1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 #if KMP_USE_HWLOC 23 // Copied from hwloc 24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102 25 #define HWLOC_GROUP_KIND_INTEL_TILE 103 26 #define HWLOC_GROUP_KIND_INTEL_DIE 104 27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 28 #endif 29 #include <ctype.h> 30 31 // The machine topology 32 kmp_topology_t *__kmp_topology = nullptr; 33 // KMP_HW_SUBSET environment variable 34 kmp_hw_subset_t *__kmp_hw_subset = nullptr; 35 36 // Store the real or imagined machine hierarchy here 37 static hierarchy_info machine_hierarchy; 38 39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 40 41 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 42 kmp_uint32 depth; 43 // The test below is true if affinity is available, but set to "none". Need to 44 // init on first use of hierarchical barrier. 45 if (TCR_1(machine_hierarchy.uninitialized)) 46 machine_hierarchy.init(nproc); 47 48 // Adjust the hierarchy in case num threads exceeds original 49 if (nproc > machine_hierarchy.base_num_threads) 50 machine_hierarchy.resize(nproc); 51 52 depth = machine_hierarchy.depth; 53 KMP_DEBUG_ASSERT(depth > 0); 54 55 thr_bar->depth = depth; 56 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, 57 &(thr_bar->base_leaf_kids)); 58 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 59 } 60 61 static int nCoresPerPkg, nPackages; 62 static int __kmp_nThreadsPerCore; 63 #ifndef KMP_DFLT_NTH_CORES 64 static int __kmp_ncores; 65 #endif 66 67 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { 68 switch (type) { 69 case KMP_HW_SOCKET: 70 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); 71 case KMP_HW_DIE: 72 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); 73 case KMP_HW_MODULE: 74 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); 75 case KMP_HW_TILE: 76 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); 77 case KMP_HW_NUMA: 78 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); 79 case KMP_HW_L3: 80 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); 81 case KMP_HW_L2: 82 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); 83 case KMP_HW_L1: 84 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); 85 case KMP_HW_LLC: 86 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); 87 case KMP_HW_CORE: 88 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); 89 case KMP_HW_THREAD: 90 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); 91 case KMP_HW_PROC_GROUP: 92 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); 93 } 94 return KMP_I18N_STR(Unknown); 95 } 96 97 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { 98 switch (type) { 99 case KMP_HW_SOCKET: 100 return ((plural) ? "sockets" : "socket"); 101 case KMP_HW_DIE: 102 return ((plural) ? "dice" : "die"); 103 case KMP_HW_MODULE: 104 return ((plural) ? "modules" : "module"); 105 case KMP_HW_TILE: 106 return ((plural) ? "tiles" : "tile"); 107 case KMP_HW_NUMA: 108 return ((plural) ? "numa_domains" : "numa_domain"); 109 case KMP_HW_L3: 110 return ((plural) ? "l3_caches" : "l3_cache"); 111 case KMP_HW_L2: 112 return ((plural) ? "l2_caches" : "l2_cache"); 113 case KMP_HW_L1: 114 return ((plural) ? "l1_caches" : "l1_cache"); 115 case KMP_HW_LLC: 116 return ((plural) ? "ll_caches" : "ll_cache"); 117 case KMP_HW_CORE: 118 return ((plural) ? "cores" : "core"); 119 case KMP_HW_THREAD: 120 return ((plural) ? "threads" : "thread"); 121 case KMP_HW_PROC_GROUP: 122 return ((plural) ? "proc_groups" : "proc_group"); 123 } 124 return ((plural) ? "unknowns" : "unknown"); 125 } 126 127 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { 128 switch (type) { 129 case KMP_HW_CORE_TYPE_UNKNOWN: 130 return "unknown"; 131 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 132 case KMP_HW_CORE_TYPE_ATOM: 133 return "Intel Atom(R) processor"; 134 case KMP_HW_CORE_TYPE_CORE: 135 return "Intel(R) Core(TM) processor"; 136 #endif 137 } 138 return "unknown"; 139 } 140 141 //////////////////////////////////////////////////////////////////////////////// 142 // kmp_hw_thread_t methods 143 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { 144 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; 145 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; 146 int depth = __kmp_topology->get_depth(); 147 for (int level = 0; level < depth; ++level) { 148 if (ahwthread->ids[level] < bhwthread->ids[level]) 149 return -1; 150 else if (ahwthread->ids[level] > bhwthread->ids[level]) 151 return 1; 152 } 153 if (ahwthread->os_id < bhwthread->os_id) 154 return -1; 155 else if (ahwthread->os_id > bhwthread->os_id) 156 return 1; 157 return 0; 158 } 159 160 #if KMP_AFFINITY_SUPPORTED 161 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { 162 int i; 163 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; 164 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; 165 int depth = __kmp_topology->get_depth(); 166 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 167 KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth); 168 for (i = 0; i < __kmp_affinity_compact; i++) { 169 int j = depth - i - 1; 170 if (aa->sub_ids[j] < bb->sub_ids[j]) 171 return -1; 172 if (aa->sub_ids[j] > bb->sub_ids[j]) 173 return 1; 174 } 175 for (; i < depth; i++) { 176 int j = i - __kmp_affinity_compact; 177 if (aa->sub_ids[j] < bb->sub_ids[j]) 178 return -1; 179 if (aa->sub_ids[j] > bb->sub_ids[j]) 180 return 1; 181 } 182 return 0; 183 } 184 #endif 185 186 void kmp_hw_thread_t::print() const { 187 int depth = __kmp_topology->get_depth(); 188 printf("%4d ", os_id); 189 for (int i = 0; i < depth; ++i) { 190 printf("%4d ", ids[i]); 191 } 192 if (attrs) { 193 if (attrs.is_core_type_valid()) 194 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type())); 195 if (attrs.is_core_eff_valid()) 196 printf(" (eff=%d)", attrs.get_core_eff()); 197 } 198 printf("\n"); 199 } 200 201 //////////////////////////////////////////////////////////////////////////////// 202 // kmp_topology_t methods 203 204 // Add a layer to the topology based on the ids. Assume the topology 205 // is perfectly nested (i.e., so no object has more than one parent) 206 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) { 207 // Figure out where the layer should go by comparing the ids of the current 208 // layers with the new ids 209 int target_layer; 210 int previous_id = kmp_hw_thread_t::UNKNOWN_ID; 211 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; 212 213 // Start from the highest layer and work down to find target layer 214 // If new layer is equal to another layer then put the new layer above 215 for (target_layer = 0; target_layer < depth; ++target_layer) { 216 bool layers_equal = true; 217 bool strictly_above_target_layer = false; 218 for (int i = 0; i < num_hw_threads; ++i) { 219 int id = hw_threads[i].ids[target_layer]; 220 int new_id = ids[i]; 221 if (id != previous_id && new_id == previous_new_id) { 222 // Found the layer we are strictly above 223 strictly_above_target_layer = true; 224 layers_equal = false; 225 break; 226 } else if (id == previous_id && new_id != previous_new_id) { 227 // Found a layer we are below. Move to next layer and check. 228 layers_equal = false; 229 break; 230 } 231 previous_id = id; 232 previous_new_id = new_id; 233 } 234 if (strictly_above_target_layer || layers_equal) 235 break; 236 } 237 238 // Found the layer we are above. Now move everything to accommodate the new 239 // layer. And put the new ids and type into the topology. 240 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 241 types[j] = types[i]; 242 types[target_layer] = type; 243 for (int k = 0; k < num_hw_threads; ++k) { 244 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 245 hw_threads[k].ids[j] = hw_threads[k].ids[i]; 246 hw_threads[k].ids[target_layer] = ids[k]; 247 } 248 equivalent[type] = type; 249 depth++; 250 } 251 252 #if KMP_GROUP_AFFINITY 253 // Insert the Windows Processor Group structure into the topology 254 void kmp_topology_t::_insert_windows_proc_groups() { 255 // Do not insert the processor group structure for a single group 256 if (__kmp_num_proc_groups == 1) 257 return; 258 kmp_affin_mask_t *mask; 259 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); 260 KMP_CPU_ALLOC(mask); 261 for (int i = 0; i < num_hw_threads; ++i) { 262 KMP_CPU_ZERO(mask); 263 KMP_CPU_SET(hw_threads[i].os_id, mask); 264 ids[i] = __kmp_get_proc_group(mask); 265 } 266 KMP_CPU_FREE(mask); 267 _insert_layer(KMP_HW_PROC_GROUP, ids); 268 __kmp_free(ids); 269 } 270 #endif 271 272 // Remove layers that don't add information to the topology. 273 // This is done by having the layer take on the id = UNKNOWN_ID (-1) 274 void kmp_topology_t::_remove_radix1_layers() { 275 int preference[KMP_HW_LAST]; 276 int top_index1, top_index2; 277 // Set up preference associative array 278 preference[KMP_HW_SOCKET] = 110; 279 preference[KMP_HW_PROC_GROUP] = 100; 280 preference[KMP_HW_CORE] = 95; 281 preference[KMP_HW_THREAD] = 90; 282 preference[KMP_HW_NUMA] = 85; 283 preference[KMP_HW_DIE] = 80; 284 preference[KMP_HW_TILE] = 75; 285 preference[KMP_HW_MODULE] = 73; 286 preference[KMP_HW_L3] = 70; 287 preference[KMP_HW_L2] = 65; 288 preference[KMP_HW_L1] = 60; 289 preference[KMP_HW_LLC] = 5; 290 top_index1 = 0; 291 top_index2 = 1; 292 while (top_index1 < depth - 1 && top_index2 < depth) { 293 kmp_hw_t type1 = types[top_index1]; 294 kmp_hw_t type2 = types[top_index2]; 295 KMP_ASSERT_VALID_HW_TYPE(type1); 296 KMP_ASSERT_VALID_HW_TYPE(type2); 297 // Do not allow the three main topology levels (sockets, cores, threads) to 298 // be compacted down 299 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || 300 type1 == KMP_HW_SOCKET) && 301 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || 302 type2 == KMP_HW_SOCKET)) { 303 top_index1 = top_index2++; 304 continue; 305 } 306 bool radix1 = true; 307 bool all_same = true; 308 int id1 = hw_threads[0].ids[top_index1]; 309 int id2 = hw_threads[0].ids[top_index2]; 310 int pref1 = preference[type1]; 311 int pref2 = preference[type2]; 312 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { 313 if (hw_threads[hwidx].ids[top_index1] == id1 && 314 hw_threads[hwidx].ids[top_index2] != id2) { 315 radix1 = false; 316 break; 317 } 318 if (hw_threads[hwidx].ids[top_index2] != id2) 319 all_same = false; 320 id1 = hw_threads[hwidx].ids[top_index1]; 321 id2 = hw_threads[hwidx].ids[top_index2]; 322 } 323 if (radix1) { 324 // Select the layer to remove based on preference 325 kmp_hw_t remove_type, keep_type; 326 int remove_layer, remove_layer_ids; 327 if (pref1 > pref2) { 328 remove_type = type2; 329 remove_layer = remove_layer_ids = top_index2; 330 keep_type = type1; 331 } else { 332 remove_type = type1; 333 remove_layer = remove_layer_ids = top_index1; 334 keep_type = type2; 335 } 336 // If all the indexes for the second (deeper) layer are the same. 337 // e.g., all are zero, then make sure to keep the first layer's ids 338 if (all_same) 339 remove_layer_ids = top_index2; 340 // Remove radix one type by setting the equivalence, removing the id from 341 // the hw threads and removing the layer from types and depth 342 set_equivalent_type(remove_type, keep_type); 343 for (int idx = 0; idx < num_hw_threads; ++idx) { 344 kmp_hw_thread_t &hw_thread = hw_threads[idx]; 345 for (int d = remove_layer_ids; d < depth - 1; ++d) 346 hw_thread.ids[d] = hw_thread.ids[d + 1]; 347 } 348 for (int idx = remove_layer; idx < depth - 1; ++idx) 349 types[idx] = types[idx + 1]; 350 depth--; 351 } else { 352 top_index1 = top_index2++; 353 } 354 } 355 KMP_ASSERT(depth > 0); 356 } 357 358 void kmp_topology_t::_set_last_level_cache() { 359 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) 360 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); 361 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 362 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 363 #if KMP_MIC_SUPPORTED 364 else if (__kmp_mic_type == mic3) { 365 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 366 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 367 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) 368 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); 369 // L2/Tile wasn't detected so just say L1 370 else 371 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 372 } 373 #endif 374 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) 375 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 376 // Fallback is to set last level cache to socket or core 377 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { 378 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) 379 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); 380 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) 381 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); 382 } 383 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); 384 } 385 386 // Gather the count of each topology layer and the ratio 387 void kmp_topology_t::_gather_enumeration_information() { 388 int previous_id[KMP_HW_LAST]; 389 int max[KMP_HW_LAST]; 390 391 for (int i = 0; i < depth; ++i) { 392 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 393 max[i] = 0; 394 count[i] = 0; 395 ratio[i] = 0; 396 } 397 int core_level = get_level(KMP_HW_CORE); 398 for (int i = 0; i < num_hw_threads; ++i) { 399 kmp_hw_thread_t &hw_thread = hw_threads[i]; 400 for (int layer = 0; layer < depth; ++layer) { 401 int id = hw_thread.ids[layer]; 402 if (id != previous_id[layer]) { 403 // Add an additional increment to each count 404 for (int l = layer; l < depth; ++l) 405 count[l]++; 406 // Keep track of topology layer ratio statistics 407 max[layer]++; 408 for (int l = layer + 1; l < depth; ++l) { 409 if (max[l] > ratio[l]) 410 ratio[l] = max[l]; 411 max[l] = 1; 412 } 413 // Figure out the number of different core types 414 // and efficiencies for hybrid CPUs 415 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { 416 if (hw_thread.attrs.is_core_eff_valid() && 417 hw_thread.attrs.core_eff >= num_core_efficiencies) { 418 // Because efficiencies can range from 0 to max efficiency - 1, 419 // the number of efficiencies is max efficiency + 1 420 num_core_efficiencies = hw_thread.attrs.core_eff + 1; 421 } 422 if (hw_thread.attrs.is_core_type_valid()) { 423 bool found = false; 424 for (int j = 0; j < num_core_types; ++j) { 425 if (hw_thread.attrs.get_core_type() == core_types[j]) { 426 found = true; 427 break; 428 } 429 } 430 if (!found) { 431 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES); 432 core_types[num_core_types++] = hw_thread.attrs.get_core_type(); 433 } 434 } 435 } 436 break; 437 } 438 } 439 for (int layer = 0; layer < depth; ++layer) { 440 previous_id[layer] = hw_thread.ids[layer]; 441 } 442 } 443 for (int layer = 0; layer < depth; ++layer) { 444 if (max[layer] > ratio[layer]) 445 ratio[layer] = max[layer]; 446 } 447 } 448 449 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, 450 int above_level, 451 bool find_all) const { 452 int current, current_max; 453 int previous_id[KMP_HW_LAST]; 454 for (int i = 0; i < depth; ++i) 455 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 456 int core_level = get_level(KMP_HW_CORE); 457 if (find_all) 458 above_level = -1; 459 KMP_ASSERT(above_level < core_level); 460 current_max = 0; 461 current = 0; 462 for (int i = 0; i < num_hw_threads; ++i) { 463 kmp_hw_thread_t &hw_thread = hw_threads[i]; 464 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { 465 if (current > current_max) 466 current_max = current; 467 current = hw_thread.attrs.contains(attr); 468 } else { 469 for (int level = above_level + 1; level <= core_level; ++level) { 470 if (hw_thread.ids[level] != previous_id[level]) { 471 if (hw_thread.attrs.contains(attr)) 472 current++; 473 break; 474 } 475 } 476 } 477 for (int level = 0; level < depth; ++level) 478 previous_id[level] = hw_thread.ids[level]; 479 } 480 if (current > current_max) 481 current_max = current; 482 return current_max; 483 } 484 485 // Find out if the topology is uniform 486 void kmp_topology_t::_discover_uniformity() { 487 int num = 1; 488 for (int level = 0; level < depth; ++level) 489 num *= ratio[level]; 490 flags.uniform = (num == count[depth - 1]); 491 } 492 493 // Set all the sub_ids for each hardware thread 494 void kmp_topology_t::_set_sub_ids() { 495 int previous_id[KMP_HW_LAST]; 496 int sub_id[KMP_HW_LAST]; 497 498 for (int i = 0; i < depth; ++i) { 499 previous_id[i] = -1; 500 sub_id[i] = -1; 501 } 502 for (int i = 0; i < num_hw_threads; ++i) { 503 kmp_hw_thread_t &hw_thread = hw_threads[i]; 504 // Setup the sub_id 505 for (int j = 0; j < depth; ++j) { 506 if (hw_thread.ids[j] != previous_id[j]) { 507 sub_id[j]++; 508 for (int k = j + 1; k < depth; ++k) { 509 sub_id[k] = 0; 510 } 511 break; 512 } 513 } 514 // Set previous_id 515 for (int j = 0; j < depth; ++j) { 516 previous_id[j] = hw_thread.ids[j]; 517 } 518 // Set the sub_ids field 519 for (int j = 0; j < depth; ++j) { 520 hw_thread.sub_ids[j] = sub_id[j]; 521 } 522 } 523 } 524 525 void kmp_topology_t::_set_globals() { 526 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores 527 int core_level, thread_level, package_level; 528 package_level = get_level(KMP_HW_SOCKET); 529 #if KMP_GROUP_AFFINITY 530 if (package_level == -1) 531 package_level = get_level(KMP_HW_PROC_GROUP); 532 #endif 533 core_level = get_level(KMP_HW_CORE); 534 thread_level = get_level(KMP_HW_THREAD); 535 536 KMP_ASSERT(core_level != -1); 537 KMP_ASSERT(thread_level != -1); 538 539 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); 540 if (package_level != -1) { 541 nCoresPerPkg = calculate_ratio(core_level, package_level); 542 nPackages = get_count(package_level); 543 } else { 544 // assume one socket 545 nCoresPerPkg = get_count(core_level); 546 nPackages = 1; 547 } 548 #ifndef KMP_DFLT_NTH_CORES 549 __kmp_ncores = get_count(core_level); 550 #endif 551 } 552 553 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, 554 const kmp_hw_t *types) { 555 kmp_topology_t *retval; 556 // Allocate all data in one large allocation 557 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + 558 sizeof(int) * (size_t)KMP_HW_LAST * 3; 559 char *bytes = (char *)__kmp_allocate(size); 560 retval = (kmp_topology_t *)bytes; 561 if (nproc > 0) { 562 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); 563 } else { 564 retval->hw_threads = nullptr; 565 } 566 retval->num_hw_threads = nproc; 567 retval->depth = ndepth; 568 int *arr = 569 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); 570 retval->types = (kmp_hw_t *)arr; 571 retval->ratio = arr + (size_t)KMP_HW_LAST; 572 retval->count = arr + 2 * (size_t)KMP_HW_LAST; 573 retval->num_core_efficiencies = 0; 574 retval->num_core_types = 0; 575 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) 576 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; 577 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } 578 for (int i = 0; i < ndepth; ++i) { 579 retval->types[i] = types[i]; 580 retval->equivalent[types[i]] = types[i]; 581 } 582 return retval; 583 } 584 585 void kmp_topology_t::deallocate(kmp_topology_t *topology) { 586 if (topology) 587 __kmp_free(topology); 588 } 589 590 bool kmp_topology_t::check_ids() const { 591 // Assume ids have been sorted 592 if (num_hw_threads == 0) 593 return true; 594 for (int i = 1; i < num_hw_threads; ++i) { 595 kmp_hw_thread_t ¤t_thread = hw_threads[i]; 596 kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; 597 bool unique = false; 598 for (int j = 0; j < depth; ++j) { 599 if (previous_thread.ids[j] != current_thread.ids[j]) { 600 unique = true; 601 break; 602 } 603 } 604 if (unique) 605 continue; 606 return false; 607 } 608 return true; 609 } 610 611 void kmp_topology_t::dump() const { 612 printf("***********************\n"); 613 printf("*** __kmp_topology: ***\n"); 614 printf("***********************\n"); 615 printf("* depth: %d\n", depth); 616 617 printf("* types: "); 618 for (int i = 0; i < depth; ++i) 619 printf("%15s ", __kmp_hw_get_keyword(types[i])); 620 printf("\n"); 621 622 printf("* ratio: "); 623 for (int i = 0; i < depth; ++i) { 624 printf("%15d ", ratio[i]); 625 } 626 printf("\n"); 627 628 printf("* count: "); 629 for (int i = 0; i < depth; ++i) { 630 printf("%15d ", count[i]); 631 } 632 printf("\n"); 633 634 printf("* num_core_eff: %d\n", num_core_efficiencies); 635 printf("* num_core_types: %d\n", num_core_types); 636 printf("* core_types: "); 637 for (int i = 0; i < num_core_types; ++i) 638 printf("%3d ", core_types[i]); 639 printf("\n"); 640 641 printf("* equivalent map:\n"); 642 KMP_FOREACH_HW_TYPE(i) { 643 const char *key = __kmp_hw_get_keyword(i); 644 const char *value = __kmp_hw_get_keyword(equivalent[i]); 645 printf("%-15s -> %-15s\n", key, value); 646 } 647 648 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); 649 650 printf("* num_hw_threads: %d\n", num_hw_threads); 651 printf("* hw_threads:\n"); 652 for (int i = 0; i < num_hw_threads; ++i) { 653 hw_threads[i].print(); 654 } 655 printf("***********************\n"); 656 } 657 658 void kmp_topology_t::print(const char *env_var) const { 659 kmp_str_buf_t buf; 660 int print_types_depth; 661 __kmp_str_buf_init(&buf); 662 kmp_hw_t print_types[KMP_HW_LAST + 2]; 663 664 // Num Available Threads 665 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); 666 667 // Uniform or not 668 if (is_uniform()) { 669 KMP_INFORM(Uniform, env_var); 670 } else { 671 KMP_INFORM(NonUniform, env_var); 672 } 673 674 // Equivalent types 675 KMP_FOREACH_HW_TYPE(type) { 676 kmp_hw_t eq_type = equivalent[type]; 677 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { 678 KMP_INFORM(AffEqualTopologyTypes, env_var, 679 __kmp_hw_get_catalog_string(type), 680 __kmp_hw_get_catalog_string(eq_type)); 681 } 682 } 683 684 // Quick topology 685 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); 686 // Create a print types array that always guarantees printing 687 // the core and thread level 688 print_types_depth = 0; 689 for (int level = 0; level < depth; ++level) 690 print_types[print_types_depth++] = types[level]; 691 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { 692 // Force in the core level for quick topology 693 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { 694 // Force core before thread e.g., 1 socket X 2 threads/socket 695 // becomes 1 socket X 1 core/socket X 2 threads/socket 696 print_types[print_types_depth - 1] = KMP_HW_CORE; 697 print_types[print_types_depth++] = KMP_HW_THREAD; 698 } else { 699 print_types[print_types_depth++] = KMP_HW_CORE; 700 } 701 } 702 // Always put threads at very end of quick topology 703 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) 704 print_types[print_types_depth++] = KMP_HW_THREAD; 705 706 __kmp_str_buf_clear(&buf); 707 kmp_hw_t numerator_type; 708 kmp_hw_t denominator_type = KMP_HW_UNKNOWN; 709 int core_level = get_level(KMP_HW_CORE); 710 int ncores = get_count(core_level); 711 712 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { 713 int c; 714 bool plural; 715 numerator_type = print_types[plevel]; 716 KMP_ASSERT_VALID_HW_TYPE(numerator_type); 717 if (equivalent[numerator_type] != numerator_type) 718 c = 1; 719 else 720 c = get_ratio(level++); 721 plural = (c > 1); 722 if (plevel == 0) { 723 __kmp_str_buf_print(&buf, "%d %s", c, 724 __kmp_hw_get_catalog_string(numerator_type, plural)); 725 } else { 726 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 727 __kmp_hw_get_catalog_string(numerator_type, plural), 728 __kmp_hw_get_catalog_string(denominator_type)); 729 } 730 denominator_type = numerator_type; 731 } 732 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); 733 734 // Hybrid topology information 735 if (__kmp_is_hybrid_cpu()) { 736 for (int i = 0; i < num_core_types; ++i) { 737 kmp_hw_core_type_t core_type = core_types[i]; 738 kmp_hw_attr_t attr; 739 attr.clear(); 740 attr.set_core_type(core_type); 741 int ncores = get_ncores_with_attr(attr); 742 if (ncores > 0) { 743 KMP_INFORM(TopologyHybrid, env_var, ncores, 744 __kmp_hw_get_core_type_string(core_type)); 745 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS) 746 for (int eff = 0; eff < num_core_efficiencies; ++eff) { 747 attr.set_core_eff(eff); 748 int ncores_with_eff = get_ncores_with_attr(attr); 749 if (ncores_with_eff > 0) { 750 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff); 751 } 752 } 753 } 754 } 755 } 756 757 if (num_hw_threads <= 0) { 758 __kmp_str_buf_free(&buf); 759 return; 760 } 761 762 // Full OS proc to hardware thread map 763 KMP_INFORM(OSProcToPhysicalThreadMap, env_var); 764 for (int i = 0; i < num_hw_threads; i++) { 765 __kmp_str_buf_clear(&buf); 766 for (int level = 0; level < depth; ++level) { 767 kmp_hw_t type = types[level]; 768 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); 769 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); 770 } 771 if (__kmp_is_hybrid_cpu()) 772 __kmp_str_buf_print( 773 &buf, "(%s)", 774 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type())); 775 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); 776 } 777 778 __kmp_str_buf_free(&buf); 779 } 780 781 void kmp_topology_t::canonicalize() { 782 #if KMP_GROUP_AFFINITY 783 _insert_windows_proc_groups(); 784 #endif 785 _remove_radix1_layers(); 786 _gather_enumeration_information(); 787 _discover_uniformity(); 788 _set_sub_ids(); 789 _set_globals(); 790 _set_last_level_cache(); 791 792 #if KMP_MIC_SUPPORTED 793 // Manually Add L2 = Tile equivalence 794 if (__kmp_mic_type == mic3) { 795 if (get_level(KMP_HW_L2) != -1) 796 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); 797 else if (get_level(KMP_HW_TILE) != -1) 798 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); 799 } 800 #endif 801 802 // Perform post canonicalization checking 803 KMP_ASSERT(depth > 0); 804 for (int level = 0; level < depth; ++level) { 805 // All counts, ratios, and types must be valid 806 KMP_ASSERT(count[level] > 0 && ratio[level] > 0); 807 KMP_ASSERT_VALID_HW_TYPE(types[level]); 808 // Detected types must point to themselves 809 KMP_ASSERT(equivalent[types[level]] == types[level]); 810 } 811 812 #if KMP_AFFINITY_SUPPORTED 813 // Set the number of affinity granularity levels 814 if (__kmp_affinity_gran_levels < 0) { 815 kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran); 816 // Check if user's granularity request is valid 817 if (gran_type == KMP_HW_UNKNOWN) { 818 // First try core, then thread, then package 819 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; 820 for (auto g : gran_types) { 821 if (__kmp_topology->get_equivalent_type(g) != KMP_HW_UNKNOWN) { 822 gran_type = g; 823 break; 824 } 825 } 826 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); 827 // Warn user what granularity setting will be used instead 828 KMP_WARNING(AffGranularityBad, "KMP_AFFINITY", 829 __kmp_hw_get_catalog_string(__kmp_affinity_gran), 830 __kmp_hw_get_catalog_string(gran_type)); 831 __kmp_affinity_gran = gran_type; 832 } 833 #if KMP_GROUP_AFFINITY 834 // If more than one processor group exists, and the level of 835 // granularity specified by the user is too coarse, then the 836 // granularity must be adjusted "down" to processor group affinity 837 // because threads can only exist within one processor group. 838 // For example, if a user sets granularity=socket and there are two 839 // processor groups that cover a socket, then the runtime must 840 // restrict the granularity down to the processor group level. 841 if (__kmp_num_proc_groups > 1) { 842 int gran_depth = __kmp_topology->get_level(gran_type); 843 int proc_group_depth = __kmp_topology->get_level(KMP_HW_PROC_GROUP); 844 if (gran_depth >= 0 && proc_group_depth >= 0 && 845 gran_depth < proc_group_depth) { 846 KMP_WARNING(AffGranTooCoarseProcGroup, "KMP_AFFINITY", 847 __kmp_hw_get_catalog_string(__kmp_affinity_gran)); 848 __kmp_affinity_gran = gran_type = KMP_HW_PROC_GROUP; 849 } 850 } 851 #endif 852 __kmp_affinity_gran_levels = 0; 853 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) 854 __kmp_affinity_gran_levels++; 855 } 856 #endif // KMP_AFFINITY_SUPPORTED 857 } 858 859 // Canonicalize an explicit packages X cores/pkg X threads/core topology 860 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, 861 int nthreads_per_core, int ncores) { 862 int ndepth = 3; 863 depth = ndepth; 864 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } 865 for (int level = 0; level < depth; ++level) { 866 count[level] = 0; 867 ratio[level] = 0; 868 } 869 count[0] = npackages; 870 count[1] = ncores; 871 count[2] = __kmp_xproc; 872 ratio[0] = npackages; 873 ratio[1] = ncores_per_pkg; 874 ratio[2] = nthreads_per_core; 875 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; 876 equivalent[KMP_HW_CORE] = KMP_HW_CORE; 877 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; 878 types[0] = KMP_HW_SOCKET; 879 types[1] = KMP_HW_CORE; 880 types[2] = KMP_HW_THREAD; 881 //__kmp_avail_proc = __kmp_xproc; 882 _discover_uniformity(); 883 } 884 885 // Represents running sub IDs for a single core attribute where 886 // attribute values have SIZE possibilities. 887 template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t { 888 int last_level; // last level in topology to consider for sub_ids 889 int sub_id[SIZE]; // The sub ID for a given attribute value 890 int prev_sub_id[KMP_HW_LAST]; 891 IndexFunc indexer; 892 893 public: 894 kmp_sub_ids_t(int last_level) : last_level(last_level) { 895 KMP_ASSERT(last_level < KMP_HW_LAST); 896 for (size_t i = 0; i < SIZE; ++i) 897 sub_id[i] = -1; 898 for (size_t i = 0; i < KMP_HW_LAST; ++i) 899 prev_sub_id[i] = -1; 900 } 901 void update(const kmp_hw_thread_t &hw_thread) { 902 int idx = indexer(hw_thread); 903 KMP_ASSERT(idx < (int)SIZE); 904 for (int level = 0; level <= last_level; ++level) { 905 if (hw_thread.sub_ids[level] != prev_sub_id[level]) { 906 if (level < last_level) 907 sub_id[idx] = -1; 908 sub_id[idx]++; 909 break; 910 } 911 } 912 for (int level = 0; level <= last_level; ++level) 913 prev_sub_id[level] = hw_thread.sub_ids[level]; 914 } 915 int get_sub_id(const kmp_hw_thread_t &hw_thread) const { 916 return sub_id[indexer(hw_thread)]; 917 } 918 }; 919 920 static kmp_str_buf_t * 921 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, 922 bool plural) { 923 __kmp_str_buf_init(buf); 924 if (attr.is_core_type_valid()) 925 __kmp_str_buf_print(buf, "%s %s", 926 __kmp_hw_get_core_type_string(attr.get_core_type()), 927 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural)); 928 else 929 __kmp_str_buf_print(buf, "%s eff=%d", 930 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural), 931 attr.get_core_eff()); 932 return buf; 933 } 934 935 // Apply the KMP_HW_SUBSET envirable to the topology 936 // Returns true if KMP_HW_SUBSET filtered any processors 937 // otherwise, returns false 938 bool kmp_topology_t::filter_hw_subset() { 939 // If KMP_HW_SUBSET wasn't requested, then do nothing. 940 if (!__kmp_hw_subset) 941 return false; 942 943 // First, sort the KMP_HW_SUBSET items by the machine topology 944 __kmp_hw_subset->sort(); 945 946 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology 947 bool using_core_types = false; 948 bool using_core_effs = false; 949 int hw_subset_depth = __kmp_hw_subset->get_depth(); 950 kmp_hw_t specified[KMP_HW_LAST]; 951 int topology_levels[hw_subset_depth]; 952 KMP_ASSERT(hw_subset_depth > 0); 953 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } 954 int core_level = get_level(KMP_HW_CORE); 955 for (int i = 0; i < hw_subset_depth; ++i) { 956 int max_count; 957 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i); 958 int num = item.num[0]; 959 int offset = item.offset[0]; 960 kmp_hw_t type = item.type; 961 kmp_hw_t equivalent_type = equivalent[type]; 962 int level = get_level(type); 963 topology_levels[i] = level; 964 965 // Check to see if current layer is in detected machine topology 966 if (equivalent_type != KMP_HW_UNKNOWN) { 967 __kmp_hw_subset->at(i).type = equivalent_type; 968 } else { 969 KMP_WARNING(AffHWSubsetNotExistGeneric, 970 __kmp_hw_get_catalog_string(type)); 971 return false; 972 } 973 974 // Check to see if current layer has already been 975 // specified either directly or through an equivalent type 976 if (specified[equivalent_type] != KMP_HW_UNKNOWN) { 977 KMP_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type), 978 __kmp_hw_get_catalog_string(specified[equivalent_type])); 979 return false; 980 } 981 specified[equivalent_type] = type; 982 983 // Check to see if each layer's num & offset parameters are valid 984 max_count = get_ratio(level); 985 if (max_count < 0 || 986 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 987 bool plural = (num > 1); 988 KMP_WARNING(AffHWSubsetManyGeneric, 989 __kmp_hw_get_catalog_string(type, plural)); 990 return false; 991 } 992 993 // Check to see if core attributes are consistent 994 if (core_level == level) { 995 // Determine which core attributes are specified 996 for (int j = 0; j < item.num_attrs; ++j) { 997 if (item.attr[j].is_core_type_valid()) 998 using_core_types = true; 999 if (item.attr[j].is_core_eff_valid()) 1000 using_core_effs = true; 1001 } 1002 1003 // Check if using a single core attribute on non-hybrid arch. 1004 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. 1005 // 1006 // Check if using multiple core attributes on non-hyrbid arch. 1007 // Ignore all of KMP_HW_SUBSET if this is the case. 1008 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { 1009 if (item.num_attrs == 1) { 1010 if (using_core_effs) { 1011 KMP_WARNING(AffHWSubsetIgnoringAttr, "efficiency"); 1012 } else { 1013 KMP_WARNING(AffHWSubsetIgnoringAttr, "core_type"); 1014 } 1015 using_core_effs = false; 1016 using_core_types = false; 1017 } else { 1018 KMP_WARNING(AffHWSubsetAttrsNonHybrid); 1019 return false; 1020 } 1021 } 1022 1023 // Check if using both core types and core efficiencies together 1024 if (using_core_types && using_core_effs) { 1025 KMP_WARNING(AffHWSubsetIncompat, "core_type", "efficiency"); 1026 return false; 1027 } 1028 1029 // Check that core efficiency values are valid 1030 if (using_core_effs) { 1031 for (int j = 0; j < item.num_attrs; ++j) { 1032 if (item.attr[j].is_core_eff_valid()) { 1033 int core_eff = item.attr[j].get_core_eff(); 1034 if (core_eff < 0 || core_eff >= num_core_efficiencies) { 1035 kmp_str_buf_t buf; 1036 __kmp_str_buf_init(&buf); 1037 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff()); 1038 __kmp_msg(kmp_ms_warning, 1039 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str), 1040 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1), 1041 __kmp_msg_null); 1042 __kmp_str_buf_free(&buf); 1043 return false; 1044 } 1045 } 1046 } 1047 } 1048 1049 // Check that the number of requested cores with attributes is valid 1050 if (using_core_types || using_core_effs) { 1051 for (int j = 0; j < item.num_attrs; ++j) { 1052 int num = item.num[j]; 1053 int offset = item.offset[j]; 1054 int level_above = core_level - 1; 1055 if (level_above >= 0) { 1056 max_count = get_ncores_with_attr_per(item.attr[j], level_above); 1057 if (max_count <= 0 || 1058 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 1059 kmp_str_buf_t buf; 1060 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0); 1061 KMP_WARNING(AffHWSubsetManyGeneric, buf.str); 1062 __kmp_str_buf_free(&buf); 1063 return false; 1064 } 1065 } 1066 } 1067 } 1068 1069 if ((using_core_types || using_core_effs) && item.num_attrs > 1) { 1070 for (int j = 0; j < item.num_attrs; ++j) { 1071 // Ambiguous use of specific core attribute + generic core 1072 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 1073 if (!item.attr[j]) { 1074 kmp_hw_attr_t other_attr; 1075 for (int k = 0; k < item.num_attrs; ++k) { 1076 if (item.attr[k] != item.attr[j]) { 1077 other_attr = item.attr[k]; 1078 break; 1079 } 1080 } 1081 kmp_str_buf_t buf; 1082 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0); 1083 KMP_WARNING(AffHWSubsetIncompat, 1084 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str); 1085 __kmp_str_buf_free(&buf); 1086 return false; 1087 } 1088 // Allow specifying a specific core type or core eff exactly once 1089 for (int k = 0; k < j; ++k) { 1090 if (!item.attr[j] || !item.attr[k]) 1091 continue; 1092 if (item.attr[k] == item.attr[j]) { 1093 kmp_str_buf_t buf; 1094 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, 1095 item.num[j] > 0); 1096 KMP_WARNING(AffHWSubsetAttrRepeat, buf.str); 1097 __kmp_str_buf_free(&buf); 1098 return false; 1099 } 1100 } 1101 } 1102 } 1103 } 1104 } 1105 1106 struct core_type_indexer { 1107 int operator()(const kmp_hw_thread_t &t) const { 1108 switch (t.attrs.get_core_type()) { 1109 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1110 case KMP_HW_CORE_TYPE_ATOM: 1111 return 1; 1112 case KMP_HW_CORE_TYPE_CORE: 1113 return 2; 1114 #endif 1115 case KMP_HW_CORE_TYPE_UNKNOWN: 1116 return 0; 1117 } 1118 KMP_ASSERT(0); 1119 return 0; 1120 } 1121 }; 1122 struct core_eff_indexer { 1123 int operator()(const kmp_hw_thread_t &t) const { 1124 return t.attrs.get_core_eff(); 1125 } 1126 }; 1127 1128 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids( 1129 core_level); 1130 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids( 1131 core_level); 1132 1133 // Determine which hardware threads should be filtered. 1134 int num_filtered = 0; 1135 bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads); 1136 for (int i = 0; i < num_hw_threads; ++i) { 1137 kmp_hw_thread_t &hw_thread = hw_threads[i]; 1138 // Update type_sub_id 1139 if (using_core_types) 1140 core_type_sub_ids.update(hw_thread); 1141 if (using_core_effs) 1142 core_eff_sub_ids.update(hw_thread); 1143 1144 // Check to see if this hardware thread should be filtered 1145 bool should_be_filtered = false; 1146 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; 1147 ++hw_subset_index) { 1148 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index); 1149 int level = topology_levels[hw_subset_index]; 1150 if (level == -1) 1151 continue; 1152 if ((using_core_effs || using_core_types) && level == core_level) { 1153 // Look for the core attribute in KMP_HW_SUBSET which corresponds 1154 // to this hardware thread's core attribute. Use this num,offset plus 1155 // the running sub_id for the particular core attribute of this hardware 1156 // thread to determine if the hardware thread should be filtered or not. 1157 int attr_idx; 1158 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); 1159 int core_eff = hw_thread.attrs.get_core_eff(); 1160 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { 1161 if (using_core_types && 1162 hw_subset_item.attr[attr_idx].get_core_type() == core_type) 1163 break; 1164 if (using_core_effs && 1165 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) 1166 break; 1167 } 1168 // This core attribute isn't in the KMP_HW_SUBSET so always filter it. 1169 if (attr_idx == hw_subset_item.num_attrs) { 1170 should_be_filtered = true; 1171 break; 1172 } 1173 int sub_id; 1174 int num = hw_subset_item.num[attr_idx]; 1175 int offset = hw_subset_item.offset[attr_idx]; 1176 if (using_core_types) 1177 sub_id = core_type_sub_ids.get_sub_id(hw_thread); 1178 else 1179 sub_id = core_eff_sub_ids.get_sub_id(hw_thread); 1180 if (sub_id < offset || 1181 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { 1182 should_be_filtered = true; 1183 break; 1184 } 1185 } else { 1186 int num = hw_subset_item.num[0]; 1187 int offset = hw_subset_item.offset[0]; 1188 if (hw_thread.sub_ids[level] < offset || 1189 (num != kmp_hw_subset_t::USE_ALL && 1190 hw_thread.sub_ids[level] >= offset + num)) { 1191 should_be_filtered = true; 1192 break; 1193 } 1194 } 1195 } 1196 // Collect filtering information 1197 filtered[i] = should_be_filtered; 1198 if (should_be_filtered) 1199 num_filtered++; 1200 } 1201 1202 // One last check that we shouldn't allow filtering entire machine 1203 if (num_filtered == num_hw_threads) { 1204 KMP_WARNING(AffHWSubsetAllFiltered); 1205 __kmp_free(filtered); 1206 return false; 1207 } 1208 1209 // Apply the filter 1210 int new_index = 0; 1211 for (int i = 0; i < num_hw_threads; ++i) { 1212 if (!filtered[i]) { 1213 if (i != new_index) 1214 hw_threads[new_index] = hw_threads[i]; 1215 new_index++; 1216 } else { 1217 #if KMP_AFFINITY_SUPPORTED 1218 KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask); 1219 #endif 1220 __kmp_avail_proc--; 1221 } 1222 } 1223 1224 KMP_DEBUG_ASSERT(new_index <= num_hw_threads); 1225 num_hw_threads = new_index; 1226 1227 // Post hardware subset canonicalization 1228 _gather_enumeration_information(); 1229 _discover_uniformity(); 1230 _set_globals(); 1231 _set_last_level_cache(); 1232 __kmp_free(filtered); 1233 return true; 1234 } 1235 1236 bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const { 1237 if (hw_level >= depth) 1238 return true; 1239 bool retval = true; 1240 const kmp_hw_thread_t &t1 = hw_threads[hwt1]; 1241 const kmp_hw_thread_t &t2 = hw_threads[hwt2]; 1242 for (int i = 0; i < (depth - hw_level); ++i) { 1243 if (t1.ids[i] != t2.ids[i]) 1244 return false; 1245 } 1246 return retval; 1247 } 1248 1249 //////////////////////////////////////////////////////////////////////////////// 1250 1251 #if KMP_AFFINITY_SUPPORTED 1252 class kmp_affinity_raii_t { 1253 kmp_affin_mask_t *mask; 1254 bool restored; 1255 1256 public: 1257 kmp_affinity_raii_t() : restored(false) { 1258 KMP_CPU_ALLOC(mask); 1259 KMP_ASSERT(mask != NULL); 1260 __kmp_get_system_affinity(mask, TRUE); 1261 } 1262 void restore() { 1263 __kmp_set_system_affinity(mask, TRUE); 1264 KMP_CPU_FREE(mask); 1265 restored = true; 1266 } 1267 ~kmp_affinity_raii_t() { 1268 if (!restored) { 1269 __kmp_set_system_affinity(mask, TRUE); 1270 KMP_CPU_FREE(mask); 1271 } 1272 } 1273 }; 1274 1275 bool KMPAffinity::picked_api = false; 1276 1277 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 1278 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 1279 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 1280 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 1281 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 1282 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 1283 1284 void KMPAffinity::pick_api() { 1285 KMPAffinity *affinity_dispatch; 1286 if (picked_api) 1287 return; 1288 #if KMP_USE_HWLOC 1289 // Only use Hwloc if affinity isn't explicitly disabled and 1290 // user requests Hwloc topology method 1291 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 1292 __kmp_affinity_type != affinity_disabled) { 1293 affinity_dispatch = new KMPHwlocAffinity(); 1294 } else 1295 #endif 1296 { 1297 affinity_dispatch = new KMPNativeAffinity(); 1298 } 1299 __kmp_affinity_dispatch = affinity_dispatch; 1300 picked_api = true; 1301 } 1302 1303 void KMPAffinity::destroy_api() { 1304 if (__kmp_affinity_dispatch != NULL) { 1305 delete __kmp_affinity_dispatch; 1306 __kmp_affinity_dispatch = NULL; 1307 picked_api = false; 1308 } 1309 } 1310 1311 #define KMP_ADVANCE_SCAN(scan) \ 1312 while (*scan != '\0') { \ 1313 scan++; \ 1314 } 1315 1316 // Print the affinity mask to the character array in a pretty format. 