/* * kmp_affinity.cpp -- affinity management */ //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "kmp.h" #include "kmp_affinity.h" #include "kmp_i18n.h" #include "kmp_io.h" #include "kmp_str.h" #include "kmp_wrapper_getpid.h" #if KMP_USE_HIER_SCHED #include "kmp_dispatch_hier.h" #endif #if KMP_USE_HWLOC // Copied from hwloc #define HWLOC_GROUP_KIND_INTEL_MODULE 102 #define HWLOC_GROUP_KIND_INTEL_TILE 103 #define HWLOC_GROUP_KIND_INTEL_DIE 104 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 #endif #include // The machine topology kmp_topology_t *__kmp_topology = nullptr; // KMP_HW_SUBSET environment variable kmp_hw_subset_t *__kmp_hw_subset = nullptr; // Store the real or imagined machine hierarchy here static hierarchy_info machine_hierarchy; void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { kmp_uint32 depth; // The test below is true if affinity is available, but set to "none". Need to // init on first use of hierarchical barrier. if (TCR_1(machine_hierarchy.uninitialized)) machine_hierarchy.init(nproc); // Adjust the hierarchy in case num threads exceeds original if (nproc > machine_hierarchy.base_num_threads) machine_hierarchy.resize(nproc); depth = machine_hierarchy.depth; KMP_DEBUG_ASSERT(depth > 0); thr_bar->depth = depth; __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, &(thr_bar->base_leaf_kids)); thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; } static int nCoresPerPkg, nPackages; static int __kmp_nThreadsPerCore; #ifndef KMP_DFLT_NTH_CORES static int __kmp_ncores; #endif const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { switch (type) { case KMP_HW_SOCKET: return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); case KMP_HW_DIE: return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); case KMP_HW_MODULE: return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); case KMP_HW_TILE: return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); case KMP_HW_NUMA: return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); case KMP_HW_L3: return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); case KMP_HW_L2: return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); case KMP_HW_L1: return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); case KMP_HW_LLC: return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); case KMP_HW_CORE: return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); case KMP_HW_THREAD: return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); case KMP_HW_PROC_GROUP: return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); } return KMP_I18N_STR(Unknown); } const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { switch (type) { case KMP_HW_SOCKET: return ((plural) ? "sockets" : "socket"); case KMP_HW_DIE: return ((plural) ? "dice" : "die"); case KMP_HW_MODULE: return ((plural) ? "modules" : "module"); case KMP_HW_TILE: return ((plural) ? "tiles" : "tile"); case KMP_HW_NUMA: return ((plural) ? "numa_domains" : "numa_domain"); case KMP_HW_L3: return ((plural) ? "l3_caches" : "l3_cache"); case KMP_HW_L2: return ((plural) ? "l2_caches" : "l2_cache"); case KMP_HW_L1: return ((plural) ? "l1_caches" : "l1_cache"); case KMP_HW_LLC: return ((plural) ? "ll_caches" : "ll_cache"); case KMP_HW_CORE: return ((plural) ? "cores" : "core"); case KMP_HW_THREAD: return ((plural) ? "threads" : "thread"); case KMP_HW_PROC_GROUP: return ((plural) ? "proc_groups" : "proc_group"); } return ((plural) ? "unknowns" : "unknown"); } const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { switch (type) { case KMP_HW_CORE_TYPE_UNKNOWN: return "unknown"; #if KMP_ARCH_X86 || KMP_ARCH_X86_64 case KMP_HW_CORE_TYPE_ATOM: return "Intel Atom(R) processor"; case KMP_HW_CORE_TYPE_CORE: return "Intel(R) Core(TM) processor"; #endif } return "unknown"; } //////////////////////////////////////////////////////////////////////////////// // kmp_hw_thread_t methods int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; int depth = __kmp_topology->get_depth(); for (int level = 0; level < depth; ++level) { if (ahwthread->ids[level] < bhwthread->ids[level]) return -1; else if (ahwthread->ids[level] > bhwthread->ids[level]) return 1; } if (ahwthread->os_id < bhwthread->os_id) return -1; else if (ahwthread->os_id > bhwthread->os_id) return 1; return 0; } #if KMP_AFFINITY_SUPPORTED int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { int i; const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; int depth = __kmp_topology->get_depth(); KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth); for (i = 0; i < __kmp_affinity_compact; i++) { int j = depth - i - 1; if (aa->sub_ids[j] < bb->sub_ids[j]) return -1; if (aa->sub_ids[j] > bb->sub_ids[j]) return 1; } for (; i < depth; i++) { int j = i - __kmp_affinity_compact; if (aa->sub_ids[j] < bb->sub_ids[j]) return -1; if (aa->sub_ids[j] > bb->sub_ids[j]) return 1; } return 0; } #endif void kmp_hw_thread_t::print() const { int depth = __kmp_topology->get_depth(); printf("%4d ", os_id); for (int i = 0; i < depth; ++i) { printf("%4d ", ids[i]); } if (attrs) { if (attrs.is_core_type_valid()) printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type())); if (attrs.is_core_eff_valid()) printf(" (eff=%d)", attrs.get_core_eff()); } printf("\n"); } //////////////////////////////////////////////////////////////////////////////// // kmp_topology_t methods // Add a layer to the topology based on the ids. Assume the topology // is perfectly nested (i.e., so no object has more than one parent) void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) { // Figure out where the layer should go by comparing the ids of the current // layers with the new ids int target_layer; int previous_id = kmp_hw_thread_t::UNKNOWN_ID; int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; // Start from the highest layer and work down to find target layer // If new layer is equal to another layer then put the new layer above for (target_layer = 0; target_layer < depth; ++target_layer) { bool layers_equal = true; bool strictly_above_target_layer = false; for (int i = 0; i < num_hw_threads; ++i) { int id = hw_threads[i].ids[target_layer]; int new_id = ids[i]; if (id != previous_id && new_id == previous_new_id) { // Found the layer we are strictly above strictly_above_target_layer = true; layers_equal = false; break; } else if (id == previous_id && new_id != previous_new_id) { // Found a layer we are below. Move to next layer and check. layers_equal = false; break; } previous_id = id; previous_new_id = new_id; } if (strictly_above_target_layer || layers_equal) break; } // Found the layer we are above. Now move everything to accommodate the new // layer. And put the new ids and type into the topology. for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) types[j] = types[i]; types[target_layer] = type; for (int k = 0; k < num_hw_threads; ++k) { for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) hw_threads[k].ids[j] = hw_threads[k].ids[i]; hw_threads[k].ids[target_layer] = ids[k]; } equivalent[type] = type; depth++; } #if KMP_GROUP_AFFINITY // Insert the Windows Processor Group structure into the topology void kmp_topology_t::_insert_windows_proc_groups() { // Do not insert the processor group structure for a single group if (__kmp_num_proc_groups == 1) return; kmp_affin_mask_t *mask; int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); KMP_CPU_ALLOC(mask); for (int i = 0; i < num_hw_threads; ++i) { KMP_CPU_ZERO(mask); KMP_CPU_SET(hw_threads[i].os_id, mask); ids[i] = __kmp_get_proc_group(mask); } KMP_CPU_FREE(mask); _insert_layer(KMP_HW_PROC_GROUP, ids); __kmp_free(ids); } #endif // Remove layers that don't add information to the topology. // This is done by having the layer take on the id = UNKNOWN_ID (-1) void kmp_topology_t::_remove_radix1_layers() { int preference[KMP_HW_LAST]; int top_index1, top_index2; // Set up preference associative array preference[KMP_HW_SOCKET] = 110; preference[KMP_HW_PROC_GROUP] = 100; preference[KMP_HW_CORE] = 95; preference[KMP_HW_THREAD] = 90; preference[KMP_HW_NUMA] = 85; preference[KMP_HW_DIE] = 80; preference[KMP_HW_TILE] = 75; preference[KMP_HW_MODULE] = 73; preference[KMP_HW_L3] = 70; preference[KMP_HW_L2] = 65; preference[KMP_HW_L1] = 60; preference[KMP_HW_LLC] = 5; top_index1 = 0; top_index2 = 1; while (top_index1 < depth - 1 && top_index2 < depth) { kmp_hw_t type1 = types[top_index1]; kmp_hw_t type2 = types[top_index2]; KMP_ASSERT_VALID_HW_TYPE(type1); KMP_ASSERT_VALID_HW_TYPE(type2); // Do not allow the three main topology levels (sockets, cores, threads) to // be compacted down if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || type1 == KMP_HW_SOCKET) && (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || type2 == KMP_HW_SOCKET)) { top_index1 = top_index2++; continue; } bool radix1 = true; bool all_same = true; int id1 = hw_threads[0].ids[top_index1]; int id2 = hw_threads[0].ids[top_index2]; int pref1 = preference[type1]; int pref2 = preference[type2]; for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { if (hw_threads[hwidx].ids[top_index1] == id1 && hw_threads[hwidx].ids[top_index2] != id2) { radix1 = false; break; } if (hw_threads[hwidx].ids[top_index2] != id2) all_same = false; id1 = hw_threads[hwidx].ids[top_index1]; id2 = hw_threads[hwidx].ids[top_index2]; } if (radix1) { // Select the layer to remove based on preference kmp_hw_t remove_type, keep_type; int remove_layer, remove_layer_ids; if (pref1 > pref2) { remove_type = type2; remove_layer = remove_layer_ids = top_index2; keep_type = type1; } else { remove_type = type1; remove_layer = remove_layer_ids = top_index1; keep_type = type2; } // If all the indexes for the second (deeper) layer are the same. // e.g., all are zero, then make sure to keep the first layer's ids if (all_same) remove_layer_ids = top_index2; // Remove radix one type by setting the equivalence, removing the id from // the hw threads and removing the layer from types and depth set_equivalent_type(remove_type, keep_type); for (int idx = 0; idx < num_hw_threads; ++idx) { kmp_hw_thread_t &hw_thread = hw_threads[idx]; for (int d = remove_layer_ids; d < depth - 1; ++d) hw_thread.ids[d] = hw_thread.ids[d + 1]; } for (int idx = remove_layer; idx < depth - 1; ++idx) types[idx] = types[idx + 1]; depth--; } else { top_index1 = top_index2++; } } KMP_ASSERT(depth > 0); } void kmp_topology_t::_set_last_level_cache() { if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); #if KMP_MIC_SUPPORTED else if (__kmp_mic_type == mic3) { if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); // L2/Tile wasn't detected so just say L1 else set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); } #endif else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); // Fallback is to set last level cache to socket or core if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); } KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); } // Gather the count of each topology layer and the ratio void kmp_topology_t::_gather_enumeration_information() { int previous_id[KMP_HW_LAST]; int max[KMP_HW_LAST]; for (int i = 0; i < depth; ++i) { previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; max[i] = 0; count[i] = 0; ratio[i] = 0; } int core_level = get_level(KMP_HW_CORE); for (int i = 0; i < num_hw_threads; ++i) { kmp_hw_thread_t &hw_thread = hw_threads[i]; for (int layer = 0; layer < depth; ++layer) { int id = hw_thread.ids[layer]; if (id != previous_id[layer]) { // Add an additional increment to each count for (int l = layer; l < depth; ++l) count[l]++; // Keep track of topology layer ratio statistics max[layer]++; for (int l = layer + 1; l < depth; ++l) { if (max[l] > ratio[l]) ratio[l] = max[l]; max[l] = 1; } // Figure out the number of different core types // and efficiencies for hybrid CPUs if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { if (hw_thread.attrs.is_core_eff_valid() && hw_thread.attrs.core_eff >= num_core_efficiencies) { // Because efficiencies can range from 0 to max efficiency - 1, // the number of efficiencies