</code></a>, <a name="pdf-LUA_HOOKRET"><code>LUA_HOOKRET</code></a>, 6357<a name="pdf-LUA_HOOKTAILCALL"><code>LUA_HOOKTAILCALL</code></a>, <a name="pdf-LUA_HOOKLINE"><code>LUA_HOOKLINE</code></a>, 6358and <a name="pdf-LUA_HOOKCOUNT"><code>LUA_HOOKCOUNT</code></a>. 6359Moreover, for line events, the field <code>currentline</code> is also set. 6360To get the value of any other field in <code>ar</code>, 6361the hook must call <a href="#lua_getinfo"><code>lua_getinfo</code></a>. 6362 6363 6364<p> 6365For call events, <code>event</code> can be <code>LUA_HOOKCALL</code>, 6366the normal value, or <code>LUA_HOOKTAILCALL</code>, for a tail call; 6367in this case, there will be no corresponding return event. 6368 6369 6370<p> 6371While Lua is running a hook, it disables other calls to hooks. 6372Therefore, if a hook calls back Lua to execute a function or a chunk, 6373this execution occurs without any calls to hooks. 6374 6375 6376<p> 6377Hook functions cannot have continuations, 6378that is, they cannot call <a href="#lua_yieldk"><code>lua_yieldk</code></a>, 6379<a href="#lua_pcallk"><code>lua_pcallk</code></a>, or <a href="#lua_callk"><code>lua_callk</code></a> with a non-null <code>k</code>. 6380 6381 6382<p> 6383Hook functions can yield under the following conditions: 6384Only count and line events can yield; 6385to yield, a hook function must finish its execution 6386calling <a href="#lua_yield"><code>lua_yield</code></a> with <code>nresults</code> equal to zero 6387(that is, with no values). 6388 6389 6390 6391 6392 6393<hr><h3><a name="lua_sethook"><code>lua_sethook</code></a></h3><p> 6394<span class="apii">[-0, +0, –]</span> 6395<pre>void lua_sethook (lua_State *L, lua_Hook f, int mask, int count);</pre> 6396 6397<p> 6398Sets the debugging hook function. 6399 6400 6401<p> 6402Argument <code>f</code> is the hook function. 6403<code>mask</code> specifies on which events the hook will be called: 6404it is formed by a bitwise OR of the constants 6405<a name="pdf-LUA_MASKCALL"><code>LUA_MASKCALL</code></a>, 6406<a name="pdf-LUA_MASKRET"><code>LUA_MASKRET</code></a>, 6407<a name="pdf-LUA_MASKLINE"><code>LUA_MASKLINE</code></a>, 6408and <a name="pdf-LUA_MASKCOUNT"><code>LUA_MASKCOUNT</code></a>. 6409The <code>count</code> argument is only meaningful when the mask 6410includes <code>LUA_MASKCOUNT</code>. 6411For each event, the hook is called as explained below: 6412 6413<ul> 6414 6415<li><b>The call hook: </b> is called when the interpreter calls a function. 6416The hook is called just after Lua enters the new function. 6417</li> 6418 6419<li><b>The return hook: </b> is called when the interpreter returns from a function. 6420The hook is called just before Lua leaves the function. 6421</li> 6422 6423<li><b>The line hook: </b> is called when the interpreter is about to 6424start the execution of a new line of code, 6425or when it jumps back in the code (even to the same line). 6426This event only happens while Lua is executing a Lua function. 6427</li> 6428 6429<li><b>The count hook: </b> is called after the interpreter executes every 6430<code>count</code> instructions. 6431This event only happens while Lua is executing a Lua function. 6432</li> 6433 6434</ul> 6435 6436<p> 6437Hooks are disabled by setting <code>mask</code> to zero. 6438 6439 6440 6441 6442 6443<hr><h3><a name="lua_setlocal"><code>lua_setlocal</code></a></h3><p> 6444<span class="apii">[-(0|1), +0, –]</span> 6445<pre>const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);</pre> 6446 6447<p> 6448Sets the value of a local variable of a given activation record. 6449It assigns the value on the top of the stack 6450to the variable and returns its name. 6451It also pops the value from the stack. 6452 6453 6454<p> 6455Returns <code>NULL</code> (and pops nothing) 6456when the index is greater than 6457the number of active local variables. 6458 6459 6460<p> 6461Parameters <code>ar</code> and <code>n</code> are as in the function <a href="#lua_getlocal"><code>lua_getlocal</code></a>. 6462 6463 6464 6465 6466 6467<hr><h3><a name="lua_setupvalue"><code>lua_setupvalue</code></a></h3><p> 6468<span class="apii">[-(0|1), +0, –]</span> 6469<pre>const char *lua_setupvalue (lua_State *L, int funcindex, int n);</pre> 6470 6471<p> 6472Sets the value of a closure's upvalue. 6473It assigns the value on the top of the stack 6474to the upvalue and returns its name. 6475It also pops the value from the stack. 6476 6477 6478<p> 6479Returns <code>NULL</code> (and pops nothing) 6480when the index <code>n</code> is greater than the number of upvalues. 6481 6482 6483<p> 6484Parameters <code>funcindex</code> and <code>n</code> are as in 6485the function <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>. 6486 6487 6488 6489 6490 6491<hr><h3><a name="lua_upvalueid"><code>lua_upvalueid</code></a></h3><p> 6492<span class="apii">[-0, +0, –]</span> 6493<pre>void *lua_upvalueid (lua_State *L, int funcindex, int n);</pre> 6494 6495<p> 6496Returns a unique identifier for the upvalue numbered <code>n</code> 6497from the closure at index <code>funcindex</code>. 6498 6499 6500<p> 6501These unique identifiers allow a program to check whether different 6502closures share upvalues. 6503Lua closures that share an upvalue 6504(that is, that access a same external local variable) 6505will return identical ids for those upvalue indices. 6506 6507 6508<p> 6509Parameters <code>funcindex</code> and <code>n</code> are as in 6510the function <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>, 6511but <code>n</code> cannot be greater than the number of upvalues. 6512 6513 6514 6515 6516 6517<hr><h3><a name="lua_upvaluejoin"><code>lua_upvaluejoin</code></a></h3><p> 6518<span class="apii">[-0, +0, –]</span> 6519<pre>void lua_upvaluejoin (lua_State *L, int funcindex1, int n1, 6520 int funcindex2, int n2);</pre> 6521 6522<p> 6523Make the <code>n1</code>-th upvalue of the Lua closure at index <code>funcindex1</code> 6524refer to the <code>n2</code>-th upvalue of the Lua closure at index <code>funcindex2</code>. 6525 6526 6527 6528 6529 6530 6531 6532<h1>5 – <a name="5">The Auxiliary Library</a></h1> 6533 6534 6535 6536<p> 6537 6538The <em>auxiliary library</em> provides several convenient functions 6539to interface C with Lua. 6540While the basic API provides the primitive functions for all 6541interactions between C and Lua, 6542the auxiliary library provides higher-level functions for some 6543common tasks. 6544 6545 6546<p> 6547All functions and types from the auxiliary library 6548are defined in header file <code>lauxlib.h</code> and 6549have a prefix <code>luaL_</code>. 6550 6551 6552<p> 6553All functions in the auxiliary library are built on 6554top of the basic API, 6555and so they provide nothing that cannot be done with that API. 6556Nevertheless, the use of the auxiliary library ensures 6557more consistency to your code. 6558 6559 6560<p> 6561Several functions in the auxiliary library use internally some 6562extra stack slots. 6563When a function in the auxiliary library uses less than five slots, 6564it does not check the stack size; 6565it simply assumes that there are enough slots. 6566 6567 6568<p> 6569Several functions in the auxiliary library are used to 6570check C function arguments. 6571Because the error message is formatted for arguments 6572(e.g., "<code>bad argument #1</code>"), 6573you should not use these functions for other stack values. 6574 6575 6576<p> 6577Functions called <code>luaL_check*</code> 6578always raise an error if the check is not satisfied. 6579 6580 6581 6582 6583 6584<h2>5.1 – <a name="5.1">Functions and Types</a></h2> 6585 6586<p> 6587Here we list all functions and types from the auxiliary library 6588in alphabetical order. 6589 6590 6591 6592<hr><h3><a name="luaL_addchar"><code>luaL_addchar</code></a></h3><p> 6593<span class="apii">[-?, +?, <em>m</em>]</span> 6594<pre>void luaL_addchar (luaL_Buffer *B, char c);</pre> 6595 6596<p> 6597Adds the byte <code>c</code> to the buffer <code>B</code> 6598(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 6599 6600 6601 6602 6603 6604<hr><h3><a name="luaL_addgsub"><code>luaL_addgsub</code></a></h3><p> 6605<span class="apii">[-?, +?, <em>m</em>]</span> 6606<pre>const void luaL_addgsub (luaL_Buffer *B, const char *s, 6607 const char *p, const char *r);</pre> 6608 6609<p> 6610Adds a copy of the string <code>s</code> to the buffer <code>B</code> (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>), 6611replacing any occurrence of the string <code>p</code> 6612with the string <code>r</code>. 6613 6614 6615 6616 6617 6618<hr><h3><a name="luaL_addlstring"><code>luaL_addlstring</code></a></h3><p> 6619<span class="apii">[-?, +?, <em>m</em>]</span> 6620<pre>void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);</pre> 6621 6622<p> 6623Adds the string pointed to by <code>s</code> with length <code>l</code> to 6624the buffer <code>B</code> 6625(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 6626The string can contain embedded zeros. 6627 6628 6629 6630 6631 6632<hr><h3><a name="luaL_addsize"><code>luaL_addsize</code></a></h3><p> 6633<span class="apii">[-?, +?, –]</span> 6634<pre>void luaL_addsize (luaL_Buffer *B, size_t n);</pre> 6635 6636<p> 6637Adds to the buffer <code>B</code> 6638a string of length <code>n</code> previously copied to the 6639buffer area (see <a href="#luaL_prepbuffer"><code>luaL_prepbuffer</code></a>). 6640 6641 6642 6643 6644 6645<hr><h3><a name="luaL_addstring"><code>luaL_addstring</code></a></h3><p> 6646<span class="apii">[-?, +?, <em>m</em>]</span> 6647<pre>void luaL_addstring (luaL_Buffer *B, const char *s);</pre> 6648 6649<p> 6650Adds the zero-terminated string pointed to by <code>s</code> 6651to the buffer <code>B</code> 6652(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 6653 6654 6655 6656 6657 6658<hr><h3><a name="luaL_addvalue"><code>luaL_addvalue</code></a></h3><p> 6659<span class="apii">[-?, +?, <em>m</em>]</span> 6660<pre>void luaL_addvalue (luaL_Buffer *B);</pre> 6661 6662<p> 6663Adds the value on the top of the stack 6664to the buffer <code>B</code> 6665(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 6666Pops the value. 6667 6668 6669<p> 6670This is the only function on string buffers that can (and must) 6671be called with an extra element on the stack, 6672which is the value to be added to the buffer. 6673 6674 6675 6676 6677 6678<hr><h3><a name="luaL_argcheck"><code>luaL_argcheck</code></a></h3><p> 6679<span class="apii">[-0, +0, <em>v</em>]</span> 6680<pre>void luaL_argcheck (lua_State *L, 6681 int cond, 6682 int arg, 6683 const char *extramsg);</pre> 6684 6685<p> 6686Checks whether <code>cond</code> is true. 6687If it is not, raises an error with a standard message (see <a href="#luaL_argerror"><code>luaL_argerror</code></a>). 6688 6689 6690 6691 6692 6693<hr><h3><a name="luaL_argerror"><code>luaL_argerror</code></a></h3><p> 6694<span class="apii">[-0, +0, <em>v</em>]</span> 6695<pre>int luaL_argerror (lua_State *L, int arg, const char *extramsg);</pre> 6696 6697<p> 6698Raises an error reporting a problem with argument <code>arg</code> 6699of the C function that called it, 6700using a standard message 6701that includes <code>extramsg</code> as a comment: 6702 6703<pre> 6704 bad argument #<em>arg</em> to '<em>funcname</em>' (<em>extramsg</em>) 6705</pre><p> 6706This function never returns. 6707 6708 6709 6710 6711 6712<hr><h3><a name="luaL_argexpected"><code>luaL_argexpected</code></a></h3><p> 6713<span class="apii">[-0, +0, <em>v</em>]</span> 6714<pre>void luaL_argexpected (lua_State *L, 6715 int cond, 6716 int arg, 6717 const char *tname);</pre> 6718 6719<p> 6720Checks whether <code>cond</code> is true. 6721If it is not, raises an error about the type of the argument <code>arg</code> 6722with a standard message (see <a href="#luaL_typeerror"><code>luaL_typeerror</code></a>). 6723 6724 6725 6726 6727 6728<hr><h3><a name="luaL_Buffer"><code>luaL_Buffer</code></a></h3> 6729<pre>typedef struct luaL_Buffer luaL_Buffer;</pre> 6730 6731<p> 6732Type for a <em>string buffer</em>. 6733 6734 6735<p> 6736A string buffer allows C code to build Lua strings piecemeal. 6737Its pattern of use is as follows: 6738 6739<ul> 6740 6741<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li> 6742 6743<li>Then initialize it with a call <code>luaL_buffinit(L, &b)</code>.</li> 6744 6745<li> 6746Then add string pieces to the buffer calling any of 6747the <code>luaL_add*</code> functions. 6748</li> 6749 6750<li> 6751Finish by calling <code>luaL_pushresult(&b)</code>. 6752This call leaves the final string on the top of the stack. 6753</li> 6754 6755</ul> 6756 6757<p> 6758If you know beforehand the maximum size of the resulting string, 6759you can use the buffer like this: 6760 6761<ul> 6762 6763<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li> 6764 6765<li>Then initialize it and preallocate a space of 6766size <code>sz</code> with a call <code>luaL_buffinitsize(L, &b, sz)</code>.</li> 6767 6768<li>Then produce the string into that space.</li> 6769 6770<li> 6771Finish by calling <code>luaL_pushresultsize(&b, sz)</code>, 6772where <code>sz</code> is the total size of the resulting string 6773copied into that space (which may be less than or 6774equal to the preallocated size). 6775</li> 6776 6777</ul> 6778 6779<p> 6780During its normal operation, 6781a string buffer uses a variable number of stack slots. 6782So, while using a buffer, you cannot assume that you know where 6783the top of the stack is. 6784You can use the stack between successive calls to buffer operations 6785as long as that use is balanced; 6786that is, 6787when you call a buffer operation, 6788the stack is at the same level 6789it was immediately after the previous buffer operation. 6790(The only exception to this rule is <a href="#luaL_addvalue"><code>luaL_addvalue</code></a>.) 6791After calling <a href="#luaL_pushresult"><code>luaL_pushresult</code></a>, 6792the stack is back to its level when the buffer was initialized, 6793plus the final string on its top. 6794 6795 6796 6797 6798 6799<hr><h3><a name="luaL_buffaddr"><code>luaL_buffaddr</code></a></h3><p> 6800<span class="apii">[-0, +0, –]</span> 6801<pre>char *luaL_buffaddr (luaL_Buffer *B);</pre> 6802 6803<p> 6804Returns the address of the current content of buffer <code>B</code> 6805(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 6806Note that any addition to the buffer may invalidate this address. 6807 6808 6809 6810 6811 6812<hr><h3><a name="luaL_buffinit"><code>luaL_buffinit</code></a></h3><p> 6813<span class="apii">[-0, +?, –]</span> 6814<pre>void luaL_buffinit (lua_State *L, luaL_Buffer *B);</pre> 6815 6816<p> 6817Initializes a buffer <code>B</code> 6818(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 6819This function does not allocate any space; 6820the buffer must be declared as a variable. 6821 6822 6823 6824 6825 6826<hr><h3><a name="luaL_bufflen"><code>luaL_bufflen</code></a></h3><p> 6827<span class="apii">[-0, +0, –]</span> 6828<pre>size_t luaL_bufflen (luaL_Buffer *B);</pre> 6829 6830<p> 6831Returns the length of the current content of buffer <code>B</code> 6832(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 6833 6834 6835 6836 6837 6838<hr><h3><a name="luaL_buffinitsize"><code>luaL_buffinitsize</code></a></h3><p> 6839<span class="apii">[-?, +?, <em>m</em>]</span> 6840<pre>char *luaL_buffinitsize (lua_State *L, luaL_Buffer *B, size_t sz);</pre> 6841 6842<p> 6843Equivalent to the sequence 6844<a href="#luaL_buffinit"><code>luaL_buffinit</code></a>, <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>. 6845 6846 6847 6848 6849 6850<hr><h3><a name="luaL_buffsub"><code>luaL_buffsub</code></a></h3><p> 6851<span class="apii">[-?, +?, –]</span> 6852<pre>void luaL_buffsub (luaL_Buffer *B, int n);</pre> 6853 6854<p> 6855Removes <code>n</code> bytes from the buffer <code>B</code> 6856(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 6857The buffer must have at least that many bytes. 6858 6859 6860 6861 6862 6863<hr><h3><a name="luaL_callmeta"><code>luaL_callmeta</code></a></h3><p> 6864<span class="apii">[-0, +(0|1), <em>e</em>]</span> 6865<pre>int luaL_callmeta (lua_State *L, int obj, const char *e);</pre> 6866 6867<p> 6868Calls a metamethod. 6869 6870 6871<p> 6872If the object at index <code>obj</code> has a metatable and this 6873metatable has a field <code>e</code>, 6874this function calls this field passing the object as its only argument. 6875In this case this function returns true and pushes onto the 6876stack the value returned by the call. 6877If there is no metatable or no metamethod, 6878this function returns false without pushing any value on the stack. 6879 6880 6881 6882 6883 6884<hr><h3><a name="luaL_checkany"><code>luaL_checkany</code></a></h3><p> 6885<span class="apii">[-0, +0, <em>v</em>]</span> 6886<pre>void luaL_checkany (lua_State *L, int arg);</pre> 6887 6888<p> 6889Checks whether the function has an argument 6890of any type (including <b>nil</b>) at position <code>arg</code>. 6891 6892 6893 6894 6895 6896<hr><h3><a name="luaL_checkinteger"><code>luaL_checkinteger</code></a></h3><p> 6897<span class="apii">[-0, +0, <em>v</em>]</span> 6898<pre>lua_Integer luaL_checkinteger (lua_State *L, int arg);</pre> 6899 6900<p> 6901Checks whether the function argument <code>arg</code> is an integer 6902(or can be converted to an integer) 6903and returns this integer. 6904 6905 6906 6907 6908 6909<hr><h3><a name="luaL_checklstring"><code>luaL_checklstring</code></a></h3><p> 6910<span class="apii">[-0, +0, <em>v</em>]</span> 6911<pre>const char *luaL_checklstring (lua_State *L, int arg, size_t *l);</pre> 6912 6913<p> 6914Checks whether the function argument <code>arg</code> is a string 6915and returns this string; 6916if <code>l</code> is not <code>NULL</code> fills its referent 6917with the string's length. 6918 6919 6920<p> 6921This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result, 6922so all conversions and caveats of that function apply here. 6923 6924 6925 6926 6927 6928<hr><h3><a name="luaL_checknumber"><code>luaL_checknumber</code></a></h3><p> 6929<span class="apii">[-0, +0, <em>v</em>]</span> 6930<pre>lua_Number luaL_checknumber (lua_State *L, int arg);</pre> 6931 6932<p> 6933Checks whether the function argument <code>arg</code> is a number 6934and returns this number converted to a <code>lua_Number</code>. 6935 6936 6937 6938 6939 6940<hr><h3><a name="luaL_checkoption"><code>luaL_checkoption</code></a></h3><p> 6941<span class="apii">[-0, +0, <em>v</em>]</span> 6942<pre>int luaL_checkoption (lua_State *L, 6943 int arg, 6944 const char *def, 6945 const char *const lst[]);</pre> 6946 6947<p> 6948Checks whether the function argument <code>arg</code> is a string and 6949searches for this string in the array <code>lst</code> 6950(which must be NULL-terminated). 6951Returns the index in the array where the string was found. 6952Raises an error if the argument is not a string or 6953if the string cannot be found. 6954 6955 6956<p> 6957If <code>def</code> is not <code>NULL</code>, 6958the function uses <code>def</code> as a default value when 6959there is no argument <code>arg</code> or when this argument is <b>nil</b>. 6960 6961 6962<p> 6963This is a useful function for mapping strings to C enums. 6964(The usual convention in Lua libraries is 6965to use strings instead of numbers to select options.) 6966 6967 6968 6969 6970 6971<hr><h3><a name="luaL_checkstack"><code>luaL_checkstack</code></a></h3><p> 6972<span class="apii">[-0, +0, <em>v</em>]</span> 6973<pre>void luaL_checkstack (lua_State *L, int sz, const char *msg);</pre> 6974 6975<p> 6976Grows the stack size to <code>top + sz</code> elements, 6977raising an error if the stack cannot grow to that size. 6978<code>msg</code> is an additional text to go into the error message 6979(or <code>NULL</code> for no additional text). 6980 6981 6982 6983 6984 6985<hr><h3><a name="luaL_checkstring"><code>luaL_checkstring</code></a></h3><p> 6986<span class="apii">[-0, +0, <em>v</em>]</span> 6987<pre>const char *luaL_checkstring (lua_State *L, int arg);</pre> 6988 6989<p> 6990Checks whether the function argument <code>arg</code> is a string 6991and returns this string. 6992 6993 6994<p> 6995This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result, 6996so all conversions and caveats of that function apply here. 6997 6998 6999 7000 7001 7002<hr><h3><a name="luaL_checktype"><code>luaL_checktype</code></a></h3><p> 7003<span class="apii">[-0, +0, <em>v</em>]</span> 7004<pre>void luaL_checktype (lua_State *L, int arg, int t);</pre> 7005 7006<p> 7007Checks whether the function argument <code>arg</code> has type <code>t</code>. 7008See <a href="#lua_type"><code>lua_type</code></a> for the encoding of types for <code>t</code>. 7009 7010 7011 7012 7013 7014<hr><h3><a name="luaL_checkudata"><code>luaL_checkudata</code></a></h3><p> 7015<span class="apii">[-0, +0, <em>v</em>]</span> 7016<pre>void *luaL_checkudata (lua_State *L, int arg, const char *tname);</pre> 7017 7018<p> 7019Checks whether the function argument <code>arg</code> is a userdata 7020of the type <code>tname</code> (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>) and 7021returns the userdata's memory-block address (see <a href="#lua_touserdata"><code>lua_touserdata</code></a>). 7022 7023 7024 7025 7026 7027<hr><h3><a name="luaL_checkversion"><code>luaL_checkversion</code></a></h3><p> 7028<span class="apii">[-0, +0, <em>v</em>]</span> 7029<pre>void luaL_checkversion (lua_State *L);</pre> 7030 7031<p> 7032Checks whether the code making the call and the Lua library being called 7033are using the same version of Lua and the same numeric types. 7034 7035 7036 7037 7038 7039<hr><h3><a name="luaL_dofile"><code>luaL_dofile</code></a></h3><p> 7040<span class="apii">[-0, +?, <em>m</em>]</span> 7041<pre>int luaL_dofile (lua_State *L, const char *filename);</pre> 7042 7043<p> 7044Loads and runs the given file. 7045It is defined as the following macro: 7046 7047<pre> 7048 (luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0)) 7049</pre><p> 7050It returns 0 (<a href="#pdf-LUA_OK"><code>LUA_OK</code></a>) if there are no errors, 7051or 1 in case of errors. 7052 7053 7054 7055 7056 7057<hr><h3><a name="luaL_dostring"><code>luaL_dostring</code></a></h3><p> 7058<span class="apii">[-0, +?, –]</span> 7059<pre>int luaL_dostring (lua_State *L, const char *str);</pre> 7060 7061<p> 7062Loads and runs the given string. 7063It is defined as the following macro: 7064 7065<pre> 7066 (luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0)) 7067</pre><p> 7068It returns 0 (<a href="#pdf-LUA_OK"><code>LUA_OK</code></a>) if there are no errors, 7069or 1 in case of errors. 7070 7071 7072 7073 7074 7075<hr><h3><a name="luaL_error"><code>luaL_error</code></a></h3><p> 7076<span class="apii">[-0, +0, <em>v</em>]</span> 7077<pre>int luaL_error (lua_State *L, const char *fmt, ...);</pre> 7078 7079<p> 7080Raises an error. 