1317 // The format is a comma separated list of non-negative integers or integer 1318 // ranges: e.g., 1,2,3-5,7,9-15 1319 // The format can also be the string "{<empty>}" if no bits are set in mask 1320 char *__kmp_affinity_print_mask(char *buf, int buf_len, 1321 kmp_affin_mask_t *mask) { 1322 int start = 0, finish = 0, previous = 0; 1323 bool first_range; 1324 KMP_ASSERT(buf); 1325 KMP_ASSERT(buf_len >= 40); 1326 KMP_ASSERT(mask); 1327 char *scan = buf; 1328 char *end = buf + buf_len - 1; 1329 1330 // Check for empty set. 1331 if (mask->begin() == mask->end()) { 1332 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 1333 KMP_ADVANCE_SCAN(scan); 1334 KMP_ASSERT(scan <= end); 1335 return buf; 1336 } 1337 1338 first_range = true; 1339 start = mask->begin(); 1340 while (1) { 1341 // Find next range 1342 // [start, previous] is inclusive range of contiguous bits in mask 1343 for (finish = mask->next(start), previous = start; 1344 finish == previous + 1 && finish != mask->end(); 1345 finish = mask->next(finish)) { 1346 previous = finish; 1347 } 1348 1349 // The first range does not need a comma printed before it, but the rest 1350 // of the ranges do need a comma beforehand 1351 if (!first_range) { 1352 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 1353 KMP_ADVANCE_SCAN(scan); 1354 } else { 1355 first_range = false; 1356 } 1357 // Range with three or more contiguous bits in the affinity mask 1358 if (previous - start > 1) { 1359 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); 1360 } else { 1361 // Range with one or two contiguous bits in the affinity mask 1362 KMP_SNPRINTF(scan, end - scan + 1, "%u", start); 1363 KMP_ADVANCE_SCAN(scan); 1364 if (previous - start > 0) { 1365 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); 1366 } 1367 } 1368 KMP_ADVANCE_SCAN(scan); 1369 // Start over with new start point 1370 start = finish; 1371 if (start == mask->end()) 1372 break; 1373 // Check for overflow 1374 if (end - scan < 2) 1375 break; 1376 } 1377 1378 // Check for overflow 1379 KMP_ASSERT(scan <= end); 1380 return buf; 1381 } 1382 #undef KMP_ADVANCE_SCAN 1383 1384 // Print the affinity mask to the string buffer object in a pretty format 1385 // The format is a comma separated list of non-negative integers or integer 1386 // ranges: e.g., 1,2,3-5,7,9-15 1387 // The format can also be the string "{<empty>}" if no bits are set in mask 1388 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 1389 kmp_affin_mask_t *mask) { 1390 int start = 0, finish = 0, previous = 0; 1391 bool first_range; 1392 KMP_ASSERT(buf); 1393 KMP_ASSERT(mask); 1394 1395 __kmp_str_buf_clear(buf); 1396 1397 // Check for empty set. 1398 if (mask->begin() == mask->end()) { 1399 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 1400 return buf; 1401 } 1402 1403 first_range = true; 1404 start = mask->begin(); 1405 while (1) { 1406 // Find next range 1407 // [start, previous] is inclusive range of contiguous bits in mask 1408 for (finish = mask->next(start), previous = start; 1409 finish == previous + 1 && finish != mask->end(); 1410 finish = mask->next(finish)) { 1411 previous = finish; 1412 } 1413 1414 // The first range does not need a comma printed before it, but the rest 1415 // of the ranges do need a comma beforehand 1416 if (!first_range) { 1417 __kmp_str_buf_print(buf, "%s", ","); 1418 } else { 1419 first_range = false; 1420 } 1421 // Range with three or more contiguous bits in the affinity mask 1422 if (previous - start > 1) { 1423 __kmp_str_buf_print(buf, "%u-%u", start, previous); 1424 } else { 1425 // Range with one or two contiguous bits in the affinity mask 1426 __kmp_str_buf_print(buf, "%u", start); 1427 if (previous - start > 0) { 1428 __kmp_str_buf_print(buf, ",%u", previous); 1429 } 1430 } 1431 // Start over with new start point 1432 start = finish; 1433 if (start == mask->end()) 1434 break; 1435 } 1436 return buf; 1437 } 1438 1439 // Return (possibly empty) affinity mask representing the offline CPUs 1440 // Caller must free the mask 1441 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { 1442 kmp_affin_mask_t *offline; 1443 KMP_CPU_ALLOC(offline); 1444 KMP_CPU_ZERO(offline); 1445 #if KMP_OS_LINUX 1446 int n, begin_cpu, end_cpu; 1447 kmp_safe_raii_file_t offline_file; 1448 auto skip_ws = [](FILE *f) { 1449 int c; 1450 do { 1451 c = fgetc(f); 1452 } while (isspace(c)); 1453 if (c != EOF) 1454 ungetc(c, f); 1455 }; 1456 // File contains CSV of integer ranges representing the offline CPUs 1457 // e.g., 1,2,4-7,9,11-15 1458 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r"); 1459 if (status != 0) 1460 return offline; 1461 while (!feof(offline_file)) { 1462 skip_ws(offline_file); 1463 n = fscanf(offline_file, "%d", &begin_cpu); 1464 if (n != 1) 1465 break; 1466 skip_ws(offline_file); 1467 int c = fgetc(offline_file); 1468 if (c == EOF || c == ',') { 1469 // Just single CPU 1470 end_cpu = begin_cpu; 1471 } else if (c == '-') { 1472 // Range of CPUs 1473 skip_ws(offline_file); 1474 n = fscanf(offline_file, "%d", &end_cpu); 1475 if (n != 1) 1476 break; 1477 skip_ws(offline_file); 1478 c = fgetc(offline_file); // skip ',' 1479 } else { 1480 // Syntax problem 1481 break; 1482 } 1483 // Ensure a valid range of CPUs 1484 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || 1485 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { 1486 continue; 1487 } 1488 // Insert [begin_cpu, end_cpu] into offline mask 1489 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { 1490 KMP_CPU_SET(cpu, offline); 1491 } 1492 } 1493 #endif 1494 return offline; 1495 } 1496 1497 // Return the number of available procs 1498 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 1499 int avail_proc = 0; 1500 KMP_CPU_ZERO(mask); 1501 1502 #if KMP_GROUP_AFFINITY 1503 1504 if (__kmp_num_proc_groups > 1) { 1505 int group; 1506 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 1507 for (group = 0; group < __kmp_num_proc_groups; group++) { 1508 int i; 1509 int num = __kmp_GetActiveProcessorCount(group); 1510 for (i = 0; i < num; i++) { 1511 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 1512 avail_proc++; 1513 } 1514 } 1515 } else 1516 1517 #endif /* KMP_GROUP_AFFINITY */ 1518 1519 { 1520 int proc; 1521 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); 1522 for (proc = 0; proc < __kmp_xproc; proc++) { 1523 // Skip offline CPUs 1524 if (KMP_CPU_ISSET(proc, offline_cpus)) 1525 continue; 1526 KMP_CPU_SET(proc, mask); 1527 avail_proc++; 1528 } 1529 KMP_CPU_FREE(offline_cpus); 1530 } 1531 1532 return avail_proc; 1533 } 1534 1535 // All of the __kmp_affinity_create_*_map() routines should allocate the 1536 // internal topology object and set the layer ids for it. Each routine 1537 // returns a boolean on whether it was successful at doing so. 1538 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 1539 1540 #if KMP_USE_HWLOC 1541 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { 1542 #if HWLOC_API_VERSION >= 0x00020000 1543 return hwloc_obj_type_is_cache(obj->type); 1544 #else 1545 return obj->type == HWLOC_OBJ_CACHE; 1546 #endif 1547 } 1548 1549 // Returns KMP_HW_* type derived from HWLOC_* type 1550 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { 1551 1552 if (__kmp_hwloc_is_cache_type(obj)) { 1553 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) 1554 return KMP_HW_UNKNOWN; 1555 switch (obj->attr->cache.depth) { 1556 case 1: 1557 return KMP_HW_L1; 1558 case 2: 1559 #if KMP_MIC_SUPPORTED 1560 if (__kmp_mic_type == mic3) { 1561 return KMP_HW_TILE; 1562 } 1563 #endif 1564 return KMP_HW_L2; 1565 case 3: 1566 return KMP_HW_L3; 1567 } 1568 return KMP_HW_UNKNOWN; 1569 } 1570 1571 switch (obj->type) { 1572 case HWLOC_OBJ_PACKAGE: 1573 return KMP_HW_SOCKET; 1574 case HWLOC_OBJ_NUMANODE: 1575 return KMP_HW_NUMA; 1576 case HWLOC_OBJ_CORE: 1577 return KMP_HW_CORE; 1578 case HWLOC_OBJ_PU: 1579 return KMP_HW_THREAD; 1580 case HWLOC_OBJ_GROUP: 1581 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) 1582 return KMP_HW_DIE; 1583 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) 1584 return KMP_HW_TILE; 1585 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) 1586 return KMP_HW_MODULE; 1587 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) 1588 return KMP_HW_PROC_GROUP; 1589 return KMP_HW_UNKNOWN; 1590 #if HWLOC_API_VERSION >= 0x00020100 1591 case HWLOC_OBJ_DIE: 1592 return KMP_HW_DIE; 1593 #endif 1594 } 1595 return KMP_HW_UNKNOWN; 1596 } 1597 1598 // Returns the number of objects of type 'type' below 'obj' within the topology 1599 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 1600 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 1601 // object. 1602 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 1603 hwloc_obj_type_t type) { 1604 int retval = 0; 1605 hwloc_obj_t first; 1606 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 1607 obj->logical_index, type, 0); 1608 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, 1609 obj->type, first) == obj; 1610 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 1611 first)) { 1612 ++retval; 1613 } 1614 return retval; 1615 } 1616 1617 // This gets the sub_id for a lower object under a higher object in the 1618 // topology tree 1619 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, 1620 hwloc_obj_t lower) { 1621 hwloc_obj_t obj; 1622 hwloc_obj_type_t ltype = lower->type; 1623 int lindex = lower->logical_index - 1; 1624 int sub_id = 0; 1625 // Get the previous lower object 1626 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1627 while (obj && lindex >= 0 && 1628 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { 1629 if (obj->userdata) { 1630 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); 1631 break; 1632 } 1633 sub_id++; 1634 lindex--; 1635 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1636 } 1637 // store sub_id + 1 so that 0 is differed from NULL 1638 lower->userdata = RCAST(void *, sub_id + 1); 1639 return sub_id; 1640 } 1641 1642 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { 1643 kmp_hw_t type; 1644 int hw_thread_index, sub_id; 1645 int depth; 1646 hwloc_obj_t pu, obj, root, prev; 1647 kmp_hw_t types[KMP_HW_LAST]; 1648 hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; 1649 1650 hwloc_topology_t tp = __kmp_hwloc_topology; 1651 *msg_id = kmp_i18n_null; 1652 if (__kmp_affinity_verbose) { 1653 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 1654 } 1655 1656 if (!KMP_AFFINITY_CAPABLE()) { 1657 // Hack to try and infer the machine topology using only the data 1658 // available from hwloc on the current thread, and __kmp_xproc. 1659 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1660 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 1661 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 1662 if (o != NULL) 1663 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 1664 else 1665 nCoresPerPkg = 1; // no PACKAGE found 1666 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 1667 if (o != NULL) 1668 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 1669 else 1670 __kmp_nThreadsPerCore = 1; // no CORE found 1671 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1672 if (nCoresPerPkg == 0) 1673 nCoresPerPkg = 1; // to prevent possible division by 0 1674 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1675 return true; 1676 } 1677 1678 // Handle multiple types of cores if they exist on the system 1679 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); 1680 1681 typedef struct kmp_hwloc_cpukinds_info_t { 1682 int efficiency; 1683 kmp_hw_core_type_t core_type; 1684 hwloc_bitmap_t mask; 1685 } kmp_hwloc_cpukinds_info_t; 1686 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; 1687 1688 if (nr_cpu_kinds > 0) { 1689 unsigned nr_infos; 1690 struct hwloc_info_s *infos; 1691 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate( 1692 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds); 1693 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { 1694 cpukinds[idx].efficiency = -1; 1695 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; 1696 cpukinds[idx].mask = hwloc_bitmap_alloc(); 1697 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, 1698 &cpukinds[idx].efficiency, &nr_infos, &infos, 1699 0) == 0) { 1700 for (unsigned i = 0; i < nr_infos; ++i) { 1701 if (__kmp_str_match("CoreType", 8, infos[i].name)) { 1702 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1703 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) { 1704 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; 1705 break; 1706 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) { 1707 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; 1708 break; 1709 } 1710 #endif 1711 } 1712 } 1713 } 1714 } 1715 } 1716 1717 root = hwloc_get_root_obj(tp); 1718 1719 // Figure out the depth and types in the topology 1720 depth = 0; 1721 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); 1722 KMP_ASSERT(pu); 1723 obj = pu; 1724 types[depth] = KMP_HW_THREAD; 1725 hwloc_types[depth] = obj->type; 1726 depth++; 1727 while (obj != root && obj != NULL) { 1728 obj = obj->parent; 1729 #if HWLOC_API_VERSION >= 0x00020000 1730 if (obj->memory_arity) { 1731 hwloc_obj_t memory; 1732 for (memory = obj->memory_first_child; memory; 1733 memory = hwloc_get_next_child(tp, obj, memory)) { 1734 if (memory->type == HWLOC_OBJ_NUMANODE) 1735 break; 1736 } 1737 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1738 types[depth] = KMP_HW_NUMA; 1739 hwloc_types[depth] = memory->type; 1740 depth++; 1741 } 1742 } 1743 #endif 1744 type = __kmp_hwloc_type_2_topology_type(obj); 1745 if (type != KMP_HW_UNKNOWN) { 1746 types[depth] = type; 1747 hwloc_types[depth] = obj->type; 1748 depth++; 1749 } 1750 } 1751 KMP_ASSERT(depth > 0); 1752 1753 // Get the order for the types correct 1754 for (int i = 0, j = depth - 1; i < j; ++i, --j) { 1755 hwloc_obj_type_t hwloc_temp = hwloc_types[i]; 1756 kmp_hw_t temp = types[i]; 1757 types[i] = types[j]; 1758 types[j] = temp; 1759 hwloc_types[i] = hwloc_types[j]; 1760 hwloc_types[j] = hwloc_temp; 1761 } 1762 1763 // Allocate the data structure to be returned. 1764 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1765 1766 hw_thread_index = 0; 1767 pu = NULL; 1768 while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) { 1769 int index = depth - 1; 1770 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); 1771 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 1772 if (included) { 1773 hw_thread.clear(); 1774 hw_thread.ids[index] = pu->logical_index; 1775 hw_thread.os_id = pu->os_index; 1776 // If multiple core types, then set that attribute for the hardware thread 1777 if (cpukinds) { 1778 int cpukind_index = -1; 1779 for (int i = 0; i < nr_cpu_kinds; ++i) { 1780 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { 1781 cpukind_index = i; 1782 break; 1783 } 1784 } 1785 if (cpukind_index >= 0) { 1786 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); 1787 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); 1788 } 1789 } 1790 index--; 1791 } 1792 obj = pu; 1793 prev = obj; 1794 while (obj != root && obj != NULL) { 1795 obj = obj->parent; 1796 #if HWLOC_API_VERSION >= 0x00020000 1797 // NUMA Nodes are handled differently since they are not within the 1798 // parent/child structure anymore. They are separate children 1799 // of obj (memory_first_child points to first memory child) 1800 if (obj->memory_arity) { 1801 hwloc_obj_t memory; 1802 for (memory = obj->memory_first_child; memory; 1803 memory = hwloc_get_next_child(tp, obj, memory)) { 1804 if (memory->type == HWLOC_OBJ_NUMANODE) 1805 break; 1806 } 1807 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1808 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); 1809 if (included) { 1810 hw_thread.ids[index] = memory->logical_index; 1811 hw_thread.ids[index + 1] = sub_id; 1812 index--; 1813 } 1814 prev = memory; 1815 } 1816 prev = obj; 1817 } 1818 #endif 1819 type = __kmp_hwloc_type_2_topology_type(obj); 1820 if (type != KMP_HW_UNKNOWN) { 1821 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); 1822 if (included) { 1823 hw_thread.ids[index] = obj->logical_index; 1824 hw_thread.ids[index + 1] = sub_id; 1825 index--; 1826 } 1827 prev = obj; 1828 } 1829 } 1830 if (included) 1831 hw_thread_index++; 1832 } 1833 1834 // Free the core types information 1835 if (cpukinds) { 1836 for (int idx = 0; idx < nr_cpu_kinds; ++idx) 1837 hwloc_bitmap_free(cpukinds[idx].mask); 1838 __kmp_free(cpukinds); 1839 } 1840 __kmp_topology->sort_ids(); 1841 return true; 1842 } 1843 #endif // KMP_USE_HWLOC 1844 1845 // If we don't know how to retrieve the machine's processor topology, or 1846 // encounter an error in doing so, this routine is called to form a "flat" 1847 // mapping of os thread id's <-> processor id's. 1848 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { 1849 *msg_id = kmp_i18n_null; 1850 int depth = 3; 1851 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; 1852 1853 if (__kmp_affinity_verbose) { 1854 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); 1855 } 1856 1857 // Even if __kmp_affinity_type == affinity_none, this routine might still 1858 // called to set __kmp_ncores, as well as 1859 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1860 if (!KMP_AFFINITY_CAPABLE()) { 1861 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1862 __kmp_ncores = nPackages = __kmp_xproc; 1863 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1864 return true; 1865 } 1866 1867 // When affinity is off, this routine will still be called to set 1868 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1869 // Make sure all these vars are set correctly, and return now if affinity is 1870 // not enabled. 1871 __kmp_ncores = nPackages = __kmp_avail_proc; 1872 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1873 1874 // Construct the data structure to be returned. 1875 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1876 int avail_ct = 0; 1877 int i; 1878 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1879 // Skip this proc if it is not included in the machine model. 1880 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1881 continue; 1882 } 1883 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); 1884 hw_thread.clear(); 1885 hw_thread.os_id = i; 1886 hw_thread.ids[0] = i; 1887 hw_thread.ids[1] = 0; 1888 hw_thread.ids[2] = 0; 1889 avail_ct++; 1890 } 1891 if (__kmp_affinity_verbose) { 1892 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 1893 } 1894 return true; 1895 } 1896 1897 #if KMP_GROUP_AFFINITY 1898 // If multiple Windows* OS processor groups exist, we can create a 2-level 1899 // topology map with the groups at level 0 and the individual procs at level 1. 1900 // This facilitates letting the threads float among all procs in a group, 1901 // if granularity=group (the default when there are multiple groups). 1902 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { 1903 *msg_id = kmp_i18n_null; 1904 int depth = 3; 1905 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; 1906 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); 1907 1908 if (__kmp_affinity_verbose) { 1909 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 1910 } 1911 1912 // If we aren't affinity capable, then use flat topology 1913 if (!KMP_AFFINITY_CAPABLE()) { 1914 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1915 nPackages = __kmp_num_proc_groups; 1916 __kmp_nThreadsPerCore = 1; 1917 __kmp_ncores = __kmp_xproc; 1918 nCoresPerPkg = nPackages / __kmp_ncores; 1919 return true; 1920 } 1921 1922 // Construct the data structure to be returned. 1923 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1924 int avail_ct = 0; 1925 int i; 1926 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1927 // Skip this proc if it is not included in the machine model. 