is max efficiency + 1 num_core_efficiencies = hw_thread.attrs.core_eff + 1; } if (hw_thread.attrs.is_core_type_valid()) { bool found = false; for (int j = 0; j < num_core_types; ++j) { if (hw_thread.attrs.get_core_type() == core_types[j]) { found = true; break; } } if (!found) { KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES); core_types[num_core_types++] = hw_thread.attrs.get_core_type(); } } } break; } } for (int layer = 0; layer < depth; ++layer) { previous_id[layer] = hw_thread.ids[layer]; } } for (int layer = 0; layer < depth; ++layer) { if (max[layer] > ratio[layer]) ratio[layer] = max[layer]; } } int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, int above_level, bool find_all) const { int current, current_max; int previous_id[KMP_HW_LAST]; for (int i = 0; i < depth; ++i) previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; int core_level = get_level(KMP_HW_CORE); if (find_all) above_level = -1; KMP_ASSERT(above_level < core_level); current_max = 0; current = 0; for (int i = 0; i < num_hw_threads; ++i) { kmp_hw_thread_t &hw_thread = hw_threads[i]; if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { if (current > current_max) current_max = current; current = hw_thread.attrs.contains(attr); } else { for (int level = above_level + 1; level <= core_level; ++level) { if (hw_thread.ids[level] != previous_id[level]) { if (hw_thread.attrs.contains(attr)) current++; break; } } } for (int level = 0; level < depth; ++level) previous_id[level] = hw_thread.ids[level]; } if (current > current_max) current_max = current; return current_max; } // Find out if the topology is uniform void kmp_topology_t::_discover_uniformity() { int num = 1; for (int level = 0; level < depth; ++level) num *= ratio[level]; flags.uniform = (num == count[depth - 1]); } // Set all the sub_ids for each hardware thread void kmp_topology_t::_set_sub_ids() { int previous_id[KMP_HW_LAST]; int sub_id[KMP_HW_LAST]; for (int i = 0; i < depth; ++i) { previous_id[i] = -1; sub_id[i] = -1; } for (int i = 0; i < num_hw_threads; ++i) { kmp_hw_thread_t &hw_thread = hw_threads[i]; // Setup the sub_id for (int j = 0; j < depth; ++j) { if (hw_thread.ids[j] != previous_id[j]) { sub_id[j]++; for (int k = j + 1; k < depth; ++k) { sub_id[k] = 0; } break; } } // Set previous_id for (int j = 0; j < depth; ++j) { previous_id[j] = hw_thread.ids[j]; } // Set the sub_ids field for (int j = 0; j < depth; ++j) { hw_thread.sub_ids[j] = sub_id[j]; } } } void kmp_topology_t::_set_globals() { // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores int core_level, thread_level, package_level; package_level = get_level(KMP_HW_SOCKET); #if KMP_GROUP_AFFINITY if (package_level == -1) package_level = get_level(KMP_HW_PROC_GROUP); #endif core_level = get_level(KMP_HW_CORE); thread_level = get_level(KMP_HW_THREAD); KMP_ASSERT(core_level != -1); KMP_ASSERT(thread_level != -1); __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); if (package_level != -1) { nCoresPerPkg = calculate_ratio(core_level, package_level); nPackages = get_count(package_level); } else { // assume one socket nCoresPerPkg = get_count(core_level); nPackages = 1; } #ifndef KMP_DFLT_NTH_CORES __kmp_ncores = get_count(core_level); #endif } kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, const kmp_hw_t *types) { kmp_topology_t *retval; // Allocate all data in one large allocation size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + sizeof(int) * (size_t)KMP_HW_LAST * 3; char *bytes = (char *)__kmp_allocate(size); retval = (kmp_topology_t *)bytes; if (nproc > 0) { retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); } else { retval->hw_threads = nullptr; } retval->num_hw_threads = nproc; retval->depth = ndepth; int *arr = (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); retval->types = (kmp_hw_t *)arr; retval->ratio = arr + (size_t)KMP_HW_LAST; retval->count = arr + 2 * (size_t)KMP_HW_LAST; retval->num_core_efficiencies = 0; retval->num_core_types = 0; for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } for (int i = 0; i < ndepth; ++i) { retval->types[i] = types[i]; retval->equivalent[types[i]] = types[i]; } return retval; } void kmp_topology_t::deallocate(kmp_topology_t *topology) { if (topology) __kmp_free(topology); } bool kmp_topology_t::check_ids() const { // Assume ids have been sorted if (num_hw_threads == 0) return true; for (int i = 1; i < num_hw_threads; ++i) { kmp_hw_thread_t ¤t_thread = hw_threads[i]; kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; bool unique = false; for (int j = 0; j < depth; ++j) { if (previous_thread.ids[j] != current_thread.ids[j]) { unique = true; break; } } if (unique) continue; return false; } return true; } void kmp_topology_t::dump() const { printf("***********************\n"); printf("*** __kmp_topology: ***\n"); printf("***********************\n"); printf("* depth: %d\n", depth); printf("* types: "); for (int i = 0; i < depth; ++i) printf("%15s ", __kmp_hw_get_keyword(types[i])); printf("\n"); printf("* ratio: "); for (int i = 0; i < depth; ++i) { printf("%15d ", ratio[i]); } printf("\n"); printf("* count: "); for (int i = 0; i < depth; ++i) { printf("%15d ", count[i]); } printf("\n"); printf("* num_core_eff: %d\n", num_core_efficiencies); printf("* num_core_types: %d\n", num_core_types); printf("* core_types: "); for (int i = 0; i < num_core_types; ++i) printf("%3d ", core_types[i]); printf("\n"); printf("* equivalent map:\n"); KMP_FOREACH_HW_TYPE(i) { const char *key = __kmp_hw_get_keyword(i); const char *value = __kmp_hw_get_keyword(equivalent[i]); printf("%-15s -> %-15s\n", key, value); } printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); printf("* num_hw_threads: %d\n", num_hw_threads); printf("* hw_threads:\n"); for (int i = 0; i < num_hw_threads; ++i) { hw_threads[i].print(); } printf("***********************\n"); } void kmp_topology_t::print(const char *env_var) const { kmp_str_buf_t buf; int print_types_depth; __kmp_str_buf_init(&buf); kmp_hw_t print_types[KMP_HW_LAST + 