7081The error message format is given by <code>fmt</code> 7082plus any extra arguments, 7083following the same rules of <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>. 7084It also adds at the beginning of the message the file name and 7085the line number where the error occurred, 7086if this information is available. 7087 7088 7089<p> 7090This function never returns, 7091but it is an idiom to use it in C functions 7092as <code>return luaL_error(<em>args</em>)</code>. 7093 7094 7095 7096 7097 7098<hr><h3><a name="luaL_execresult"><code>luaL_execresult</code></a></h3><p> 7099<span class="apii">[-0, +3, <em>m</em>]</span> 7100<pre>int luaL_execresult (lua_State *L, int stat);</pre> 7101 7102<p> 7103This function produces the return values for 7104process-related functions in the standard library 7105(<a href="#pdf-os.execute"><code>os.execute</code></a> and <a href="#pdf-io.close"><code>io.close</code></a>). 7106 7107 7108 7109 7110 7111<hr><h3><a name="luaL_fileresult"><code>luaL_fileresult</code></a></h3><p> 7112<span class="apii">[-0, +(1|3), <em>m</em>]</span> 7113<pre>int luaL_fileresult (lua_State *L, int stat, const char *fname);</pre> 7114 7115<p> 7116This function produces the return values for 7117file-related functions in the standard library 7118(<a href="#pdf-io.open"><code>io.open</code></a>, <a href="#pdf-os.rename"><code>os.rename</code></a>, <a href="#pdf-file:seek"><code>file:seek</code></a>, etc.). 7119 7120 7121 7122 7123 7124<hr><h3><a name="luaL_getmetafield"><code>luaL_getmetafield</code></a></h3><p> 7125<span class="apii">[-0, +(0|1), <em>m</em>]</span> 7126<pre>int luaL_getmetafield (lua_State *L, int obj, const char *e);</pre> 7127 7128<p> 7129Pushes onto the stack the field <code>e</code> from the metatable 7130of the object at index <code>obj</code> and returns the type of the pushed value. 7131If the object does not have a metatable, 7132or if the metatable does not have this field, 7133pushes nothing and returns <code>LUA_TNIL</code>. 7134 7135 7136 7137 7138 7139<hr><h3><a name="luaL_getmetatable"><code>luaL_getmetatable</code></a></h3><p> 7140<span class="apii">[-0, +1, <em>m</em>]</span> 7141<pre>int luaL_getmetatable (lua_State *L, const char *tname);</pre> 7142 7143<p> 7144Pushes onto the stack the metatable associated with the name <code>tname</code> 7145in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>), 7146or <b>nil</b> if there is no metatable associated with that name. 7147Returns the type of the pushed value. 7148 7149 7150 7151 7152 7153<hr><h3><a name="luaL_getsubtable"><code>luaL_getsubtable</code></a></h3><p> 7154<span class="apii">[-0, +1, <em>e</em>]</span> 7155<pre>int luaL_getsubtable (lua_State *L, int idx, const char *fname);</pre> 7156 7157<p> 7158Ensures that the value <code>t[fname]</code>, 7159where <code>t</code> is the value at index <code>idx</code>, 7160is a table, 7161and pushes that table onto the stack. 7162Returns true if it finds a previous table there 7163and false if it creates a new table. 7164 7165 7166 7167 7168 7169<hr><h3><a name="luaL_gsub"><code>luaL_gsub</code></a></h3><p> 7170<span class="apii">[-0, +1, <em>m</em>]</span> 7171<pre>const char *luaL_gsub (lua_State *L, 7172 const char *s, 7173 const char *p, 7174 const char *r);</pre> 7175 7176<p> 7177Creates a copy of string <code>s</code>, 7178replacing any occurrence of the string <code>p</code> 7179with the string <code>r</code>. 7180Pushes the resulting string on the stack and returns it. 7181 7182 7183 7184 7185 7186<hr><h3><a name="luaL_len"><code>luaL_len</code></a></h3><p> 7187<span class="apii">[-0, +0, <em>e</em>]</span> 7188<pre>lua_Integer luaL_len (lua_State *L, int index);</pre> 7189 7190<p> 7191Returns the "length" of the value at the given index 7192as a number; 7193it is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">§3.4.7</a>). 7194Raises an error if the result of the operation is not an integer. 7195(This case can only happen through metamethods.) 7196 7197 7198 7199 7200 7201<hr><h3><a name="luaL_loadbuffer"><code>luaL_loadbuffer</code></a></h3><p> 7202<span class="apii">[-0, +1, –]</span> 7203<pre>int luaL_loadbuffer (lua_State *L, 7204 const char *buff, 7205 size_t sz, 7206 const char *name);</pre> 7207 7208<p> 7209Equivalent to <a href="#luaL_loadbufferx"><code>luaL_loadbufferx</code></a> with <code>mode</code> equal to <code>NULL</code>. 7210 7211 7212 7213 7214 7215<hr><h3><a name="luaL_loadbufferx"><code>luaL_loadbufferx</code></a></h3><p> 7216<span class="apii">[-0, +1, –]</span> 7217<pre>int luaL_loadbufferx (lua_State *L, 7218 const char *buff, 7219 size_t sz, 7220 const char *name, 7221 const char *mode);</pre> 7222 7223<p> 7224Loads a buffer as a Lua chunk. 7225This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the 7226buffer pointed to by <code>buff</code> with size <code>sz</code>. 7227 7228 7229<p> 7230This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>. 7231<code>name</code> is the chunk name, 7232used for debug information and error messages. 7233The string <code>mode</code> works as in the function <a href="#lua_load"><code>lua_load</code></a>. 7234 7235 7236 7237 7238 7239<hr><h3><a name="luaL_loadfile"><code>luaL_loadfile</code></a></h3><p> 7240<span class="apii">[-0, +1, <em>m</em>]</span> 7241<pre>int luaL_loadfile (lua_State *L, const char *filename);</pre> 7242 7243<p> 7244Equivalent to <a href="#luaL_loadfilex"><code>luaL_loadfilex</code></a> with <code>mode</code> equal to <code>NULL</code>. 7245 7246 7247 7248 7249 7250<hr><h3><a name="luaL_loadfilex"><code>luaL_loadfilex</code></a></h3><p> 7251<span class="apii">[-0, +1, <em>m</em>]</span> 7252<pre>int luaL_loadfilex (lua_State *L, const char *filename, 7253 const char *mode);</pre> 7254 7255<p> 7256Loads a file as a Lua chunk. 7257This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the file 7258named <code>filename</code>. 7259If <code>filename</code> is <code>NULL</code>, 7260then it loads from the standard input. 7261The first line in the file is ignored if it starts with a <code>#</code>. 7262 7263 7264<p> 7265The string <code>mode</code> works as in the function <a href="#lua_load"><code>lua_load</code></a>. 7266 7267 7268<p> 7269This function returns the same results as <a href="#lua_load"><code>lua_load</code></a> 7270or <a href="#pdf-LUA_ERRFILE"><code>LUA_ERRFILE</code></a> for file-related errors. 7271 7272 7273<p> 7274As <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk; 7275it does not run it. 7276 7277 7278 7279 7280 7281<hr><h3><a name="luaL_loadstring"><code>luaL_loadstring</code></a></h3><p> 7282<span class="apii">[-0, +1, –]</span> 7283<pre>int luaL_loadstring (lua_State *L, const char *s);</pre> 7284 7285<p> 7286Loads a string as a Lua chunk. 7287This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in 7288the zero-terminated string <code>s</code>. 7289 7290 7291<p> 7292This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>. 7293 7294 7295<p> 7296Also as <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk; 7297it does not run it. 7298 7299 7300 7301 7302 7303<hr><h3><a name="luaL_newlib"><code>luaL_newlib</code></a></h3><p> 7304<span class="apii">[-0, +1, <em>m</em>]</span> 7305<pre>void luaL_newlib (lua_State *L, const luaL_Reg l[]);</pre> 7306 7307<p> 7308Creates a new table and registers there 7309the functions in the list <code>l</code>. 7310 7311 7312<p> 7313It is implemented as the following macro: 7314 7315<pre> 7316 (luaL_newlibtable(L,l), luaL_setfuncs(L,l,0)) 7317</pre><p> 7318The array <code>l</code> must be the actual array, 7319not a pointer to it. 7320 7321 7322 7323 7324 7325<hr><h3><a name="luaL_newlibtable"><code>luaL_newlibtable</code></a></h3><p> 7326<span class="apii">[-0, +1, <em>m</em>]</span> 7327<pre>void luaL_newlibtable (lua_State *L, const luaL_Reg l[]);</pre> 7328 7329<p> 7330Creates a new table with a size optimized 7331to store all entries in the array <code>l</code> 7332(but does not actually store them). 7333It is intended to be used in conjunction with <a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a> 7334(see <a href="#luaL_newlib"><code>luaL_newlib</code></a>). 7335 7336 7337<p> 7338It is implemented as a macro. 7339The array <code>l</code> must be the actual array, 7340not a pointer to it. 7341 7342 7343 7344 7345 7346<hr><h3><a name="luaL_newmetatable"><code>luaL_newmetatable</code></a></h3><p> 7347<span class="apii">[-0, +1, <em>m</em>]</span> 7348<pre>int luaL_newmetatable (lua_State *L, const char *tname);</pre> 7349 7350<p> 7351If the registry already has the key <code>tname</code>, 7352returns 0. 7353Otherwise, 7354creates a new table to be used as a metatable for userdata, 7355adds to this new table the pair <code>__name = tname</code>, 7356adds to the registry the pair <code>[tname] = new table</code>, 7357and returns 1. 7358 7359 7360<p> 7361In both cases, 7362the function pushes onto the stack the final value associated 7363with <code>tname</code> in the registry. 7364 7365 7366 7367 7368 7369<hr><h3><a name="luaL_newstate"><code>luaL_newstate</code></a></h3><p> 7370<span class="apii">[-0, +0, –]</span> 7371<pre>lua_State *luaL_newstate (void);</pre> 7372 7373<p> 7374Creates a new Lua state. 7375It calls <a href="#lua_newstate"><code>lua_newstate</code></a> with an 7376allocator based on the ISO C allocation functions 7377and then sets a warning function and a panic function (see <a href="#4.4">§4.4</a>) 7378that print messages to the standard error output. 7379 7380 7381<p> 7382Returns the new state, 7383or <code>NULL</code> if there is a memory allocation error. 7384 7385 7386 7387 7388 7389<hr><h3><a name="luaL_openlibs"><code>luaL_openlibs</code></a></h3><p> 7390<span class="apii">[-0, +0, <em>e</em>]</span> 7391<pre>void luaL_openlibs (lua_State *L);</pre> 7392 7393<p> 7394Opens all standard Lua libraries into the given state. 7395 7396 7397 7398 7399 7400<hr><h3><a name="luaL_opt"><code>luaL_opt</code></a></h3><p> 7401<span class="apii">[-0, +0, –]</span> 7402<pre>T luaL_opt (L, func, arg, dflt);</pre> 7403 7404<p> 7405This macro is defined as follows: 7406 7407<pre> 7408 (lua_isnoneornil(L,(arg)) ? (dflt) : func(L,(arg))) 7409</pre><p> 7410In words, if the argument <code>arg</code> is nil or absent, 7411the macro results in the default <code>dflt</code>. 7412Otherwise, it results in the result of calling <code>func</code> 7413with the state <code>L</code> and the argument index <code>arg</code> as 7414arguments. 7415Note that it evaluates the expression <code>dflt</code> only if needed. 7416 7417 7418 7419 7420 7421<hr><h3><a name="luaL_optinteger"><code>luaL_optinteger</code></a></h3><p> 7422<span class="apii">[-0, +0, <em>v</em>]</span> 7423<pre>lua_Integer luaL_optinteger (lua_State *L, 7424 int arg, 7425 lua_Integer d);</pre> 7426 7427<p> 7428If the function argument <code>arg</code> is an integer 7429(or it is convertible to an integer), 7430returns this integer. 7431If this argument is absent or is <b>nil</b>, 7432returns <code>d</code>. 7433Otherwise, raises an error. 7434 7435 7436 7437 7438 7439<hr><h3><a name="luaL_optlstring"><code>luaL_optlstring</code></a></h3><p> 7440<span class="apii">[-0, +0, <em>v</em>]</span> 7441<pre>const char *luaL_optlstring (lua_State *L, 7442 int arg, 7443 const char *d, 7444 size_t *l);</pre> 7445 7446<p> 7447If the function argument <code>arg</code> is a string, 7448returns this string. 7449If this argument is absent or is <b>nil</b>, 7450returns <code>d</code>. 7451Otherwise, raises an error. 7452 7453 7454<p> 7455If <code>l</code> is not <code>NULL</code>, 7456fills its referent with the result's length. 7457If the result is <code>NULL</code> 7458(only possible when returning <code>d</code> and <code>d == NULL</code>), 7459its length is considered zero. 7460 7461 7462<p> 7463This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result, 7464so all conversions and caveats of that function apply here. 7465 7466 7467 7468 7469 7470<hr><h3><a name="luaL_optnumber"><code>luaL_optnumber</code></a></h3><p> 7471<span class="apii">[-0, +0, <em>v</em>]</span> 7472<pre>lua_Number luaL_optnumber (lua_State *L, int arg, lua_Number d);</pre> 7473 7474<p> 7475If the function argument <code>arg</code> is a number, 7476returns this number as a <code>lua_Number</code>. 7477If this argument is absent or is <b>nil</b>, 7478returns <code>d</code>. 7479Otherwise, raises an error. 7480 7481 7482 7483 7484 7485<hr><h3><a name="luaL_optstring"><code>luaL_optstring</code></a></h3><p> 7486<span class="apii">[-0, +0, <em>v</em>]</span> 7487<pre>const char *luaL_optstring (lua_State *L, 7488 int arg, 7489 const char *d);</pre> 7490 7491<p> 7492If the function argument <code>arg</code> is a string, 7493returns this string. 7494If this argument is absent or is <b>nil</b>, 7495returns <code>d</code>. 7496Otherwise, raises an error. 7497 7498 7499 7500 7501 7502<hr><h3><a name="luaL_prepbuffer"><code>luaL_prepbuffer</code></a></h3><p> 7503<span class="apii">[-?, +?, <em>m</em>]</span> 7504<pre>char *luaL_prepbuffer (luaL_Buffer *B);</pre> 7505 7506<p> 7507Equivalent to <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a> 7508with the predefined size <a name="pdf-LUAL_BUFFERSIZE"><code>LUAL_BUFFERSIZE</code></a>. 7509 7510 7511 7512 7513 7514<hr><h3><a name="luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a></h3><p> 7515<span class="apii">[-?, +?, <em>m</em>]</span> 7516<pre>char *luaL_prepbuffsize (luaL_Buffer *B, size_t sz);</pre> 7517 7518<p> 7519Returns an address to a space of size <code>sz</code> 7520where you can copy a string to be added to buffer <code>B</code> 7521(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 7522After copying the string into this space you must call 7523<a href="#luaL_addsize"><code>luaL_addsize</code></a> with the size of the string to actually add 7524it to the buffer. 7525 7526 7527 7528 7529 7530<hr><h3><a name="luaL_pushfail"><code>luaL_pushfail</code></a></h3><p> 7531<span class="apii">[-0, +1, –]</span> 7532<pre>void luaL_pushfail (lua_State *L);</pre> 7533 7534<p> 7535Pushes the <b>fail</b> value onto the stack (see <a href="#6">§6</a>). 7536 7537 7538 7539 7540 7541<hr><h3><a name="luaL_pushresult"><code>luaL_pushresult</code></a></h3><p> 7542<span class="apii">[-?, +1, <em>m</em>]</span> 7543<pre>void luaL_pushresult (luaL_Buffer *B);</pre> 7544 7545<p> 7546Finishes the use of buffer <code>B</code> leaving the final string on 7547the top of the stack. 7548 7549 7550 7551 7552 7553<hr><h3><a name="luaL_pushresultsize"><code>luaL_pushresultsize</code></a></h3><p> 7554<span class="apii">[-?, +1, <em>m</em>]</span> 7555<pre>void luaL_pushresultsize (luaL_Buffer *B, size_t sz);</pre> 7556 7557<p> 7558Equivalent to the sequence <a href="#luaL_addsize"><code>luaL_addsize</code></a>, <a href="#luaL_pushresult"><code>luaL_pushresult</code></a>. 7559 7560 7561 7562 7563 7564<hr><h3><a name="luaL_ref"><code>luaL_ref</code></a></h3><p> 7565<span class="apii">[-1, +0, <em>m</em>]</span> 7566<pre>int luaL_ref (lua_State *L, int t);</pre> 7567 7568<p> 7569Creates and returns a <em>reference</em>, 7570in the table at index <code>t</code>, 7571for the object on the top of the stack (and pops the object). 7572 7573 7574<p> 7575A reference is a unique integer key. 7576As long as you do not manually add integer keys into the table <code>t</code>, 7577<a href="#luaL_ref"><code>luaL_ref</code></a> ensures the uniqueness of the key it returns. 7578You can retrieve an object referred by the reference <code>r</code> 7579by calling <code>lua_rawgeti(L, t, r)</code>. 7580The function <a href="#luaL_unref"><code>luaL_unref</code></a> frees a reference. 7581 7582 7583<p> 7584If the object on the top of the stack is <b>nil</b>, 7585<a href="#luaL_ref"><code>luaL_ref</code></a> returns the constant <a name="pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>. 7586The constant <a name="pdf-LUA_NOREF"><code>LUA_NOREF</code></a> is guaranteed to be different 7587from any reference returned by <a href="#luaL_ref"><code>luaL_ref</code></a>. 7588 7589 7590 7591 7592 7593<hr><h3><a name="luaL_Reg"><code>luaL_Reg</code></a></h3> 7594<pre>typedef struct luaL_Reg { 7595 const char *name; 7596 lua_CFunction func; 7597} luaL_Reg;</pre> 7598 7599<p> 7600Type for arrays of functions to be registered by 7601<a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>. 7602<code>name</code> is the function name and <code>func</code> is a pointer to 7603the function. 7604Any array of <a href="#luaL_Reg"><code>luaL_Reg</code></a> must end with a sentinel entry 7605in which both <code>name</code> and <code>func</code> are <code>NULL</code>. 7606 7607 7608 7609 7610 7611<hr><h3><a name="luaL_requiref"><code>luaL_requiref</code></a></h3><p> 7612<span class="apii">[-0, +1, <em>e</em>]</span> 7613<pre>void luaL_requiref (lua_State *L, const char *modname, 7614 lua_CFunction openf, int glb);</pre> 7615 7616<p> 7617If <code>package.loaded[modname]</code> is not true, 7618calls the function <code>openf</code> with the string <code>modname</code> as an argument 7619and sets the call result to <code>package.loaded[modname]</code>, 7620as if that function has been called through <a href="#pdf-require"><code>require</code></a>. 7621 7622 7623<p> 7624If <code>glb</code> is true, 7625also stores the module into the global <code>modname</code>. 7626 7627 7628<p> 7629Leaves a copy of the module on the stack. 7630 7631 7632 7633 7634 7635<hr><h3><a name="luaL_setfuncs"><code>luaL_setfuncs</code></a></h3><p> 7636<span class="apii">[-nup, +0, <em>m</em>]</span> 7637<pre>void luaL_setfuncs (lua_State *L, const luaL_Reg *l, int nup);</pre> 7638 7639<p> 7640Registers all functions in the array <code>l</code> 7641(see <a href="#luaL_Reg"><code>luaL_Reg</code></a>) into the table on the top of the stack 7642(below optional upvalues, see next). 7643 7644 7645<p> 7646When <code>nup</code> is not zero, 7647all functions are created with <code>nup</code> upvalues, 7648initialized with copies of the <code>nup</code> values 7649previously pushed on the stack 7650on top of the library table. 7651These values are popped from the stack after the registration. 7652 7653 7654<p> 7655A function with a <code>NULL</code> value represents a placeholder, 7656which is filled with <b>false</b>. 7657 7658 7659 7660 7661 7662<hr><h3><a name="luaL_setmetatable"><code>luaL_setmetatable</code></a></h3><p> 7663<span class="apii">[-0, +0, –]</span> 7664<pre>void luaL_setmetatable (lua_State *L, const char *tname);</pre> 7665 7666<p> 7667Sets the metatable of the object on the top of the stack 7668as the metatable associated with name <code>tname</code> 7669in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>). 7670 7671 7672 7673 7674 7675<hr><h3><a name="luaL_Stream"><code>luaL_Stream</code></a></h3> 7676<pre>typedef struct luaL_Stream { 7677 FILE *f; 7678 lua_CFunction closef; 7679} luaL_Stream;</pre> 7680 7681<p> 7682The standard representation for file handles 7683used by the standard I/O library. 7684 7685 7686<p> 7687A file handle is implemented as a full userdata, 7688with a metatable called <code>LUA_FILEHANDLE</code> 7689(where <code>LUA_FILEHANDLE</code> is a macro with the actual metatable's name). 7690The metatable is created by the I/O library 7691(see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>). 7692 7693 7694<p> 7695This userdata must start with the structure <code>luaL_Stream</code>; 7696it can contain other data after this initial structure. 7697The field <code>f</code> points to the corresponding C stream 7698(or it can be <code>NULL</code> to indicate an incompletely created handle). 7699The field <code>closef</code> points to a Lua function 7700that will be called to close the stream 7701when the handle is closed or collected; 7702this function receives the file handle as its sole argument and 7703must return either a true value, in case of success, 7704or a false value plus an error message, in case of error. 7705Once Lua calls this field, 7706it changes the field value to <code>NULL</code> 7707to signal that the handle is closed. 7708 7709 7710 7711 7712 7713<hr><h3><a name="luaL_testudata"><code>luaL_testudata</code></a></h3><p> 7714<span class="apii">[-0, +0, <em>m</em>]</span> 7715<pre>void *luaL_testudata (lua_State *L, int arg, const char *tname);</pre> 7716 7717<p> 7718This function works like <a href="#luaL_checkudata"><code>luaL_checkudata</code></a>, 7719except that, when the test fails, 7720it returns <code>NULL</code> instead of raising an error. 7721 7722 7723 7724 7725 7726<hr><h3><a name="luaL_tolstring"><code>luaL_tolstring</code></a></h3><p> 7727<span class="apii">[-0, +1, <em>e</em>]</span> 7728<pre>const char *luaL_tolstring (lua_State *L, int idx, size_t *len);</pre> 7729 7730<p> 7731Converts any Lua value at the given index to a C string 7732in a reasonable format. 7733The resulting string is pushed onto the stack and also 7734returned by the function (see <a href="#4.1.3">§4.1.3</a>). 7735If <code>len</code> is not <code>NULL</code>, 7736the function also sets <code>*len</code> with the string length. 7737 7738 7739<p> 7740If the value has a metatable with a <code>__tostring</code> field, 7741then <code>luaL_tolstring</code> calls the corresponding metamethod 7742with the value as argument, 7743and uses the result of the call as its result. 7744 7745 7746 7747 7748 7749<hr><h3><a name="luaL_traceback"><code>luaL_traceback</code></a></h3><p> 7750<span class="apii">[-0, +1, <em>m</em>]</span> 7751<pre>void luaL_traceback (lua_State *L, lua_State *L1, const char *msg, 7752 int level);</pre> 7753 7754<p> 7755Creates and pushes a traceback of the stack <code>L1</code>. 7756If <code>msg</code> is not <code>NULL</code>, it is appended 7757at the beginning of the traceback. 7758The <code>level</code> parameter tells at which level 7759to start the traceback. 7760 7761 7762 7763 7764 7765<hr><h3><a name="luaL_typeerror"><code>luaL_typeerror</code></a></h3><p> 7766<span class="apii">[-0, +0, <em>v</em>]</span> 7767<pre>int luaL_typeerror (lua_State *L, int arg, const char *tname);</pre> 7768 7769<p> 7770Raises a type error for the argument <code>arg</code> 7771of the C function that called it, 7772using a standard message; 7773<code>tname</code> is a "name" for the expected type. 7774This function never returns. 7775 7776 7777 7778 7779 7780<hr><h3><a name="luaL_typename"><code>luaL_typename</code></a></h3><p> 7781<span class="apii">[-0, +0, –]</span> 7782<pre>const char *luaL_typename (lua_State *L, int index);</pre> 7783 7784<p> 7785Returns the name of the type of the value at the given index. 7786 7787 7788 7789 7790 7791<hr><h3><a name="luaL_unref"><code>luaL_unref</code></a></h3><p> 7792<span class="apii">[-0, +0, –]</span> 7793<pre>void luaL_unref (lua_State *L, int t, int ref);</pre> 7794 7795<p> 7796Releases the reference <code>ref</code> from the table at index <code>t</code> 7797(see <a href="#luaL_ref"><code>luaL_ref</code></a>). 7798The entry is removed from the table, 7799so that the referred object can be collected. 