1928 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1929 continue; 1930 } 1931 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); 1932 hw_thread.clear(); 1933 hw_thread.os_id = i; 1934 hw_thread.ids[0] = i / BITS_PER_GROUP; 1935 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; 1936 } 1937 return true; 1938 } 1939 #endif /* KMP_GROUP_AFFINITY */ 1940 1941 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1942 1943 template <kmp_uint32 LSB, kmp_uint32 MSB> 1944 static inline unsigned __kmp_extract_bits(kmp_uint32 v) { 1945 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; 1946 const kmp_uint32 SHIFT_RIGHT = LSB; 1947 kmp_uint32 retval = v; 1948 retval <<= SHIFT_LEFT; 1949 retval >>= (SHIFT_LEFT + SHIFT_RIGHT); 1950 return retval; 1951 } 1952 1953 static int __kmp_cpuid_mask_width(int count) { 1954 int r = 0; 1955 1956 while ((1 << r) < count) 1957 ++r; 1958 return r; 1959 } 1960 1961 class apicThreadInfo { 1962 public: 1963 unsigned osId; // param to __kmp_affinity_bind_thread 1964 unsigned apicId; // from cpuid after binding 1965 unsigned maxCoresPerPkg; // "" 1966 unsigned maxThreadsPerPkg; // "" 1967 unsigned pkgId; // inferred from above values 1968 unsigned coreId; // "" 1969 unsigned threadId; // "" 1970 }; 1971 1972 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1973 const void *b) { 1974 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1975 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1976 if (aa->pkgId < bb->pkgId) 1977 return -1; 1978 if (aa->pkgId > bb->pkgId) 1979 return 1; 1980 if (aa->coreId < bb->coreId) 1981 return -1; 1982 if (aa->coreId > bb->coreId) 1983 return 1; 1984 if (aa->threadId < bb->threadId) 1985 return -1; 1986 if (aa->threadId > bb->threadId) 1987 return 1; 1988 return 0; 1989 } 1990 1991 class kmp_cache_info_t { 1992 public: 1993 struct info_t { 1994 unsigned level, mask; 1995 }; 1996 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } 1997 size_t get_depth() const { return depth; } 1998 info_t &operator[](size_t index) { return table[index]; } 1999 const info_t &operator[](size_t index) const { return table[index]; } 2000 2001 static kmp_hw_t get_topology_type(unsigned level) { 2002 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); 2003 switch (level) { 2004 case 1: 2005 return KMP_HW_L1; 2006 case 2: 2007 return KMP_HW_L2; 2008 case 3: 2009 return KMP_HW_L3; 2010 } 2011 return KMP_HW_UNKNOWN; 2012 } 2013 2014 private: 2015 static const int MAX_CACHE_LEVEL = 3; 2016 2017 size_t depth; 2018 info_t table[MAX_CACHE_LEVEL]; 2019 2020 void get_leaf4_levels() { 2021 unsigned level = 0; 2022 while (depth < MAX_CACHE_LEVEL) { 2023 unsigned cache_type, max_threads_sharing; 2024 unsigned cache_level, cache_mask_width; 2025 kmp_cpuid buf2; 2026 __kmp_x86_cpuid(4, level, &buf2); 2027 cache_type = __kmp_extract_bits<0, 4>(buf2.eax); 2028 if (!cache_type) 2029 break; 2030 // Skip instruction caches 2031 if (cache_type == 2) { 2032 level++; 2033 continue; 2034 } 2035 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; 2036 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); 2037 cache_level = __kmp_extract_bits<5, 7>(buf2.eax); 2038 table[depth].level = cache_level; 2039 table[depth].mask = ((-1) << cache_mask_width); 2040 depth++; 2041 level++; 2042 } 2043 } 2044 }; 2045 2046 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 2047 // an algorithm which cycles through the available os threads, setting 2048 // the current thread's affinity mask to that thread, and then retrieves 2049 // the Apic Id for each thread context using the cpuid instruction. 2050 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { 2051 kmp_cpuid buf; 2052 *msg_id = kmp_i18n_null; 2053 2054 if (__kmp_affinity_verbose) { 2055 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 2056 } 2057 2058 // Check if cpuid leaf 4 is supported. 2059 __kmp_x86_cpuid(0, 0, &buf); 2060 if (buf.eax < 4) { 2061 *msg_id = kmp_i18n_str_NoLeaf4Support; 2062 return false; 2063 } 2064 2065 // The algorithm used starts by setting the affinity to each available thread 2066 // and retrieving info from the cpuid instruction, so if we are not capable of 2067 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 2068 // need to do something else - use the defaults that we calculated from 2069 // issuing cpuid without binding to each proc. 2070 if (!KMP_AFFINITY_CAPABLE()) { 2071 // Hack to try and infer the machine topology using only the data 2072 // available from cpuid on the current thread, and __kmp_xproc. 2073 KMP_ASSERT(__kmp_affinity_type == affinity_none); 2074 2075 // Get an upper bound on the number of threads per package using cpuid(1). 2076 // On some OS/chps combinations where HT is supported by the chip but is 2077 // disabled, this value will be 2 on a single core chip. Usually, it will be 2078 // 2 if HT is enabled and 1 if HT is disabled. 2079 __kmp_x86_cpuid(1, 0, &buf); 2080 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2081 if (maxThreadsPerPkg == 0) { 2082 maxThreadsPerPkg = 1; 2083 } 2084 2085 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 2086 // value. 2087 // 2088 // The author of cpu_count.cpp treated this only an upper bound on the 2089 // number of cores, but I haven't seen any cases where it was greater than 2090 // the actual number of cores, so we will treat it as exact in this block of 2091 // code. 2092 // 2093 // First, we need to check if cpuid(4) is supported on this chip. To see if 2094 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 2095 // greater. 2096 __kmp_x86_cpuid(0, 0, &buf); 2097 if (buf.eax >= 4) { 2098 __kmp_x86_cpuid(4, 0, &buf); 2099 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2100 } else { 2101 nCoresPerPkg = 1; 2102 } 2103 2104 // There is no way to reliably tell if HT is enabled without issuing the 2105 // cpuid instruction from every thread, can correlating the cpuid info, so 2106 // if the machine is not affinity capable, we assume that HT is off. We have 2107 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 2108 // does not support HT. 2109 // 2110 // - Older OSes are usually found on machines with older chips, which do not 2111 // support HT. 2112 // - The performance penalty for mistakenly identifying a machine as HT when 2113 // it isn't (which results in blocktime being incorrectly set to 0) is 2114 // greater than the penalty when for mistakenly identifying a machine as 2115 // being 1 thread/core when it is really HT enabled (which results in 2116 // blocktime being incorrectly set to a positive value). 2117 __kmp_ncores = __kmp_xproc; 2118 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2119 __kmp_nThreadsPerCore = 1; 2120 return true; 2121 } 2122 2123 // From here on, we can assume that it is safe to call 2124 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2125 // __kmp_affinity_type = affinity_none. 2126 2127 // Save the affinity mask for the current thread. 2128 kmp_affinity_raii_t previous_affinity; 2129 2130 // Run through each of the available contexts, binding the current thread 2131 // to it, and obtaining the pertinent information using the cpuid instr. 2132 // 2133 // The relevant information is: 2134 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 2135 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 2136 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 2137 // of this field determines the width of the core# + thread# fields in the 2138 // Apic Id. It is also an upper bound on the number of threads per 2139 // package, but it has been verified that situations happen were it is not 2140 // exact. In particular, on certain OS/chip combinations where Intel(R) 2141 // Hyper-Threading Technology is supported by the chip but has been 2142 // disabled, the value of this field will be 2 (for a single core chip). 2143 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 2144 // Technology, the value of this field will be 1 when Intel(R) 2145 // Hyper-Threading Technology is disabled and 2 when it is enabled. 2146 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 2147 // of this field (+1) determines the width of the core# field in the Apic 2148 // Id. The comments in "cpucount.cpp" say that this value is an upper 2149 // bound, but the IA-32 architecture manual says that it is exactly the 2150 // number of cores per package, and I haven't seen any case where it 2151 // wasn't. 2152 // 2153 // From this information, deduce the package Id, core Id, and thread Id, 2154 // and set the corresponding fields in the apicThreadInfo struct. 2155 unsigned i; 2156 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 2157 __kmp_avail_proc * sizeof(apicThreadInfo)); 2158 unsigned nApics = 0; 2159 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2160 // Skip this proc if it is not included in the machine model. 2161 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2162 continue; 2163 } 2164 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 2165 2166 __kmp_affinity_dispatch->bind_thread(i); 2167 threadInfo[nApics].osId = i; 2168 2169 // The apic id and max threads per pkg come from cpuid(1). 2170 __kmp_x86_cpuid(1, 0, &buf); 2171 if (((buf.edx >> 9) & 1) == 0) { 2172 __kmp_free(threadInfo); 2173 *msg_id = kmp_i18n_str_ApicNotPresent; 2174 return false; 2175 } 2176 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 2177 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2178 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 2179 threadInfo[nApics].maxThreadsPerPkg = 1; 2180 } 2181 2182 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 2183 // value. 2184 // 2185 // First, we need to check if cpuid(4) is supported on this chip. To see if 2186 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 2187 // or greater. 2188 __kmp_x86_cpuid(0, 0, &buf); 2189 if (buf.eax >= 4) { 2190 __kmp_x86_cpuid(4, 0, &buf); 2191 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2192 } else { 2193 threadInfo[nApics].maxCoresPerPkg = 1; 2194 } 2195 2196 // Infer the pkgId / coreId / threadId using only the info obtained locally. 2197 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 2198 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 2199 2200 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 2201 int widthT = widthCT - widthC; 2202 if (widthT < 0) { 2203 // I've never seen this one happen, but I suppose it could, if the cpuid 2204 // instruction on a chip was really screwed up. Make sure to restore the 2205 // affinity mask before the tail call. 2206 __kmp_free(threadInfo); 2207 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2208 return false; 2209 } 2210 2211 int maskC = (1 << widthC) - 1; 2212 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 2213 2214 int maskT = (1 << widthT) - 1; 2215 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 2216 2217 nApics++; 2218 } 2219 2220 // We've collected all the info we need. 2221 // Restore the old affinity mask for this thread. 2222 previous_affinity.restore(); 2223 2224 // Sort the threadInfo table by physical Id. 2225 qsort(threadInfo, nApics, sizeof(*threadInfo), 2226 __kmp_affinity_cmp_apicThreadInfo_phys_id); 2227 2228 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2229 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2230 // the chips on a system. Although coreId's are usually assigned 2231 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2232 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2233 // 2234 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2235 // total # packages) are at this point - we want to determine that now. We 2236 // only have an upper bound on the first two figures. 2237 // 2238 // We also perform a consistency check at this point: the values returned by 2239 // the cpuid instruction for any thread bound to a given package had better 2240 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 2241 nPackages = 1; 2242 nCoresPerPkg = 1; 2243 __kmp_nThreadsPerCore = 1; 2244 unsigned nCores = 1; 2245 2246 unsigned pkgCt = 1; // to determine radii 2247 unsigned lastPkgId = threadInfo[0].pkgId; 2248 unsigned coreCt = 1; 2249 unsigned lastCoreId = threadInfo[0].coreId; 2250 unsigned threadCt = 1; 2251 unsigned lastThreadId = threadInfo[0].threadId; 2252 2253 // intra-pkg consist checks 2254 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 2255 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 2256 2257 for (i = 1; i < nApics; i++) { 2258 if (threadInfo[i].pkgId != lastPkgId) { 2259 nCores++; 2260 pkgCt++; 2261 lastPkgId = threadInfo[i].pkgId; 2262 if ((int)coreCt > nCoresPerPkg) 2263 nCoresPerPkg = coreCt; 2264 coreCt = 1; 2265 lastCoreId = threadInfo[i].coreId; 2266 if ((int)threadCt > __kmp_nThreadsPerCore) 2267 __kmp_nThreadsPerCore = threadCt; 2268 threadCt = 1; 2269 lastThreadId = threadInfo[i].threadId; 2270 2271 // This is a different package, so go on to the next iteration without 2272 // doing any consistency checks. Reset the consistency check vars, though. 2273 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 2274 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 2275 continue; 2276 } 2277 2278 if (threadInfo[i].coreId != lastCoreId) { 2279 nCores++; 2280 coreCt++; 2281 lastCoreId = threadInfo[i].coreId; 2282 if ((int)threadCt > __kmp_nThreadsPerCore) 2283 __kmp_nThreadsPerCore = threadCt; 2284 threadCt = 1; 2285 lastThreadId = threadInfo[i].threadId; 2286 } else if (threadInfo[i].threadId != lastThreadId) { 2287 threadCt++; 2288 lastThreadId = threadInfo[i].threadId; 2289 } else { 2290 __kmp_free(threadInfo); 2291 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2292 return false; 2293 } 2294 2295 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 2296 // fields agree between all the threads bounds to a given package. 2297 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 2298 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 2299 __kmp_free(threadInfo); 2300 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 2301 return false; 2302 } 2303 } 2304 // When affinity is off, this routine will still be called to set 2305 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2306 // Make sure all these vars are set correctly 2307 nPackages = pkgCt; 2308 if ((int)coreCt > nCoresPerPkg) 2309 nCoresPerPkg = coreCt; 2310 if ((int)threadCt > __kmp_nThreadsPerCore) 2311 __kmp_nThreadsPerCore = threadCt; 2312 __kmp_ncores = nCores; 2313 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 2314 2315 // Now that we've determined the number of packages, the number of cores per 2316 // package, and the number of threads per core, we can construct the data 2317 // structure that is to be returned. 2318 int idx = 0; 2319 int pkgLevel = 0; 2320 int coreLevel = 1; 2321 int threadLevel = 2; 2322 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 2323 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 2324 kmp_hw_t types[3]; 2325 if (pkgLevel >= 0) 2326 types[idx++] = KMP_HW_SOCKET; 2327 if (coreLevel >= 0) 2328 types[idx++] = KMP_HW_CORE; 2329 if (threadLevel >= 0) 2330 types[idx++] = KMP_HW_THREAD; 2331 2332 KMP_ASSERT(depth > 0); 2333 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); 2334 2335 for (i = 0; i < nApics; ++i) { 2336 idx = 0; 2337 unsigned os = threadInfo[i].osId; 2338 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 2339 hw_thread.clear(); 2340 2341 if (pkgLevel >= 0) { 2342 hw_thread.ids[idx++] = threadInfo[i].pkgId; 2343 } 2344 if (coreLevel >= 0) { 2345 hw_thread.ids[idx++] = threadInfo[i].coreId; 2346 } 2347 if (threadLevel >= 0) { 2348 hw_thread.ids[idx++] = threadInfo[i].threadId; 2349 } 2350 hw_thread.os_id = os; 2351 } 2352 2353 __kmp_free(threadInfo); 2354 __kmp_topology->sort_ids(); 2355 if (!__kmp_topology->check_ids()) { 2356 kmp_topology_t::deallocate(__kmp_topology); 2357 __kmp_topology = nullptr; 2358 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2359 return false; 2360 } 2361 return true; 2362 } 2363 2364 // Hybrid cpu detection using CPUID.1A 2365 // Thread should be pinned to processor already 2366 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, 2367 unsigned *native_model_id) { 2368 kmp_cpuid buf; 2369 __kmp_x86_cpuid(0x1a, 0, &buf); 2370 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax); 2371 switch (*type) { 2372 case KMP_HW_CORE_TYPE_ATOM: 2373 *efficiency = 0; 2374 break; 2375 case KMP_HW_CORE_TYPE_CORE: 2376 *efficiency = 1; 2377 break; 2378 default: 2379 *efficiency = 0; 2380 } 2381 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax); 2382 } 2383 2384 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 2385 // architectures support a newer interface for specifying the x2APIC Ids, 2386 // based on CPUID.B or CPUID.1F 2387 /* 2388 * CPUID.B or 1F, Input ECX (sub leaf # aka level number) 2389 Bits Bits Bits Bits 2390 31-16 15-8 7-4 4-0 2391 ---+-----------+--------------+-------------+-----------------+ 2392 EAX| reserved | reserved | reserved | Bits to Shift | 2393 ---+-----------|--------------+-------------+-----------------| 2394 EBX| reserved | Num logical processors at level (16 bits) | 2395 ---+-----------|--------------+-------------------------------| 2396 ECX| reserved | Level Type | Level Number (8 bits) | 2397 ---+-----------+--------------+-------------------------------| 2398 EDX| X2APIC ID (32 bits) | 2399 ---+----------------------------------------------------------+ 2400 */ 2401 2402 enum { 2403 INTEL_LEVEL_TYPE_INVALID = 0, // Package level 2404 INTEL_LEVEL_TYPE_SMT = 1, 2405 INTEL_LEVEL_TYPE_CORE = 2, 2406 INTEL_LEVEL_TYPE_TILE = 3, 2407 INTEL_LEVEL_TYPE_MODULE = 4, 2408 INTEL_LEVEL_TYPE_DIE = 5, 2409 INTEL_LEVEL_TYPE_LAST = 6, 2410 }; 2411 2412 struct cpuid_level_info_t { 2413 unsigned level_type, mask, mask_width, nitems, cache_mask; 2414 }; 2415 2416 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { 2417 switch (intel_type) { 2418 case INTEL_LEVEL_TYPE_INVALID: 2419 return KMP_HW_SOCKET; 2420 case INTEL_LEVEL_TYPE_SMT: 2421 return KMP_HW_THREAD; 2422 case INTEL_LEVEL_TYPE_CORE: 2423 return KMP_HW_CORE; 2424 case INTEL_LEVEL_TYPE_TILE: 2425 return KMP_HW_TILE; 2426 case INTEL_LEVEL_TYPE_MODULE: 2427 return KMP_HW_MODULE; 2428 case INTEL_LEVEL_TYPE_DIE: 2429 return KMP_HW_DIE; 2430 } 2431 return KMP_HW_UNKNOWN; 2432 } 2433 2434 // This function takes the topology leaf, a levels array to store the levels 2435 // detected and a bitmap of the known levels. 2436 // Returns the number of levels in the topology 2437 static unsigned 2438 __kmp_x2apicid_get_levels(int leaf, 2439 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], 2440 kmp_uint64 known_levels) { 2441 unsigned level, levels_index; 2442 unsigned level_type, mask_width, nitems; 2443 kmp_cpuid buf; 2444 2445 // New algorithm has known topology layers act as highest unknown topology 2446 // layers when unknown topology layers exist. 2447 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> 2448 // are unknown topology layers, Then SMT will take the characteristics of 2449 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). 2450 // This eliminates unknown portions of the topology while still keeping the 2451 // correct structure. 2452 level = levels_index = 0; 2453 do { 2454 __kmp_x86_cpuid(leaf, level, &buf); 2455 level_type = __kmp_extract_bits<8, 15>(buf.ecx); 2456 mask_width = __kmp_extract_bits<0, 4>(buf.eax); 2457 nitems = __kmp_extract_bits<0, 15>(buf.ebx); 2458 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) 2459 return 0; 2460 2461 if (known_levels & (1ull << level_type)) { 2462 // Add a new level to the topology 2463 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); 2464 levels[levels_index].level_type = level_type; 2465 levels[levels_index].mask_width = mask_width; 2466 levels[levels_index].nitems = nitems; 2467 levels_index++; 2468 } else { 2469 // If it is an unknown level, then logically move the previous layer up 2470 if (levels_index > 0) { 2471 levels[levels_index - 1].mask_width = mask_width; 2472 levels[levels_index - 1].nitems = nitems; 2473 } 2474 } 2475 level++; 2476 } while (level_type != INTEL_LEVEL_TYPE_INVALID); 2477 2478 // Set the masks to & with apicid 2479 for (unsigned i = 0; i < levels_index; ++i) { 2480 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { 2481 levels[i].mask = ~((-1) << levels[i].mask_width); 2482 levels[i].cache_mask = (-1) << levels[i].mask_width; 2483 for (unsigned j = 0; j < i; ++j) 2484 levels[i].mask ^= levels[j].mask; 2485 } else { 2486 KMP_DEBUG_ASSERT(levels_index > 0); 2487 levels[i].mask = (-1) << levels[i - 1].mask_width; 2488 levels[i].cache_mask = 0; 2489 } 2490 } 2491 return levels_index; 2492 } 2493 2494 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { 2495 2496 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; 2497 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; 2498 unsigned levels_index; 2499 kmp_cpuid buf; 2500 kmp_uint64 known_levels; 2501 int topology_leaf, highest_leaf, apic_id; 2502 int num_leaves; 2503 static int leaves[] = {0, 0}; 2504 2505 kmp_i18n_id_t leaf_message_id; 2506 2507 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); 2508 2509 *msg_id = kmp_i18n_null; 2510 if (__kmp_affinity_verbose) { 2511 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 2512 } 2513 2514 // Figure out the known topology levels 2515 known_levels = 0ull; 2516 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { 2517 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { 2518 known_levels |= (1ull << i); 2519 } 2520 } 2521 2522 // Get the highest cpuid leaf supported 2523 __kmp_x86_cpuid(0, 0, &buf); 2524 highest_leaf = buf.eax; 2525 2526 // If a specific topology method was requested, only allow that specific leaf 2527 // otherwise, try both leaves 31 and 11 in that order 2528 num_leaves = 0; 2529 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 2530 num_leaves = 1; 2531 leaves[0] = 11; 2532 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2533 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 2534 num_leaves = 1; 2535 leaves[0] = 31; 2536 leaf_message_id = kmp_i18n_str_NoLeaf31Support; 2537 } else { 2538 num_leaves = 2; 2539 leaves[0] = 31; 2540 leaves[1] = 11; 2541 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2542 } 2543 2544 // Check to see if cpuid leaf 31 or 11 is supported. 