2]; // Num Available Threads KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); // Uniform or not if (is_uniform()) { KMP_INFORM(Uniform, env_var); } else { KMP_INFORM(NonUniform, env_var); } // Equivalent types KMP_FOREACH_HW_TYPE(type) { kmp_hw_t eq_type = equivalent[type]; if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { KMP_INFORM(AffEqualTopologyTypes, env_var, __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string(eq_type)); } } // Quick topology KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); // Create a print types array that always guarantees printing // the core and thread level print_types_depth = 0; for (int level = 0; level < depth; ++level) print_types[print_types_depth++] = types[level]; if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { // Force in the core level for quick topology if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { // Force core before thread e.g., 1 socket X 2 threads/socket // becomes 1 socket X 1 core/socket X 2 threads/socket print_types[print_types_depth - 1] = KMP_HW_CORE; print_types[print_types_depth++] = KMP_HW_THREAD; } else { print_types[print_types_depth++] = KMP_HW_CORE; } } // Always put threads at very end of quick topology if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) print_types[print_types_depth++] = KMP_HW_THREAD; __kmp_str_buf_clear(&buf); kmp_hw_t numerator_type; kmp_hw_t denominator_type = KMP_HW_UNKNOWN; int core_level = get_level(KMP_HW_CORE); int ncores = get_count(core_level); for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { int c; bool plural; numerator_type = print_types[plevel]; KMP_ASSERT_VALID_HW_TYPE(numerator_type); if (equivalent[numerator_type] != numerator_type) c = 1; else c = get_ratio(level++); plural = (c > 1); if (plevel == 0) { __kmp_str_buf_print(&buf, "%d %s", c, __kmp_hw_get_catalog_string(numerator_type, plural)); } else { __kmp_str_buf_print(&buf, " x %d %s/%s", c, __kmp_hw_get_catalog_string(numerator_type, plural), __kmp_hw_get_catalog_string(denominator_type)); } denominator_type = numerator_type; } KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); // Hybrid topology information if (__kmp_is_hybrid_cpu()) { for (int i = 0; i < num_core_types; ++i) { kmp_hw_core_type_t core_type = core_types[i]; kmp_hw_attr_t attr; attr.clear(); attr.set_core_type(core_type); int ncores = get_ncores_with_attr(attr); if (ncores > 0) { KMP_INFORM(TopologyHybrid, env_var, ncores, __kmp_hw_get_core_type_string(core_type)); KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS) for (int eff = 0; eff < num_core_efficiencies; ++eff) { attr.set_core_eff(eff); int ncores_with_eff = get_ncores_with_attr(attr); if (ncores_with_eff > 0) { KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff); } } } } } if (num_hw_threads <= 0) { __kmp_str_buf_free(&buf); return; } // Full OS proc to hardware thread map KMP_INFORM(OSProcToPhysicalThreadMap, env_var); for (int i = 0; i < num_hw_threads; i++) { __kmp_str_buf_clear(&buf); for (int level = 0; level < depth; ++level) { kmp_hw_t type = types[level]; __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); } if (__kmp_is_hybrid_cpu()) __kmp_str_buf_print( &buf, "(%s)", __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type())); KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); } __kmp_str_buf_free(&buf); } void kmp_topology_t::canonicalize() { #if KMP_GROUP_AFFINITY _insert_windows_proc_groups(); #endif _remove_radix1_layers(); _gather_enumeration_information(); _discover_uniformity(); _set_sub_ids(); _set_globals(); _set_last_level_cache(); #if KMP_MIC_SUPPORTED // Manually Add L2 = Tile equivalence if (__kmp_mic_type == mic3) { if (get_level(KMP_HW_L2) != -1) set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); else if (get_level(KMP_HW_TILE) != -1) set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); } #endif // Perform post canonicalization checking KMP_ASSERT(depth > 0); for (int level = 0; level < depth; ++level) { // All counts, ratios, and types must be valid KMP_ASSERT(count[level] > 0 && ratio[level] > 0); KMP_ASSERT_VALID_HW_TYPE(types[level]); // Detected types must point to themselves KMP_ASSERT(equivalent[types[level]] == types[level]); } #if KMP_AFFINITY_SUPPORTED // Set the number of affinity granularity levels if (__kmp_affinity_gran_levels < 0) { kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran); // Check if user's granularity request is valid if (gran_type == KMP_HW_UNKNOWN) { // First try core, then thread, then package kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; for (auto g : gran_types) { if (__kmp_topology->get_equivalent_type(g) != KMP_HW_UNKNOWN) { gran_type = g; break; } } KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); // Warn user what granularity setting will be used instead KMP_WARNING(AffGranularityBad, "KMP_AFFINITY", __kmp_hw_get_catalog_string(__kmp_affinity_gran), __kmp_hw_get_catalog_string(gran_type)); __kmp_affinity_gran = gran_type; } #if KMP_GROUP_AFFINITY // If more than one processor group exists, and the level of // granularity specified by the user is too coarse, then the // granularity must be adjusted "down" to processor group affinity // because threads can only exist within one processor group. // For example, if a user sets granularity=socket and there are two // processor groups that cover a socket, then the runtime must // restrict the granularity down to the processor group level. if (__kmp_num_proc_groups > 1) { int gran_depth = __kmp_topology->get_level(gran_type); int proc_group_depth = __kmp_topology->get_level(KMP_HW_PROC_GROUP); if (gran_depth >= 0 && proc_group_depth >= 0 && gran_depth < proc_group_depth) { KMP_WARNING(AffGranTooCoarseProcGroup, "KMP_AFFINITY", __kmp_hw_get_catalog_string(__kmp_affinity_gran)); __kmp_affinity_gran = gran_type = KMP_HW_PROC_GROUP; } } #endif __kmp_affinity_gran_levels = 0; for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) __kmp_affinity_gran_levels++; } #endif // KMP_AFFINITY_SUPPORTED } // Canonicalize