7800The reference <code>ref</code> is also freed to be used again. 7801 7802 7803<p> 7804If <code>ref</code> is <a href="#pdf-LUA_NOREF"><code>LUA_NOREF</code></a> or <a href="#pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>, 7805<a href="#luaL_unref"><code>luaL_unref</code></a> does nothing. 7806 7807 7808 7809 7810 7811<hr><h3><a name="luaL_where"><code>luaL_where</code></a></h3><p> 7812<span class="apii">[-0, +1, <em>m</em>]</span> 7813<pre>void luaL_where (lua_State *L, int lvl);</pre> 7814 7815<p> 7816Pushes onto the stack a string identifying the current position 7817of the control at level <code>lvl</code> in the call stack. 7818Typically this string has the following format: 7819 7820<pre> 7821 <em>chunkname</em>:<em>currentline</em>: 7822</pre><p> 7823Level 0 is the running function, 7824level 1 is the function that called the running function, 7825etc. 7826 7827 7828<p> 7829This function is used to build a prefix for error messages. 7830 7831 7832 7833 7834 7835 7836 7837<h1>6 – <a name="6">The Standard Libraries</a></h1> 7838 7839 7840 7841<p> 7842The standard Lua libraries provide useful functions 7843that are implemented in C through the C API. 7844Some of these functions provide essential services to the language 7845(e.g., <a href="#pdf-type"><code>type</code></a> and <a href="#pdf-getmetatable"><code>getmetatable</code></a>); 7846others provide access to outside services (e.g., I/O); 7847and others could be implemented in Lua itself, 7848but that for different reasons 7849deserve an implementation in C (e.g., <a href="#pdf-table.sort"><code>table.sort</code></a>). 7850 7851 7852<p> 7853All libraries are implemented through the official C API 7854and are provided as separate C modules. 7855Unless otherwise noted, 7856these library functions do not adjust its number of arguments 7857to its expected parameters. 7858For instance, a function documented as <code>foo(arg)</code> 7859should not be called without an argument. 7860 7861 7862<p> 7863The notation <b>fail</b> means a false value representing 7864some kind of failure. 7865(Currently, <b>fail</b> is equal to <b>nil</b>, 7866but that may change in future versions. 7867The recommendation is to always test the success of these functions 7868with <code>(not status)</code>, instead of <code>(status == nil)</code>.) 7869 7870 7871<p> 7872Currently, Lua has the following standard libraries: 7873 7874<ul> 7875 7876<li>basic library (<a href="#6.1">§6.1</a>);</li> 7877 7878<li>coroutine library (<a href="#6.2">§6.2</a>);</li> 7879 7880<li>package library (<a href="#6.3">§6.3</a>);</li> 7881 7882<li>string manipulation (<a href="#6.4">§6.4</a>);</li> 7883 7884<li>basic UTF-8 support (<a href="#6.5">§6.5</a>);</li> 7885 7886<li>table manipulation (<a href="#6.6">§6.6</a>);</li> 7887 7888<li>mathematical functions (<a href="#6.7">§6.7</a>) (sin, log, etc.);</li> 7889 7890<li>input and output (<a href="#6.8">§6.8</a>);</li> 7891 7892<li>operating system facilities (<a href="#6.9">§6.9</a>);</li> 7893 7894<li>debug facilities (<a href="#6.10">§6.10</a>).</li> 7895 7896</ul><p> 7897Except for the basic and the package libraries, 7898each library provides all its functions as fields of a global table 7899or as methods of its objects. 7900 7901 7902<p> 7903To have access to these libraries, 7904the C host program should call the <a href="#luaL_openlibs"><code>luaL_openlibs</code></a> function, 7905which opens all standard libraries. 7906Alternatively, 7907the host program can open them individually by using 7908<a href="#luaL_requiref"><code>luaL_requiref</code></a> to call 7909<a name="pdf-luaopen_base"><code>luaopen_base</code></a> (for the basic library), 7910<a name="pdf-luaopen_package"><code>luaopen_package</code></a> (for the package library), 7911<a name="pdf-luaopen_coroutine"><code>luaopen_coroutine</code></a> (for the coroutine library), 7912<a name="pdf-luaopen_string"><code>luaopen_string</code></a> (for the string library), 7913<a name="pdf-luaopen_utf8"><code>luaopen_utf8</code></a> (for the UTF-8 library), 7914<a name="pdf-luaopen_table"><code>luaopen_table</code></a> (for the table library), 7915<a name="pdf-luaopen_math"><code>luaopen_math</code></a> (for the mathematical library), 7916<a name="pdf-luaopen_io"><code>luaopen_io</code></a> (for the I/O library), 7917<a name="pdf-luaopen_os"><code>luaopen_os</code></a> (for the operating system library), 7918and <a name="pdf-luaopen_debug"><code>luaopen_debug</code></a> (for the debug library). 7919These functions are declared in <a name="pdf-lualib.h"><code>lualib.h</code></a>. 7920 7921 7922 7923 7924 7925<h2>6.1 – <a name="6.1">Basic Functions</a></h2> 7926 7927<p> 7928The basic library provides core functions to Lua. 7929If you do not include this library in your application, 7930you should check carefully whether you need to provide 7931implementations for some of its facilities. 7932 7933 7934<p> 7935<hr><h3><a name="pdf-assert"><code>assert (v [, message])</code></a></h3> 7936 7937 7938<p> 7939Raises an error if 7940the value of its argument <code>v</code> is false (i.e., <b>nil</b> or <b>false</b>); 7941otherwise, returns all its arguments. 7942In case of error, 7943<code>message</code> is the error object; 7944when absent, it defaults to "<code>assertion failed!</code>" 7945 7946 7947 7948 7949<p> 7950<hr><h3><a name="pdf-collectgarbage"><code>collectgarbage ([opt [, arg]])</code></a></h3> 7951 7952 7953<p> 7954This function is a generic interface to the garbage collector. 7955It performs different functions according to its first argument, <code>opt</code>: 7956 7957<ul> 7958 7959<li><b>"<code>collect</code>": </b> 7960Performs a full garbage-collection cycle. 7961This is the default option. 7962</li> 7963 7964<li><b>"<code>stop</code>": </b> 7965Stops automatic execution of the garbage collector. 7966The collector will run only when explicitly invoked, 7967until a call to restart it. 7968</li> 7969 7970<li><b>"<code>restart</code>": </b> 7971Restarts automatic execution of the garbage collector. 7972</li> 7973 7974<li><b>"<code>count</code>": </b> 7975Returns the total memory in use by Lua in Kbytes. 7976The value has a fractional part, 7977so that it multiplied by 1024 7978gives the exact number of bytes in use by Lua. 7979</li> 7980 7981<li><b>"<code>step</code>": </b> 7982Performs a garbage-collection step. 7983The step "size" is controlled by <code>arg</code>. 7984With a zero value, 7985the collector will perform one basic (indivisible) step. 7986For non-zero values, 7987the collector will perform as if that amount of memory 7988(in Kbytes) had been allocated by Lua. 7989Returns <b>true</b> if the step finished a collection cycle. 7990</li> 7991 7992<li><b>"<code>isrunning</code>": </b> 7993Returns a boolean that tells whether the collector is running 7994(i.e., not stopped). 7995</li> 7996 7997<li><b>"<code>incremental</code>": </b> 7998Change the collector mode to incremental. 7999This option can be followed by three numbers: 8000the garbage-collector pause, 8001the step multiplier, 8002and the step size (see <a href="#2.5.1">§2.5.1</a>). 8003A zero means to not change that value. 8004</li> 8005 8006<li><b>"<code>generational</code>": </b> 8007Change the collector mode to generational. 8008This option can be followed by two numbers: 8009the garbage-collector minor multiplier 8010and the major multiplier (see <a href="#2.5.2">§2.5.2</a>). 8011A zero means to not change that value. 8012</li> 8013 8014</ul><p> 8015See <a href="#2.5">§2.5</a> for more details about garbage collection 8016and some of these options. 8017 8018 8019<p> 8020This function should not be called by a finalizer. 8021 8022 8023 8024 8025<p> 8026<hr><h3><a name="pdf-dofile"><code>dofile ([filename])</code></a></h3> 8027Opens the named file and executes its content as a Lua chunk. 8028When called without arguments, 8029<code>dofile</code> executes the content of the standard input (<code>stdin</code>). 8030Returns all values returned by the chunk. 8031In case of errors, <code>dofile</code> propagates the error 8032to its caller. 8033(That is, <code>dofile</code> does not run in protected mode.) 8034 8035 8036 8037 8038<p> 8039<hr><h3><a name="pdf-error"><code>error (message [, level])</code></a></h3> 8040Raises an error (see <a href="#2.3">§2.3</a>) with <code>message</code> as the error object. 8041This function never returns. 8042 8043 8044<p> 8045Usually, <code>error</code> adds some information about the error position 8046at the beginning of the message, if the message is a string. 8047The <code>level</code> argument specifies how to get the error position. 8048With level 1 (the default), the error position is where the 8049<code>error</code> function was called. 8050Level 2 points the error to where the function 8051that called <code>error</code> was called; and so on. 8052Passing a level 0 avoids the addition of error position information 8053to the message. 8054 8055 8056 8057 8058<p> 8059<hr><h3><a name="pdf-_G"><code>_G</code></a></h3> 8060A global variable (not a function) that 8061holds the global environment (see <a href="#2.2">§2.2</a>). 8062Lua itself does not use this variable; 8063changing its value does not affect any environment, 8064nor vice versa. 8065 8066 8067 8068 8069<p> 8070<hr><h3><a name="pdf-getmetatable"><code>getmetatable (object)</code></a></h3> 8071 8072 8073<p> 8074If <code>object</code> does not have a metatable, returns <b>nil</b>. 8075Otherwise, 8076if the object's metatable has a <code>__metatable</code> field, 8077returns the associated value. 8078Otherwise, returns the metatable of the given object. 8079 8080 8081 8082 8083<p> 8084<hr><h3><a name="pdf-ipairs"><code>ipairs (t)</code></a></h3> 8085 8086 8087<p> 8088Returns three values (an iterator function, the table <code>t</code>, and 0) 8089so that the construction 8090 8091<pre> 8092 for i,v in ipairs(t) do <em>body</em> end 8093</pre><p> 8094will iterate over the key–value pairs 8095(<code>1,t[1]</code>), (<code>2,t[2]</code>), ..., 8096up to the first absent index. 8097 8098 8099 8100 8101<p> 8102<hr><h3><a name="pdf-load"><code>load (chunk [, chunkname [, mode [, env]]])</code></a></h3> 8103 8104 8105<p> 8106Loads a chunk. 8107 8108 8109<p> 8110If <code>chunk</code> is a string, the chunk is this string. 8111If <code>chunk</code> is a function, 8112<code>load</code> calls it repeatedly to get the chunk pieces. 8113Each call to <code>chunk</code> must return a string that concatenates 8114with previous results. 8115A return of an empty string, <b>nil</b>, or no value signals the end of the chunk. 8116 8117 8118<p> 8119If there are no syntactic errors, 8120<code>load</code> returns the compiled chunk as a function; 8121otherwise, it returns <b>fail</b> plus the error message. 8122 8123 8124<p> 8125When you load a main chunk, 8126the resulting function will always have exactly one upvalue, 8127the <code>_ENV</code> variable (see <a href="#2.2">§2.2</a>). 8128However, 8129when you load a binary chunk created from a function (see <a href="#pdf-string.dump"><code>string.dump</code></a>), 8130the resulting function can have an arbitrary number of upvalues, 8131and there is no guarantee that its first upvalue will be 8132the <code>_ENV</code> variable. 8133(A non-main function may not even have an <code>_ENV</code> upvalue.) 8134 8135 8136<p> 8137Regardless, if the resulting function has any upvalues, 8138its first upvalue is set to the value of <code>env</code>, 8139if that parameter is given, 8140or to the value of the global environment. 8141Other upvalues are initialized with <b>nil</b>. 8142All upvalues are fresh, that is, 8143they are not shared with any other function. 8144 8145 8146<p> 8147<code>chunkname</code> is used as the name of the chunk for error messages 8148and debug information (see <a href="#4.7">§4.7</a>). 8149When absent, 8150it defaults to <code>chunk</code>, if <code>chunk</code> is a string, 8151or to "<code>=(load)</code>" otherwise. 8152 8153 8154<p> 8155The string <code>mode</code> controls whether the chunk can be text or binary 8156(that is, a precompiled chunk). 8157It may be the string "<code>b</code>" (only binary chunks), 8158"<code>t</code>" (only text chunks), 8159or "<code>bt</code>" (both binary and text). 8160The default is "<code>bt</code>". 8161 8162 8163<p> 8164It is safe to load malformed binary chunks; 8165<code>load</code> signals an appropriate error. 8166However, 8167Lua does not check the consistency of the code inside binary chunks; 8168running maliciously crafted bytecode can crash the interpreter. 8169 8170 8171 8172 8173<p> 8174<hr><h3><a name="pdf-loadfile"><code>loadfile ([filename [, mode [, env]]])</code></a></h3> 8175 8176 8177<p> 8178Similar to <a href="#pdf-load"><code>load</code></a>, 8179but gets the chunk from file <code>filename</code> 8180or from the standard input, 8181if no file name is given. 8182 8183 8184 8185 8186<p> 8187<hr><h3><a name="pdf-next"><code>next (table [, index])</code></a></h3> 8188 8189 8190<p> 8191Allows a program to traverse all fields of a table. 8192Its first argument is a table and its second argument 8193is an index in this table. 8194A call to <code>next</code> returns the next index of the table 8195and its associated value. 8196When called with <b>nil</b> as its second argument, 8197<code>next</code> returns an initial index 8198and its associated value. 8199When called with the last index, 8200or with <b>nil</b> in an empty table, 8201<code>next</code> returns <b>nil</b>. 8202If the second argument is absent, then it is interpreted as <b>nil</b>. 8203In particular, 8204you can use <code>next(t)</code> to check whether a table is empty. 8205 8206 8207<p> 8208The order in which the indices are enumerated is not specified, 8209<em>even for numeric indices</em>. 8210(To traverse a table in numerical order, 8211use a numerical <b>for</b>.) 8212 8213 8214<p> 8215You should not assign any value to a non-existent field in a table 8216during its traversal. 8217You may however modify existing fields. 8218In particular, you may set existing fields to nil. 8219 8220 8221 8222 8223<p> 8224<hr><h3><a name="pdf-pairs"><code>pairs (t)</code></a></h3> 8225 8226 8227<p> 8228If <code>t</code> has a metamethod <code>__pairs</code>, 8229calls it with <code>t</code> as argument and returns the first three 8230results from the call. 8231 8232 8233<p> 8234Otherwise, 8235returns three values: the <a href="#pdf-next"><code>next</code></a> function, the table <code>t</code>, and <b>nil</b>, 8236so that the construction 8237 8238<pre> 8239 for k,v in pairs(t) do <em>body</em> end 8240</pre><p> 8241will iterate over all key–value pairs of table <code>t</code>. 8242 8243 8244<p> 8245See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying 8246the table during its traversal. 8247 8248 8249 8250 8251<p> 8252<hr><h3><a name="pdf-pcall"><code>pcall (f [, arg1, ···])</code></a></h3> 8253 8254 8255<p> 8256Calls the function <code>f</code> with 8257the given arguments in <em>protected mode</em>. 8258This means that any error inside <code>f</code> is not propagated; 8259instead, <code>pcall</code> catches the error 8260and returns a status code. 8261Its first result is the status code (a boolean), 8262which is <b>true</b> if the call succeeds without errors. 8263In such case, <code>pcall</code> also returns all results from the call, 8264after this first result. 8265In case of any error, <code>pcall</code> returns <b>false</b> plus the error object. 8266Note that errors caught by <code>pcall</code> do not call a message handler. 8267 8268 8269 8270 8271<p> 8272<hr><h3><a name="pdf-print"><code>print (···)</code></a></h3> 8273Receives any number of arguments 8274and prints their values to <code>stdout</code>, 8275converting each argument to a string 8276following the same rules of <a href="#pdf-tostring"><code>tostring</code></a>. 8277 8278 8279<p> 8280The function <code>print</code> is not intended for formatted output, 8281but only as a quick way to show a value, 8282for instance for debugging. 8283For complete control over the output, 8284use <a href="#pdf-string.format"><code>string.format</code></a> and <a href="#pdf-io.write"><code>io.write</code></a>. 8285 8286 8287 8288 8289<p> 8290<hr><h3><a name="pdf-rawequal"><code>rawequal (v1, v2)</code></a></h3> 8291Checks whether <code>v1</code> is equal to <code>v2</code>, 8292without invoking the <code>__eq</code> metamethod. 8293Returns a boolean. 8294 8295 8296 8297 8298<p> 8299<hr><h3><a name="pdf-rawget"><code>rawget (table, index)</code></a></h3> 8300Gets the real value of <code>table[index]</code>, 8301without using the <code>__index</code> metavalue. 8302<code>table</code> must be a table; 8303<code>index</code> may be any value. 8304 8305 8306 8307 8308<p> 8309<hr><h3><a name="pdf-rawlen"><code>rawlen (v)</code></a></h3> 8310Returns the length of the object <code>v</code>, 8311which must be a table or a string, 8312without invoking the <code>__len</code> metamethod. 8313Returns an integer. 8314 8315 8316 8317 8318<p> 8319<hr><h3><a name="pdf-rawset"><code>rawset (table, index, value)</code></a></h3> 8320Sets the real value of <code>table[index]</code> to <code>value</code>, 8321without using the <code>__newindex</code> metavalue. 8322<code>table</code> must be a table, 8323<code>index</code> any value different from <b>nil</b> and NaN, 8324and <code>value</code> any Lua value. 8325 8326 8327<p> 8328This function returns <code>table</code>. 8329 8330 8331 8332 8333<p> 8334<hr><h3><a name="pdf-select"><code>select (index, ···)</code></a></h3> 8335 8336 8337<p> 8338If <code>index</code> is a number, 8339returns all arguments after argument number <code>index</code>; 8340a negative number indexes from the end (-1 is the last argument). 8341Otherwise, <code>index</code> must be the string <code>"#"</code>, 8342and <code>select</code> returns the total number of extra arguments it received. 8343 8344 8345 8346 8347<p> 8348<hr><h3><a name="pdf-setmetatable"><code>setmetatable (table, metatable)</code></a></h3> 8349 8350 8351<p> 8352Sets the metatable for the given table. 8353If <code>metatable</code> is <b>nil</b>, 8354removes the metatable of the given table. 8355If the original metatable has a <code>__metatable</code> field, 8356raises an error. 8357 8358 8359<p> 8360This function returns <code>table</code>. 8361 8362 8363<p> 8364To change the metatable of other types from Lua code, 8365you must use the debug library (<a href="#6.10">§6.10</a>). 8366 8367 8368 8369 8370<p> 8371<hr><h3><a name="pdf-tonumber"><code>tonumber (e [, base])</code></a></h3> 8372 8373 8374<p> 8375When called with no <code>base</code>, 8376<code>tonumber</code> tries to convert its argument to a number. 8377If the argument is already a number or 8378a string convertible to a number, 8379then <code>tonumber</code> returns this number; 8380otherwise, it returns <b>fail</b>. 8381 8382 8383<p> 8384The conversion of strings can result in integers or floats, 8385according to the lexical conventions of Lua (see <a href="#3.1">§3.1</a>). 8386The string may have leading and trailing spaces and a sign. 8387 8388 8389<p> 8390When called with <code>base</code>, 8391then <code>e</code> must be a string to be interpreted as 8392an integer numeral in that base. 8393The base may be any integer between 2 and 36, inclusive. 8394In bases above 10, the letter '<code>A</code>' (in either upper or lower case) 8395represents 10, '<code>B</code>' represents 11, and so forth, 8396with '<code>Z</code>' representing 35. 8397If the string <code>e</code> is not a valid numeral in the given base, 8398the function returns <b>fail</b>. 8399 8400 8401 8402 8403<p> 8404<hr><h3><a name="pdf-tostring"><code>tostring (v)</code></a></h3> 8405 8406 8407<p> 8408Receives a value of any type and 8409converts it to a string in a human-readable format. 8410 8411 8412<p> 8413If the metatable of <code>v</code> has a <code>__tostring</code> field, 8414then <code>tostring</code> calls the corresponding value 8415with <code>v</code> as argument, 8416and uses the result of the call as its result. 8417Otherwise, if the metatable of <code>v</code> has a <code>__name</code> field 8418with a string value, 8419<code>tostring</code> may use that string in its final result. 8420 8421 8422<p> 8423For complete control of how numbers are converted, 8424use <a href="#pdf-string.format"><code>string.format</code></a>. 8425 8426 8427 8428 8429<p> 8430<hr><h3><a name="pdf-type"><code>type (v)</code></a></h3> 8431 8432 8433<p> 8434Returns the type of its only argument, coded as a string. 8435The possible results of this function are 8436"<code>nil</code>" (a string, not the value <b>nil</b>), 8437"<code>number</code>", 8438"<code>string</code>", 8439"<code>boolean</code>", 8440"<code>table</code>", 8441"<code>function</code>", 8442"<code>thread</code>", 8443and "<code>userdata</code>". 8444 8445 8446 8447 8448<p> 8449<hr><h3><a name="pdf-_VERSION"><code>_VERSION</code></a></h3> 8450 8451 8452<p> 8453A global variable (not a function) that 8454holds a string containing the running Lua version. 8455The current value of this variable is "<code>Lua 5.4</code>". 8456 8457 8458 8459 8460<p> 8461<hr><h3><a name="pdf-warn"><code>warn (msg1, ···)</code></a></h3> 8462 8463 8464<p> 8465Emits a warning with a message composed by the concatenation 8466of all its arguments (which should be strings). 8467 8468 8469<p> 8470By convention, 8471a one-piece message starting with '<code>@</code>' 8472is intended to be a <em>control message</em>, 8473which is a message to the warning system itself. 8474In particular, the standard warning function in Lua 8475recognizes the control messages "<code>@off</code>", 8476to stop the emission of warnings, 8477and "<code>@on</code>", to (re)start the emission; 8478it ignores unknown control messages. 8479 8480 8481 8482 8483<p> 8484<hr><h3><a name="pdf-xpcall"><code>xpcall (f, msgh [, arg1, ···])</code></a></h3> 8485 8486 8487<p> 8488This function is similar to <a href="#pdf-pcall"><code>pcall</code></a>, 8489except that it sets a new message handler <code>msgh</code>. 8490 8491 8492 8493 8494 8495 8496 8497<h2>6.2 – <a name="6.2">Coroutine Manipulation</a></h2> 8498 8499<p> 8500This library comprises the operations to manipulate coroutines, 8501which come inside the table <a name="pdf-coroutine"><code>coroutine</code></a>. 8502See <a href="#2.6">§2.6</a> for a general description of coroutines. 8503 8504 8505<p> 8506<hr><h3><a name="pdf-coroutine.close"><code>coroutine.close (co)</code></a></h3> 8507 8508 8509<p> 8510Closes coroutine <code>co</code>, 8511that is, 8512closes all its pending to-be-closed variables 8513and puts the coroutine in a dead state. 8514The given coroutine must be dead or suspended. 8515In case of error 8516(either the original error that stopped the coroutine or 8517errors in closing methods), 8518returns <b>false</b> plus the error object; 8519otherwise returns <b>true</b>. 