2545 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2546 topology_leaf = -1; 2547 for (int i = 0; i < num_leaves; ++i) { 2548 int leaf = leaves[i]; 2549 if (highest_leaf < leaf) 2550 continue; 2551 __kmp_x86_cpuid(leaf, 0, &buf); 2552 if (buf.ebx == 0) 2553 continue; 2554 topology_leaf = leaf; 2555 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); 2556 if (levels_index == 0) 2557 continue; 2558 break; 2559 } 2560 if (topology_leaf == -1 || levels_index == 0) { 2561 *msg_id = leaf_message_id; 2562 return false; 2563 } 2564 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); 2565 2566 // The algorithm used starts by setting the affinity to each available thread 2567 // and retrieving info from the cpuid instruction, so if we are not capable of 2568 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then 2569 // we need to do something else - use the defaults that we calculated from 2570 // issuing cpuid without binding to each proc. 2571 if (!KMP_AFFINITY_CAPABLE()) { 2572 // Hack to try and infer the machine topology using only the data 2573 // available from cpuid on the current thread, and __kmp_xproc. 2574 KMP_ASSERT(__kmp_affinity_type == affinity_none); 2575 for (unsigned i = 0; i < levels_index; ++i) { 2576 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { 2577 __kmp_nThreadsPerCore = levels[i].nitems; 2578 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { 2579 nCoresPerPkg = levels[i].nitems; 2580 } 2581 } 2582 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 2583 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2584 return true; 2585 } 2586 2587 // Allocate the data structure to be returned. 2588 int depth = levels_index; 2589 for (int i = depth - 1, j = 0; i >= 0; --i, ++j) 2590 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); 2591 __kmp_topology = 2592 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); 2593 2594 // Insert equivalent cache types if they exist 2595 kmp_cache_info_t cache_info; 2596 for (size_t i = 0; i < cache_info.get_depth(); ++i) { 2597 const kmp_cache_info_t::info_t &info = cache_info[i]; 2598 unsigned cache_mask = info.mask; 2599 unsigned cache_level = info.level; 2600 for (unsigned j = 0; j < levels_index; ++j) { 2601 unsigned hw_cache_mask = levels[j].cache_mask; 2602 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); 2603 if (hw_cache_mask == cache_mask && j < levels_index - 1) { 2604 kmp_hw_t type = 2605 __kmp_intel_type_2_topology_type(levels[j + 1].level_type); 2606 __kmp_topology->set_equivalent_type(cache_type, type); 2607 } 2608 } 2609 } 2610 2611 // From here on, we can assume that it is safe to call 2612 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2613 // __kmp_affinity_type = affinity_none. 2614 2615 // Save the affinity mask for the current thread. 2616 kmp_affinity_raii_t previous_affinity; 2617 2618 // Run through each of the available contexts, binding the current thread 2619 // to it, and obtaining the pertinent information using the cpuid instr. 2620 unsigned int proc; 2621 int hw_thread_index = 0; 2622 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 2623 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; 2624 unsigned my_levels_index; 2625 2626 // Skip this proc if it is not included in the machine model. 2627 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 2628 continue; 2629 } 2630 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); 2631 2632 __kmp_affinity_dispatch->bind_thread(proc); 2633 2634 // New algorithm 2635 __kmp_x86_cpuid(topology_leaf, 0, &buf); 2636 apic_id = buf.edx; 2637 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 2638 my_levels_index = 2639 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); 2640 if (my_levels_index == 0 || my_levels_index != levels_index) { 2641 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2642 return false; 2643 } 2644 hw_thread.clear(); 2645 hw_thread.os_id = proc; 2646 // Put in topology information 2647 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { 2648 hw_thread.ids[idx] = apic_id & my_levels[j].mask; 2649 if (j > 0) { 2650 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; 2651 } 2652 } 2653 // Hybrid information 2654 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { 2655 kmp_hw_core_type_t type; 2656 unsigned native_model_id; 2657 int efficiency; 2658 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id); 2659 hw_thread.attrs.set_core_type(type); 2660 hw_thread.attrs.set_core_eff(efficiency); 2661 } 2662 hw_thread_index++; 2663 } 2664 KMP_ASSERT(hw_thread_index > 0); 2665 __kmp_topology->sort_ids(); 2666 if (!__kmp_topology->check_ids()) { 2667 kmp_topology_t::deallocate(__kmp_topology); 2668 __kmp_topology = nullptr; 2669 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 2670 return false; 2671 } 2672 return true; 2673 } 2674 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2675 2676 #define osIdIndex 0 2677 #define threadIdIndex 1 2678 #define coreIdIndex 2 2679 #define pkgIdIndex 3 2680 #define nodeIdIndex 4 2681 2682 typedef unsigned *ProcCpuInfo; 2683 static unsigned maxIndex = pkgIdIndex; 2684 2685 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 2686 const void *b) { 2687 unsigned i; 2688 const unsigned *aa = *(unsigned *const *)a; 2689 const unsigned *bb = *(unsigned *const *)b; 2690 for (i = maxIndex;; i--) { 2691 if (aa[i] < bb[i]) 2692 return -1; 2693 if (aa[i] > bb[i]) 2694 return 1; 2695 if (i == osIdIndex) 2696 break; 2697 } 2698 return 0; 2699 } 2700 2701 #if KMP_USE_HIER_SCHED 2702 // Set the array sizes for the hierarchy layers 2703 static void __kmp_dispatch_set_hierarchy_values() { 2704 // Set the maximum number of L1's to number of cores 2705 // Set the maximum number of L2's to to either number of cores / 2 for 2706 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 2707 // Or the number of cores for Intel(R) Xeon(R) processors 2708 // Set the maximum number of NUMA nodes and L3's to number of packages 2709 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 2710 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2711 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 2712 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2713 KMP_MIC_SUPPORTED 2714 if (__kmp_mic_type >= mic3) 2715 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 2716 else 2717 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2718 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 2719 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 2720 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 2721 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 2722 // Set the number of threads per unit 2723 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 2724 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 2725 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 2726 __kmp_nThreadsPerCore; 2727 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2728 KMP_MIC_SUPPORTED 2729 if (__kmp_mic_type >= mic3) 2730 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2731 2 * __kmp_nThreadsPerCore; 2732 else 2733 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2734 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2735 __kmp_nThreadsPerCore; 2736 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 2737 nCoresPerPkg * __kmp_nThreadsPerCore; 2738 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 2739 nCoresPerPkg * __kmp_nThreadsPerCore; 2740 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 2741 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2742 } 2743 2744 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2745 // i.e., this thread's L1 or this thread's L2, etc. 2746 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2747 int index = type + 1; 2748 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2749 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2750 if (type == kmp_hier_layer_e::LAYER_THREAD) 2751 return tid; 2752 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2753 return 0; 2754 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2755 if (tid >= num_hw_threads) 2756 tid = tid % num_hw_threads; 2757 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2758 } 2759 2760 // Return the number of t1's per t2 2761 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2762 int i1 = t1 + 1; 2763 int i2 = t2 + 1; 2764 KMP_DEBUG_ASSERT(i1 <= i2); 2765 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2766 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2767 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2768 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2769 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2770 } 2771 #endif // KMP_USE_HIER_SCHED 2772 2773 static inline const char *__kmp_cpuinfo_get_filename() { 2774 const char *filename; 2775 if (__kmp_cpuinfo_file != nullptr) 2776 filename = __kmp_cpuinfo_file; 2777 else 2778 filename = "/proc/cpuinfo"; 2779 return filename; 2780 } 2781 2782 static inline const char *__kmp_cpuinfo_get_envvar() { 2783 const char *envvar = nullptr; 2784 if (__kmp_cpuinfo_file != nullptr) 2785 envvar = "KMP_CPUINFO_FILE"; 2786 return envvar; 2787 } 2788 2789 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2790 // affinity map. 2791 static bool __kmp_affinity_create_cpuinfo_map(int *line, 2792 kmp_i18n_id_t *const msg_id) { 2793 const char *filename = __kmp_cpuinfo_get_filename(); 2794 const char *envvar = __kmp_cpuinfo_get_envvar(); 2795 *msg_id = kmp_i18n_null; 2796 2797 if (__kmp_affinity_verbose) { 2798 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 2799 } 2800 2801 kmp_safe_raii_file_t f(filename, "r", envvar); 2802 2803 // Scan of the file, and count the number of "processor" (osId) fields, 2804 // and find the highest value of <n> for a node_<n> field. 2805 char buf[256]; 2806 unsigned num_records = 0; 2807 while (!feof(f)) { 2808 buf[sizeof(buf) - 1] = 1; 2809 if (!fgets(buf, sizeof(buf), f)) { 2810 // Read errors presumably because of EOF 2811 break; 2812 } 2813 2814 char s1[] = "processor"; 2815 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2816 num_records++; 2817 continue; 2818 } 2819 2820 // FIXME - this will match "node_<n> <garbage>" 2821 unsigned level; 2822 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2823 // validate the input fisrt: 2824 if (level > (unsigned)__kmp_xproc) { // level is too big 2825 level = __kmp_xproc; 2826 } 2827 if (nodeIdIndex + level >= maxIndex) { 2828 maxIndex = nodeIdIndex + level; 2829 } 2830 continue; 2831 } 2832 } 2833 2834 // Check for empty file / no valid processor records, or too many. The number 2835 // of records can't exceed the number of valid bits in the affinity mask. 2836 if (num_records == 0) { 2837 *msg_id = kmp_i18n_str_NoProcRecords; 2838 return false; 2839 } 2840 if (num_records > (unsigned)__kmp_xproc) { 2841 *msg_id = kmp_i18n_str_TooManyProcRecords; 2842 return false; 2843 } 2844 2845 // Set the file pointer back to the beginning, so that we can scan the file 2846 // again, this time performing a full parse of the data. Allocate a vector of 2847 // ProcCpuInfo object, where we will place the data. Adding an extra element 2848 // at the end allows us to remove a lot of extra checks for termination 2849 // conditions. 2850 if (fseek(f, 0, SEEK_SET) != 0) { 2851 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2852 return false; 2853 } 2854 2855 // Allocate the array of records to store the proc info in. The dummy 2856 // element at the end makes the logic in filling them out easier to code. 2857 unsigned **threadInfo = 2858 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2859 unsigned i; 2860 for (i = 0; i <= num_records; i++) { 2861 threadInfo[i] = 2862 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2863 } 2864 2865 #define CLEANUP_THREAD_INFO \ 2866 for (i = 0; i <= num_records; i++) { \ 2867 __kmp_free(threadInfo[i]); \ 2868 } \ 2869 __kmp_free(threadInfo); 2870 2871 // A value of UINT_MAX means that we didn't find the field 2872 unsigned __index; 2873 2874 #define INIT_PROC_INFO(p) \ 2875 for (__index = 0; __index <= maxIndex; __index++) { \ 2876 (p)[__index] = UINT_MAX; \ 2877 } 2878 2879 for (i = 0; i <= num_records; i++) { 2880 INIT_PROC_INFO(threadInfo[i]); 2881 } 2882 2883 unsigned num_avail = 0; 2884 *line = 0; 2885 while (!feof(f)) { 2886 // Create an inner scoping level, so that all the goto targets at the end of 2887 // the loop appear in an outer scoping level. This avoids warnings about 2888 // jumping past an initialization to a target in the same block. 2889 { 2890 buf[sizeof(buf) - 1] = 1; 2891 bool long_line = false; 2892 if (!fgets(buf, sizeof(buf), f)) { 2893 // Read errors presumably because of EOF 2894 // If there is valid data in threadInfo[num_avail], then fake 2895 // a blank line in ensure that the last address gets parsed. 2896 bool valid = false; 2897 for (i = 0; i <= maxIndex; i++) { 2898 if (threadInfo[num_avail][i] != UINT_MAX) { 2899 valid = true; 2900 } 2901 } 2902 if (!valid) { 2903 break; 2904 } 2905 buf[0] = 0; 2906 } else if (!buf[sizeof(buf) - 1]) { 2907 // The line is longer than the buffer. Set a flag and don't 2908 // emit an error if we were going to ignore the line, anyway. 2909 long_line = true; 2910 2911 #define CHECK_LINE \ 2912 if (long_line) { \ 2913 CLEANUP_THREAD_INFO; \ 2914 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2915 return false; \ 2916 } 2917 } 2918 (*line)++; 2919 2920 char s1[] = "processor"; 2921 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2922 CHECK_LINE; 2923 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2924 unsigned val; 2925 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2926 goto no_val; 2927 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2928 #if KMP_ARCH_AARCH64 2929 // Handle the old AArch64 /proc/cpuinfo layout differently, 2930 // it contains all of the 'processor' entries listed in a 2931 // single 'Processor' section, therefore the normal looking 2932 // for duplicates in that section will always fail. 2933 num_avail++; 2934 #else 2935 goto dup_field; 2936 #endif 2937 threadInfo[num_avail][osIdIndex] = val; 2938 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2939 char path[256]; 2940 KMP_SNPRINTF( 2941 path, sizeof(path), 2942 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2943 threadInfo[num_avail][osIdIndex]); 2944 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2945 2946 KMP_SNPRINTF(path, sizeof(path), 2947 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2948 threadInfo[num_avail][osIdIndex]); 2949 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2950 continue; 2951 #else 2952 } 2953 char s2[] = "physical id"; 2954 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2955 CHECK_LINE; 2956 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2957 unsigned val; 2958 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2959 goto no_val; 2960 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2961 goto dup_field; 2962 threadInfo[num_avail][pkgIdIndex] = val; 2963 continue; 2964 } 2965 char s3[] = "core id"; 2966 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2967 CHECK_LINE; 2968 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2969 unsigned val; 2970 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2971 goto no_val; 2972 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2973 goto dup_field; 2974 threadInfo[num_avail][coreIdIndex] = val; 2975 continue; 2976 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2977 } 2978 char s4[] = "thread id"; 2979 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2980 CHECK_LINE; 2981 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2982 unsigned val; 2983 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2984 goto no_val; 2985 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 2986 goto dup_field; 2987 threadInfo[num_avail][threadIdIndex] = val; 2988 continue; 2989 } 2990 unsigned level; 2991 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2992 CHECK_LINE; 2993 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2994 unsigned val; 2995 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2996 goto no_val; 2997 // validate the input before using level: 2998 if (level > (unsigned)__kmp_xproc) { // level is too big 2999 level = __kmp_xproc; 3000 } 3001 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 3002 goto dup_field; 3003 threadInfo[num_avail][nodeIdIndex + level] = val; 3004 continue; 3005 } 3006 3007 // We didn't recognize the leading token on the line. There are lots of 3008 // leading tokens that we don't recognize - if the line isn't empty, go on 3009 // to the next line. 3010 if ((*buf != 0) && (*buf != '\n')) { 3011 // If the line is longer than the buffer, read characters 3012 // until we find a newline. 3013 if (long_line) { 3014 int ch; 3015 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 3016 ; 3017 } 3018 continue; 3019 } 3020 3021 // A newline has signalled the end of the processor record. 3022 // Check that there aren't too many procs specified. 3023 if ((int)num_avail == __kmp_xproc) { 3024 CLEANUP_THREAD_INFO; 3025 *msg_id = kmp_i18n_str_TooManyEntries; 3026 return false; 3027 } 3028 3029 // Check for missing fields. The osId field must be there, and we 3030 // currently require that the physical id field is specified, also. 3031 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 3032 CLEANUP_THREAD_INFO; 3033 *msg_id = kmp_i18n_str_MissingProcField; 3034 return false; 3035 } 3036 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 3037 CLEANUP_THREAD_INFO; 3038 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 3039 return false; 3040 } 3041 3042 // Skip this proc if it is not included in the machine model. 3043 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 3044 __kmp_affin_fullMask)) { 3045 INIT_PROC_INFO(threadInfo[num_avail]); 3046 continue; 3047 } 3048 3049 // We have a successful parse of this proc's info. 3050 // Increment the counter, and prepare for the next proc. 3051 num_avail++; 3052 KMP_ASSERT(num_avail <= num_records); 3053 INIT_PROC_INFO(threadInfo[num_avail]); 3054 } 3055 continue; 3056 3057 no_val: 3058 CLEANUP_THREAD_INFO; 3059 *msg_id = kmp_i18n_str_MissingValCpuinfo; 3060 return false; 3061 3062 dup_field: 3063 CLEANUP_THREAD_INFO; 3064 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 3065 return false; 3066 } 3067 *line = 0; 3068 3069 #if KMP_MIC && REDUCE_TEAM_SIZE 3070 unsigned teamSize = 0; 3071 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3072 3073 // check for num_records == __kmp_xproc ??? 3074 3075 // If it is configured to omit the package level when there is only a single 3076 // package, the logic at the end of this routine won't work if there is only a 3077 // single thread 3078 KMP_ASSERT(num_avail > 0); 3079 KMP_ASSERT(num_avail <= num_records); 3080 3081 // Sort the threadInfo table by physical Id. 3082 qsort(threadInfo, num_avail, sizeof(*threadInfo), 3083 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 3084 3085 // The table is now sorted by pkgId / coreId / threadId, but we really don't 3086 // know the radix of any of the fields. pkgId's may be sparsely assigned among 3087 // the chips on a system. Although coreId's are usually assigned 3088 // [0 .. coresPerPkg-1] and threadId's are usually assigned 3089 // [0..threadsPerCore-1], we don't want to make any such assumptions. 3090 // 3091 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 3092 // total # packages) are at this point - we want to determine that now. We 3093 // only have an upper bound on the first two figures. 3094 unsigned *counts = 3095 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3096 unsigned *maxCt = 3097 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3098 unsigned *totals = 3099 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3100 unsigned *lastId = 3101 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3102 3103 bool assign_thread_ids = false; 3104 unsigned threadIdCt; 3105 unsigned index; 3106 3107 restart_radix_check: 3108 threadIdCt = 0; 3109 3110 // Initialize the counter arrays with data from threadInfo[0]. 3111 if (assign_thread_ids) { 3112 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 3113 threadInfo[0][threadIdIndex] = threadIdCt++; 3114 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 3115 threadIdCt = threadInfo[0][threadIdIndex] + 1; 3116 } 3117 } 3118 for (index = 0; index <= maxIndex; index++) { 3119 counts[index] = 1; 3120 maxCt[index] = 1; 3121 totals[index] = 1; 3122 lastId[index] = threadInfo[0][index]; 3123 ; 3124 } 3125 3126 // Run through the rest of the OS procs. 3127 for (i = 1; i < num_avail; i++) { 3128 // Find the most significant index whose id differs from the id for the 3129 // previous OS proc. 3130 for (index = maxIndex; index >= threadIdIndex; index--) { 3131 if (assign_thread_ids && (index == threadIdIndex)) { 3132 // Auto-assign the thread id field if it wasn't specified. 3133 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3134 threadInfo[i][threadIdIndex] = threadIdCt++; 3135 } 3136 // Apparently the thread id field was specified for some entries and not 3137 // others. Start the thread id counter off at the next higher thread id. 3138 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3139 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3140 } 3141 } 3142 if (threadInfo[i][index] != lastId[index]) { 3143 // Run through all indices which are less significant, and reset the 3144 // counts to 1. At all levels up to and including index, we need to 3145 // increment the totals and record the last id. 3146 unsigned index2; 3147 for (index2 = threadIdIndex; index2 < index; index2++) { 3148 totals[index2]++; 3149 if (counts[index2] > maxCt[index2]) { 3150 maxCt[index2] = counts[index2]; 3151 } 3152 counts[index2] = 1; 3153 lastId[index2] = threadInfo[i][index2]; 3154 } 3155 counts[index]++; 3156 totals[index]++; 3157 lastId[index] = threadInfo[i][index]; 3158 3159 if (assign_thread_ids && (index > threadIdIndex)) { 3160 3161 #if KMP_MIC && REDUCE_TEAM_SIZE 3162 // The default team size is the total #threads in the machine 3163 // minus 1 thread for every core that has 3 or more threads. 