an explicit packages X cores/pkg X threads/core topology void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, int nthreads_per_core, int ncores) { int ndepth = 3; depth = ndepth; KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } for (int level = 0; level < depth; ++level) { count[level] = 0; ratio[level] = 0; } count[0] = npackages; count[1] = ncores; count[2] = __kmp_xproc; ratio[0] = npackages; ratio[1] = ncores_per_pkg; ratio[2] = nthreads_per_core; equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; equivalent[KMP_HW_CORE] = KMP_HW_CORE; equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; types[0] = KMP_HW_SOCKET; types[1] = KMP_HW_CORE; types[2] = KMP_HW_THREAD; //__kmp_avail_proc = __kmp_xproc; _discover_uniformity(); } // Represents running sub IDs for a single core attribute where // attribute values have SIZE possibilities. template struct kmp_sub_ids_t { int last_level; // last level in topology to consider for sub_ids int sub_id[SIZE]; // The sub ID for a given attribute value int prev_sub_id[KMP_HW_LAST]; IndexFunc indexer; public: kmp_sub_ids_t(int last_level) : last_level(last_level) { KMP_ASSERT(last_level < KMP_HW_LAST); for (size_t i = 0; i < SIZE; ++i) sub_id[i] = -1; for (size_t i = 0; i < KMP_HW_LAST; ++i) prev_sub_id[i] = -1; } void update(const kmp_hw_thread_t &hw_thread) { int idx = indexer(hw_thread); KMP_ASSERT(idx < (int)SIZE); for (int level = 0; level <= last_level; ++level) { if (hw_thread.sub_ids[level] != prev_sub_id[level]) { if (level < last_level) sub_id[idx] = -1; sub_id[idx]++; break; } } for (int level = 0; level <= last_level; ++level) prev_sub_id[level] = hw_thread.sub_ids[level]; } int get_sub_id(const kmp_hw_thread_t &hw_thread) const { return sub_id[indexer(hw_thread)]; } }; static kmp_str_buf_t * __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, bool plural) { __kmp_str_buf_init(buf); if (attr.is_core_type_valid()) __kmp_str_buf_print(buf, "%s %s", __kmp_hw_get_core_type_string(attr.get_core_type()), __kmp_hw_get_catalog_string(KMP_HW_CORE, plural)); else __kmp_str_buf_print(buf, "%s eff=%d", __kmp_hw_get_catalog_string(KMP_HW_CORE, plural), attr.get_core_eff()); return buf; } // Apply the KMP_HW_SUBSET envirable to the topology // Returns true if KMP_HW_SUBSET filtered any processors // otherwise, returns false bool kmp_topology_t::filter_hw_subset() { // If KMP_HW_SUBSET wasn't requested, then do nothing. if (!__kmp_hw_subset) return false; // First, sort the KMP_HW_SUBSET items by the machine topology __kmp_hw_subset->sort(); // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology bool using_core_types = false; bool using_core_effs = false; int hw_subset_depth = __kmp_hw_subset->get_depth(); kmp_hw_t specified[KMP_HW_LAST]; int topology_levels[hw_subset_depth]; KMP_ASSERT(hw_subset_depth > 0); KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } int core_level = get_level(KMP_HW_CORE); for (int i = 0; i < hw_subset_depth; ++i) { int max_count; const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i); int num = item.num[0]; int offset = item.offset[0]; kmp_hw_t type = item.type; kmp_hw_t equivalent_type = equivalent[type]; int level = get_level(type); topology_levels[i] = level; // Check to see if current layer is in detected machine topology if (equivalent_type != KMP_HW_UNKNOWN) { __kmp_hw_subset->at(i).type = equivalent_type; } else { KMP_WARNING(AffHWSubsetNotExistGeneric, __kmp_hw_get_catalog_string(type)); return false; } // Check to see if current layer has already been // specified either directly or through an equivalent type if (specified[equivalent_type] != KMP_HW_UNKNOWN) { KMP_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type), __kmp_hw_get_catalog_string(specified[equivalent_type])); return false; } specified[equivalent_type] = type; // Check to see if each layer's num & offset parameters are valid max_count = get_ratio(level); if (max_count < 0 || (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { bool plural = (num > 1); KMP_WARNING(AffHWSubsetManyGeneric, __kmp_hw_get_catalog_string(type, plural)); return false; } // Check to see if core attributes are consistent if (core_level == level) { // Determine which core attributes are specified for (int j = 0; j < item.num_attrs; ++j) { if (item.attr[j].is_core_type_valid()) using_core_types = true; if (item.attr[j].is_core_eff_valid()) using_core_effs = true; } // Check if using a single core attribute on non-hybrid arch. // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. // // Check if using multiple core attributes on non-hyrbid arch. // Ignore all of KMP_HW_SUBSET if this is the case. if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { if (item.num_attrs == 1) { if (using_core_effs) { KMP_WARNING(AffHWSubsetIgnoringAttr, "efficiency"); } else { KMP_WARNING(AffHWSubsetIgnoringAttr, "core_type"); } using_core_effs = false; using_core_types = false; } else { KMP_WARNING(AffHWSubsetAttrsNonHybrid); return false; } } // Check if using both core types and core efficiencies together if (using_core_types && using_core_effs) { KMP_WARNING(AffHWSubsetIncompat, "core_type", "efficiency"); return false; } // Check that core efficiency values are valid if (using_core_effs) { for (int j = 0; j < item.num_attrs; ++j) { if (item.attr[j].is_core_eff_valid()) { int core_eff = item.attr[j].get_core_eff(); if (core_eff < 0 || core_eff >= num_core_efficiencies) { kmp_str_buf_t buf; __kmp_str_buf_init(&buf); __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff()); __kmp_msg(kmp_ms_warning, KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str), KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1), __kmp_msg_null); __kmp_str_buf_free(&buf); return false; } } } } // Check that the number of requested cores with attributes is valid if (using_core_types || using_core_effs) { for (int j = 0; j < item.num_attrs; ++j) { int num = item.num[j]; int offset = item.offset[j]; int level_above = core_level - 1; if (level_above >= 0) { max_count = get_ncores_with_attr_per(item.attr[j], level_above); if (max_count <= 0 || (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { kmp_str_buf_t buf; __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0); KMP_WARNING(AffHWSubsetManyGeneric, buf.str); __kmp_str_buf_free(&buf); return false; } } } } if ((using_core_types || using_core_effs) && item.num_attrs > 1) { for (int j = 0; j < item.num_attrs; ++j) { // Ambiguous use of specific core attribute + generic core // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 if (!item.attr[j]) { kmp_hw_attr_t other_attr; for (int k = 0; k < item.num_attrs; ++k) { if (item.attr[k] != item.attr[j]) { other_attr = item.attr[k]; break; } } kmp_str_buf_t buf; __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0); KMP_WARNING(AffHWSubsetIncompat, __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str); __kmp_str_buf_free(&buf); return false; } // Allow specifying a specific core type or core eff exactly once for (int k = 0; k < j; ++k) { if (!item.attr[j] || !item.attr[k]) continue; if (item.attr[k] == item.attr[j]) { kmp_str_buf_t buf; __kmp_hw_get_catalog_core_string(item.attr[j], &buf, item.num[j] > 0); KMP_WARNING(AffHWSubsetAttrRepeat, buf.str); __kmp_str_buf_free(&buf); return false; } } } } } } struct core_type_indexer { int operator()(const kmp_hw_thread_t &t) const { switch (t.attrs.get_core_type()) { #if KMP_ARCH_X86 || KMP_ARCH_X86_64 case KMP_HW_CORE_TYPE_ATOM: return 1; case KMP_HW_CORE_TYPE_CORE: return 2; #endif case KMP_HW_CORE_TYPE_UNKNOWN: return 0; } KMP_ASSERT(0); return 0; } }; struct core_eff_indexer { int operator()(const kmp_hw_thread_t &t) const { return t.attrs.get_core_eff(); } }; kmp_sub_ids_t core_type_sub_ids( core_level); kmp_sub_ids_t core_eff_sub_ids( core_level); // Determine which hardware threads should be filtered. int num_filtered = 0; bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads); for (int i = 0; i < num_hw_threads; ++i) { kmp_hw_thread_t &hw_thread = hw_threads[i]; // Update type_sub_id if (using_core_types) core_type_sub_ids.update(hw_thread); if (using_core_effs) core_eff_sub_ids.update(hw_thread); // Check to see if this hardware thread should be filtered bool should_be_filtered = false; for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; ++hw_subset_index) { const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index); int level = topology_levels[hw_subset_index]; if (level == -1) continue; if ((using_core_effs || using_core_types) && level == core_level) { // Look for the core attribute in KMP_HW_SUBSET which corresponds // to this hardware thread's core attribute. Use this num,offset plus // the running sub_id for the particular core attribute of this hardware // thread to determine if the hardware thread should be filtered or not. int attr_idx; kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); int core_eff = hw_thread.attrs.get_core_eff(); for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { if (using_core_types && hw_subset_item.attr[attr_idx].get_core_type() == core_type) break; if (using_core_effs && hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) break; } // This core attribute isn't in the KMP_HW_SUBSET so always filter it. if (attr_idx == hw_subset_item.num_attrs) { should_be_filtered = true; break; } int sub_id; int num = hw_subset_item.num[attr_idx]; int offset = hw_subset_item.offset[attr_idx]; if (using_core_types) sub_id = core_type_sub_ids.get_sub_id(hw_thread); else sub_id = core_eff_sub_ids.get_sub_id(hw_thread); if (sub_id < offset || (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { should_be_filtered = true; break; } } else { int num = hw_subset_item.num[0]; int offset = hw_subset_item.offset[0]; if (hw_thread.sub_ids[level] < offset || (num != kmp_hw_subset_t::USE_ALL && hw_thread.sub_ids[level] >= offset + num)) { should_be_filtered = true; break; } } } // Collect filtering information filtered[i] = should_be_filtered; if (should_be_filtered) num_filtered++; } // One last check that we shouldn't allow filtering entire machine if (num_filtered == num_hw_threads) { KMP_WARNING(AffHWSubsetAllFiltered); __kmp_free(filtered); return false; } // Apply the filter int new_index = 0; for (int i = 0; i < num_hw_threads; ++i) { if (!filtered[i]) { if (i != new_index) hw_threads[new_index] = hw_threads[i]; new_index++; } else { #if KMP_AFFINITY_SUPPORTED KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask); #endif __kmp_avail_proc--; } } KMP_DEBUG_ASSERT(new_index <= num_hw_threads); num_hw_threads = new_index; // Post hardware subset canonicalization _gather_enumeration_information(); _discover_uniformity(); _set_globals(); _set_last_level_cache(); __kmp_free(filtered); return true; } bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const { if (hw_level >= depth) return true; bool retval = true; const kmp_hw_thread_t &t1 = hw_threads[hwt1]; const kmp_hw_thread_t &t2 = hw_threads[hwt2]; for (int i = 0; i < (depth - hw_level); ++i) { if (t1.ids[i] != t2.ids[i]) return false; } return retval; } //////////////////////////////////////////////////////////////////////////////// #if KMP_AFFINITY_SUPPORTED class kmp_affinity_raii_t { kmp_affin_mask_t *mask; bool restored; public: kmp_affinity_raii_t() : restored(false) { KMP_CPU_ALLOC(mask); KMP_ASSERT(mask != NULL); __kmp_get_system_affinity(mask, TRUE); } void restore() { __kmp_set_system_affinity(mask, TRUE); KMP_CPU_FREE(mask); restored = true; } ~kmp_affinity_raii_t() { if (!restored) { __kmp_set_system_affinity(mask, TRUE); KMP_CPU_FREE(mask); } } }; bool KMPAffinity::picked_api = false; void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } void KMPAffinity::operator delete(void *p) { __kmp_free(p); } void KMPAffinity::pick_api() { KMPAffinity *affinity_dispatch; if (picked_api) return; #if KMP_USE_HWLOC // Only use Hwloc if affinity isn't explicitly disabled and // user requests Hwloc topology method if (__kmp_affinity_top_method == affinity_top_method_hwloc && __kmp_affinity_type != affinity_disabled) { affinity_dispatch = new KMPHwlocAffinity(); } else #endif { affinity_dispatch = new KMPNativeAffinity(); } __kmp_affinity_dispatch = affinity_dispatch; picked_api = true; } void KMPAffinity::destroy_api() { if (__kmp_affinity_dispatch != NULL) { delete __kmp_affinity_dispatch; __kmp_affinity_dispatch = NULL; picked_api = false; } } #define KMP_ADVANCE_SCAN(scan) \ while (*scan != '\0') { \ scan++; \ } // Print the affinity mask to the character array in a pretty format. // The format is a comma separated list of non-negative integers or integer // ranges: e.g., 1,2,3-5,7,9-15 // The format can also be the string "{}" if no bits are set in mask char *__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask) { int start = 0, finish = 0, previous = 0; bool first_range; KMP_ASSERT(buf); KMP_ASSERT(buf_len >= 40); KMP_ASSERT(mask); char *scan = buf; char *end = buf + buf_len - 1; // Check for empty set. if (mask->begin() == mask->end()) { KMP_SNPRINTF(scan, end - scan + 1, "{}"); KMP_ADVANCE_SCAN(scan); KMP_ASSERT(scan <= end); return buf; } first_range = true; start = mask->begin(); while (1) { // Find next range // [start, previous] is inclusive range of contiguous bits in mask for (finish = mask->next(start), previous = start; finish == previous + 1 && finish != mask->end(); finish = mask->next(finish)) { previous = finish; } // The first range does not need a comma printed before it, but the rest // of the ranges do need a comma beforehand if (!first_range) { KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); KMP_ADVANCE_SCAN(scan); } else { first_range = false; } // Range with three or more contiguous bits in the affinity mask if (previous - start > 1) { KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); } else { // Range with one or two contiguous bits in the affinity mask KMP_SNPRINTF(scan, end - scan + 1, "%u", start); KMP_ADVANCE_SCAN(scan); if (previous - start > 0) { KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); } } KMP_ADVANCE_SCAN(scan); // Start over with new start point start = finish; if (start == mask->end()) break; // Check for overflow if (end - scan < 2) break; } // Check for overflow KMP_ASSERT(scan <= end); return buf; } #undef KMP_ADVANCE_SCAN // Print the affinity mask to the string buffer object in a pretty format // The format is a comma separated list of non-negative integers or integer // ranges: e.g., 1,2,3-5,7,9-15 // The format can also be the string "{}" if no bits are set in mask kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, kmp_affin_mask_t *mask) { int start = 0, finish = 0, previous = 0; bool first_range; KMP_ASSERT(buf); KMP_ASSERT(mask); __kmp_str_buf_clear(buf); // Check for empty set. if (mask->begin() == mask->end()) { __kmp_str_buf_print(buf, "%s", "{}"); return buf; } first_range = true; start = mask->begin(); while (1) { // Find next range // [start, previous] is inclusive range of contiguous bits in mask for (finish = mask->next(start), previous = start; finish == previous + 1 && finish != mask->end(); finish = mask->next(finish)) { previous = finish; } // The first range does not need a comma printed before it, but the rest // of the ranges do need a comma beforehand if (!first_range) { __kmp_str_buf_print(buf, "%s", ","); } else { first_range = false; } // Range with three or more contiguous bits in the affinity mask if (previous - start > 1) { __kmp_str_buf_print(buf, "%u-%u", start, previous); } else { // Range with one or two contiguous bits in the affinity mask __kmp_str_buf_print(buf, "%u", start); if (previous - start > 0) { __kmp_str_buf_print(buf, ",%u", previous); } } // Start over with new start point start = finish; if (start == mask->end()) break; } return buf; } // Return (possibly empty) affinity mask representing the offline CPUs // Caller must free the mask kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { kmp_affin_mask_t *offline; KMP_CPU_ALLOC(offline); KMP_CPU_ZERO(offline); #if KMP_OS_LINUX int n, begin_cpu, end_cpu; kmp_safe_raii_file_t offline_file; auto skip_ws = [](FILE *f) { int c; do { c = fgetc(f); } while (isspace(c)); if (c != EOF) ungetc(c, f); }; // File contains CSV of integer ranges representing the offline CPUs // e.g., 1,2,4-7,9,11-15 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r"); if (status != 0) return offline; while (!feof(offline_file)) { skip_ws(offline_file); n = fscanf(offline_file, "%d", &begin_cpu); if (n != 1) break; skip_ws(offline_file); int c = fgetc(offline_file); if (c == EOF || c == ',') { // Just single CPU end_cpu = begin_cpu; } else if (c == '-') { // Range of CPUs skip_ws(offline_file); n = fscanf(offline_file, "%d", &end_cpu); if (n != 1) break; skip_ws(offline_file); c = fgetc(offline_file); // skip ',' } else { // Syntax problem break; } // Ensure a valid range of CPUs if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { continue; } // Insert [begin_cpu, end_cpu] into offline mask for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { KMP_CPU_SET(cpu, offline); } } #endif return offline; } // Return the number of available procs int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { int avail_proc = 0; KMP_CPU_ZERO(mask); #if KMP_GROUP_AFFINITY if (__kmp_num_proc_groups > 1) { int group; KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); for (group = 0; group < __kmp_num_proc_groups; group++) { int i; int num = __kmp_GetActiveProcessorCount(group); for (i = 0; i < num; i++) { KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); avail_proc++; } } } else #endif /* KMP_GROUP_AFFINITY */ { int proc; kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); for (proc = 0; proc < __kmp_xproc; proc++) { // Skip offline CPUs if (KMP_CPU_ISSET(proc, offline_cpus)) continue; KMP_CPU_SET(proc, mask); avail_proc++; } KMP_CPU_FREE(offline_cpus); } return avail_proc; } // All of the __kmp_affinity_create_*_map() routines should allocate the // internal topology object and set the layer ids for it. Each routine // returns a boolean on whether it was