8520 8521 8522 8523 8524<p> 8525<hr><h3><a name="pdf-coroutine.create"><code>coroutine.create (f)</code></a></h3> 8526 8527 8528<p> 8529Creates a new coroutine, with body <code>f</code>. 8530<code>f</code> must be a function. 8531Returns this new coroutine, 8532an object with type <code>"thread"</code>. 8533 8534 8535 8536 8537<p> 8538<hr><h3><a name="pdf-coroutine.isyieldable"><code>coroutine.isyieldable ([co])</code></a></h3> 8539 8540 8541<p> 8542Returns <b>true</b> when the coroutine <code>co</code> can yield. 8543The default for <code>co</code> is the running coroutine. 8544 8545 8546<p> 8547A coroutine is yieldable if it is not the main thread and 8548it is not inside a non-yieldable C function. 8549 8550 8551 8552 8553<p> 8554<hr><h3><a name="pdf-coroutine.resume"><code>coroutine.resume (co [, val1, ···])</code></a></h3> 8555 8556 8557<p> 8558Starts or continues the execution of coroutine <code>co</code>. 8559The first time you resume a coroutine, 8560it starts running its body. 8561The values <code>val1</code>, ... are passed 8562as the arguments to the body function. 8563If the coroutine has yielded, 8564<code>resume</code> restarts it; 8565the values <code>val1</code>, ... are passed 8566as the results from the yield. 8567 8568 8569<p> 8570If the coroutine runs without any errors, 8571<code>resume</code> returns <b>true</b> plus any values passed to <code>yield</code> 8572(when the coroutine yields) or any values returned by the body function 8573(when the coroutine terminates). 8574If there is any error, 8575<code>resume</code> returns <b>false</b> plus the error message. 8576 8577 8578 8579 8580<p> 8581<hr><h3><a name="pdf-coroutine.running"><code>coroutine.running ()</code></a></h3> 8582 8583 8584<p> 8585Returns the running coroutine plus a boolean, 8586<b>true</b> when the running coroutine is the main one. 8587 8588 8589 8590 8591<p> 8592<hr><h3><a name="pdf-coroutine.status"><code>coroutine.status (co)</code></a></h3> 8593 8594 8595<p> 8596Returns the status of the coroutine <code>co</code>, as a string: 8597<code>"running"</code>, 8598if the coroutine is running 8599(that is, it is the one that called <code>status</code>); 8600<code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>, 8601or if it has not started running yet; 8602<code>"normal"</code> if the coroutine is active but not running 8603(that is, it has resumed another coroutine); 8604and <code>"dead"</code> if the coroutine has finished its body function, 8605or if it has stopped with an error. 8606 8607 8608 8609 8610<p> 8611<hr><h3><a name="pdf-coroutine.wrap"><code>coroutine.wrap (f)</code></a></h3> 8612 8613 8614<p> 8615Creates a new coroutine, with body <code>f</code>; 8616<code>f</code> must be a function. 8617Returns a function that resumes the coroutine each time it is called. 8618Any arguments passed to this function behave as the 8619extra arguments to <code>resume</code>. 8620The function returns the same values returned by <code>resume</code>, 8621except the first boolean. 8622In case of error, 8623the function closes the coroutine and propagates the error. 8624 8625 8626 8627 8628<p> 8629<hr><h3><a name="pdf-coroutine.yield"><code>coroutine.yield (···)</code></a></h3> 8630 8631 8632<p> 8633Suspends the execution of the calling coroutine. 8634Any arguments to <code>yield</code> are passed as extra results to <code>resume</code>. 8635 8636 8637 8638 8639 8640 8641 8642<h2>6.3 – <a name="6.3">Modules</a></h2> 8643 8644<p> 8645The package library provides basic 8646facilities for loading modules in Lua. 8647It exports one function directly in the global environment: 8648<a href="#pdf-require"><code>require</code></a>. 8649Everything else is exported in the table <a name="pdf-package"><code>package</code></a>. 8650 8651 8652<p> 8653<hr><h3><a name="pdf-require"><code>require (modname)</code></a></h3> 8654 8655 8656<p> 8657Loads the given module. 8658The function starts by looking into the <a href="#pdf-package.loaded"><code>package.loaded</code></a> table 8659to determine whether <code>modname</code> is already loaded. 8660If it is, then <code>require</code> returns the value stored 8661at <code>package.loaded[modname]</code>. 8662(The absence of a second result in this case 8663signals that this call did not have to load the module.) 8664Otherwise, it tries to find a <em>loader</em> for the module. 8665 8666 8667<p> 8668To find a loader, 8669<code>require</code> is guided by the table <a href="#pdf-package.searchers"><code>package.searchers</code></a>. 8670Each item in this table is a search function, 8671that searches for the module in a particular way. 8672By changing this table, 8673we can change how <code>require</code> looks for a module. 8674The following explanation is based on the default configuration 8675for <a href="#pdf-package.searchers"><code>package.searchers</code></a>. 8676 8677 8678<p> 8679First <code>require</code> queries <code>package.preload[modname]</code>. 8680If it has a value, 8681this value (which must be a function) is the loader. 8682Otherwise <code>require</code> searches for a Lua loader using the 8683path stored in <a href="#pdf-package.path"><code>package.path</code></a>. 8684If that also fails, it searches for a C loader using the 8685path stored in <a href="#pdf-package.cpath"><code>package.cpath</code></a>. 8686If that also fails, 8687it tries an <em>all-in-one</em> loader (see <a href="#pdf-package.searchers"><code>package.searchers</code></a>). 8688 8689 8690<p> 8691Once a loader is found, 8692<code>require</code> calls the loader with two arguments: 8693<code>modname</code> and an extra value, 8694a <em>loader data</em>, 8695also returned by the searcher. 8696The loader data can be any value useful to the module; 8697for the default searchers, 8698it indicates where the loader was found. 8699(For instance, if the loader came from a file, 8700this extra value is the file path.) 8701If the loader returns any non-nil value, 8702<code>require</code> assigns the returned value to <code>package.loaded[modname]</code>. 8703If the loader does not return a non-nil value and 8704has not assigned any value to <code>package.loaded[modname]</code>, 8705then <code>require</code> assigns <b>true</b> to this entry. 8706In any case, <code>require</code> returns the 8707final value of <code>package.loaded[modname]</code>. 8708Besides that value, <code>require</code> also returns as a second result 8709the loader data returned by the searcher, 8710which indicates how <code>require</code> found the module. 8711 8712 8713<p> 8714If there is any error loading or running the module, 8715or if it cannot find any loader for the module, 8716then <code>require</code> raises an error. 8717 8718 8719 8720 8721<p> 8722<hr><h3><a name="pdf-package.config"><code>package.config</code></a></h3> 8723 8724 8725<p> 8726A string describing some compile-time configurations for packages. 8727This string is a sequence of lines: 8728 8729<ul> 8730 8731<li>The first line is the directory separator string. 8732Default is '<code>\</code>' for Windows and '<code>/</code>' for all other systems.</li> 8733 8734<li>The second line is the character that separates templates in a path. 8735Default is '<code>;</code>'.</li> 8736 8737<li>The third line is the string that marks the 8738substitution points in a template. 8739Default is '<code>?</code>'.</li> 8740 8741<li>The fourth line is a string that, in a path in Windows, 8742is replaced by the executable's directory. 8743Default is '<code>!</code>'.</li> 8744 8745<li>The fifth line is a mark to ignore all text after it 8746when building the <code>luaopen_</code> function name. 8747Default is '<code>-</code>'.</li> 8748 8749</ul> 8750 8751 8752 8753<p> 8754<hr><h3><a name="pdf-package.cpath"><code>package.cpath</code></a></h3> 8755 8756 8757<p> 8758A string with the path used by <a href="#pdf-require"><code>require</code></a> 8759to search for a C loader. 8760 8761 8762<p> 8763Lua initializes the C path <a href="#pdf-package.cpath"><code>package.cpath</code></a> in the same way 8764it initializes the Lua path <a href="#pdf-package.path"><code>package.path</code></a>, 8765using the environment variable <a name="pdf-LUA_CPATH_5_4"><code>LUA_CPATH_5_4</code></a>, 8766or the environment variable <a name="pdf-LUA_CPATH"><code>LUA_CPATH</code></a>, 8767or a default path defined in <code>luaconf.h</code>. 8768 8769 8770 8771 8772<p> 8773<hr><h3><a name="pdf-package.loaded"><code>package.loaded</code></a></h3> 8774 8775 8776<p> 8777A table used by <a href="#pdf-require"><code>require</code></a> to control which 8778modules are already loaded. 8779When you require a module <code>modname</code> and 8780<code>package.loaded[modname]</code> is not false, 8781<a href="#pdf-require"><code>require</code></a> simply returns the value stored there. 8782 8783 8784<p> 8785This variable is only a reference to the real table; 8786assignments to this variable do not change the 8787table used by <a href="#pdf-require"><code>require</code></a>. 8788The real table is stored in the C registry (see <a href="#4.3">§4.3</a>), 8789indexed by the key <a name="pdf-LUA_LOADED_TABLE"><code>LUA_LOADED_TABLE</code></a>, a string. 8790 8791 8792 8793 8794<p> 8795<hr><h3><a name="pdf-package.loadlib"><code>package.loadlib (libname, funcname)</code></a></h3> 8796 8797 8798<p> 8799Dynamically links the host program with the C library <code>libname</code>. 8800 8801 8802<p> 8803If <code>funcname</code> is "<code>*</code>", 8804then it only links with the library, 8805making the symbols exported by the library 8806available to other dynamically linked libraries. 8807Otherwise, 8808it looks for a function <code>funcname</code> inside the library 8809and returns this function as a C function. 8810So, <code>funcname</code> must follow the <a href="#lua_CFunction"><code>lua_CFunction</code></a> prototype 8811(see <a href="#lua_CFunction"><code>lua_CFunction</code></a>). 8812 8813 8814<p> 8815This is a low-level function. 8816It completely bypasses the package and module system. 8817Unlike <a href="#pdf-require"><code>require</code></a>, 8818it does not perform any path searching and 8819does not automatically adds extensions. 8820<code>libname</code> must be the complete file name of the C library, 8821including if necessary a path and an extension. 8822<code>funcname</code> must be the exact name exported by the C library 8823(which may depend on the C compiler and linker used). 8824 8825 8826<p> 8827This functionality is not supported by ISO C. 8828As such, it is only available on some platforms 8829(Windows, Linux, Mac OS X, Solaris, BSD, 8830plus other Unix systems that support the <code>dlfcn</code> standard). 8831 8832 8833<p> 8834This function is inherently insecure, 8835as it allows Lua to call any function in any readable dynamic 8836library in the system. 8837(Lua calls any function assuming the function 8838has a proper prototype and respects a proper protocol 8839(see <a href="#lua_CFunction"><code>lua_CFunction</code></a>). 8840Therefore, 8841calling an arbitrary function in an arbitrary dynamic library 8842more often than not results in an access violation.) 8843 8844 8845 8846 8847<p> 8848<hr><h3><a name="pdf-package.path"><code>package.path</code></a></h3> 8849 8850 8851<p> 8852A string with the path used by <a href="#pdf-require"><code>require</code></a> 8853to search for a Lua loader. 8854 8855 8856<p> 8857At start-up, Lua initializes this variable with 8858the value of the environment variable <a name="pdf-LUA_PATH_5_4"><code>LUA_PATH_5_4</code></a> or 8859the environment variable <a name="pdf-LUA_PATH"><code>LUA_PATH</code></a> or 8860with a default path defined in <code>luaconf.h</code>, 8861if those environment variables are not defined. 8862A "<code>;;</code>" in the value of the environment variable 8863is replaced by the default path. 8864 8865 8866 8867 8868<p> 8869<hr><h3><a name="pdf-package.preload"><code>package.preload</code></a></h3> 8870 8871 8872<p> 8873A table to store loaders for specific modules 8874(see <a href="#pdf-require"><code>require</code></a>). 8875 8876 8877<p> 8878This variable is only a reference to the real table; 8879assignments to this variable do not change the 8880table used by <a href="#pdf-require"><code>require</code></a>. 8881The real table is stored in the C registry (see <a href="#4.3">§4.3</a>), 8882indexed by the key <a name="pdf-LUA_PRELOAD_TABLE"><code>LUA_PRELOAD_TABLE</code></a>, a string. 8883 8884 8885 8886 8887<p> 8888<hr><h3><a name="pdf-package.searchers"><code>package.searchers</code></a></h3> 8889 8890 8891<p> 8892A table used by <a href="#pdf-require"><code>require</code></a> to control how to find modules. 8893 8894 8895<p> 8896Each entry in this table is a <em>searcher function</em>. 8897When looking for a module, 8898<a href="#pdf-require"><code>require</code></a> calls each of these searchers in ascending order, 8899with the module name (the argument given to <a href="#pdf-require"><code>require</code></a>) as its 8900sole argument. 8901If the searcher finds the module, 8902it returns another function, the module <em>loader</em>, 8903plus an extra value, a <em>loader data</em>, 8904that will be passed to that loader and 8905returned as a second result by <a href="#pdf-require"><code>require</code></a>. 8906If it cannot find the module, 8907it returns a string explaining why 8908(or <b>nil</b> if it has nothing to say). 8909 8910 8911<p> 8912Lua initializes this table with four searcher functions. 8913 8914 8915<p> 8916The first searcher simply looks for a loader in the 8917<a href="#pdf-package.preload"><code>package.preload</code></a> table. 8918 8919 8920<p> 8921The second searcher looks for a loader as a Lua library, 8922using the path stored at <a href="#pdf-package.path"><code>package.path</code></a>. 8923The search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>. 8924 8925 8926<p> 8927The third searcher looks for a loader as a C library, 8928using the path given by the variable <a href="#pdf-package.cpath"><code>package.cpath</code></a>. 8929Again, 8930the search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>. 8931For instance, 8932if the C path is the string 8933 8934<pre> 8935 "./?.so;./?.dll;/usr/local/?/init.so" 8936</pre><p> 8937the searcher for module <code>foo</code> 8938will try to open the files <code>./foo.so</code>, <code>./foo.dll</code>, 8939and <code>/usr/local/foo/init.so</code>, in that order. 8940Once it finds a C library, 8941this searcher first uses a dynamic link facility to link the 8942application with the library. 8943Then it tries to find a C function inside the library to 8944be used as the loader. 8945The name of this C function is the string "<code>luaopen_</code>" 8946concatenated with a copy of the module name where each dot 8947is replaced by an underscore. 8948Moreover, if the module name has a hyphen, 8949its suffix after (and including) the first hyphen is removed. 8950For instance, if the module name is <code>a.b.c-v2.1</code>, 8951the function name will be <code>luaopen_a_b_c</code>. 8952 8953 8954<p> 8955The fourth searcher tries an <em>all-in-one loader</em>. 8956It searches the C path for a library for 8957the root name of the given module. 8958For instance, when requiring <code>a.b.c</code>, 8959it will search for a C library for <code>a</code>. 8960If found, it looks into it for an open function for 8961the submodule; 8962in our example, that would be <code>luaopen_a_b_c</code>. 8963With this facility, a package can pack several C submodules 8964into one single library, 8965with each submodule keeping its original open function. 8966 8967 8968<p> 8969All searchers except the first one (preload) return as the extra value 8970the file path where the module was found, 8971as returned by <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>. 8972The first searcher always returns the string "<code>:preload:</code>". 8973 8974 8975<p> 8976Searchers should raise no errors and have no side effects in Lua. 8977(They may have side effects in C, 8978for instance by linking the application with a library.) 8979 8980 8981 8982 8983<p> 8984<hr><h3><a name="pdf-package.searchpath"><code>package.searchpath (name, path [, sep [, rep]])</code></a></h3> 8985 8986 8987<p> 8988Searches for the given <code>name</code> in the given <code>path</code>. 8989 8990 8991<p> 8992A path is a string containing a sequence of 8993<em>templates</em> separated by semicolons. 8994For each template, 8995the function replaces each interrogation mark (if any) 8996in the template with a copy of <code>name</code> 8997wherein all occurrences of <code>sep</code> 8998(a dot, by default) 8999were replaced by <code>rep</code> 9000(the system's directory separator, by default), 9001and then tries to open the resulting file name. 9002 9003 9004<p> 9005For instance, if the path is the string 9006 9007<pre> 9008 "./?.lua;./?.lc;/usr/local/?/init.lua" 9009</pre><p> 9010the search for the name <code>foo.a</code> 9011will try to open the files 9012<code>./foo/a.lua</code>, <code>./foo/a.lc</code>, and 9013<code>/usr/local/foo/a/init.lua</code>, in that order. 9014 9015 9016<p> 9017Returns the resulting name of the first file that it can 9018open in read mode (after closing the file), 9019or <b>fail</b> plus an error message if none succeeds. 9020(This error message lists all file names it tried to open.) 9021 9022 9023 9024 9025 9026 9027 9028<h2>6.4 – <a name="6.4">String Manipulation</a></h2> 9029 9030 9031 9032<p> 9033This library provides generic functions for string manipulation, 9034such as finding and extracting substrings, and pattern matching. 9035When indexing a string in Lua, the first character is at position 1 9036(not at 0, as in C). 9037Indices are allowed to be negative and are interpreted as indexing backwards, 9038from the end of the string. 9039Thus, the last character is at position -1, and so on. 9040 9041 9042<p> 9043The string library provides all its functions inside the table 9044<a name="pdf-string"><code>string</code></a>. 9045It also sets a metatable for strings 9046where the <code>__index</code> field points to the <code>string</code> table. 9047Therefore, you can use the string functions in object-oriented style. 9048For instance, <code>string.byte(s,i)</code> 9049can be written as <code>s:byte(i)</code>. 9050 9051 9052<p> 9053The string library assumes one-byte character encodings. 9054 9055 9056<p> 9057<hr><h3><a name="pdf-string.byte"><code>string.byte (s [, i [, j]])</code></a></h3> 9058Returns the internal numeric codes of the characters <code>s[i]</code>, 9059<code>s[i+1]</code>, ..., <code>s[j]</code>. 9060The default value for <code>i</code> is 1; 9061the default value for <code>j</code> is <code>i</code>. 9062These indices are corrected 9063following the same rules of function <a href="#pdf-string.sub"><code>string.sub</code></a>. 9064 9065 9066<p> 9067Numeric codes are not necessarily portable across platforms. 9068 9069 9070 9071 9072<p> 9073<hr><h3><a name="pdf-string.char"><code>string.char (···)</code></a></h3> 9074Receives zero or more integers. 9075Returns a string with length equal to the number of arguments, 9076in which each character has the internal numeric code equal 9077to its corresponding argument. 9078 9079 9080<p> 9081Numeric codes are not necessarily portable across platforms. 9082 9083 9084 9085 9086<p> 9087<hr><h3><a name="pdf-string.dump"><code>string.dump (function [, strip])</code></a></h3> 9088 9089 9090<p> 9091Returns a string containing a binary representation 9092(a <em>binary chunk</em>) 9093of the given function, 9094so that a later <a href="#pdf-load"><code>load</code></a> on this string returns 9095a copy of the function (but with new upvalues). 9096If <code>strip</code> is a true value, 9097the binary representation may not include all debug information 9098about the function, 9099to save space. 9100 9101 9102<p> 9103Functions with upvalues have only their number of upvalues saved. 9104When (re)loaded, 9105those upvalues receive fresh instances. 9106(See the <a href="#pdf-load"><code>load</code></a> function for details about 9107how these upvalues are initialized. 9108You can use the debug library to serialize 9109and reload the upvalues of a function 9110in a way adequate to your needs.) 9111 9112 9113 9114 9115<p> 9116<hr><h3><a name="pdf-string.find"><code>string.find (s, pattern [, init [, plain]])</code></a></h3> 9117 9118 9119<p> 9120Looks for the first match of 9121<code>pattern</code> (see <a href="#6.4.1">§6.4.1</a>) in the string <code>s</code>. 9122If it finds a match, then <code>find</code> returns the indices of <code>s</code> 9123where this occurrence starts and ends; 9124otherwise, it returns <b>fail</b>. 9125A third, optional numeric argument <code>init</code> specifies 9126where to start the search; 9127its default value is 1 and can be negative. 9128A <b>true</b> as a fourth, optional argument <code>plain</code> 9129turns off the pattern matching facilities, 9130so the function does a plain "find substring" operation, 9131with no characters in <code>pattern</code> being considered magic. 9132 9133 9134<p> 9135If the pattern has captures, 9136then in a successful match 9137the captured values are also returned, 9138after the two indices. 9139 9140 9141 9142 9143<p> 9144<hr><h3><a name="pdf-string.format"><code>string.format (formatstring, ···)</code></a></h3> 9145 9146 9147<p> 9148Returns a formatted version of its variable number of arguments 9149following the description given in its first argument, 9150which must be a string. 9151The format string follows the same rules as the ISO C function <code>sprintf</code>. 9152The only differences are that the conversion specifiers and modifiers 9153<code>F</code>, <code>n</code>, <code>*</code>, <code>h</code>, <code>L</code>, and <code>l</code> are not supported 9154and that there is an extra specifier, <code>q</code>. 9155Both width and precision, when present, 9156are limited to two digits. 9157 9158 9159<p> 9160The specifier <code>q</code> formats booleans, nil, numbers, and strings 9161in a way that the result is a valid constant in Lua source code. 9162Booleans and nil are written in the obvious way 9163(<code>true</code>, <code>false</code>, <code>nil</code>). 9164Floats are written in hexadecimal, 9165to preserve full precision. 9166A string is written between double quotes, 9167using escape sequences when necessary to ensure that 9168it can safely be read back by the Lua interpreter. 9169For instance, the call 9170 9171<pre> 9172 string.format('%q', 'a string with "quotes" and \n new line') 9173</pre><p> 9174may produce the string: 9175 9176<pre> 9177 "a string with \"quotes\" and \ 9178 new line" 9179</pre><p> 9180This specifier does not support modifiers (flags, width, precision). 9181 9182 9183<p> 9184The conversion specifiers 9185<code>A</code>, <code>a</code>, <code>E</code>, <code>e</code>, <code>f</code>, 9186<code>G</code>, and <code>g</code> all expect a number as argument. 