3164 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3165 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3166 3167 // Restart the thread counter, as we are on a new core. 3168 threadIdCt = 0; 3169 3170 // Auto-assign the thread id field if it wasn't specified. 3171 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3172 threadInfo[i][threadIdIndex] = threadIdCt++; 3173 } 3174 3175 // Apparently the thread id field was specified for some entries and 3176 // not others. Start the thread id counter off at the next higher 3177 // thread id. 3178 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3179 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3180 } 3181 } 3182 break; 3183 } 3184 } 3185 if (index < threadIdIndex) { 3186 // If thread ids were specified, it is an error if they are not unique. 3187 // Also, check that we waven't already restarted the loop (to be safe - 3188 // shouldn't need to). 3189 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 3190 __kmp_free(lastId); 3191 __kmp_free(totals); 3192 __kmp_free(maxCt); 3193 __kmp_free(counts); 3194 CLEANUP_THREAD_INFO; 3195 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3196 return false; 3197 } 3198 3199 // If the thread ids were not specified and we see entries entries that 3200 // are duplicates, start the loop over and assign the thread ids manually. 3201 assign_thread_ids = true; 3202 goto restart_radix_check; 3203 } 3204 } 3205 3206 #if KMP_MIC && REDUCE_TEAM_SIZE 3207 // The default team size is the total #threads in the machine 3208 // minus 1 thread for every core that has 3 or more threads. 3209 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3210 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3211 3212 for (index = threadIdIndex; index <= maxIndex; index++) { 3213 if (counts[index] > maxCt[index]) { 3214 maxCt[index] = counts[index]; 3215 } 3216 } 3217 3218 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 3219 nCoresPerPkg = maxCt[coreIdIndex]; 3220 nPackages = totals[pkgIdIndex]; 3221 3222 // When affinity is off, this routine will still be called to set 3223 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 3224 // Make sure all these vars are set correctly, and return now if affinity is 3225 // not enabled. 3226 __kmp_ncores = totals[coreIdIndex]; 3227 if (!KMP_AFFINITY_CAPABLE()) { 3228 KMP_ASSERT(__kmp_affinity_type == affinity_none); 3229 return true; 3230 } 3231 3232 #if KMP_MIC && REDUCE_TEAM_SIZE 3233 // Set the default team size. 3234 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 3235 __kmp_dflt_team_nth = teamSize; 3236 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 3237 "__kmp_dflt_team_nth = %d\n", 3238 __kmp_dflt_team_nth)); 3239 } 3240 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3241 3242 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 3243 3244 // Count the number of levels which have more nodes at that level than at the 3245 // parent's level (with there being an implicit root node of the top level). 3246 // This is equivalent to saying that there is at least one node at this level 3247 // which has a sibling. These levels are in the map, and the package level is 3248 // always in the map. 3249 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 3250 for (index = threadIdIndex; index < maxIndex; index++) { 3251 KMP_ASSERT(totals[index] >= totals[index + 1]); 3252 inMap[index] = (totals[index] > totals[index + 1]); 3253 } 3254 inMap[maxIndex] = (totals[maxIndex] > 1); 3255 inMap[pkgIdIndex] = true; 3256 inMap[coreIdIndex] = true; 3257 inMap[threadIdIndex] = true; 3258 3259 int depth = 0; 3260 int idx = 0; 3261 kmp_hw_t types[KMP_HW_LAST]; 3262 int pkgLevel = -1; 3263 int coreLevel = -1; 3264 int threadLevel = -1; 3265 for (index = threadIdIndex; index <= maxIndex; index++) { 3266 if (inMap[index]) { 3267 depth++; 3268 } 3269 } 3270 if (inMap[pkgIdIndex]) { 3271 pkgLevel = idx; 3272 types[idx++] = KMP_HW_SOCKET; 3273 } 3274 if (inMap[coreIdIndex]) { 3275 coreLevel = idx; 3276 types[idx++] = KMP_HW_CORE; 3277 } 3278 if (inMap[threadIdIndex]) { 3279 threadLevel = idx; 3280 types[idx++] = KMP_HW_THREAD; 3281 } 3282 KMP_ASSERT(depth > 0); 3283 3284 // Construct the data structure that is to be returned. 3285 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); 3286 3287 for (i = 0; i < num_avail; ++i) { 3288 unsigned os = threadInfo[i][osIdIndex]; 3289 int src_index; 3290 int dst_index = 0; 3291 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3292 hw_thread.clear(); 3293 hw_thread.os_id = os; 3294 3295 idx = 0; 3296 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 3297 if (!inMap[src_index]) { 3298 continue; 3299 } 3300 if (src_index == pkgIdIndex) { 3301 hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; 3302 } else if (src_index == coreIdIndex) { 3303 hw_thread.ids[coreLevel] = threadInfo[i][src_index]; 3304 } else if (src_index == threadIdIndex) { 3305 hw_thread.ids[threadLevel] = threadInfo[i][src_index]; 3306 } 3307 dst_index++; 3308 } 3309 } 3310 3311 __kmp_free(inMap); 3312 __kmp_free(lastId); 3313 __kmp_free(totals); 3314 __kmp_free(maxCt); 3315 __kmp_free(counts); 3316 CLEANUP_THREAD_INFO; 3317 __kmp_topology->sort_ids(); 3318 if (!__kmp_topology->check_ids()) { 3319 kmp_topology_t::deallocate(__kmp_topology); 3320 __kmp_topology = nullptr; 3321 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3322 return false; 3323 } 3324 return true; 3325 } 3326 3327 // Create and return a table of affinity masks, indexed by OS thread ID. 3328 // This routine handles OR'ing together all the affinity masks of threads 3329 // that are sufficiently close, if granularity > fine. 3330 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 3331 unsigned *numUnique) { 3332 // First form a table of affinity masks in order of OS thread id. 3333 int maxOsId; 3334 int i; 3335 int numAddrs = __kmp_topology->get_num_hw_threads(); 3336 int depth = __kmp_topology->get_depth(); 3337 KMP_ASSERT(numAddrs); 3338 KMP_ASSERT(depth); 3339 3340 maxOsId = 0; 3341 for (i = numAddrs - 1;; --i) { 3342 int osId = __kmp_topology->at(i).os_id; 3343 if (osId > maxOsId) { 3344 maxOsId = osId; 3345 } 3346 if (i == 0) 3347 break; 3348 } 3349 kmp_affin_mask_t *osId2Mask; 3350 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 3351 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 3352 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 3353 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 3354 } 3355 if (__kmp_affinity_gran_levels >= (int)depth) { 3356 if (__kmp_affinity_verbose || 3357 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3358 KMP_WARNING(AffThreadsMayMigrate); 3359 } 3360 } 3361 3362 // Run through the table, forming the masks for all threads on each core. 3363 // Threads on the same core will have identical kmp_hw_thread_t objects, not 3364 // considering the last level, which must be the thread id. All threads on a 3365 // core will appear consecutively. 3366 int unique = 0; 3367 int j = 0; // index of 1st thread on core 3368 int leader = 0; 3369 kmp_affin_mask_t *sum; 3370 KMP_CPU_ALLOC_ON_STACK(sum); 3371 KMP_CPU_ZERO(sum); 3372 KMP_CPU_SET(__kmp_topology->at(0).os_id, sum); 3373 for (i = 1; i < numAddrs; i++) { 3374 // If this thread is sufficiently close to the leader (within the 3375 // granularity setting), then set the bit for this os thread in the 3376 // affinity mask for this group, and go on to the next thread. 3377 if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) { 3378 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3379 continue; 3380 } 3381 3382 // For every thread in this group, copy the mask to the thread's entry in 3383 // the osId2Mask table. Mark the first address as a leader. 3384 for (; j < i; j++) { 3385 int osId = __kmp_topology->at(j).os_id; 3386 KMP_DEBUG_ASSERT(osId <= maxOsId); 3387 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 3388 KMP_CPU_COPY(mask, sum); 3389 __kmp_topology->at(j).leader = (j == leader); 3390 } 3391 unique++; 3392 3393 // Start a new mask. 3394 leader = i; 3395 KMP_CPU_ZERO(sum); 3396 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3397 } 3398 3399 // For every thread in last group, copy the mask to the thread's 3400 // entry in the osId2Mask table. 3401 for (; j < i; j++) { 3402 int osId = __kmp_topology->at(j).os_id; 3403 KMP_DEBUG_ASSERT(osId <= maxOsId); 3404 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 3405 KMP_CPU_COPY(mask, sum); 3406 __kmp_topology->at(j).leader = (j == leader); 3407 } 3408 unique++; 3409 KMP_CPU_FREE_FROM_STACK(sum); 3410 3411 *maxIndex = maxOsId; 3412 *numUnique = unique; 3413 return osId2Mask; 3414 } 3415 3416 // Stuff for the affinity proclist parsers. It's easier to declare these vars 3417 // as file-static than to try and pass them through the calling sequence of 3418 // the recursive-descent OMP_PLACES parser. 3419 static kmp_affin_mask_t *newMasks; 3420 static int numNewMasks; 3421 static int nextNewMask; 3422 3423 #define ADD_MASK(_mask) \ 3424 { \ 3425 if (nextNewMask >= numNewMasks) { \ 3426 int i; \ 3427 numNewMasks *= 2; \ 3428 kmp_affin_mask_t *temp; \ 3429 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 3430 for (i = 0; i < numNewMasks / 2; i++) { \ 3431 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 3432 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 3433 KMP_CPU_COPY(dest, src); \ 3434 } \ 3435 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 3436 newMasks = temp; \ 3437 } \ 3438 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 3439 nextNewMask++; \ 3440 } 3441 3442 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 3443 { \ 3444 if (((_osId) > _maxOsId) || \ 3445 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 3446 if (__kmp_affinity_verbose || \ 3447 (__kmp_affinity_warnings && \ 3448 (__kmp_affinity_type != affinity_none))) { \ 3449 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 3450 } \ 3451 } else { \ 3452 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 3453 } \ 3454 } 3455 3456 // Re-parse the proclist (for the explicit affinity type), and form the list 3457 // of affinity newMasks indexed by gtid. 3458 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 3459 unsigned int *out_numMasks, 3460 const char *proclist, 3461 kmp_affin_mask_t *osId2Mask, 3462 int maxOsId) { 3463 int i; 3464 const char *scan = proclist; 3465 const char *next = proclist; 3466 3467 // We use malloc() for the temporary mask vector, so that we can use 3468 // realloc() to extend it. 3469 numNewMasks = 2; 3470 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3471 nextNewMask = 0; 3472 kmp_affin_mask_t *sumMask; 3473 KMP_CPU_ALLOC(sumMask); 3474 int setSize = 0; 3475 3476 for (;;) { 3477 int start, end, stride; 3478 3479 SKIP_WS(scan); 3480 next = scan; 3481 if (*next == '\0') { 3482 break; 3483 } 3484 3485 if (*next == '{') { 3486 int num; 3487 setSize = 0; 3488 next++; // skip '{' 3489 SKIP_WS(next); 3490 scan = next; 3491 3492 // Read the first integer in the set. 3493 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 3494 SKIP_DIGITS(next); 3495 num = __kmp_str_to_int(scan, *next); 3496 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3497 3498 // Copy the mask for that osId to the sum (union) mask. 3499 if ((num > maxOsId) || 3500 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3501 if (__kmp_affinity_verbose || 3502 (__kmp_affinity_warnings && 3503 (__kmp_affinity_type != affinity_none))) { 3504 KMP_WARNING(AffIgnoreInvalidProcID, num); 3505 } 3506 KMP_CPU_ZERO(sumMask); 3507 } else { 3508 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3509 setSize = 1; 3510 } 3511 3512 for (;;) { 3513 // Check for end of set. 3514 SKIP_WS(next); 3515 if (*next == '}') { 3516 next++; // skip '}' 3517 break; 3518 } 3519 3520 // Skip optional comma. 3521 if (*next == ',') { 3522 next++; 3523 } 3524 SKIP_WS(next); 3525 3526 // Read the next integer in the set. 3527 scan = next; 3528 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3529 3530 SKIP_DIGITS(next); 3531 num = __kmp_str_to_int(scan, *next); 3532 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3533 3534 // Add the mask for that osId to the sum mask. 3535 if ((num > maxOsId) || 3536 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3537 if (__kmp_affinity_verbose || 3538 (__kmp_affinity_warnings && 3539 (__kmp_affinity_type != affinity_none))) { 3540 KMP_WARNING(AffIgnoreInvalidProcID, num); 3541 } 3542 } else { 3543 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3544 setSize++; 3545 } 3546 } 3547 if (setSize > 0) { 3548 ADD_MASK(sumMask); 3549 } 3550 3551 SKIP_WS(next); 3552 if (*next == ',') { 3553 next++; 3554 } 3555 scan = next; 3556 continue; 3557 } 3558 3559 // Read the first integer. 3560 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3561 SKIP_DIGITS(next); 3562 start = __kmp_str_to_int(scan, *next); 3563 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 3564 SKIP_WS(next); 3565 3566 // If this isn't a range, then add a mask to the list and go on. 3567 if (*next != '-') { 3568 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3569 3570 // Skip optional comma. 3571 if (*next == ',') { 3572 next++; 3573 } 3574 scan = next; 3575 continue; 3576 } 3577 3578 // This is a range. Skip over the '-' and read in the 2nd int. 3579 next++; // skip '-' 3580 SKIP_WS(next); 3581 scan = next; 3582 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3583 SKIP_DIGITS(next); 3584 end = __kmp_str_to_int(scan, *next); 3585 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 3586 3587 // Check for a stride parameter 3588 stride = 1; 3589 SKIP_WS(next); 3590 if (*next == ':') { 3591 // A stride is specified. Skip over the ':" and read the 3rd int. 3592 int sign = +1; 3593 next++; // skip ':' 3594 SKIP_WS(next); 3595 scan = next; 3596 if (*next == '-') { 3597 sign = -1; 3598 next++; 3599 SKIP_WS(next); 3600 scan = next; 3601 } 3602 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3603 SKIP_DIGITS(next); 3604 stride = __kmp_str_to_int(scan, *next); 3605 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 3606 stride *= sign; 3607 } 3608 3609 // Do some range checks. 3610 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 3611 if (stride > 0) { 3612 KMP_ASSERT2(start <= end, "bad explicit proc list"); 3613 } else { 3614 KMP_ASSERT2(start >= end, "bad explicit proc list"); 3615 } 3616 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 3617 3618 // Add the mask for each OS proc # to the list. 3619 if (stride > 0) { 3620 do { 3621 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3622 start += stride; 3623 } while (start <= end); 3624 } else { 3625 do { 3626 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3627 start += stride; 3628 } while (start >= end); 3629 } 3630 3631 // Skip optional comma. 3632 SKIP_WS(next); 3633 if (*next == ',') { 3634 next++; 3635 } 3636 scan = next; 3637 } 3638 3639 *out_numMasks = nextNewMask; 3640 if (nextNewMask == 0) { 3641 *out_masks = NULL; 3642 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3643 return; 3644 } 3645 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3646 for (i = 0; i < nextNewMask; i++) { 3647 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3648 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3649 KMP_CPU_COPY(dest, src); 3650 } 3651 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3652 KMP_CPU_FREE(sumMask); 3653 } 3654 3655 /*----------------------------------------------------------------------------- 3656 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3657 places. Again, Here is the grammar: 3658 3659 place_list := place 3660 place_list := place , place_list 3661 place := num 3662 place := place : num 3663 place := place : num : signed 3664 place := { subplacelist } 3665 place := ! place // (lowest priority) 3666 subplace_list := subplace 3667 subplace_list := subplace , subplace_list 3668 subplace := num 3669 subplace := num : num 3670 subplace := num : num : signed 3671 signed := num 3672 signed := + signed 3673 signed := - signed 3674 -----------------------------------------------------------------------------*/ 3675 static void __kmp_process_subplace_list(const char **scan, 3676 kmp_affin_mask_t *osId2Mask, 3677 int maxOsId, kmp_affin_mask_t *tempMask, 3678 int *setSize) { 3679 const char *next; 3680 3681 for (;;) { 3682 int start, count, stride, i; 3683 3684 // Read in the starting proc id 3685 SKIP_WS(*scan); 3686 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3687 next = *scan; 3688 SKIP_DIGITS(next); 3689 start = __kmp_str_to_int(*scan, *next); 3690 KMP_ASSERT(start >= 0); 3691 *scan = next; 3692 3693 // valid follow sets are ',' ':' and '}' 3694 SKIP_WS(*scan); 3695 if (**scan == '}' || **scan == ',') { 3696 if ((start > maxOsId) || 3697 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3698 if (__kmp_affinity_verbose || 3699 (__kmp_affinity_warnings && 3700 (__kmp_affinity_type != affinity_none))) { 3701 KMP_WARNING(AffIgnoreInvalidProcID, start); 3702 } 3703 } else { 3704 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3705 (*setSize)++; 3706 } 3707 if (**scan == '}') { 3708 break; 3709 } 3710 (*scan)++; // skip ',' 3711 continue; 3712 } 3713 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3714 (*scan)++; // skip ':' 3715 3716 // Read count parameter 3717 SKIP_WS(*scan); 3718 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3719 next = *scan; 3720 SKIP_DIGITS(next); 3721 count = __kmp_str_to_int(*scan, *next); 3722 KMP_ASSERT(count >= 0); 3723 *scan = next; 3724 3725 // valid follow sets are ',' ':' and '}' 3726 SKIP_WS(*scan); 3727 if (**scan == '}' || **scan == ',') { 3728 for (i = 0; i < count; i++) { 3729 if ((start > maxOsId) || 3730 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3731 if (__kmp_affinity_verbose || 3732 (__kmp_affinity_warnings && 3733 (__kmp_affinity_type != affinity_none))) { 3734 KMP_WARNING(AffIgnoreInvalidProcID, start); 3735 } 3736 break; // don't proliferate warnings for large count 3737 } else { 3738 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3739 start++; 3740 (*setSize)++; 3741 } 3742 } 3743 if (**scan == '}') { 3744 break; 3745 } 3746 (*scan)++; // skip ',' 3747 continue; 3748 } 3749 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3750 (*scan)++; // skip ':' 3751 3752 // Read stride parameter 3753 int sign = +1; 3754 for (;;) { 3755 SKIP_WS(*scan); 3756 if (**scan == '+') { 3757 (*scan)++; // skip '+' 3758 continue; 3759 } 3760 if (**scan == '-') { 3761 sign *= -1; 3762 (*scan)++; // skip '-' 3763 continue; 3764 } 3765 break; 3766 } 3767 SKIP_WS(*scan); 3768 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3769 next = *scan; 3770 SKIP_DIGITS(next); 3771 stride = __kmp_str_to_int(*scan, *next); 3772 KMP_ASSERT(stride >= 0); 3773 *scan = next; 3774 stride *= sign; 3775 3776 // valid follow sets are ',' and '}' 3777 SKIP_WS(*scan); 3778 if (**scan == '}' || **scan == ',') { 3779 for (i = 0; i < count; i++) { 3780 if ((start > maxOsId) || 3781 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3782 if (__kmp_affinity_verbose || 3783 (__kmp_affinity_warnings && 3784 (__kmp_affinity_type != affinity_none))) { 3785 KMP_WARNING(AffIgnoreInvalidProcID, start); 3786 } 3787 break; // don't proliferate warnings for large count 3788 } else { 3789 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3790 start += stride; 3791 (*setSize)++; 3792 } 3793 } 3794 if (**scan == '}') { 3795 break; 3796 } 3797 (*scan)++; // skip ',' 3798 continue; 3799 } 3800 3801 KMP_ASSERT2(0, "bad explicit places list"); 3802 } 3803 } 3804 3805 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3806 int maxOsId, kmp_affin_mask_t *tempMask, 3807 int *setSize) { 3808 const char *next; 3809 3810 // valid follow sets are '{' '!' and num 3811 SKIP_WS(*scan); 3812 if (**scan == '{') { 3813 (*scan)++; // skip '{' 3814 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3815 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3816 (*scan)++; // skip '}' 3817 } else if (**scan == '!') { 3818 (*scan)++; // skip '!' 