9187The specifiers <code>c</code>, <code>d</code>, 9188<code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code> 9189expect an integer. 9190When Lua is compiled with a C89 compiler, 9191the specifiers <code>A</code> and <code>a</code> (hexadecimal floats) 9192do not support modifiers. 9193 9194 9195<p> 9196The specifier <code>s</code> expects a string; 9197if its argument is not a string, 9198it is converted to one following the same rules of <a href="#pdf-tostring"><code>tostring</code></a>. 9199If the specifier has any modifier, 9200the corresponding string argument should not contain embedded zeros. 9201 9202 9203<p> 9204The specifier <code>p</code> formats the pointer 9205returned by <a href="#lua_topointer"><code>lua_topointer</code></a>. 9206That gives a unique string identifier for tables, userdata, 9207threads, strings, and functions. 9208For other values (numbers, nil, booleans), 9209this specifier results in a string representing 9210the pointer <code>NULL</code>. 9211 9212 9213 9214 9215<p> 9216<hr><h3><a name="pdf-string.gmatch"><code>string.gmatch (s, pattern [, init])</code></a></h3> 9217Returns an iterator function that, 9218each time it is called, 9219returns the next captures from <code>pattern</code> (see <a href="#6.4.1">§6.4.1</a>) 9220over the string <code>s</code>. 9221If <code>pattern</code> specifies no captures, 9222then the whole match is produced in each call. 9223A third, optional numeric argument <code>init</code> specifies 9224where to start the search; 9225its default value is 1 and can be negative. 9226 9227 9228<p> 9229As an example, the following loop 9230will iterate over all the words from string <code>s</code>, 9231printing one per line: 9232 9233<pre> 9234 s = "hello world from Lua" 9235 for w in string.gmatch(s, "%a+") do 9236 print(w) 9237 end 9238</pre><p> 9239The next example collects all pairs <code>key=value</code> from the 9240given string into a table: 9241 9242<pre> 9243 t = {} 9244 s = "from=world, to=Lua" 9245 for k, v in string.gmatch(s, "(%w+)=(%w+)") do 9246 t[k] = v 9247 end 9248</pre> 9249 9250<p> 9251For this function, a caret '<code>^</code>' at the start of a pattern does not 9252work as an anchor, as this would prevent the iteration. 9253 9254 9255 9256 9257<p> 9258<hr><h3><a name="pdf-string.gsub"><code>string.gsub (s, pattern, repl [, n])</code></a></h3> 9259Returns a copy of <code>s</code> 9260in which all (or the first <code>n</code>, if given) 9261occurrences of the <code>pattern</code> (see <a href="#6.4.1">§6.4.1</a>) have been 9262replaced by a replacement string specified by <code>repl</code>, 9263which can be a string, a table, or a function. 9264<code>gsub</code> also returns, as its second value, 9265the total number of matches that occurred. 9266The name <code>gsub</code> comes from <em>Global SUBstitution</em>. 9267 9268 9269<p> 9270If <code>repl</code> is a string, then its value is used for replacement. 9271The character <code>%</code> works as an escape character: 9272any sequence in <code>repl</code> of the form <code>%<em>d</em></code>, 9273with <em>d</em> between 1 and 9, 9274stands for the value of the <em>d</em>-th captured substring; 9275the sequence <code>%0</code> stands for the whole match; 9276the sequence <code>%%</code> stands for a single <code>%</code>. 9277 9278 9279<p> 9280If <code>repl</code> is a table, then the table is queried for every match, 9281using the first capture as the key. 9282 9283 9284<p> 9285If <code>repl</code> is a function, then this function is called every time a 9286match occurs, with all captured substrings passed as arguments, 9287in order. 9288 9289 9290<p> 9291In any case, 9292if the pattern specifies no captures, 9293then it behaves as if the whole pattern was inside a capture. 9294 9295 9296<p> 9297If the value returned by the table query or by the function call 9298is a string or a number, 9299then it is used as the replacement string; 9300otherwise, if it is <b>false</b> or <b>nil</b>, 9301then there is no replacement 9302(that is, the original match is kept in the string). 9303 9304 9305<p> 9306Here are some examples: 9307 9308<pre> 9309 x = string.gsub("hello world", "(%w+)", "%1 %1") 9310 --> x="hello hello world world" 9311 9312 x = string.gsub("hello world", "%w+", "%0 %0", 1) 9313 --> x="hello hello world" 9314 9315 x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1") 9316 --> x="world hello Lua from" 9317 9318 x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv) 9319 --> x="home = /home/roberto, user = roberto" 9320 9321 x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s) 9322 return load(s)() 9323 end) 9324 --> x="4+5 = 9" 9325 9326 local t = {name="lua", version="5.4"} 9327 x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t) 9328 --> x="lua-5.4.tar.gz" 9329</pre> 9330 9331 9332 9333<p> 9334<hr><h3><a name="pdf-string.len"><code>string.len (s)</code></a></h3> 9335 9336 9337<p> 9338Receives a string and returns its length. 9339The empty string <code>""</code> has length 0. 9340Embedded zeros are counted, 9341so <code>"a\000bc\000"</code> has length 5. 9342 9343 9344 9345 9346<p> 9347<hr><h3><a name="pdf-string.lower"><code>string.lower (s)</code></a></h3> 9348 9349 9350<p> 9351Receives a string and returns a copy of this string with all 9352uppercase letters changed to lowercase. 9353All other characters are left unchanged. 9354The definition of what an uppercase letter is depends on the current locale. 9355 9356 9357 9358 9359<p> 9360<hr><h3><a name="pdf-string.match"><code>string.match (s, pattern [, init])</code></a></h3> 9361 9362 9363<p> 9364Looks for the first <em>match</em> of 9365the <code>pattern</code> (see <a href="#6.4.1">§6.4.1</a>) in the string <code>s</code>. 9366If it finds one, then <code>match</code> returns 9367the captures from the pattern; 9368otherwise it returns <b>fail</b>. 9369If <code>pattern</code> specifies no captures, 9370then the whole match is returned. 9371A third, optional numeric argument <code>init</code> specifies 9372where to start the search; 9373its default value is 1 and can be negative. 9374 9375 9376 9377 9378<p> 9379<hr><h3><a name="pdf-string.pack"><code>string.pack (fmt, v1, v2, ···)</code></a></h3> 9380 9381 9382<p> 9383Returns a binary string containing the values <code>v1</code>, <code>v2</code>, etc. 9384serialized in binary form (packed) 9385according to the format string <code>fmt</code> (see <a href="#6.4.2">§6.4.2</a>). 9386 9387 9388 9389 9390<p> 9391<hr><h3><a name="pdf-string.packsize"><code>string.packsize (fmt)</code></a></h3> 9392 9393 9394<p> 9395Returns the length of a string resulting from <a href="#pdf-string.pack"><code>string.pack</code></a> 9396with the given format. 9397The format string cannot have the variable-length options 9398'<code>s</code>' or '<code>z</code>' (see <a href="#6.4.2">§6.4.2</a>). 9399 9400 9401 9402 9403<p> 9404<hr><h3><a name="pdf-string.rep"><code>string.rep (s, n [, sep])</code></a></h3> 9405 9406 9407<p> 9408Returns a string that is the concatenation of <code>n</code> copies of 9409the string <code>s</code> separated by the string <code>sep</code>. 9410The default value for <code>sep</code> is the empty string 9411(that is, no separator). 9412Returns the empty string if <code>n</code> is not positive. 9413 9414 9415<p> 9416(Note that it is very easy to exhaust the memory of your machine 9417with a single call to this function.) 9418 9419 9420 9421 9422<p> 9423<hr><h3><a name="pdf-string.reverse"><code>string.reverse (s)</code></a></h3> 9424 9425 9426<p> 9427Returns a string that is the string <code>s</code> reversed. 9428 9429 9430 9431 9432<p> 9433<hr><h3><a name="pdf-string.sub"><code>string.sub (s, i [, j])</code></a></h3> 9434 9435 9436<p> 9437Returns the substring of <code>s</code> that 9438starts at <code>i</code> and continues until <code>j</code>; 9439<code>i</code> and <code>j</code> can be negative. 9440If <code>j</code> is absent, then it is assumed to be equal to -1 9441(which is the same as the string length). 9442In particular, 9443the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code> 9444with length <code>j</code>, 9445and <code>string.sub(s, -i)</code> (for a positive <code>i</code>) 9446returns a suffix of <code>s</code> 9447with length <code>i</code>. 9448 9449 9450<p> 9451If, after the translation of negative indices, 9452<code>i</code> is less than 1, 9453it is corrected to 1. 9454If <code>j</code> is greater than the string length, 9455it is corrected to that length. 9456If, after these corrections, 9457<code>i</code> is greater than <code>j</code>, 9458the function returns the empty string. 9459 9460 9461 9462 9463<p> 9464<hr><h3><a name="pdf-string.unpack"><code>string.unpack (fmt, s [, pos])</code></a></h3> 9465 9466 9467<p> 9468Returns the values packed in string <code>s</code> (see <a href="#pdf-string.pack"><code>string.pack</code></a>) 9469according to the format string <code>fmt</code> (see <a href="#6.4.2">§6.4.2</a>). 9470An optional <code>pos</code> marks where 9471to start reading in <code>s</code> (default is 1). 9472After the read values, 9473this function also returns the index of the first unread byte in <code>s</code>. 9474 9475 9476 9477 9478<p> 9479<hr><h3><a name="pdf-string.upper"><code>string.upper (s)</code></a></h3> 9480 9481 9482<p> 9483Receives a string and returns a copy of this string with all 9484lowercase letters changed to uppercase. 9485All other characters are left unchanged. 9486The definition of what a lowercase letter is depends on the current locale. 9487 9488 9489 9490 9491 9492 9493 9494<h3>6.4.1 – <a name="6.4.1">Patterns</a></h3> 9495 9496 9497 9498<p> 9499Patterns in Lua are described by regular strings, 9500which are interpreted as patterns by the pattern-matching functions 9501<a href="#pdf-string.find"><code>string.find</code></a>, 9502<a href="#pdf-string.gmatch"><code>string.gmatch</code></a>, 9503<a href="#pdf-string.gsub"><code>string.gsub</code></a>, 9504and <a href="#pdf-string.match"><code>string.match</code></a>. 9505This section describes the syntax and the meaning 9506(that is, what they match) of these strings. 9507 9508 9509 9510 9511 9512<h4>Character Class:</h4><p> 9513A <em>character class</em> is used to represent a set of characters. 9514The following combinations are allowed in describing a character class: 9515 9516<ul> 9517 9518<li><b><em>x</em>: </b> 9519(where <em>x</em> is not one of the <em>magic characters</em> 9520<code>^$()%.[]*+-?</code>) 9521represents the character <em>x</em> itself. 9522</li> 9523 9524<li><b><code>.</code>: </b> (a dot) represents all characters.</li> 9525 9526<li><b><code>%a</code>: </b> represents all letters.</li> 9527 9528<li><b><code>%c</code>: </b> represents all control characters.</li> 9529 9530<li><b><code>%d</code>: </b> represents all digits.</li> 9531 9532<li><b><code>%g</code>: </b> represents all printable characters except space.</li> 9533 9534<li><b><code>%l</code>: </b> represents all lowercase letters.</li> 9535 9536<li><b><code>%p</code>: </b> represents all punctuation characters.</li> 9537 9538<li><b><code>%s</code>: </b> represents all space characters.</li> 9539 9540<li><b><code>%u</code>: </b> represents all uppercase letters.</li> 9541 9542<li><b><code>%w</code>: </b> represents all alphanumeric characters.</li> 9543 9544<li><b><code>%x</code>: </b> represents all hexadecimal digits.</li> 9545 9546<li><b><code>%<em>x</em></code>: </b> (where <em>x</em> is any non-alphanumeric character) 9547represents the character <em>x</em>. 9548This is the standard way to escape the magic characters. 9549Any non-alphanumeric character 9550(including all punctuation characters, even the non-magical) 9551can be preceded by a '<code>%</code>' to represent itself in a pattern. 9552</li> 9553 9554<li><b><code>[<em>set</em>]</code>: </b> 9555represents the class which is the union of all 9556characters in <em>set</em>. 9557A range of characters can be specified by 9558separating the end characters of the range, 9559in ascending order, with a '<code>-</code>'. 9560All classes <code>%</code><em>x</em> described above can also be used as 9561components in <em>set</em>. 9562All other characters in <em>set</em> represent themselves. 9563For example, <code>[%w_]</code> (or <code>[_%w]</code>) 9564represents all alphanumeric characters plus the underscore, 9565<code>[0-7]</code> represents the octal digits, 9566and <code>[0-7%l%-]</code> represents the octal digits plus 9567the lowercase letters plus the '<code>-</code>' character. 9568 9569 9570<p> 9571You can put a closing square bracket in a set 9572by positioning it as the first character in the set. 9573You can put a hyphen in a set 9574by positioning it as the first or the last character in the set. 9575(You can also use an escape for both cases.) 9576 9577 9578<p> 9579The interaction between ranges and classes is not defined. 9580Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code> 9581have no meaning. 9582</li> 9583 9584<li><b><code>[^<em>set</em>]</code>: </b> 9585represents the complement of <em>set</em>, 9586where <em>set</em> is interpreted as above. 9587</li> 9588 9589</ul><p> 9590For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.), 9591the corresponding uppercase letter represents the complement of the class. 9592For instance, <code>%S</code> represents all non-space characters. 9593 9594 9595<p> 9596The definitions of letter, space, and other character groups 9597depend on the current locale. 9598In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>. 9599 9600 9601 9602 9603 9604<h4>Pattern Item:</h4><p> 9605A <em>pattern item</em> can be 9606 9607<ul> 9608 9609<li> 9610a single character class, 9611which matches any single character in the class; 9612</li> 9613 9614<li> 9615a single character class followed by '<code>*</code>', 9616which matches sequences of zero or more characters in the class. 9617These repetition items will always match the longest possible sequence; 9618</li> 9619 9620<li> 9621a single character class followed by '<code>+</code>', 9622which matches sequences of one or more characters in the class. 9623These repetition items will always match the longest possible sequence; 9624</li> 9625 9626<li> 9627a single character class followed by '<code>-</code>', 9628which also matches sequences of zero or more characters in the class. 9629Unlike '<code>*</code>', 9630these repetition items will always match the shortest possible sequence; 9631</li> 9632 9633<li> 9634a single character class followed by '<code>?</code>', 9635which matches zero or one occurrence of a character in the class. 9636It always matches one occurrence if possible; 9637</li> 9638 9639<li> 9640<code>%<em>n</em></code>, for <em>n</em> between 1 and 9; 9641such item matches a substring equal to the <em>n</em>-th captured string 9642(see below); 9643</li> 9644 9645<li> 9646<code>%b<em>xy</em></code>, where <em>x</em> and <em>y</em> are two distinct characters; 9647such item matches strings that start with <em>x</em>, end with <em>y</em>, 9648and where the <em>x</em> and <em>y</em> are <em>balanced</em>. 9649This means that, if one reads the string from left to right, 9650counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>, 9651the ending <em>y</em> is the first <em>y</em> where the count reaches 0. 9652For instance, the item <code>%b()</code> matches expressions with 9653balanced parentheses. 9654</li> 9655 9656<li> 9657<code>%f[<em>set</em>]</code>, a <em>frontier pattern</em>; 9658such item matches an empty string at any position such that 9659the next character belongs to <em>set</em> 9660and the previous character does not belong to <em>set</em>. 9661The set <em>set</em> is interpreted as previously described. 9662The beginning and the end of the subject are handled as if 9663they were the character '<code>\0</code>'. 9664</li> 9665 9666</ul> 9667 9668 9669 9670 9671<h4>Pattern:</h4><p> 9672A <em>pattern</em> is a sequence of pattern items. 9673A caret '<code>^</code>' at the beginning of a pattern anchors the match at the 9674beginning of the subject string. 9675A '<code>$</code>' at the end of a pattern anchors the match at the 9676end of the subject string. 9677At other positions, 9678'<code>^</code>' and '<code>$</code>' have no special meaning and represent themselves. 9679 9680 9681 9682 9683 9684<h4>Captures:</h4><p> 9685A pattern can contain sub-patterns enclosed in parentheses; 9686they describe <em>captures</em>. 9687When a match succeeds, the substrings of the subject string 9688that match captures are stored (<em>captured</em>) for future use. 9689Captures are numbered according to their left parentheses. 9690For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>, 9691the part of the string matching <code>"a*(.)%w(%s*)"</code> is 9692stored as the first capture, and therefore has number 1; 9693the character matching "<code>.</code>" is captured with number 2, 9694and the part matching "<code>%s*</code>" has number 3. 9695 9696 9697<p> 9698As a special case, the capture <code>()</code> captures 9699the current string position (a number). 9700For instance, if we apply the pattern <code>"()aa()"</code> on the 9701string <code>"flaaap"</code>, there will be two captures: 3 and 5. 9702 9703 9704 9705 9706 9707<h4>Multiple matches:</h4><p> 9708The function <a href="#pdf-string.gsub"><code>string.gsub</code></a> and the iterator <a href="#pdf-string.gmatch"><code>string.gmatch</code></a> 9709match multiple occurrences of the given pattern in the subject. 9710For these functions, 9711a new match is considered valid only 9712if it ends at least one byte after the end of the previous match. 9713In other words, the pattern machine never accepts the 9714empty string as a match immediately after another match. 9715As an example, 9716consider the results of the following code: 9717 9718<pre> 9719 > string.gsub("abc", "()a*()", print); 9720 --> 1 2 9721 --> 3 3 9722 --> 4 4 9723</pre><p> 9724The second and third results come from Lua matching an empty 9725string after '<code>b</code>' and another one after '<code>c</code>'. 9726Lua does not match an empty string after '<code>a</code>', 9727because it would end at the same position of the previous match. 9728 9729 9730 9731 9732 9733 9734 9735<h3>6.4.2 – <a name="6.4.2">Format Strings for Pack and Unpack</a></h3> 9736 9737<p> 9738The first argument to <a href="#pdf-string.pack"><code>string.pack</code></a>, 9739<a href="#pdf-string.packsize"><code>string.packsize</code></a>, and <a href="#pdf-string.unpack"><code>string.unpack</code></a> 9740is a format string, 9741which describes the layout of the structure being created or read. 9742 9743 9744<p> 9745A format string is a sequence of conversion options. 9746The conversion options are as follows: 9747 9748<ul> 9749<li><b><code><</code>: </b>sets little endian</li> 9750<li><b><code>></code>: </b>sets big endian</li> 9751<li><b><code>=</code>: </b>sets native endian</li> 9752<li><b><code>![<em>n</em>]</code>: </b>sets maximum alignment to <code>n</code> 9753(default is native alignment)</li> 9754<li><b><code>b</code>: </b>a signed byte (<code>char</code>)</li> 9755<li><b><code>B</code>: </b>an unsigned byte (<code>char</code>)</li> 9756<li><b><code>h</code>: </b>a signed <code>short</code> (native size)</li> 9757<li><b><code>H</code>: </b>an unsigned <code>short</code> (native size)</li> 9758<li><b><code>l</code>: </b>a signed <code>long</code> (native size)</li> 9759<li><b><code>L</code>: </b>an unsigned <code>long</code> (native size)</li> 9760<li><b><code>j</code>: </b>a <code>lua_Integer</code></li> 9761<li><b><code>J</code>: </b>a <code>lua_Unsigned</code></li> 9762<li><b><code>T</code>: </b>a <code>size_t</code> (native size)</li> 9763<li><b><code>i[<em>n</em>]</code>: </b>a signed <code>int</code> with <code>n</code> bytes 9764(default is native size)</li> 9765<li><b><code>I[<em>n</em>]</code>: </b>an unsigned <code>int</code> with <code>n</code> bytes 9766(default is native size)</li> 9767<li><b><code>f</code>: </b>a <code>float</code> (native size)</li> 9768<li><b><code>d</code>: </b>a <code>double</code> (native size)</li> 9769<li><b><code>n</code>: </b>a <code>lua_Number</code></li> 9770<li><b><code>c<em>n</em></code>: </b>a fixed-sized string with <code>n</code> bytes</li> 9771<li><b><code>z</code>: </b>a zero-terminated string</li> 9772<li><b><code>s[<em>n</em>]</code>: </b>a string preceded by its length 9773coded as an unsigned integer with <code>n</code> bytes 9774(default is a <code>size_t</code>)</li> 9775<li><b><code>x</code>: </b>one byte of padding</li> 9776<li><b><code>X<em>op</em></code>: </b>an empty item that aligns 9777according to option <code>op</code> 9778(which is otherwise ignored)</li> 9779<li><b>'<code> </code>': </b>(space) ignored</li> 9780</ul><p> 9781(A "<code>[<em>n</em>]</code>" means an optional integral numeral.) 9782Except for padding, spaces, and configurations 9783(options "<code>xX <=>!</code>"), 9784each option corresponds to an argument in <a href="#pdf-string.pack"><code>string.pack</code></a> 9785or a result in <a href="#pdf-string.unpack"><code>string.unpack</code></a>. 9786 9787 9788<p> 9789For options "<code>!<em>n</em></code>", "<code>s<em>n</em></code>", "<code>i<em>n</em></code>", and "<code>I<em>n</em></code>", 9790<code>n</code> can be any integer between 1 and 16. 9791All integral options check overflows; 9792<a href="#pdf-string.pack"><code>string.pack</code></a> checks whether the given value fits in the given size; 9793<a href="#pdf-string.unpack"><code>string.unpack</code></a> checks whether the read value fits in a Lua integer. 9794For the unsigned options, 9795Lua integers are treated as unsigned values too. 9796 9797 9798<p> 9799Any format string starts as if prefixed by "<code>!1=</code>", 9800that is, 9801with maximum alignment of 1 (no alignment) 9802and native endianness. 9803 9804 9805<p> 9806Native endianness assumes that the whole system is 9807either big or little endian. 9808The packing functions will not emulate correctly the behavior 9809of mixed-endian formats. 9810 9811 9812<p> 9813Alignment works as follows: 9814For each option, 9815the format gets extra padding until the data starts 9816at an offset that is a multiple of the minimum between the 9817option size and the maximum alignment; 9818this minimum must be a power of 2. 9819Options "<code>c</code>" and "<code>z</code>" are not aligned; 9820option "<code>s</code>" follows the alignment of its starting integer. 9821 9822 9823<p> 9824All padding is filled with zeros by <a href="#pdf-string.pack"><code>string.pack</code></a> 9825and ignored by <a href="#pdf-string.unpack"><code>string.unpack</code></a>. 9826 9827 9828 9829 9830 9831 9832 9833<h2>6.5 – <a name="6.5">UTF-8 Support</a></h2> 9834 9835<p> 9836This library provides basic support for UTF-8 encoding. 9837It provides all its functions inside the table <a name="pdf-utf8"><code>utf8</code></a>. 9838This library does not provide any support for Unicode other 9839than the handling of the encoding. 9840Any operation that needs the meaning of a character, 9841such as character classification, is outside its scope. 9842 9843 9844<p> 9845Unless stated otherwise, 9846all functions that expect a byte position as a parameter 9847assume that the given position is either the start of a byte sequence 9848or one plus the length of the subject string. 9849As in the string library, 9850negative indices count from the end of the string. 9851 9852 9853<p> 9854Functions that create byte sequences 9855accept all values up to <code>0x7FFFFFFF</code>, 9856as defined in the original UTF-8 specification; 9857that implies byte sequences of up to six bytes. 9858 9859 9860<p> 9861Functions that interpret byte sequences only accept 9862valid sequences (well formed and not overlong). 9863By default, they only accept byte sequences 9864that result in valid Unicode code points, 9865rejecting values greater than <code>10FFFF</code> and surrogates. 9866A boolean argument <code>lax</code>, when available, 9867lifts these checks, 9868so that all values up to <code>0x7FFFFFFF</code> are accepted. 9869(Not well formed and overlong sequences are still rejected.) 9870 9871 9872<p> 9873<hr><h3><a name="pdf-utf8.char"><code>utf8.char (···)</code></a></h3> 9874 9875 9876<p> 9877Receives zero or more integers, 9878converts each one to its corresponding UTF-8 byte sequence 9879and returns a string with the concatenation of all these sequences. 9880 9881 9882 9883 9884<p> 9885<hr><h3><a name="pdf-utf8.charpattern"><code>utf8.charpattern</code></a></h3> 9886 9887 9888<p> 9889The pattern (a string, not a function) "<code>[\0-\x7F\xC2-\xFD][\x80-\xBF]*</code>" 9890(see <a href="#6.4.1">§6.4.1</a>), 9891which matches exactly one UTF-8 byte sequence, 9892assuming that the subject is a valid UTF-8 string. 9893 9894 9895 9896 9897<p> 9898<hr><h3><a name="pdf-utf8.codes"><code>utf8.codes (s [, lax])</code></a></h3> 9899 9900 9901<p> 9902Returns values so that the construction 9903 9904<pre> 9905 for p, c in utf8.codes(s) do <em>body</em> end 9906</pre><p> 9907will iterate over all UTF-8 characters in string <code>s</code>, 9908with <code>p</code> being the position (in bytes) and <code>c</code> the code point 9909of each character. 9910It raises an error if it meets any invalid byte sequence. 9911 9912 9913 9914 9915<p> 9916<hr><h3><a name="pdf-utf8.codepoint"><code>utf8.codepoint (s [, i [, j [, lax]]])</code></a></h3> 9917 9918 9919<p> 9920Returns the code points (as integers) from all characters in <code>s</code> 9921that start between byte position <code>i</code> and <code>j</code> (both included). 9922The default for <code>i</code> is 1 and for <code>j</code> is <code>i</code>. 9923It raises an error if it meets any invalid byte sequence. 9924 9925 9926 9927 9928<p> 9929<hr><h3><a name="pdf-utf8.len"><code>utf8.len (s [, i [, j [, lax]]])</code></a></h3> 9930 9931 9932<p> 9933Returns the number of UTF-8 characters in string <code>s</code> 9934that start between positions <code>i</code> and <code>j</code> (both inclusive). 9935The default for <code>i</code> is 1 and for <code>j</code> is -1. 9936If it finds any invalid byte sequence, 9937returns <b>fail</b> plus the position of the first invalid byte. 9938 9939 9940 9941 9942<p> 9943<hr><h3><a name="pdf-utf8.offset"><code>utf8.offset (s, n [, i])</code></a></h3> 9944 9945 9946<p> 9947Returns the position (in bytes) where the encoding of the 9948<code>n</code>-th character of <code>s</code> 9949(counting from position <code>i</code>) starts. 9950A negative <code>n</code> gets characters before position <code>i</code>. 9951The default for <code>i</code> is 1 when <code>n</code> is non-negative 9952and <code>#s + 1</code> otherwise, 9953so that <code>utf8.offset(s, -n)</code> gets the offset of the 9954<code>n</code>-th character from the end of the string. 9955If the specified character is neither in the subject 9956nor right after its end, 9957the function returns <b>fail</b>. 9958 9959 9960<p> 9961As a special case, 9962when <code>n</code> is 0 the function returns the start of the encoding 9963of the character that contains the <code>i</code>-th byte of <code>s</code>. 9964 9965 9966<p> 9967This function assumes that <code>s</code> is a valid UTF-8 string. 9968 9969 9970 9971 9972 9973 9974 9975<h2>6.6 – <a name="6.6">Table Manipulation</a></h2> 9976 9977<p> 9978This library provides generic functions for table manipulation. 9979It provides all its functions inside the table <a name="pdf-table"><code>table</code></a>. 9980 9981 9982<p> 9983Remember that, whenever an operation needs the length of a table, 9984all caveats about the length operator apply (see <a href="#3.4.7">§3.4.7</a>). 9985All functions ignore non-numeric keys 9986in the tables given as arguments. 9987 9988 9989<p> 9990<hr><h3><a name="pdf-table.concat"><code>table.concat (list [, sep [, i [, j]]])</code></a></h3> 9991 9992 9993<p> 9994Given a list where all elements are strings or numbers, 9995returns the string <code>list[i]..sep..list[i+1] ··· sep..list[j]</code>. 9996The default value for <code>sep</code> is the empty string, 9997the default for <code>i</code> is 1, 9998and the default for <code>j</code> is <code>#list</code>. 9999If <code>i</code> is greater than <code>j</code>, returns the empty string. 10000 10001 10002 10003 10004<p> 10005<hr><h3><a name="pdf-table.insert"><code>table.insert (list, [pos,] value)</code></a></h3> 10006 10007 10008<p> 10009Inserts element <code>value</code> at position <code>pos</code> in <code>list</code>, 10010shifting up the elements 10011<code>list[pos], list[pos+1], ···, list[#list]</code>. 10012The default value for <code>pos</code> is <code>#list+1</code>, 10013so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end 10014of the list <code>t</code>. 10015 10016 10017 10018 10019<p> 10020<hr><h3><a name="pdf-table.move"><code>table.move (a1, f, e, t [,a2])</code></a></h3> 10021 10022 10023<p> 10024Moves elements from the table <code>a1</code> to the table <code>a2</code>, 10025performing the equivalent to the following 10026multiple assignment: 10027<code>a2[t],··· = a1[f],···,a1[e]</code>. 10028The default for <code>a2</code> is <code>a1</code>. 10029The destination range can overlap with the source range. 10030The number of elements to be moved must fit in a Lua integer. 10031 10032 10033<p> 10034Returns the destination table <code>a2</code>. 10035 10036 10037 10038 10039<p> 10040<hr><h3><a name="pdf-table.pack"><code>table.pack (···)</code></a></h3> 10041 10042 10043<p> 10044Returns a new table with all arguments stored into keys 1, 2, etc. 10045and with a field "<code>n</code>" with the total number of arguments. 10046Note that the resulting table may not be a sequence, 10047if some arguments are <b>nil</b>. 10048 10049 10050 10051 10052<p> 10053<hr><h3><a name="pdf-table.remove"><code>table.remove (list [, pos])</code></a></h3> 10054 10055 10056<p> 10057Removes from <code>list</code> the element at position <code>pos</code>, 10058returning the value of the removed element. 10059When <code>pos</code> is an integer between 1 and <code>#list</code>, 10060it shifts down the elements 10061<code>list[pos+1], list[pos+2], ···, list[#list]</code> 10062and erases element <code>list[#list]</code>; 10063The index <code>pos</code> can also be 0 when <code>#list</code> is 0, 10064or <code>#list + 1</code>. 10065 10066 10067<p> 10068The default value for <code>pos</code> is <code>#list</code>, 10069so that a call <code>table.remove(l)</code> removes the last element 10070of the list <code>l</code>. 10071 10072 10073 10074 10075<p> 10076<hr><h3><a name="pdf-table.sort"><code>table.sort (list [, comp])</code></a></h3> 10077 10078 10079<p> 10080Sorts the list elements in a given order, <em>in-place</em>, 10081from <code>list[1]</code> to <code>list[#list]</code>. 10082If <code>comp</code> is given, 10083then it must be a function that receives two list elements 10084and returns true when the first element must come 10085before the second in the final order, 10086so that, after the sort, 10087<code>i <= j</code> implies <code>not comp(list[j],list[i])</code>. 10088If <code>comp</code> is not given, 10089then the standard Lua operator <code><</code> is used instead. 10090 10091 10092<p> 10093The <code>comp</code> function must define a consistent order; 10094more formally, the function must define a strict weak order. 10095(A weak order is similar to a total order, 10096but it can equate different elements for comparison purposes.) 10097 10098 10099<p> 10100The sort algorithm is not stable: 10101Different elements considered equal by the given order 10102may have their relative positions changed by the sort. 10103 10104 10105 10106 10107<p> 10108<hr><h3><a name="pdf-table.unpack"><code>table.unpack (list [, i [, j]])</code></a></h3> 10109 10110 10111<p> 10112Returns the elements from the given list. 10113This function is equivalent to 10114 10115<pre> 10116 return list[i], list[i+1], ···, list[j] 10117</pre><p> 10118By default, <code>i</code> is 1 and <code>j</code> is <code>#list</code>. 10119 10120 10121 10122 10123 10124 10125 10126<h2>6.7 – <a name="6.7">Mathematical Functions</a></h2> 10127 10128<p> 10129This library provides basic mathematical functions. 10130It provides all its functions and constants inside the table <a name="pdf-math"><code>math</code></a>. 10131Functions with the annotation "<code>integer/float</code>" give 10132integer results for integer arguments 10133and float results for non-integer arguments. 10134The rounding functions 10135<a href="#pdf-math.ceil"><code>math.ceil</code></a>, <a href="#pdf-math.floor"><code>math.floor</code></a>, and <a href="#pdf-math.modf"><code>math.modf</code></a> 10136return an integer when the result fits in the range of an integer, 10137or a float otherwise. 10138 10139 10140<p> 10141<hr><h3><a name="pdf-math.abs"><code>math.abs (x)</code></a></h3> 10142 10143 10144<p> 10145Returns the maximum value between <code>x</code> and <code>-x</code>. (integer/float) 10146 10147 10148 10149 10150<p> 10151<hr><h3><a name="pdf-math.acos"><code>math.acos (x)</code></a></h3> 10152 10153 10154<p> 10155Returns the arc cosine of <code>x</code> (in radians). 10156 10157 10158 10159 10160<p> 10161<hr><h3><a name="pdf-math.asin"><code>math.asin (x)</code></a></h3> 10162 10163 10164<p> 10165Returns the arc sine of <code>x</code> (in radians). 10166 10167 10168 10169 10170<p> 10171<hr><h3><a name="pdf-math.atan"><code>math.atan (y [, x])</code></a></h3> 10172 10173 10174<p> 10175 10176Returns the arc tangent of <code>y/x</code> (in radians), 10177using the signs of both arguments to find the 10178quadrant of the result. 10179It also handles correctly the case of <code>x</code> being zero. 10180 10181 10182<p> 10183The default value for <code>x</code> is 1, 10184so that the call <code>math.atan(y)</code> 10185returns the arc tangent of <code>y</code>. 10186 10187 10188 10189 10190<p> 10191<hr><h3><a name="pdf-math.ceil"><code>math.ceil (x)</code></a></h3> 10192 10193 10194<p> 10195Returns the smallest integral value greater than or equal to <code>x</code>. 10196 10197 10198 10199 10200<p> 10201<hr><h3><a name="pdf-math.cos"><code>math.cos (x)</code></a></h3> 10202 10203 10204<p> 10205Returns the cosine of <code>x</code> (assumed to be in radians). 10206 10207 10208 10209 10210<p> 10211<hr><h3><a name="pdf-math.deg"><code>math.deg (x)</code></a></h3> 10212 10213 10214<p> 10215Converts the angle <code>x</code> from radians to degrees. 10216 10217 10218 10219 10220<p> 10221<hr><h3><a name="pdf-math.exp"><code>math.exp (x)</code></a></h3> 10222 10223 10224<p> 10225Returns the value <em>e<sup>x</sup></em> 10226(where <code>e</code> is the base of natural logarithms). 10227 10228 10229 10230 10231<p> 10232<hr><h3><a name="pdf-math.floor"><code>math.floor (x)</code></a></h3> 10233 10234 10235<p> 10236Returns the largest integral value less than or equal to <code>x</code>. 10237 10238 10239 10240 10241<p> 10242<hr><h3><a name="pdf-math.fmod"><code>math.fmod (x, y)</code></a></h3> 10243 10244 10245<p> 10246Returns the remainder of the division of <code>x</code> by <code>y</code> 10247that rounds the quotient towards zero. (integer/float) 10248 10249 10250 10251 10252<p> 10253<hr><h3><a name="pdf-math.huge"><code>math.huge</code></a></h3> 10254 10255 10256<p> 10257The float value <code>HUGE_VAL</code>, 10258a value greater than any other numeric value. 10259 10260 10261 10262 10263<p> 10264<hr><h3><a name="pdf-math.log"><code>math.log (x [, base])</code></a></h3> 10265 10266 10267<p> 10268Returns the logarithm of <code>x</code> in the given base. 10269The default for <code>base</code> is <em>e</em> 10270(so that the function returns the natural logarithm of <code>x</code>). 10271 10272 10273 10274 10275<p> 10276<hr><h3><a name="pdf-math.max"><code>math.max (x, ···)</code></a></h3> 10277 10278 10279<p> 10280Returns the argument with the maximum value, 10281according to the Lua operator <code><</code>. 10282 10283 10284 10285 10286<p> 10287<hr><h3><a name="pdf-math.maxinteger"><code>math.maxinteger</code></a></h3> 10288An integer with the maximum value for an integer. 10289 10290 10291 10292 10293<p> 10294<hr><h3><a name="pdf-math.min"><code>math.min (x, ···)</code></a></h3> 10295 10296 10297<p> 10298Returns the argument with the minimum value, 10299according to the Lua operator <code><</code>. 10300 10301 10302 10303 10304<p> 10305<hr><h3><a name="pdf-math.mininteger"><code>math.mininteger</code></a></h3> 10306An integer with the minimum value for an integer. 10307 10308 10309 10310 10311<p> 10312<hr><h3><a name="pdf-math.modf"><code>math.modf (x)</code></a></h3> 10313 10314 10315<p> 10316Returns the integral part of <code>x</code> and the fractional part of <code>x</code>. 10317Its second result is always a float. 10318 10319 10320 10321 10322<p> 10323<hr><h3><a name="pdf-math.pi"><code>math.pi</code></a></h3> 10324 10325 10326<p> 10327The value of <em>π</em>. 10328 10329 10330 10331 10332<p> 10333<hr><h3><a name="pdf-math.rad"><code>math.rad (x)</code></a></h3> 10334 10335 10336<p> 10337Converts the angle <code>x</code> from degrees to radians. 10338 10339 10340 10341 10342<p> 10343<hr><h3><a name="pdf-math.random"><code>math.random ([m [, n]])</code></a></h3> 10344 10345 10346<p> 10347When called without arguments, 10348returns a pseudo-random float with uniform distribution 10349in the range <em>[0,1)</em>. 10350When called with two integers <code>m</code> and <code>n</code>, 10351<code>math.random</code> returns a pseudo-random integer 10352with uniform distribution in the range <em>[m, n]</em>. 10353The call <code>math.random(n)</code>, for a positive <code>n</code>, 10354is equivalent to <code>math.random(1,n)</code>. 10355The call <code>math.random(0)</code> produces an integer with 10356all bits (pseudo)random. 10357 10358 10359<p> 10360This function uses the <code>xoshiro256**</code> algorithm to produce 10361pseudo-random 64-bit integers, 10362which are the results of calls with argument 0. 10363Other results (ranges and floats) 10364are unbiased extracted from these integers. 10365 10366 10367<p> 10368Lua initializes its pseudo-random generator with the equivalent of 10369a call to <a href="#pdf-math.randomseed"><code>math.randomseed</code></a> with no arguments, 10370so that <code>math.random</code> should generate 10371different sequences of results each time the program runs. 10372 10373 10374 10375 10376<p> 10377<hr><h3><a name="pdf-math.randomseed"><code>math.randomseed ([x [, y]])</code></a></h3> 10378 10379 10380<p> 10381When called with at least one argument, 10382the integer parameters <code>x</code> and <code>y</code> are 10383joined into a 128-bit <em>seed</em> that 10384is used to reinitialize the pseudo-random generator; 10385equal seeds produce equal sequences of numbers. 10386The default for <code>y</code> is zero. 10387 10388 10389<p> 10390When called with no arguments, 10391Lua generates a seed with 10392a weak attempt for randomness. 10393 10394 10395<p> 10396This function returns the two seed components 10397that were effectively used, 10398so that setting them again repeats the sequence. 10399 10400 10401<p> 10402To ensure a required level of randomness to the initial state 10403(or contrarily, to have a deterministic sequence, 10404for instance when debugging a program), 10405you should call <a href="#pdf-math.randomseed"><code>math.randomseed</code></a> with explicit arguments. 10406 10407 10408 10409 10410<p> 10411<hr><h3><a name="pdf-math.sin"><code>math.sin (x)</code></a></h3> 10412 10413 10414<p> 10415Returns the sine of <code>x</code> (assumed to be in radians). 10416 10417 10418 10419 10420<p> 10421<hr><h3><a name="pdf-math.sqrt"><code>math.sqrt (x)</code></a></h3> 10422 10423 10424<p> 10425Returns the square root of <code>x</code>. 10426(You can also use the expression <code>x^0.5</code> to compute this value.) 10427 10428 10429 10430 10431<p> 10432<hr><h3><a name="pdf-math.tan"><code>math.tan (x)</code></a></h3> 10433 10434 10435<p> 10436Returns the tangent of <code>x</code> (assumed to be in radians). 10437 10438 10439 10440 10441<p> 10442<hr><h3><a name="pdf-math.tointeger"><code>math.tointeger (x)</code></a></h3> 10443 10444 10445<p> 10446If the value <code>x</code> is convertible to an integer, 10447returns that integer. 10448Otherwise, returns <b>fail</b>. 10449 10450 10451 10452 10453<p> 10454<hr><h3><a name="pdf-math.type"><code>math.type (x)</code></a></h3> 10455 10456 10457<p> 10458Returns "<code>integer</code>" if <code>x</code> is an integer, 10459"<code>float</code>" if it is a float, 10460or <b>fail</b> if <code>x</code> is not a number. 10461 10462 10463 10464 10465<p> 10466<hr><h3><a name="pdf-math.ult"><code>math.ult (m, n)</code></a></h3> 10467 10468 10469<p> 10470Returns a boolean, 10471<b>true</b> if and only if integer <code>m</code> is below integer <code>n</code> when 10472they are compared as unsigned integers. 10473 10474 10475 10476 10477 10478 10479 10480<h2>6.8 – <a name="6.8">Input and Output Facilities</a></h2> 10481 10482<p> 10483The I/O library provides two different styles for file manipulation. 10484The first one uses implicit file handles; 10485that is, there are operations to set a default input file and a 10486default output file, 10487and all input/output operations are done over these default files. 10488The second style uses explicit file handles. 10489 10490 10491<p> 10492When using implicit file handles, 10493all operations are supplied by table <a name="pdf-io"><code>io</code></a>. 10494When using explicit file handles, 10495the operation <a href="#pdf-io.open"><code>io.open</code></a> returns a file handle 10496and then all operations are supplied as methods of the file handle. 10497 10498 10499<p> 10500The metatable for file handles provides metamethods 10501for <code>__gc</code> and <code>__close</code> that try 10502to close the file when called. 10503 10504 10505<p> 10506The table <code>io</code> also provides 10507three predefined file handles with their usual meanings from C: 10508<a name="pdf-io.stdin"><code>io.stdin</code></a>, <a name="pdf-io.stdout"><code>io.stdout</code></a>, and <a name="pdf-io.stderr"><code>io.stderr</code></a>. 10509The I/O library never closes these files. 10510 10511 10512<p> 10513Unless otherwise stated, 10514all I/O functions return <b>fail</b> on failure, 10515plus an error message as a second result and 10516a system-dependent error code as a third result, 10517and some non-false value on success. 10518On non-POSIX systems, 10519the computation of the error message and error code 10520in case of errors 10521may be not thread safe, 10522because they rely on the global C variable <code>errno</code>. 10523 10524 10525<p> 10526<hr><h3><a name="pdf-io.close"><code>io.close ([file])</code></a></h3> 10527 10528 10529<p> 10530Equivalent to <code>file:close()</code>. 10531Without a <code>file</code>, closes the default output file. 10532 10533 10534 10535 10536<p> 10537<hr><h3><a name="pdf-io.flush"><code>io.flush ()</code></a></h3> 10538 10539 10540<p> 10541Equivalent to <code>io.output():flush()</code>. 10542 10543 10544 10545 10546<p> 10547<hr><h3><a name="pdf-io.input"><code>io.input ([file])</code></a></h3> 10548 10549 10550<p> 10551When called with a file name, it opens the named file (in text mode), 10552and sets its handle as the default input file. 10553When called with a file handle, 10554it simply sets this file handle as the default input file. 10555When called without arguments, 10556it returns the current default input file. 10557 10558 10559<p> 10560In case of errors this function raises the error, 10561instead of returning an error code. 10562 10563 10564 10565 10566<p> 10567<hr><h3><a name="pdf-io.lines"><code>io.lines ([filename, ···])</code></a></h3> 10568 10569 10570<p> 10571Opens the given file name in read mode 10572and returns an iterator function that 10573works like <code>file:lines(···)</code> over the opened file. 10574When the iterator function fails to read any value, 10575it automatically closes the file. 10576Besides the iterator function, 10577<code>io.lines</code> returns three other values: 10578two <b>nil</b> values as placeholders, 10579plus the created file handle. 10580Therefore, when used in a generic <b>for</b> loop, 10581the file is closed also if the loop is interrupted by an 10582error or a <b>break</b>. 10583 10584 10585<p> 10586The call <code>io.lines()</code> (with no file name) is equivalent 10587to <code>io.input():lines("l")</code>; 10588that is, it iterates over the lines of the default input file. 10589In this case, the iterator does not close the file when the loop ends. 10590 10591 10592<p> 10593In case of errors opening the file, 10594this function raises the error, 10595instead of returning an error code. 10596 10597 10598 10599 10600<p> 10601<hr><h3><a name="pdf-io.open"><code>io.open (filename [, mode])</code></a></h3> 10602 10603 10604<p> 10605This function opens a file, 10606in the mode specified in the string <code>mode</code>. 10607In case of success, 10608it returns a new file handle. 10609 10610 10611<p> 10612The <code>mode</code> string can be any of the following: 10613 10614<ul> 10615<li><b>"<code>r</code>": </b> read mode (the default);</li> 10616<li><b>"<code>w</code>": </b> write mode;</li> 10617<li><b>"<code>a</code>": </b> append mode;</li> 10618<li><b>"<code>r+</code>": </b> update mode, all previous data is preserved;</li> 10619<li><b>"<code>w+</code>": </b> update mode, all previous data is erased;</li> 10620<li><b>"<code>a+</code>": </b> append update mode, previous data is preserved, 10621 writing is only allowed at the end of file.