3819 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3820 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3821 } else if ((**scan >= '0') && (**scan <= '9')) { 3822 next = *scan; 3823 SKIP_DIGITS(next); 3824 int num = __kmp_str_to_int(*scan, *next); 3825 KMP_ASSERT(num >= 0); 3826 if ((num > maxOsId) || 3827 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3828 if (__kmp_affinity_verbose || 3829 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3830 KMP_WARNING(AffIgnoreInvalidProcID, num); 3831 } 3832 } else { 3833 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3834 (*setSize)++; 3835 } 3836 *scan = next; // skip num 3837 } else { 3838 KMP_ASSERT2(0, "bad explicit places list"); 3839 } 3840 } 3841 3842 // static void 3843 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3844 unsigned int *out_numMasks, 3845 const char *placelist, 3846 kmp_affin_mask_t *osId2Mask, 3847 int maxOsId) { 3848 int i, j, count, stride, sign; 3849 const char *scan = placelist; 3850 const char *next = placelist; 3851 3852 numNewMasks = 2; 3853 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3854 nextNewMask = 0; 3855 3856 // tempMask is modified based on the previous or initial 3857 // place to form the current place 3858 // previousMask contains the previous place 3859 kmp_affin_mask_t *tempMask; 3860 kmp_affin_mask_t *previousMask; 3861 KMP_CPU_ALLOC(tempMask); 3862 KMP_CPU_ZERO(tempMask); 3863 KMP_CPU_ALLOC(previousMask); 3864 KMP_CPU_ZERO(previousMask); 3865 int setSize = 0; 3866 3867 for (;;) { 3868 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3869 3870 // valid follow sets are ',' ':' and EOL 3871 SKIP_WS(scan); 3872 if (*scan == '\0' || *scan == ',') { 3873 if (setSize > 0) { 3874 ADD_MASK(tempMask); 3875 } 3876 KMP_CPU_ZERO(tempMask); 3877 setSize = 0; 3878 if (*scan == '\0') { 3879 break; 3880 } 3881 scan++; // skip ',' 3882 continue; 3883 } 3884 3885 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3886 scan++; // skip ':' 3887 3888 // Read count parameter 3889 SKIP_WS(scan); 3890 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3891 next = scan; 3892 SKIP_DIGITS(next); 3893 count = __kmp_str_to_int(scan, *next); 3894 KMP_ASSERT(count >= 0); 3895 scan = next; 3896 3897 // valid follow sets are ',' ':' and EOL 3898 SKIP_WS(scan); 3899 if (*scan == '\0' || *scan == ',') { 3900 stride = +1; 3901 } else { 3902 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3903 scan++; // skip ':' 3904 3905 // Read stride parameter 3906 sign = +1; 3907 for (;;) { 3908 SKIP_WS(scan); 3909 if (*scan == '+') { 3910 scan++; // skip '+' 3911 continue; 3912 } 3913 if (*scan == '-') { 3914 sign *= -1; 3915 scan++; // skip '-' 3916 continue; 3917 } 3918 break; 3919 } 3920 SKIP_WS(scan); 3921 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3922 next = scan; 3923 SKIP_DIGITS(next); 3924 stride = __kmp_str_to_int(scan, *next); 3925 KMP_DEBUG_ASSERT(stride >= 0); 3926 scan = next; 3927 stride *= sign; 3928 } 3929 3930 // Add places determined by initial_place : count : stride 3931 for (i = 0; i < count; i++) { 3932 if (setSize == 0) { 3933 break; 3934 } 3935 // Add the current place, then build the next place (tempMask) from that 3936 KMP_CPU_COPY(previousMask, tempMask); 3937 ADD_MASK(previousMask); 3938 KMP_CPU_ZERO(tempMask); 3939 setSize = 0; 3940 KMP_CPU_SET_ITERATE(j, previousMask) { 3941 if (!KMP_CPU_ISSET(j, previousMask)) { 3942 continue; 3943 } 3944 if ((j + stride > maxOsId) || (j + stride < 0) || 3945 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3946 (!KMP_CPU_ISSET(j + stride, 3947 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3948 if ((__kmp_affinity_verbose || 3949 (__kmp_affinity_warnings && 3950 (__kmp_affinity_type != affinity_none))) && 3951 i < count - 1) { 3952 KMP_WARNING(AffIgnoreInvalidProcID, j + stride); 3953 } 3954 continue; 3955 } 3956 KMP_CPU_SET(j + stride, tempMask); 3957 setSize++; 3958 } 3959 } 3960 KMP_CPU_ZERO(tempMask); 3961 setSize = 0; 3962 3963 // valid follow sets are ',' and EOL 3964 SKIP_WS(scan); 3965 if (*scan == '\0') { 3966 break; 3967 } 3968 if (*scan == ',') { 3969 scan++; // skip ',' 3970 continue; 3971 } 3972 3973 KMP_ASSERT2(0, "bad explicit places list"); 3974 } 3975 3976 *out_numMasks = nextNewMask; 3977 if (nextNewMask == 0) { 3978 *out_masks = NULL; 3979 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3980 return; 3981 } 3982 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3983 KMP_CPU_FREE(tempMask); 3984 KMP_CPU_FREE(previousMask); 3985 for (i = 0; i < nextNewMask; i++) { 3986 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3987 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3988 KMP_CPU_COPY(dest, src); 3989 } 3990 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3991 } 3992 3993 #undef ADD_MASK 3994 #undef ADD_MASK_OSID 3995 3996 // This function figures out the deepest level at which there is at least one 3997 // cluster/core with more than one processing unit bound to it. 3998 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { 3999 int core_level = 0; 4000 4001 for (int i = 0; i < nprocs; i++) { 4002 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 4003 for (int j = bottom_level; j > 0; j--) { 4004 if (hw_thread.ids[j] > 0) { 4005 if (core_level < (j - 1)) { 4006 core_level = j - 1; 4007 } 4008 } 4009 } 4010 } 4011 return core_level; 4012 } 4013 4014 // This function counts number of clusters/cores at given level. 4015 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, 4016 int core_level) { 4017 return __kmp_topology->get_count(core_level); 4018 } 4019 // This function finds to which cluster/core given processing unit is bound. 4020 static int __kmp_affinity_find_core(int proc, int bottom_level, 4021 int core_level) { 4022 int core = 0; 4023 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); 4024 for (int i = 0; i <= proc; ++i) { 4025 if (i + 1 <= proc) { 4026 for (int j = 0; j <= core_level; ++j) { 4027 if (__kmp_topology->at(i + 1).sub_ids[j] != 4028 __kmp_topology->at(i).sub_ids[j]) { 4029 core++; 4030 break; 4031 } 4032 } 4033 } 4034 } 4035 return core; 4036 } 4037 4038 // This function finds maximal number of processing units bound to a 4039 // cluster/core at given level. 4040 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, 4041 int core_level) { 4042 if (core_level >= bottom_level) 4043 return 1; 4044 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); 4045 return __kmp_topology->calculate_ratio(thread_level, core_level); 4046 } 4047 4048 static int *procarr = NULL; 4049 static int __kmp_aff_depth = 0; 4050 4051 // Create a one element mask array (set of places) which only contains the 4052 // initial process's affinity mask 4053 static void __kmp_create_affinity_none_places() { 4054 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4055 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4056 __kmp_affinity_num_masks = 1; 4057 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4058 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4059 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4060 } 4061 4062 static void __kmp_aux_affinity_initialize(void) { 4063 if (__kmp_affinity_masks != NULL) { 4064 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4065 return; 4066 } 4067 4068 // Create the "full" mask - this defines all of the processors that we 4069 // consider to be in the machine model. If respect is set, then it is the 4070 // initialization thread's affinity mask. Otherwise, it is all processors that 4071 // we know about on the machine. 4072 if (__kmp_affin_fullMask == NULL) { 4073 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4074 } 4075 if (KMP_AFFINITY_CAPABLE()) { 4076 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4077 if (__kmp_affinity_respect_mask) { 4078 // Count the number of available processors. 4079 unsigned i; 4080 __kmp_avail_proc = 0; 4081 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4082 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4083 continue; 4084 } 4085 __kmp_avail_proc++; 4086 } 4087 if (__kmp_avail_proc > __kmp_xproc) { 4088 if (__kmp_affinity_verbose || 4089 (__kmp_affinity_warnings && 4090 (__kmp_affinity_type != affinity_none))) { 4091 KMP_WARNING(ErrorInitializeAffinity); 4092 } 4093 __kmp_affinity_type = affinity_none; 4094 KMP_AFFINITY_DISABLE(); 4095 return; 4096 } 4097 4098 if (__kmp_affinity_verbose) { 4099 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4100 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4101 __kmp_affin_fullMask); 4102 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 4103 } 4104 } else { 4105 if (__kmp_affinity_verbose) { 4106 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4107 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4108 __kmp_affin_fullMask); 4109 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 4110 } 4111 __kmp_avail_proc = 4112 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4113 #if KMP_OS_WINDOWS 4114 // Set the process affinity mask since threads' affinity 4115 // masks must be subset of process mask in Windows* OS 4116 __kmp_affin_fullMask->set_process_affinity(true); 4117 #endif 4118 } 4119 } 4120 4121 kmp_i18n_id_t msg_id = kmp_i18n_null; 4122 4123 // For backward compatibility, setting KMP_CPUINFO_FILE => 4124 // KMP_TOPOLOGY_METHOD=cpuinfo 4125 if ((__kmp_cpuinfo_file != NULL) && 4126 (__kmp_affinity_top_method == affinity_top_method_all)) { 4127 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4128 } 4129 4130 bool success = false; 4131 if (__kmp_affinity_top_method == affinity_top_method_all) { 4132 // In the default code path, errors are not fatal - we just try using 4133 // another method. We only emit a warning message if affinity is on, or the 4134 // verbose flag is set, an the nowarnings flag was not set. 4135 #if KMP_USE_HWLOC 4136 if (!success && 4137 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4138 if (!__kmp_hwloc_error) { 4139 success = __kmp_affinity_create_hwloc_map(&msg_id); 4140 if (!success && __kmp_affinity_verbose) { 4141 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4142 } 4143 } else if (__kmp_affinity_verbose) { 4144 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4145 } 4146 } 4147 #endif 4148 4149 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4150 if (!success) { 4151 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4152 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4153 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4154 } 4155 } 4156 if (!success) { 4157 success = __kmp_affinity_create_apicid_map(&msg_id); 4158 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4159 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4160 } 4161 } 4162 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4163 4164 #if KMP_OS_LINUX 4165 if (!success) { 4166 int line = 0; 4167 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4168 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4169 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4170 } 4171 } 4172 #endif /* KMP_OS_LINUX */ 4173 4174 #if KMP_GROUP_AFFINITY 4175 if (!success && (__kmp_num_proc_groups > 1)) { 4176 success = __kmp_affinity_create_proc_group_map(&msg_id); 4177 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4178 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4179 } 4180 } 4181 #endif /* KMP_GROUP_AFFINITY */ 4182 4183 if (!success) { 4184 success = __kmp_affinity_create_flat_map(&msg_id); 4185 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4186 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4187 } 4188 KMP_ASSERT(success); 4189 } 4190 } 4191 4192 // If the user has specified that a paricular topology discovery method is to be 4193 // used, then we abort if that method fails. The exception is group affinity, 4194 // which might have been implicitly set. 4195 #if KMP_USE_HWLOC 4196 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4197 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4198 success = __kmp_affinity_create_hwloc_map(&msg_id); 4199 if (!success) { 4200 KMP_ASSERT(msg_id != kmp_i18n_null); 4201 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4202 } 4203 } 4204 #endif // KMP_USE_HWLOC 4205 4206 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4207 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || 4208 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 4209 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4210 if (!success) { 4211 KMP_ASSERT(msg_id != kmp_i18n_null); 4212 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4213 } 4214 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4215 success = __kmp_affinity_create_apicid_map(&msg_id); 4216 if (!success) { 4217 KMP_ASSERT(msg_id != kmp_i18n_null); 4218 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4219 } 4220 } 4221 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4222 4223 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4224 int line = 0; 4225 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4226 if (!success) { 4227 KMP_ASSERT(msg_id != kmp_i18n_null); 4228 const char *filename = __kmp_cpuinfo_get_filename(); 4229 if (line > 0) { 4230 KMP_FATAL(FileLineMsgExiting, filename, line, 4231 __kmp_i18n_catgets(msg_id)); 4232 } else { 4233 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4234 } 4235 } 4236 } 4237 4238 #if KMP_GROUP_AFFINITY 4239 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4240 success = __kmp_affinity_create_proc_group_map(&msg_id); 4241 KMP_ASSERT(success); 4242 if (!success) { 4243 KMP_ASSERT(msg_id != kmp_i18n_null); 4244 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4245 } 4246 } 4247 #endif /* KMP_GROUP_AFFINITY */ 4248 4249 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4250 success = __kmp_affinity_create_flat_map(&msg_id); 4251 // should not fail 4252 KMP_ASSERT(success); 4253 } 4254 4255 // Early exit if topology could not be created 4256 if (!__kmp_topology) { 4257 if (KMP_AFFINITY_CAPABLE() && 4258 (__kmp_affinity_verbose || 4259 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { 4260 KMP_WARNING(ErrorInitializeAffinity); 4261 } 4262 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && 4263 __kmp_ncores > 0) { 4264 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); 4265 __kmp_topology->canonicalize(nPackages, nCoresPerPkg, 4266 __kmp_nThreadsPerCore, __kmp_ncores); 4267 if (__kmp_affinity_verbose) { 4268 __kmp_topology->print("KMP_AFFINITY"); 4269 } 4270 } 4271 __kmp_affinity_type = affinity_none; 4272 __kmp_create_affinity_none_places(); 4273 #if KMP_USE_HIER_SCHED 4274 __kmp_dispatch_set_hierarchy_values(); 4275 #endif 4276 KMP_AFFINITY_DISABLE(); 4277 return; 4278 } 4279 4280 // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and 4281 // initialize other data structures which depend on the topology 4282 __kmp_topology->canonicalize(); 4283 if (__kmp_affinity_verbose) 4284 __kmp_topology->print("KMP_AFFINITY"); 4285 bool filtered = __kmp_topology->filter_hw_subset(); 4286 if (filtered && __kmp_affinity_verbose) 4287 __kmp_topology->print("KMP_HW_SUBSET"); 4288 machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); 4289 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); 4290 // If KMP_AFFINITY=none, then only create the single "none" place 4291 // which is the process's initial affinity mask or the number of 4292 // hardware threads depending on respect,norespect 4293 if (__kmp_affinity_type == affinity_none) { 4294 __kmp_create_affinity_none_places(); 4295 #if KMP_USE_HIER_SCHED 4296 __kmp_dispatch_set_hierarchy_values(); 4297 #endif 4298 return; 4299 } 4300 int depth = __kmp_topology->get_depth(); 4301 4302 // Create the table of masks, indexed by thread Id. 4303 unsigned maxIndex; 4304 unsigned numUnique; 4305 kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique); 4306 if (__kmp_affinity_gran_levels == 0) { 4307 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4308 } 4309 4310 switch (__kmp_affinity_type) { 4311 4312 case affinity_explicit: 4313 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4314 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4315 __kmp_affinity_process_proclist( 4316 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4317 __kmp_affinity_proclist, osId2Mask, maxIndex); 4318 } else { 4319 __kmp_affinity_process_placelist( 4320 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4321 __kmp_affinity_proclist, osId2Mask, maxIndex); 4322 } 4323 if (__kmp_affinity_num_masks == 0) { 4324 if (__kmp_affinity_verbose || 4325 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 4326 KMP_WARNING(AffNoValidProcID); 4327 } 4328 __kmp_affinity_type = affinity_none; 4329 __kmp_create_affinity_none_places(); 4330 return; 4331 } 4332 break; 4333 4334 // The other affinity types rely on sorting the hardware threads according to 4335 // some permutation of the machine topology tree. Set __kmp_affinity_compact 4336 // and __kmp_affinity_offset appropriately, then jump to a common code 4337 // fragment to do the sort and create the array of affinity masks. 4338 case affinity_logical: 4339 __kmp_affinity_compact = 0; 4340 if (__kmp_affinity_offset) { 4341 __kmp_affinity_offset = 4342 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4343 } 4344 goto sortTopology; 4345 4346 case affinity_physical: 4347 if (__kmp_nThreadsPerCore > 1) { 4348 __kmp_affinity_compact = 1; 4349 if (__kmp_affinity_compact >= depth) { 4350 __kmp_affinity_compact = 0; 4351 } 4352 } else { 4353 __kmp_affinity_compact = 0; 4354 } 4355 if (__kmp_affinity_offset) { 4356 __kmp_affinity_offset = 4357 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4358 } 4359 goto sortTopology; 4360 4361 case affinity_scatter: 4362 if (__kmp_affinity_compact >= depth) { 4363 __kmp_affinity_compact = 0; 4364 } else { 4365 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4366 } 4367 goto sortTopology; 4368 4369 case affinity_compact: 4370 if (__kmp_affinity_compact >= depth) { 4371 __kmp_affinity_compact = depth - 1; 4372 } 4373 goto sortTopology; 4374 4375 case affinity_balanced: 4376 if (depth <= 1) { 4377 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4378 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4379 } 4380 __kmp_affinity_type = affinity_none; 4381 __kmp_create_affinity_none_places(); 4382 return; 4383 } else if (!__kmp_topology->is_uniform()) { 4384 // Save the depth for further usage 4385 __kmp_aff_depth = depth; 4386 4387 int core_level = 4388 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); 4389 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, 4390 core_level); 4391 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4392 __kmp_avail_proc, depth - 1, core_level); 4393 4394 int nproc = ncores * maxprocpercore; 4395 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4396 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4397 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4398 } 4399 __kmp_affinity_type = affinity_none; 4400 return; 4401 } 4402 4403 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4404 for (int i = 0; i < nproc; i++) { 4405 procarr[i] = -1; 4406 } 4407 4408 int lastcore = -1; 4409 int inlastcore = 0; 4410 for (int i = 0; i < __kmp_avail_proc; i++) { 4411 int proc = __kmp_topology->at(i).os_id; 4412 int core = __kmp_affinity_find_core(i, depth - 1, core_level); 4413 4414 if (core == lastcore) { 4415 inlastcore++; 4416 } else { 4417 inlastcore = 0; 4418 } 4419 lastcore = core; 4420 4421 procarr[core * maxprocpercore + inlastcore] = proc; 4422 } 4423 } 4424 if (__kmp_affinity_compact >= depth) { 4425 __kmp_affinity_compact = depth - 1; 4426 } 4427 4428 sortTopology: 4429 // Allocate the gtid->affinity mask table. 4430 if (__kmp_affinity_dups) { 4431 __kmp_affinity_num_masks = __kmp_avail_proc; 4432 } else { 4433 __kmp_affinity_num_masks = numUnique; 4434 } 4435 4436 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4437 (__kmp_affinity_num_places > 0) && 4438 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4439 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4440 } 4441 4442 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4443 4444 // Sort the topology table according to the current setting of 4445 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4446 __kmp_topology->sort_compact(); 4447 { 4448 int i; 4449 unsigned j; 4450 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4451 for (i = 0, j = 0; i < num_hw_threads; i++) { 4452 if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) { 4453 continue; 4454 } 4455 int osId = __kmp_topology->at(i).os_id; 4456 4457 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4458 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4459 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4460 KMP_CPU_COPY(dest, src); 4461 if (++j >= __kmp_affinity_num_masks) { 4462 break; 4463 } 4464 } 4465 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4466 } 4467 // Sort the topology back using ids 4468 __kmp_topology->sort_ids(); 4469 break; 4470 4471 default: 4472 KMP_ASSERT2(0, "Unexpected affinity setting"); 4473 } 4474 4475 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4476 } 4477 4478 void __kmp_affinity_initialize(void) { 4479 // Much of the code above was written assuming that if a machine was not 4480 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4481 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4482 // There are too many checks for __kmp_affinity_type == affinity_none 4483 // in this code. Instead of trying to change them all, check if 4484 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4485 // affinity_none, call the real initialization routine, then restore 4486 // __kmp_affinity_type to affinity_disabled. 