</li> 10622</ul><p> 10623The <code>mode</code> string can also have a '<code>b</code>' at the end, 10624which is needed in some systems to open the file in binary mode. 10625 10626 10627 10628 10629<p> 10630<hr><h3><a name="pdf-io.output"><code>io.output ([file])</code></a></h3> 10631 10632 10633<p> 10634Similar to <a href="#pdf-io.input"><code>io.input</code></a>, but operates over the default output file. 10635 10636 10637 10638 10639<p> 10640<hr><h3><a name="pdf-io.popen"><code>io.popen (prog [, mode])</code></a></h3> 10641 10642 10643<p> 10644This function is system dependent and is not available 10645on all platforms. 10646 10647 10648<p> 10649Starts the program <code>prog</code> in a separated process and returns 10650a file handle that you can use to read data from this program 10651(if <code>mode</code> is <code>"r"</code>, the default) 10652or to write data to this program 10653(if <code>mode</code> is <code>"w"</code>). 10654 10655 10656 10657 10658<p> 10659<hr><h3><a name="pdf-io.read"><code>io.read (···)</code></a></h3> 10660 10661 10662<p> 10663Equivalent to <code>io.input():read(···)</code>. 10664 10665 10666 10667 10668<p> 10669<hr><h3><a name="pdf-io.tmpfile"><code>io.tmpfile ()</code></a></h3> 10670 10671 10672<p> 10673In case of success, 10674returns a handle for a temporary file. 10675This file is opened in update mode 10676and it is automatically removed when the program ends. 10677 10678 10679 10680 10681<p> 10682<hr><h3><a name="pdf-io.type"><code>io.type (obj)</code></a></h3> 10683 10684 10685<p> 10686Checks whether <code>obj</code> is a valid file handle. 10687Returns the string <code>"file"</code> if <code>obj</code> is an open file handle, 10688<code>"closed file"</code> if <code>obj</code> is a closed file handle, 10689or <b>fail</b> if <code>obj</code> is not a file handle. 10690 10691 10692 10693 10694<p> 10695<hr><h3><a name="pdf-io.write"><code>io.write (···)</code></a></h3> 10696 10697 10698<p> 10699Equivalent to <code>io.output():write(···)</code>. 10700 10701 10702 10703 10704<p> 10705<hr><h3><a name="pdf-file:close"><code>file:close ()</code></a></h3> 10706 10707 10708<p> 10709Closes <code>file</code>. 10710Note that files are automatically closed when 10711their handles are garbage collected, 10712but that takes an unpredictable amount of time to happen. 10713 10714 10715<p> 10716When closing a file handle created with <a href="#pdf-io.popen"><code>io.popen</code></a>, 10717<a href="#pdf-file:close"><code>file:close</code></a> returns the same values 10718returned by <a href="#pdf-os.execute"><code>os.execute</code></a>. 10719 10720 10721 10722 10723<p> 10724<hr><h3><a name="pdf-file:flush"><code>file:flush ()</code></a></h3> 10725 10726 10727<p> 10728Saves any written data to <code>file</code>. 10729 10730 10731 10732 10733<p> 10734<hr><h3><a name="pdf-file:lines"><code>file:lines (···)</code></a></h3> 10735 10736 10737<p> 10738Returns an iterator function that, 10739each time it is called, 10740reads the file according to the given formats. 10741When no format is given, 10742uses "<code>l</code>" as a default. 10743As an example, the construction 10744 10745<pre> 10746 for c in file:lines(1) do <em>body</em> end 10747</pre><p> 10748will iterate over all characters of the file, 10749starting at the current position. 10750Unlike <a href="#pdf-io.lines"><code>io.lines</code></a>, this function does not close the file 10751when the loop ends. 10752 10753 10754 10755 10756<p> 10757<hr><h3><a name="pdf-file:read"><code>file:read (···)</code></a></h3> 10758 10759 10760<p> 10761Reads the file <code>file</code>, 10762according to the given formats, which specify what to read. 10763For each format, 10764the function returns a string or a number with the characters read, 10765or <b>fail</b> if it cannot read data with the specified format. 10766(In this latter case, 10767the function does not read subsequent formats.) 10768When called without arguments, 10769it uses a default format that reads the next line 10770(see below). 10771 10772 10773<p> 10774The available formats are 10775 10776<ul> 10777 10778<li><b>"<code>n</code>": </b> 10779reads a numeral and returns it as a float or an integer, 10780following the lexical conventions of Lua. 10781(The numeral may have leading whitespaces and a sign.) 10782This format always reads the longest input sequence that 10783is a valid prefix for a numeral; 10784if that prefix does not form a valid numeral 10785(e.g., an empty string, "<code>0x</code>", or "<code>3.4e-</code>") 10786or it is too long (more than 200 characters), 10787it is discarded and the format returns <b>fail</b>. 10788</li> 10789 10790<li><b>"<code>a</code>": </b> 10791reads the whole file, starting at the current position. 10792On end of file, it returns the empty string; 10793this format never fails. 10794</li> 10795 10796<li><b>"<code>l</code>": </b> 10797reads the next line skipping the end of line, 10798returning <b>fail</b> on end of file. 10799This is the default format. 10800</li> 10801 10802<li><b>"<code>L</code>": </b> 10803reads the next line keeping the end-of-line character (if present), 10804returning <b>fail</b> on end of file. 10805</li> 10806 10807<li><b><em>number</em>: </b> 10808reads a string with up to this number of bytes, 10809returning <b>fail</b> on end of file. 10810If <code>number</code> is zero, 10811it reads nothing and returns an empty string, 10812or <b>fail</b> on end of file. 10813</li> 10814 10815</ul><p> 10816The formats "<code>l</code>" and "<code>L</code>" should be used only for text files. 10817 10818 10819 10820 10821<p> 10822<hr><h3><a name="pdf-file:seek"><code>file:seek ([whence [, offset]])</code></a></h3> 10823 10824 10825<p> 10826Sets and gets the file position, 10827measured from the beginning of the file, 10828to the position given by <code>offset</code> plus a base 10829specified by the string <code>whence</code>, as follows: 10830 10831<ul> 10832<li><b>"<code>set</code>": </b> base is position 0 (beginning of the file);</li> 10833<li><b>"<code>cur</code>": </b> base is current position;</li> 10834<li><b>"<code>end</code>": </b> base is end of file;</li> 10835</ul><p> 10836In case of success, <code>seek</code> returns the final file position, 10837measured in bytes from the beginning of the file. 10838If <code>seek</code> fails, it returns <b>fail</b>, 10839plus a string describing the error. 10840 10841 10842<p> 10843The default value for <code>whence</code> is <code>"cur"</code>, 10844and for <code>offset</code> is 0. 10845Therefore, the call <code>file:seek()</code> returns the current 10846file position, without changing it; 10847the call <code>file:seek("set")</code> sets the position to the 10848beginning of the file (and returns 0); 10849and the call <code>file:seek("end")</code> sets the position to the 10850end of the file, and returns its size. 10851 10852 10853 10854 10855<p> 10856<hr><h3><a name="pdf-file:setvbuf"><code>file:setvbuf (mode [, size])</code></a></h3> 10857 10858 10859<p> 10860Sets the buffering mode for a file. 10861There are three available modes: 10862 10863<ul> 10864<li><b>"<code>no</code>": </b> no buffering.</li> 10865<li><b>"<code>full</code>": </b> full buffering.</li> 10866<li><b>"<code>line</code>": </b> line buffering.</li> 10867</ul> 10868 10869<p> 10870For the last two cases, 10871<code>size</code> is a hint for the size of the buffer, in bytes. 10872The default is an appropriate size. 10873 10874 10875<p> 10876The specific behavior of each mode is non portable; 10877check the underlying ISO C function <code>setvbuf</code> in your platform for 10878more details. 10879 10880 10881 10882 10883<p> 10884<hr><h3><a name="pdf-file:write"><code>file:write (···)</code></a></h3> 10885 10886 10887<p> 10888Writes the value of each of its arguments to <code>file</code>. 10889The arguments must be strings or numbers. 10890 10891 10892<p> 10893In case of success, this function returns <code>file</code>. 10894 10895 10896 10897 10898 10899 10900 10901<h2>6.9 – <a name="6.9">Operating System Facilities</a></h2> 10902 10903<p> 10904This library is implemented through table <a name="pdf-os"><code>os</code></a>. 10905 10906 10907<p> 10908<hr><h3><a name="pdf-os.clock"><code>os.clock ()</code></a></h3> 10909 10910 10911<p> 10912Returns an approximation of the amount in seconds of CPU time 10913used by the program, 10914as returned by the underlying ISO C function <code>clock</code>. 10915 10916 10917 10918 10919<p> 10920<hr><h3><a name="pdf-os.date"><code>os.date ([format [, time]])</code></a></h3> 10921 10922 10923<p> 10924Returns a string or a table containing date and time, 10925formatted according to the given string <code>format</code>. 10926 10927 10928<p> 10929If the <code>time</code> argument is present, 10930this is the time to be formatted 10931(see the <a href="#pdf-os.time"><code>os.time</code></a> function for a description of this value). 10932Otherwise, <code>date</code> formats the current time. 10933 10934 10935<p> 10936If <code>format</code> starts with '<code>!</code>', 10937then the date is formatted in Coordinated Universal Time. 10938After this optional character, 10939if <code>format</code> is the string "<code>*t</code>", 10940then <code>date</code> returns a table with the following fields: 10941<code>year</code>, <code>month</code> (1–12), <code>day</code> (1–31), 10942<code>hour</code> (0–23), <code>min</code> (0–59), 10943<code>sec</code> (0–61, due to leap seconds), 10944<code>wday</code> (weekday, 1–7, Sunday is 1), 10945<code>yday</code> (day of the year, 1–366), 10946and <code>isdst</code> (daylight saving flag, a boolean). 10947This last field may be absent 10948if the information is not available. 10949 10950 10951<p> 10952If <code>format</code> is not "<code>*t</code>", 10953then <code>date</code> returns the date as a string, 10954formatted according to the same rules as the ISO C function <code>strftime</code>. 10955 10956 10957<p> 10958If <code>format</code> is absent, it defaults to "<code>%c</code>", 10959which gives a human-readable date and time representation 10960using the current locale. 10961 10962 10963<p> 10964On non-POSIX systems, 10965this function may be not thread safe 10966because of its reliance on C function <code>gmtime</code> and C function <code>localtime</code>. 10967 10968 10969 10970 10971<p> 10972<hr><h3><a name="pdf-os.difftime"><code>os.difftime (t2, t1)</code></a></h3> 10973 10974 10975<p> 10976Returns the difference, in seconds, 10977from time <code>t1</code> to time <code>t2</code> 10978(where the times are values returned by <a href="#pdf-os.time"><code>os.time</code></a>). 10979In POSIX, Windows, and some other systems, 10980this value is exactly <code>t2</code><em>-</em><code>t1</code>. 10981 10982 10983 10984 10985<p> 10986<hr><h3><a name="pdf-os.execute"><code>os.execute ([command])</code></a></h3> 10987 10988 10989<p> 10990This function is equivalent to the ISO C function <code>system</code>. 10991It passes <code>command</code> to be executed by an operating system shell. 10992Its first result is <b>true</b> 10993if the command terminated successfully, 10994or <b>fail</b> otherwise. 10995After this first result 10996the function returns a string plus a number, 10997as follows: 10998 10999<ul> 11000 11001<li><b>"<code>exit</code>": </b> 11002the command terminated normally; 11003the following number is the exit status of the command. 11004</li> 11005 11006<li><b>"<code>signal</code>": </b> 11007the command was terminated by a signal; 11008the following number is the signal that terminated the command. 11009</li> 11010 11011</ul> 11012 11013<p> 11014When called without a <code>command</code>, 11015<code>os.execute</code> returns a boolean that is true if a shell is available. 11016 11017 11018 11019 11020<p> 11021<hr><h3><a name="pdf-os.exit"><code>os.exit ([code [, close]])</code></a></h3> 11022 11023 11024<p> 11025Calls the ISO C function <code>exit</code> to terminate the host program. 11026If <code>code</code> is <b>true</b>, 11027the returned status is <code>EXIT_SUCCESS</code>; 11028if <code>code</code> is <b>false</b>, 11029the returned status is <code>EXIT_FAILURE</code>; 11030if <code>code</code> is a number, 11031the returned status is this number. 11032The default value for <code>code</code> is <b>true</b>. 11033 11034 11035<p> 11036If the optional second argument <code>close</code> is true, 11037the function closes the Lua state before exiting (see <a href="#lua_close"><code>lua_close</code></a>). 11038 11039 11040 11041 11042<p> 11043<hr><h3><a name="pdf-os.getenv"><code>os.getenv (varname)</code></a></h3> 11044 11045 11046<p> 11047Returns the value of the process environment variable <code>varname</code> 11048or <b>fail</b> if the variable is not defined. 11049 11050 11051 11052 11053<p> 11054<hr><h3><a name="pdf-os.remove"><code>os.remove (filename)</code></a></h3> 11055 11056 11057<p> 11058Deletes the file (or empty directory, on POSIX systems) 11059with the given name. 11060If this function fails, it returns <b>fail</b> 11061plus a string describing the error and the error code. 11062Otherwise, it returns true. 11063 11064 11065 11066 11067<p> 11068<hr><h3><a name="pdf-os.rename"><code>os.rename (oldname, newname)</code></a></h3> 11069 11070 11071<p> 11072Renames the file or directory named <code>oldname</code> to <code>newname</code>. 11073If this function fails, it returns <b>fail</b>, 11074plus a string describing the error and the error code. 11075Otherwise, it returns true. 11076 11077 11078 11079 11080<p> 11081<hr><h3><a name="pdf-os.setlocale"><code>os.setlocale (locale [, category])</code></a></h3> 11082 11083 11084<p> 11085Sets the current locale of the program. 11086<code>locale</code> is a system-dependent string specifying a locale; 11087<code>category</code> is an optional string describing which category to change: 11088<code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>, 11089<code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>; 11090the default category is <code>"all"</code>. 11091The function returns the name of the new locale, 11092or <b>fail</b> if the request cannot be honored. 11093 11094 11095<p> 11096If <code>locale</code> is the empty string, 11097the current locale is set to an implementation-defined native locale. 11098If <code>locale</code> is the string "<code>C</code>", 11099the current locale is set to the standard C locale. 11100 11101 11102<p> 11103When called with <b>nil</b> as the first argument, 11104this function only returns the name of the current locale 11105for the given category. 11106 11107 11108<p> 11109This function may be not thread safe 11110because of its reliance on C function <code>setlocale</code>. 11111 11112 11113 11114 11115<p> 11116<hr><h3><a name="pdf-os.time"><code>os.time ([table])</code></a></h3> 11117 11118 11119<p> 11120Returns the current time when called without arguments, 11121or a time representing the local date and time specified by the given table. 11122This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>, 11123and may have fields 11124<code>hour</code> (default is 12), 11125<code>min</code> (default is 0), 11126<code>sec</code> (default is 0), 11127and <code>isdst</code> (default is <b>nil</b>). 11128Other fields are ignored. 11129For a description of these fields, see the <a href="#pdf-os.date"><code>os.date</code></a> function. 11130 11131 11132<p> 11133When the function is called, 11134the values in these fields do not need to be inside their valid ranges. 11135For instance, if <code>sec</code> is -10, 11136it means 10 seconds before the time specified by the other fields; 11137if <code>hour</code> is 1000, 11138it means 1000 hours after the time specified by the other fields. 11139 11140 11141<p> 11142The returned value is a number, whose meaning depends on your system. 11143In POSIX, Windows, and some other systems, 11144this number counts the number 11145of seconds since some given start time (the "epoch"). 11146In other systems, the meaning is not specified, 11147and the number returned by <code>time</code> can be used only as an argument to 11148<a href="#pdf-os.date"><code>os.date</code></a> and <a href="#pdf-os.difftime"><code>os.difftime</code></a>. 11149 11150 11151<p> 11152When called with a table, 11153<code>os.time</code> also normalizes all the fields 11154documented in the <a href="#pdf-os.date"><code>os.date</code></a> function, 11155so that they represent the same time as before the call 11156but with values inside their valid ranges. 11157 11158 11159 11160 11161<p> 11162<hr><h3><a name="pdf-os.tmpname"><code>os.tmpname ()</code></a></h3> 11163 11164 11165<p> 11166Returns a string with a file name that can 11167be used for a temporary file. 11168The file must be explicitly opened before its use 11169and explicitly removed when no longer needed. 11170 11171 11172<p> 11173In POSIX systems, 11174this function also creates a file with that name, 11175to avoid security risks. 11176(Someone else might create the file with wrong permissions 11177in the time between getting the name and creating the file.) 11178You still have to open the file to use it 11179and to remove it (even if you do not use it). 11180 11181 11182<p> 11183When possible, 11184you may prefer to use <a href="#pdf-io.tmpfile"><code>io.tmpfile</code></a>, 11185which automatically removes the file when the program ends. 11186 11187 11188 11189 11190 11191 11192 11193<h2>6.10 – <a name="6.10">The Debug Library</a></h2> 11194 11195<p> 11196This library provides 11197the functionality of the debug interface (<a href="#4.7">§4.7</a>) to Lua programs. 11198You should exert care when using this library. 11199Several of its functions 11200violate basic assumptions about Lua code 11201(e.g., that variables local to a function 11202cannot be accessed from outside; 11203that userdata metatables cannot be changed by Lua code; 11204that Lua programs do not crash) 11205and therefore can compromise otherwise secure code. 11206Moreover, some functions in this library may be slow. 11207 11208 11209<p> 11210All functions in this library are provided 11211inside the <a name="pdf-debug"><code>debug</code></a> table. 11212All functions that operate over a thread 11213have an optional first argument which is the 11214thread to operate over. 11215The default is always the current thread. 11216 11217 11218<p> 11219<hr><h3><a name="pdf-debug.debug"><code>debug.debug ()</code></a></h3> 11220 11221 11222<p> 11223Enters an interactive mode with the user, 11224running each string that the user enters. 11225Using simple commands and other debug facilities, 11226the user can inspect global and local variables, 11227change their values, evaluate expressions, and so on. 11228A line containing only the word <code>cont</code> finishes this function, 11229so that the caller continues its execution. 11230 11231 11232<p> 11233Note that commands for <code>debug.debug</code> are not lexically nested 11234within any function and so have no direct access to local variables. 11235 11236 11237 11238 11239<p> 11240<hr><h3><a name="pdf-debug.gethook"><code>debug.gethook ([thread])</code></a></h3> 11241 11242 11243<p> 11244Returns the current hook settings of the thread, as three values: 11245the current hook function, the current hook mask, 11246and the current hook count, 11247as set by the <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> function. 11248 11249 11250<p> 11251Returns <b>fail</b> if there is no active hook. 11252 11253 11254 11255 11256<p> 11257<hr><h3><a name="pdf-debug.getinfo"><code>debug.getinfo ([thread,] f [, what])</code></a></h3> 11258 11259 11260<p> 11261Returns a table with information about a function. 11262You can give the function directly 11263or you can give a number as the value of <code>f</code>, 11264which means the function running at level <code>f</code> of the call stack 11265of the given thread: 11266level 0 is the current function (<code>getinfo</code> itself); 11267level 1 is the function that called <code>getinfo</code> 11268(except for tail calls, which do not count in the stack); 11269and so on. 11270If <code>f</code> is a number greater than the number of active functions, 11271then <code>getinfo</code> returns <b>fail</b>. 11272 11273 11274<p> 11275The returned table can contain all the fields returned by <a href="#lua_getinfo"><code>lua_getinfo</code></a>, 11276with the string <code>what</code> describing which fields to fill in. 11277The default for <code>what</code> is to get all information available, 11278except the table of valid lines. 11279If present, 11280the option '<code>f</code>' 11281adds a field named <code>func</code> with the function itself. 11282If present, 11283the option '<code>L</code>' 11284adds a field named <code>activelines</code> with the table of 11285valid lines. 11286 11287 11288<p> 11289For instance, the expression <code>debug.getinfo(1,"n").name</code> returns 11290a name for the current function, 11291if a reasonable name can be found, 11292and the expression <code>debug.getinfo(print)</code> 11293returns a table with all available information 11294about the <a href="#pdf-print"><code>print</code></a> function. 11295 11296 11297 11298 11299<p> 11300<hr><h3><a name="pdf-debug.getlocal"><code>debug.getlocal ([thread,] f, local)</code></a></h3> 11301 11302 11303<p> 11304This function returns the name and the value of the local variable 11305with index <code>local</code> of the function at level <code>f</code> of the stack. 11306This function accesses not only explicit local variables, 11307but also parameters and temporary values. 11308 11309 11310<p> 11311The first parameter or local variable has index 1, and so on, 11312following the order that they are declared in the code, 11313counting only the variables that are active 11314in the current scope of the function. 11315Compile-time constants may not appear in this listing, 11316if they were optimized away by the compiler. 11317Negative indices refer to vararg arguments; 11318-1 is the first vararg argument. 11319The function returns <b>fail</b> 11320if there is no variable with the given index, 11321and raises an error when called with a level out of range. 11322(You can call <a href="#pdf-debug.getinfo"><code>debug.getinfo</code></a> to check whether the level is valid.) 11323 11324 11325<p> 11326Variable names starting with '<code>(</code>' (open parenthesis) 11327represent variables with no known names 11328(internal variables such as loop control variables, 11329and variables from chunks saved without debug information). 11330 11331 11332<p> 11333The parameter <code>f</code> may also be a function. 11334In that case, <code>getlocal</code> returns only the name of function parameters. 11335 11336 11337 11338 11339<p> 11340<hr><h3><a name="pdf-debug.getmetatable"><code>debug.getmetatable (value)</code></a></h3> 11341 11342 11343<p> 11344Returns the metatable of the given <code>value</code> 11345or <b>nil</b> if it does not have a metatable. 11346 11347 11348 11349 11350<p> 11351<hr><h3><a name="pdf-debug.getregistry"><code>debug.getregistry ()</code></a></h3> 11352 11353 11354<p> 11355Returns the registry table (see <a href="#4.3">§4.3</a>). 11356 11357 11358 11359 11360<p> 11361<hr><h3><a name="pdf-debug.getupvalue"><code>debug.getupvalue (f, up)</code></a></h3> 11362 11363 11364<p> 11365This function returns the name and the value of the upvalue 11366with index <code>up</code> of the function <code>f</code>. 11367The function returns <b>fail</b> 11368if there is no upvalue with the given index. 11369 11370 11371<p> 11372(For Lua functions, 11373upvalues are the external local variables that the function uses, 11374and that are consequently included in its closure.) 11375 11376 11377<p> 11378For C functions, this function uses the empty string <code>""</code> 11379as a name for all upvalues. 11380 11381 11382<p> 11383Variable name '<code>?</code>' (interrogation mark) 11384represents variables with no known names 11385(variables from chunks saved without debug information). 11386 11387 11388 11389 11390<p> 11391<hr><h3><a name="pdf-debug.getuservalue"><code>debug.getuservalue (u, n)</code></a></h3> 11392 11393 11394<p> 11395Returns the <code>n</code>-th user value associated 11396to the userdata <code>u</code> plus a boolean, 11397<b>false</b> if the userdata does not have that value. 11398 11399 11400 11401 11402<p> 11403<hr><h3><a name="pdf-debug.sethook"><code>debug.sethook ([thread,] hook, mask [, count])</code></a></h3> 11404 11405 11406<p> 11407Sets the given function as the debug hook. 11408The string <code>mask</code> and the number <code>count</code> describe 11409when the hook will be called. 11410The string mask may have any combination of the following characters, 11411with the given meaning: 11412 11413<ul> 11414<li><b>'<code>c</code>': </b> the hook is called every time Lua calls a function;</li> 11415<li><b>'<code>r</code>': </b> the hook is called every time Lua returns from a function;</li> 11416<li><b>'<code>l</code>': </b> the hook is called every time Lua enters a new line of code.</li> 11417</ul><p> 11418Moreover, 11419with a <code>count</code> different from zero, 11420the hook is called also after every <code>count</code> instructions. 11421 11422 11423<p> 11424When called without arguments, 11425<a href="#pdf-debug.sethook"><code>debug.sethook</code></a> turns off the hook. 11426 11427 11428<p> 11429When the hook is called, its first parameter is a string 11430describing the event that has triggered its call: 11431<code>"call"</code>, <code>"tail call"</code>, <code>"return"</code>, 11432<code>"line"</code>, and <code>"count"</code>. 11433For line events, 11434the hook also gets the new line number as its second parameter. 11435Inside a hook, 11436you can call <code>getinfo</code> with level 2 to get more information about 11437the running function. 11438(Level 0 is the <code>getinfo</code> function, 11439and level 1 is the hook function.) 11440 11441 11442 11443 11444<p> 11445<hr><h3><a name="pdf-debug.setlocal"><code>debug.setlocal ([thread,] level, local, value)</code></a></h3> 11446 11447 11448<p> 11449This function assigns the value <code>value</code> to the local variable 11450with index <code>local</code> of the function at level <code>level</code> of the stack. 11451The function returns <b>fail</b> if there is no local 11452variable with the given index, 11453and raises an error when called with a <code>level</code> out of range. 11454(You can call <code>getinfo</code> to check whether the level is valid.) 11455Otherwise, it returns the name of the local variable. 11456 11457 11458<p> 11459See <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for more information about 11460variable indices and names. 11461 11462 11463 11464 11465<p> 11466<hr><h3><a name="pdf-debug.setmetatable"><code>debug.setmetatable (value, table)</code></a></h3> 11467 11468 11469<p> 11470Sets the metatable for the given <code>value</code> to the given <code>table</code> 11471(which can be <b>nil</b>). 11472Returns <code>value</code>. 11473 11474 11475 11476 11477<p> 11478<hr><h3><a name="pdf-debug.setupvalue"><code>debug.setupvalue (f, up, value)</code></a></h3> 11479 11480 11481<p> 11482This function assigns the value <code>value</code> to the upvalue 11483with index <code>up</code> of the function <code>f</code>. 11484The function returns <b>fail</b> if there is no upvalue 11485with the given index. 11486Otherwise, it returns the name of the upvalue. 11487 11488 11489<p> 11490See <a href="#pdf-debug.getupvalue"><code>debug.getupvalue</code></a> for more information about upvalues. 11491 11492 11493 11494 11495<p> 11496<hr><h3><a name="pdf-debug.setuservalue"><code>debug.setuservalue (udata, value, n)</code></a></h3> 11497 11498 11499<p> 11500Sets the given <code>value</code> as 11501the <code>n</code>-th user value associated to the given <code>udata</code>. 11502<code>udata</code> must be a full userdata. 11503 11504 11505<p> 11506Returns <code>udata</code>, 11507or <b>fail</b> if the userdata does not have that value. 11508 11509 11510 11511 11512<p> 11513<hr><h3><a name="pdf-debug.traceback"><code>debug.traceback ([thread,] [message [, level]])</code></a></h3> 11514 11515 11516<p> 11517If <code>message</code> is present but is neither a string nor <b>nil</b>, 11518this function returns <code>message</code> without further processing. 11519Otherwise, 11520it returns a string with a traceback of the call stack. 11521The optional <code>message</code> string is appended 11522at the beginning of the traceback. 11523An optional <code>level</code> number tells at which level 11524to start the traceback 11525(default is 1, the function calling <code>traceback</code>). 11526 11527 11528 11529 11530<p> 11531<hr><h3><a name="pdf-debug.upvalueid"><code>debug.upvalueid (f, n)</code></a></h3> 11532 11533 11534<p> 11535Returns a unique identifier (as a light userdata) 11536for the upvalue numbered <code>n</code> 11537from the given function. 11538 11539 11540<p> 11541These unique identifiers allow a program to check whether different 11542closures share upvalues. 11543Lua closures that share an upvalue 11544(that is, that access a same external local variable) 11545will return identical ids for those upvalue indices. 11546 11547 11548 11549 11550<p> 11551<hr><h3><a name="pdf-debug.upvaluejoin"><code>debug.upvaluejoin (f1, n1, f2, n2)</code></a></h3> 11552 11553 11554<p> 11555Make the <code>n1</code>-th upvalue of the Lua closure <code>f1</code> 11556refer to the <code>n2</code>-th upvalue of the Lua closure <code>f2</code>. 11557 11558 11559 11560 11561 11562 11563 11564<h1>7 – <a name="7">Lua Standalone</a></h1> 11565 11566<p> 11567Although Lua has been designed as an extension language, 11568to be embedded in a host C program, 11569it is also frequently used as a standalone language. 11570An interpreter for Lua as a standalone language, 11571called simply <code>lua</code>, 11572is provided with the standard distribution. 11573The standalone interpreter includes 11574all standard libraries. 11575Its usage is: 11576 11577<pre> 11578 lua [options] [script [args]] 11579</pre><p> 11580The options are: 11581 11582<ul> 11583<li><b><code>-e <em>stat</em></code>: </b> execute string <em>stat</em>;</li> 11584<li><b><code>-i</code>: </b> enter interactive mode after running <em>script</em>;</li> 11585<li><b><code>-l <em>mod</em></code>: </b> "require" <em>mod</em> and assign the 11586 result to global <em>mod</em>;</li> 11587<li><b><code>-l <em>g=mod</em></code>: </b> "require" <em>mod</em> and assign the 11588 result to global <em>g</em>;</li> 11589<li><b><code>-v</code>: </b> print version information;</li> 11590<li><b><code>-E</code>: </b> ignore environment variables;</li> 11591<li><b><code>-W</code>: </b> turn warnings on;</li> 11592<li><b><code>--</code>: </b> stop handling options;</li> 11593<li><b><code>-</code>: </b> execute <code>stdin</code> as a file and stop handling options.</li> 11594</ul><p> 11595(The form <code>-l <em>g=mod</em></code> was introduced in release 5.4.4.) 11596 11597 11598<p> 11599After handling its options, <code>lua</code> runs the given <em>script</em>. 11600When called without arguments, 11601<code>lua</code> behaves as <code>lua -v -i</code> 11602when the standard input (<code>stdin</code>) is a terminal, 11603and as <code>lua -</code> otherwise. 11604 11605 11606<p> 11607When called without the option <code>-E</code>, 11608the interpreter checks for an environment variable <a name="pdf-LUA_INIT_5_4"><code>LUA_INIT_5_4</code></a> 11609(or <a name="pdf-LUA_INIT"><code>LUA_INIT</code></a> if the versioned name is not defined) 11610before running any argument. 11611If the variable content has the format <code>@<em>filename</em></code>, 11612then <code>lua</code> executes the file. 11613Otherwise, <code>lua</code> executes the string itself. 11614 11615 11616<p> 11617When called with the option <code>-E</code>, 11618Lua does not consult any environment variables. 11619In particular, 11620the values of <a href="#pdf-package.path"><code>package.path</code></a> and <a href="#pdf-package.cpath"><code>package.cpath</code></a> 11621are set with the default paths defined in <code>luaconf.h</code>. 11622 11623 11624<p> 11625The options <code>-e</code>, <code>-l</code>, and <code>-W</code> are handled in 11626the order they appear. 11627For instance, an invocation like 11628 11629<pre> 11630 $ lua -e 'a=1' -llib1 script.lua 11631</pre><p> 11632will first set <code>a</code> to 1, then require the library <code>lib1</code>, 11633and finally run the file <code>script.lua</code> with no arguments. 11634(Here <code>$</code> is the shell prompt. Your prompt may be different.) 11635 11636 11637<p> 11638Before running any code, 11639<code>lua</code> collects all command-line arguments 11640in a global table called <code>arg</code>. 11641The script name goes to index 0, 11642the first argument after the script name goes to index 1, 11643and so on. 11644Any arguments before the script name 11645(that is, the interpreter name plus its options) 11646go to negative indices. 11647For instance, in the call 11648 11649<pre> 11650 $ lua -la b.lua t1 t2 11651</pre><p> 11652the table is like this: 11653 11654<pre> 11655 arg = { [-2] = "lua", [-1] = "-la", 11656 [0] = "b.lua", 11657 [1] = "t1", [2] = "t2" } 11658</pre><p> 11659If there is no script in the call, 11660the interpreter name goes to index 0, 11661followed by the other arguments. 11662For instance, the call 11663 11664<pre> 11665 $ lua -e "print(arg[1])" 11666</pre><p> 11667will print "<code>-e</code>". 11668If there is a script, 11669the script is called with arguments 11670<code>arg[1]</code>, ···, <code>arg[#arg]</code>. 11671Like all chunks in Lua, 11672the script is compiled as a variadic function. 11673 11674 11675<p> 11676In interactive mode, 11677Lua repeatedly prompts and waits for a line. 11678After reading a line, 11679Lua first try to interpret the line as an expression. 11680If it succeeds, it prints its value. 11681Otherwise, it interprets the line as a statement. 11682If you write an incomplete statement, 11683the interpreter waits for its completion 11684by issuing a different prompt. 11685 11686 11687<p> 11688If the global variable <a name="pdf-_PROMPT"><code>_PROMPT</code></a> contains a string, 11689then its value is used as the prompt. 11690Similarly, if the global variable <a name="pdf-_PROMPT2"><code>_PROMPT2</code></a> contains a string, 11691its value is used as the secondary prompt 11692(issued during incomplete statements). 11693 11694 11695<p> 11696In case of unprotected errors in the script, 11697the interpreter reports the error to the standard error stream. 11698If the error object is not a string but 11699has a metamethod <code>__tostring</code>, 11700the interpreter calls this metamethod to produce the final message. 11701Otherwise, the interpreter converts the error object to a string 11702and adds a stack traceback to it. 11703When warnings are on, 11704they are simply printed in the standard error output. 11705 11706 11707<p> 11708When finishing normally, 11709the interpreter closes its main Lua state 11710(see <a href="#lua_close"><code>lua_close</code></a>). 11711The script can avoid this step by 11712calling <a href="#pdf-os.exit"><code>os.exit</code></a> to terminate. 11713 11714 11715<p> 11716To allow the use of Lua as a 11717script interpreter in Unix systems, 11718Lua skips the first line of a file chunk if it starts with <code>#</code>. 11719Therefore, Lua scripts can be made into executable programs 11720by using <code>chmod +x</code> and the <code>#!</code> form, 11721as in 11722 11723<pre> 11724 #!/usr/local/bin/lua 11725</pre><p> 11726Of course, 11727the location of the Lua interpreter may be different in your machine. 11728If <code>lua</code> is in your <code>PATH</code>, 11729then 11730 11731<pre> 11732 #!/usr/bin/env lua 11733</pre><p> 11734is a more portable solution. 11735 11736 11737 11738<h1>8 – <a name="8">Incompatibilities with the Previous Version</a></h1> 11739 11740 11741 11742<p> 11743Here we list the incompatibilities that you may find when moving a program 11744from Lua 5.3 to Lua 5.4. 11745 11746 11747<p> 11748You can avoid some incompatibilities by compiling Lua with 11749appropriate options (see file <code>luaconf.h</code>). 11750However, 11751all these compatibility options will be removed in the future. 11752More often than not, 11753compatibility issues arise when these compatibility options 11754are removed. 11755So, whenever you have the chance, 11756you should try to test your code with a version of Lua compiled 11757with all compatibility options turned off. 11758That will ease transitions to newer versions of Lua. 11759 11760 11761<p> 11762Lua versions can always change the C API in ways that 11763do not imply source-code changes in a program, 11764such as the numeric values for constants 11765or the implementation of functions as macros. 11766Therefore, 11767you should never assume that binaries are compatible between 11768different Lua versions. 11769Always recompile clients of the Lua API when 11770using a new version. 11771 11772 11773<p> 11774Similarly, Lua versions can always change the internal representation 11775of precompiled chunks; 11776precompiled chunks are not compatible between different Lua versions. 11777 11778 11779<p> 11780The standard paths in the official distribution may 11781change between versions. 11782 11783 11784 11785 11786 11787<h2>8.1 – <a name="8.1">Incompatibilities in the Language</a></h2> 11788<ul> 11789 11790<li> 11791The coercion of strings to numbers in 11792arithmetic and bitwise operations 11793has been removed from the core language. 11794The string library does a similar job 11795for arithmetic (but not for bitwise) operations 11796using the string metamethods. 11797However, unlike in previous versions, 11798the new implementation preserves the implicit type of the numeral 11799in the string. 11800For instance, the result of <code>"1" + "2"</code> now is an integer, 11801not a float. 11802</li> 11803 11804<li> 11805Literal decimal integer constants that overflow are read as floats, 11806instead of wrapping around. 11807You can use hexadecimal notation for such constants if you 11808want the old behavior 11809(reading them as integers with wrap around). 11810</li> 11811 11812<li> 11813The use of the <code>__lt</code> metamethod to emulate <code>__le</code> 11814has been removed. 11815When needed, this metamethod must be explicitly defined. 11816</li> 11817 11818<li> 11819The semantics of the numerical <b>for</b> loop 11820over integers changed in some details. 11821In particular, the control variable never wraps around. 11822</li> 11823 11824<li> 11825A label for a <b>goto</b> cannot be declared where a label with the same 11826name is visible, even if this other label is declared in an enclosing 11827block. 11828</li> 11829 11830<li> 11831When finalizing an object, 11832Lua does not ignore <code>__gc</code> metamethods that are not functions. 11833Any value will be called, if present. 11834(Non-callable values will generate a warning, 11835like any other error when calling a finalizer.) 11836</li> 11837 11838</ul> 11839 11840 11841 11842 11843<h2>8.2 – <a name="8.2">Incompatibilities in the Libraries</a></h2> 11844<ul> 11845 11846<li> 11847The function <a href="#pdf-print"><code>print</code></a> does not call <a href="#pdf-tostring"><code>tostring</code></a> 11848to format its arguments; 11849instead, it has this functionality hardwired. 11850You should use <code>__tostring</code> to modify how values are printed. 11851</li> 11852 11853<li> 11854The pseudo-random number generator used by the function <a href="#pdf-math.random"><code>math.random</code></a> 11855now starts with a somewhat random seed. 11856Moreover, it uses a different algorithm. 11857</li> 11858 11859<li> 11860By default, the decoding functions in the <a href="#pdf-utf8"><code>utf8</code></a> library 11861do not accept surrogates as valid code points. 11862An extra parameter in these functions makes them more permissive. 11863</li> 11864 11865<li> 11866The options "<code>setpause</code>" and "<code>setstepmul</code>" 11867of the function <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> are deprecated. 11868You should use the new option "<code>incremental</code>" to set them. 11869</li> 11870 11871<li> 11872The function <a href="#pdf-io.lines"><code>io.lines</code></a> now returns four values, 11873instead of just one. 11874That can be a problem when it is used as the sole 11875argument to another function that has optional parameters, 11876such as in <code>load(io.lines(filename, "L"))</code>. 11877To fix that issue, 11878you can wrap the call into parentheses, 11879to adjust its number of results to one. 11880</li> 11881 11882</ul> 11883 11884 11885 11886 11887<h2>8.3 – <a name="8.3">Incompatibilities in the API</a></h2> 11888 11889 11890<ul> 11891 11892<li> 11893Full userdata now has an arbitrary number of associated user values. 11894Therefore, the functions <code>lua_newuserdata</code>, 11895<code>lua_setuservalue</code>, and <code>lua_getuservalue</code> were 11896replaced by <a href="#lua_newuserdatauv"><code>lua_newuserdatauv</code></a>, 11897<a href="#lua_setiuservalue"><code>lua_setiuservalue</code></a>, and <a href="#lua_getiuservalue"><code>lua_getiuservalue</code></a>, 11898which have an extra argument. 11899 11900 11901<p> 11902For compatibility, the old names still work as macros assuming 11903one single user value. 11904Note, however, that userdata with zero user values 11905are more efficient memory-wise. 11906</li> 11907 11908<li> 11909The function <a href="#lua_resume"><code>lua_resume</code></a> has an extra parameter. 11910This out parameter returns the number of values on 11911the top of the stack that were yielded or returned by the coroutine. 11912(In previous versions, 11913those values were the entire stack.) 11914</li> 11915 11916<li> 11917The function <a href="#lua_version"><code>lua_version</code></a> returns the version number, 11918instead of an address of the version number. 11919The Lua core should work correctly with libraries using their 11920own static copies of the same core, 11921so there is no need to check whether they are using the same 11922address space. 11923</li> 11924 11925<li> 11926The constant <code>LUA_ERRGCMM</code> was removed. 11927Errors in finalizers are never propagated; 11928instead, they generate a warning. 11929</li> 11930 11931<li> 11932The options <code>LUA_GCSETPAUSE</code> and <code>LUA_GCSETSTEPMUL</code> 11933of the function <a href="#lua_gc"><code>lua_gc</code></a> are deprecated. 11934You should use the new option <code>LUA_GCINC</code> to set them. 11935</li> 11936 11937</ul> 11938 11939 11940 11941 11942<h1>9 – <a name="9">The Complete Syntax of Lua</a></h1> 11943 11944<p> 11945Here is the complete syntax of Lua in extended BNF. 11946As usual in extended BNF, 11947{A} means 0 or more As, 11948and [A] means an optional A. 11949(For operator precedences, see <a href="#3.4.8">§3.4.8</a>; 11950for a description of the terminals 11951Name, Numeral, 11952and LiteralString, see <a href="#3.1">§3.1</a>.) 11953 11954 11955 11956 11957<pre> 11958 11959 chunk ::= block 11960 11961 block ::= {stat} [retstat] 11962 11963 stat ::= ‘<b>;</b>’ | 11964 varlist ‘<b>=</b>’ explist | 11965 functioncall | 11966 label | 11967 <b>break</b> | 11968 <b>goto</b> Name | 11969 <b>do</b> block <b>end</b> | 11970 <b>while</b> exp <b>do</b> block <b>end</b> | 11971 <b>repeat</b> block <b>until</b> exp | 11972 <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> | 11973 <b>for</b> Name ‘<b>=</b>’ exp ‘<b>,</b>’ exp [‘<b>,</b>’ exp] <b>do</b> block <b>end</b> | 11974 <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> | 11975 <b>function</b> funcname funcbody | 11976 <b>local</b> <b>function</b> Name funcbody | 11977 <b>local</b> attnamelist [‘<b>=</b>’ explist] 11978 11979 attnamelist ::= Name attrib {‘<b>,</b>’ Name attrib} 11980 11981 attrib ::= [‘<b><</b>’ Name ‘<b>></b>’] 11982 11983 retstat ::= <b>return</b> [explist] [‘<b>;</b>’] 11984 11985 label ::= ‘<b>::</b>’ Name ‘<b>::</b>’ 11986 11987 funcname ::= Name {‘<b>.</b>’ Name} [‘<b>:</b>’ Name] 11988 11989 varlist ::= var {‘<b>,</b>’ var} 11990 11991 var ::= Name | prefixexp ‘<b>[</b>’ exp ‘<b>]</b>’ | prefixexp ‘<b>.</b>’ Name 11992 11993 namelist ::= Name {‘<b>,</b>’ Name} 11994 11995 explist ::= exp {‘<b>,</b>’ exp} 11996 11997 exp ::= <b>nil</b> | <b>false</b> | <b>true</b> | Numeral | LiteralString | ‘<b>...</b>’ | functiondef | 11998 prefixexp | tableconstructor | exp binop exp | unop exp 11999 12000 prefixexp ::= var | functioncall | ‘<b>(</b>’ exp ‘<b>)</b>’ 12001 12002 functioncall ::= prefixexp args | prefixexp ‘<b>:</b>’ Name args 12003 12004 args ::= ‘<b>(</b>’ [explist] ‘<b>)</b>’ | tableconstructor | LiteralString 12005 12006 functiondef ::= <b>function</b> funcbody 12007 12008 funcbody ::= ‘<b>(</b>’ [parlist] ‘<b>)</b>’ block <b>end</b> 12009 12010 parlist ::= namelist [‘<b>,</b>’ ‘<b>...</b>’] | ‘<b>...</b>’ 12011 12012 tableconstructor ::= ‘<b>{</b>’ [fieldlist] ‘<b>}</b>’ 12013 12014 fieldlist ::= field {fieldsep field} [fieldsep] 12015 12016 field ::= ‘<b>[</b>’ exp ‘<b>]</b>’ ‘<b>=</b>’ exp | Name ‘<b>=</b>’ exp | exp 12017 12018 fieldsep ::= ‘<b>,</b>’ | ‘<b>;</b>’ 12019 12020 binop ::= ‘<b>+</b>’ | ‘<b>-</b>’ | ‘<b>*</b>’ | ‘<b>/</b>’ | ‘<b>//</b>’ | ‘<b>^</b>’ | ‘<b>%</b>’ | 12021 ‘<b>&</b>’ | ‘<b>~</b>’ | ‘<b>|</b>’ | ‘<b>>></b>’ | ‘<b><<</b>’ | ‘<b>..</b>’ | 12022 ‘<b><</b>’ | ‘<b><=</b>’ | ‘<b>></b>’ | ‘<b>>=</b>’ | ‘<b>==</b>’ | ‘<b>~=</b>’ | 12023 <b>and</b> | <b>or</b> 12024 12025 unop ::= ‘<b>-</b>’ | <b>not</b> | ‘<b>#</b>’ | ‘<b>~</b>’ 12026 12027</pre> 12028 12029<p> 12030 12031 12032 12033 12034 12035 12036 12037<P CLASS="footer"> 12038Last update: 12039Tue May 2 20:09:38 UTC 2023 12040</P> 12041<!-- 12042Last change: revised for Lua 5.4.6 12043--> 12044 12045</body></html> 12046 12047