4487 int disabled = (__kmp_affinity_type == affinity_disabled); 4488 if (!KMP_AFFINITY_CAPABLE()) { 4489 KMP_ASSERT(disabled); 4490 } 4491 if (disabled) { 4492 __kmp_affinity_type = affinity_none; 4493 } 4494 __kmp_aux_affinity_initialize(); 4495 if (disabled) { 4496 __kmp_affinity_type = affinity_disabled; 4497 } 4498 } 4499 4500 void __kmp_affinity_uninitialize(void) { 4501 if (__kmp_affinity_masks != NULL) { 4502 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4503 __kmp_affinity_masks = NULL; 4504 } 4505 if (__kmp_affin_fullMask != NULL) { 4506 KMP_CPU_FREE(__kmp_affin_fullMask); 4507 __kmp_affin_fullMask = NULL; 4508 } 4509 __kmp_affinity_num_masks = 0; 4510 __kmp_affinity_type = affinity_default; 4511 __kmp_affinity_num_places = 0; 4512 if (__kmp_affinity_proclist != NULL) { 4513 __kmp_free(__kmp_affinity_proclist); 4514 __kmp_affinity_proclist = NULL; 4515 } 4516 if (procarr != NULL) { 4517 __kmp_free(procarr); 4518 procarr = NULL; 4519 } 4520 #if KMP_USE_HWLOC 4521 if (__kmp_hwloc_topology != NULL) { 4522 hwloc_topology_destroy(__kmp_hwloc_topology); 4523 __kmp_hwloc_topology = NULL; 4524 } 4525 #endif 4526 if (__kmp_hw_subset) { 4527 kmp_hw_subset_t::deallocate(__kmp_hw_subset); 4528 __kmp_hw_subset = nullptr; 4529 } 4530 if (__kmp_topology) { 4531 kmp_topology_t::deallocate(__kmp_topology); 4532 __kmp_topology = nullptr; 4533 } 4534 KMPAffinity::destroy_api(); 4535 } 4536 4537 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4538 if (!KMP_AFFINITY_CAPABLE()) { 4539 return; 4540 } 4541 4542 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4543 if (th->th.th_affin_mask == NULL) { 4544 KMP_CPU_ALLOC(th->th.th_affin_mask); 4545 } else { 4546 KMP_CPU_ZERO(th->th.th_affin_mask); 4547 } 4548 4549 // Copy the thread mask to the kmp_info_t structure. If 4550 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4551 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4552 // then the full mask is the same as the mask of the initialization thread. 4553 kmp_affin_mask_t *mask; 4554 int i; 4555 4556 if (KMP_AFFINITY_NON_PROC_BIND) { 4557 if ((__kmp_affinity_type == affinity_none) || 4558 (__kmp_affinity_type == affinity_balanced) || 4559 KMP_HIDDEN_HELPER_THREAD(gtid)) { 4560 #if KMP_GROUP_AFFINITY 4561 if (__kmp_num_proc_groups > 1) { 4562 return; 4563 } 4564 #endif 4565 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4566 i = 0; 4567 mask = __kmp_affin_fullMask; 4568 } else { 4569 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 4570 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4571 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4572 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4573 } 4574 } else { 4575 if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) || 4576 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4577 #if KMP_GROUP_AFFINITY 4578 if (__kmp_num_proc_groups > 1) { 4579 return; 4580 } 4581 #endif 4582 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4583 i = KMP_PLACE_ALL; 4584 mask = __kmp_affin_fullMask; 4585 } else { 4586 // int i = some hash function or just a counter that doesn't 4587 // always start at 0. Use adjusted gtid for now. 4588 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 4589 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4590 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4591 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4592 } 4593 } 4594 4595 th->th.th_current_place = i; 4596 if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) { 4597 th->th.th_new_place = i; 4598 th->th.th_first_place = 0; 4599 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4600 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4601 // When using a Non-OMP_PROC_BIND affinity method, 4602 // set all threads' place-partition-var to the entire place list 4603 th->th.th_first_place = 0; 4604 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4605 } 4606 4607 if (i == KMP_PLACE_ALL) { 4608 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4609 gtid)); 4610 } else { 4611 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4612 gtid, i)); 4613 } 4614 4615 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4616 4617 if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid) 4618 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4619 && (__kmp_affinity_type == affinity_none || 4620 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { 4621 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4622 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4623 th->th.th_affin_mask); 4624 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4625 __kmp_gettid(), gtid, buf); 4626 } 4627 4628 #if KMP_DEBUG 4629 // Hidden helper thread affinity only printed for debug builds 4630 if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) { 4631 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4632 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4633 th->th.th_affin_mask); 4634 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)", 4635 (kmp_int32)getpid(), __kmp_gettid(), gtid, buf); 4636 } 4637 #endif 4638 4639 #if KMP_OS_WINDOWS 4640 // On Windows* OS, the process affinity mask might have changed. If the user 4641 // didn't request affinity and this call fails, just continue silently. 4642 // See CQ171393. 4643 if (__kmp_affinity_type == affinity_none) { 4644 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4645 } else 4646 #endif 4647 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4648 } 4649 4650 void __kmp_affinity_set_place(int gtid) { 4651 if (!KMP_AFFINITY_CAPABLE()) { 4652 return; 4653 } 4654 4655 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4656 4657 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4658 "place = %d)\n", 4659 gtid, th->th.th_new_place, th->th.th_current_place)); 4660 4661 // Check that the new place is within this thread's partition. 4662 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4663 KMP_ASSERT(th->th.th_new_place >= 0); 4664 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4665 if (th->th.th_first_place <= th->th.th_last_place) { 4666 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4667 (th->th.th_new_place <= th->th.th_last_place)); 4668 } else { 4669 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4670 (th->th.th_new_place >= th->th.th_last_place)); 4671 } 4672 4673 // Copy the thread mask to the kmp_info_t structure, 4674 // and set this thread's affinity. 4675 kmp_affin_mask_t *mask = 4676 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4677 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4678 th->th.th_current_place = th->th.th_new_place; 4679 4680 if (__kmp_affinity_verbose) { 4681 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4682 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4683 th->th.th_affin_mask); 4684 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4685 __kmp_gettid(), gtid, buf); 4686 } 4687 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4688 } 4689 4690 int __kmp_aux_set_affinity(void **mask) { 4691 int gtid; 4692 kmp_info_t *th; 4693 int retval; 4694 4695 if (!KMP_AFFINITY_CAPABLE()) { 4696 return -1; 4697 } 4698 4699 gtid = __kmp_entry_gtid(); 4700 KA_TRACE( 4701 1000, (""); { 4702 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4703 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4704 (kmp_affin_mask_t *)(*mask)); 4705 __kmp_debug_printf( 4706 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", 4707 gtid, buf); 4708 }); 4709 4710 if (__kmp_env_consistency_check) { 4711 if ((mask == NULL) || (*mask == NULL)) { 4712 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4713 } else { 4714 unsigned proc; 4715 int num_procs = 0; 4716 4717 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4718 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4719 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4720 } 4721 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4722 continue; 4723 } 4724 num_procs++; 4725 } 4726 if (num_procs == 0) { 4727 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4728 } 4729 4730 #if KMP_GROUP_AFFINITY 4731 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4732 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4733 } 4734 #endif /* KMP_GROUP_AFFINITY */ 4735 } 4736 } 4737 4738 th = __kmp_threads[gtid]; 4739 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4740 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4741 if (retval == 0) { 4742 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4743 } 4744 4745 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4746 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4747 th->th.th_first_place = 0; 4748 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4749 4750 // Turn off 4.0 affinity for the current tread at this parallel level. 4751 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4752 4753 return retval; 4754 } 4755 4756 int __kmp_aux_get_affinity(void **mask) { 4757 int gtid; 4758 int retval; 4759 #if KMP_OS_WINDOWS || KMP_DEBUG 4760 kmp_info_t *th; 4761 #endif 4762 if (!KMP_AFFINITY_CAPABLE()) { 4763 return -1; 4764 } 4765 4766 gtid = __kmp_entry_gtid(); 4767 #if KMP_OS_WINDOWS || KMP_DEBUG 4768 th = __kmp_threads[gtid]; 4769 #else 4770 (void)gtid; // unused variable 4771 #endif 4772 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4773 4774 KA_TRACE( 4775 1000, (""); { 4776 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4777 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4778 th->th.th_affin_mask); 4779 __kmp_printf( 4780 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, 4781 buf); 4782 }); 4783 4784 if (__kmp_env_consistency_check) { 4785 if ((mask == NULL) || (*mask == NULL)) { 4786 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4787 } 4788 } 4789 4790 #if !KMP_OS_WINDOWS 4791 4792 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4793 KA_TRACE( 4794 1000, (""); { 4795 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4796 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4797 (kmp_affin_mask_t *)(*mask)); 4798 __kmp_printf( 4799 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, 4800 buf); 4801 }); 4802 return retval; 4803 4804 #else 4805 (void)retval; 4806 4807 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4808 return 0; 4809 4810 #endif /* KMP_OS_WINDOWS */ 4811 } 4812 4813 int __kmp_aux_get_affinity_max_proc() { 4814 if (!KMP_AFFINITY_CAPABLE()) { 4815 return 0; 4816 } 4817 #if KMP_GROUP_AFFINITY 4818 if (__kmp_num_proc_groups > 1) { 4819 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 4820 } 4821 #endif 4822 return __kmp_xproc; 4823 } 4824 4825 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 4826 if (!KMP_AFFINITY_CAPABLE()) { 4827 return -1; 4828 } 4829 4830 KA_TRACE( 4831 1000, (""); { 4832 int gtid = __kmp_entry_gtid(); 4833 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4834 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4835 (kmp_affin_mask_t *)(*mask)); 4836 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 4837 "affinity mask for thread %d = %s\n", 4838 proc, gtid, buf); 4839 }); 4840 4841 if (__kmp_env_consistency_check) { 4842 if ((mask == NULL) || (*mask == NULL)) { 4843 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 4844 } 4845 } 4846 4847 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4848 return -1; 4849 } 4850 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4851 return -2; 4852 } 4853 4854 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 4855 return 0; 4856 } 4857 4858 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 4859 if (!KMP_AFFINITY_CAPABLE()) { 4860 return -1; 4861 } 4862 4863 KA_TRACE( 4864 1000, (""); { 4865 int gtid = __kmp_entry_gtid(); 4866 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4867 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4868 (kmp_affin_mask_t *)(*mask)); 4869 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 4870 "affinity mask for thread %d = %s\n", 4871 proc, gtid, buf); 4872 }); 4873 4874 if (__kmp_env_consistency_check) { 4875 if ((mask == NULL) || (*mask == NULL)) { 4876 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 4877 } 4878 } 4879 4880 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4881 return -1; 4882 } 4883 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4884 return -2; 4885 } 4886 4887 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 4888 return 0; 4889 } 4890 4891 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 4892 if (!KMP_AFFINITY_CAPABLE()) { 4893 return -1; 4894 } 4895 4896 KA_TRACE( 4897 1000, (""); { 4898 int gtid = __kmp_entry_gtid(); 4899 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4900 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4901 (kmp_affin_mask_t *)(*mask)); 4902 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 4903 "affinity mask for thread %d = %s\n", 4904 proc, gtid, buf); 4905 }); 4906 4907 if (__kmp_env_consistency_check) { 4908 if ((mask == NULL) || (*mask == NULL)) { 4909 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 4910 } 4911 } 4912 4913 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4914 return -1; 4915 } 4916 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4917 return 0; 4918 } 4919 4920 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 4921 } 4922 4923 // Dynamic affinity settings - Affinity balanced 4924 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 4925 KMP_DEBUG_ASSERT(th); 4926 bool fine_gran = true; 4927 int tid = th->th.th_info.ds.ds_tid; 4928 4929 // Do not perform balanced affinity for the hidden helper threads 4930 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) 4931 return; 4932 4933 switch (__kmp_affinity_gran) { 4934 case KMP_HW_THREAD: 4935 break; 4936 case KMP_HW_CORE: 4937 if (__kmp_nThreadsPerCore > 1) { 4938 fine_gran = false; 4939 } 4940 break; 4941 case KMP_HW_SOCKET: 4942 if (nCoresPerPkg > 1) { 4943 fine_gran = false; 4944 } 4945 break; 4946 default: 4947 fine_gran = false; 4948 } 4949 4950 if (__kmp_topology->is_uniform()) { 4951 int coreID; 4952 int threadID; 4953 // Number of hyper threads per core in HT machine 4954 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 4955 // Number of cores 4956 int ncores = __kmp_ncores; 4957 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 4958 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 4959 ncores = nPackages; 4960 } 4961 // How many threads will be bound to each core 4962 int chunk = nthreads / ncores; 4963 // How many cores will have an additional thread bound to it - "big cores" 4964 int big_cores = nthreads % ncores; 4965 // Number of threads on the big cores 4966 int big_nth = (chunk + 1) * big_cores; 4967 if (tid < big_nth) { 4968 coreID = tid / (chunk + 1); 4969 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 4970 } else { // tid >= big_nth 4971 coreID = (tid - big_cores) / chunk; 4972 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 4973 } 4974 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 4975 "Illegal set affinity operation when not capable"); 4976 4977 kmp_affin_mask_t *mask = th->th.th_affin_mask; 4978 KMP_CPU_ZERO(mask); 4979 4980 if (fine_gran) { 4981 int osID = 4982 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; 4983 KMP_CPU_SET(osID, mask); 4984 } else { 4985 for (int i = 0; i < __kmp_nth_per_core; i++) { 4986 int osID; 4987 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; 4988 KMP_CPU_SET(osID, mask); 4989 } 4990 } 4991 if (__kmp_affinity_verbose) { 4992 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4993 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 4994 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4995 __kmp_gettid(), tid, buf); 4996 } 4997 __kmp_set_system_affinity(mask, TRUE); 4998 } else { // Non-uniform topology 4999 5000 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5001 KMP_CPU_ZERO(mask); 5002 5003 int core_level = 5004 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); 5005 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, 5006 __kmp_aff_depth - 1, core_level); 5007 int nth_per_core = __kmp_affinity_max_proc_per_core( 5008 __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5009 5010 // For performance gain consider the special case nthreads == 5011 // __kmp_avail_proc 5012 if (nthreads == __kmp_avail_proc) { 5013 if (fine_gran) { 5014 int osID = __kmp_topology->at(tid).os_id; 5015 KMP_CPU_SET(osID, mask); 5016 } else { 5017 int core = 5018 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); 5019 for (int i = 0; i < __kmp_avail_proc; i++) { 5020 int osID = __kmp_topology->at(i).os_id; 5021 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == 5022 core) { 5023 KMP_CPU_SET(osID, mask); 5024 } 5025 } 5026 } 5027 } else if (nthreads <= ncores) { 5028 5029 int core = 0; 5030 for (int i = 0; i < ncores; i++) { 5031 // Check if this core from procarr[] is in the mask 5032 int in_mask = 0; 5033 for (int j = 0; j < nth_per_core; j++) { 5034 if (procarr[i * nth_per_core + j] != -1) { 5035 in_mask = 1; 5036 break; 5037 } 5038 } 5039 if (in_mask) { 5040 if (tid == core) { 5041 for (int j = 0; j < nth_per_core; j++) { 5042 int osID = procarr[i * nth_per_core + j]; 5043 if (osID != -1) { 5044 KMP_CPU_SET(osID, mask); 5045 // For fine granularity it is enough to set the first available 5046 // osID for this core 5047 if (fine_gran) { 5048 break; 5049 } 5050 } 5051 } 5052 break; 5053 } else { 5054 core++; 5055 } 5056 } 5057 } 5058 } else { // nthreads > ncores 5059 // Array to save the number of processors at each core 5060 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5061 // Array to save the number of cores with "x" available processors; 5062 int *ncores_with_x_procs = 5063 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5064 // Array to save the number of cores with # procs from x to nth_per_core 5065 int *ncores_with_x_to_max_procs = 5066 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5067 5068 for (int i = 0; i <= nth_per_core; i++) { 5069 ncores_with_x_procs[i] = 0; 5070 ncores_with_x_to_max_procs[i] = 0; 5071 } 5072 5073 for (int i = 0; i < ncores; i++) { 5074 int cnt = 0; 5075 for (int j = 0; j < nth_per_core; j++) { 5076 if (procarr[i * nth_per_core + j] != -1) { 5077 cnt++; 5078 } 5079 } 5080 nproc_at_core[i] = cnt; 5081 ncores_with_x_procs[cnt]++; 5082 } 5083 5084 for (int i = 0; i <= nth_per_core; i++) { 5085 for (int j = i; j <= nth_per_core; j++) { 5086 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5087 } 5088 } 5089 5090 // Max number of processors 5091 int nproc = nth_per_core * ncores; 5092 // An array to keep number of threads per each context 5093 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5094 for (int i = 0; i < nproc; i++) { 5095 newarr[i] = 0; 5096 } 5097 5098 int nth = nthreads; 5099 int flag = 0; 5100 while (nth > 0) { 5101 for (int j = 1; j <= nth_per_core; j++) { 5102 int cnt = ncores_with_x_to_max_procs[j]; 5103 for (int i = 0; i < ncores; i++) { 5104 // Skip the core with 0 processors 5105 if (nproc_at_core[i] == 0) { 5106 continue; 5107 } 5108 for (int k = 0; k < nth_per_core; k++) { 5109 if (procarr[i * nth_per_core + k] != -1) { 5110 if (newarr[i * nth_per_core + k] == 0) { 5111 newarr[i * nth_per_core + k] = 1; 5112 cnt--; 5113 nth--; 5114 break; 5115 } else { 5116 if (flag != 0) { 5117 newarr[i * nth_per_core + k]++; 5118 cnt--; 5119 nth--; 5120 break; 5121 } 5122 } 5123 } 5124 } 5125 if (cnt == 0 || nth == 0) { 5126 break; 5127 } 5128 } 5129 if (nth == 0) { 5130 break; 5131 } 5132 } 5133 flag = 1; 5134 } 5135 int sum = 0; 5136 for (int i = 0; i < nproc; i++) { 5137 sum += newarr[i]; 5138 if (sum > tid) { 5139 if (fine_gran) { 5140 int osID = procarr[i]; 5141 KMP_CPU_SET(osID, mask); 5142 } else { 5143 int coreID = i / nth_per_core; 5144 for (int ii = 0; ii < nth_per_core; ii++) { 5145 int osID = procarr[coreID * nth_per_core + ii]; 5146 if (osID != -1) { 5147 KMP_CPU_SET(osID, mask); 5148 } 5149 } 5150 } 5151 break; 5152 } 5153 } 5154 __kmp_free(newarr); 5155 } 5156 5157 if (__kmp_affinity_verbose) { 5158 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5159 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5160 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5161 __kmp_gettid(), tid, buf); 5162 } 5163 __kmp_set_system_affinity(mask, TRUE); 5164 } 5165 } 5166 5167 #if KMP_OS_LINUX || KMP_OS_FREEBSD 5168 // We don't need this entry for Windows because 5169 // there is GetProcessAffinityMask() api 5170 // 5171 // The intended usage is indicated by these steps: 5172 // 1) The user gets the current affinity mask 5173 // 2) Then sets the affinity by calling this function 5174 // 3) Error check the return value 5175 // 4) Use non-OpenMP parallelization 5176 // 5) Reset the affinity to what was stored in step 1) 5177 #ifdef __cplusplus 5178 extern "C" 5179 #endif 5180 int 5181 kmp_set_thread_affinity_mask_initial() 5182 // the function returns 0 on success, 5183 // -1 if we cannot bind thread 5184 // >0 (errno) if an error happened during binding 5185 { 5186 int gtid = __kmp_get_gtid(); 5187 if (gtid < 0) { 5188 // Do not touch non-omp threads 5189 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5190 "non-omp thread, returning\n")); 5191 return -1; 5192 } 5193 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5194 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5195 "affinity not initialized, returning\n")); 5196 return -1; 5197 } 5198 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5199 "set full mask for thread %d\n", 5200 gtid)); 5201 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5202 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5203 } 5204 #endif 5205 5206 #endif // KMP_AFFINITY_SUPPORTED 5207