successful at doing so. kmp_affin_mask_t *__kmp_affin_fullMask = NULL; #if KMP_USE_HWLOC static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { #if HWLOC_API_VERSION >= 0x00020000 return hwloc_obj_type_is_cache(obj->type); #else return obj->type == HWLOC_OBJ_CACHE; #endif } // Returns KMP_HW_* type derived from HWLOC_* type static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { if (__kmp_hwloc_is_cache_type(obj)) { if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) return KMP_HW_UNKNOWN; switch (obj->attr->cache.depth) { case 1: return KMP_HW_L1; case 2: #if KMP_MIC_SUPPORTED if (__kmp_mic_type == mic3) { return KMP_HW_TILE; } #endif return KMP_HW_L2; case 3: return KMP_HW_L3; } return KMP_HW_UNKNOWN; } switch (obj->type) { case HWLOC_OBJ_PACKAGE: return KMP_HW_SOCKET; case HWLOC_OBJ_NUMANODE: return KMP_HW_NUMA; case HWLOC_OBJ_CORE: return KMP_HW_CORE; case HWLOC_OBJ_PU: return KMP_HW_THREAD; case HWLOC_OBJ_GROUP: if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) return KMP_HW_DIE; else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) return KMP_HW_TILE; else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) return KMP_HW_MODULE; else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) return KMP_HW_PROC_GROUP; return KMP_HW_UNKNOWN; #if HWLOC_API_VERSION >= 0x00020100 case HWLOC_OBJ_DIE: return KMP_HW_DIE; #endif } return KMP_HW_UNKNOWN; } // Returns the number of objects of type 'type' below 'obj' within the topology // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET // object. static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, hwloc_obj_type_t type) { int retval = 0; hwloc_obj_t first; for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, obj->logical_index, type, 0); first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == obj; first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, first)) { ++retval; } return retval; } // This gets the sub_id for a lower object under a higher object in the // topology tree static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, hwloc_obj_t lower) { hwloc_obj_t obj; hwloc_obj_type_t ltype = lower->type; int lindex = lower->logical_index - 1; int sub_id = 0; // Get the previous lower object obj = hwloc_get_obj_by_type(t, ltype, lindex); while (obj && lindex >= 0 && hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { if (obj->userdata) { sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); break; } sub_id++; lindex--; obj = hwloc_get_obj_by_type(t, ltype, lindex); } // store sub_id + 1 so that 0 is differed from NULL lower->userdata = RCAST(void *, sub_id + 1); return sub_id; } static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { kmp_hw_t type; int hw_thread_index, sub_id; int depth; hwloc_obj_t pu, obj, root, prev; kmp_hw_t types[KMP_HW_LAST]; hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; hwloc_topology_t tp = __kmp_hwloc_topology; *msg_id = kmp_i18n_null; if (__kmp_affinity_verbose) { KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); } if (!KMP_AFFINITY_CAPABLE()) { // Hack to try and infer the machine topology using only the data // available from hwloc on the current thread, and __kmp_xproc. KMP_ASSERT(__kmp_affinity_type == affinity_none); // hwloc only guarantees existance of PU object, so check PACKAGE and CORE hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); if (o != NULL) nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); else nCoresPerPkg = 1; // no PACKAGE found o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); if (o != NULL) __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); else __kmp_nThreadsPerCore = 1; // no CORE found __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; if (nCoresPerPkg == 0) nCoresPerPkg = 1; // to prevent possible division by 0 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; return true; } // Handle multiple types of cores if they exist on the system int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); typedef struct kmp_hwloc_cpukinds_info_t { int efficiency; kmp_hw_core_type_t core_type; hwloc_bitmap_t mask; } kmp_hwloc_cpukinds_info_t; kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; if (nr_cpu_kinds > 0) { unsigned nr_infos; struct hwloc_info_s *infos; cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate( sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds); for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { cpukinds[idx].efficiency = -1; cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; cpukinds[idx].mask = hwloc_bitmap_alloc(); if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, &cpukinds[idx].efficiency, &nr_infos, &infos, 0) == 0) { for (unsigned i = 0; i < nr_infos; ++i) { if (__kmp_str_match("CoreType", 8, infos[i].name)) { #if KMP_ARCH_X86 || KMP_ARCH_X86_64 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) { cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; break; } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) { cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; break; } #endif } } } } } root = hwloc_get_root_obj(tp); // Figure out the depth and types in the topology depth = 0; pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); KMP_ASSERT(pu); obj = pu; types[depth] = KMP_HW_THREAD; hwloc_types[depth] = obj->type; depth++; while (obj != root && obj != NULL) { obj = obj->parent; #if HWLOC_API_VERSION >= 0x00020000 if (obj->memory_arity) { hwloc_obj_t memory; for (memory = obj->memory_first_child; memory; memory = hwloc_get_next_child(tp, obj, memory)) { if (memory->type == HWLOC_OBJ_NUMANODE) break; } if (memory && memory->type == HWLOC_OBJ_NUMANODE) { types[depth] = KMP_HW_NUMA; hwloc_types[depth] = memory->type; depth++; } } #endif type = __kmp_hwloc_type_2_topology_type(obj); if (type != KMP_HW_UNKNOWN) { types[depth] = type; hwloc_types[depth] = obj->type; depth++; } } KMP_ASSERT(depth > 0); // Get the order for the types correct for (int i = 0, j = depth - 1; i < j; ++i, --j) { hwloc_obj_type_t hwloc_temp = hwloc_types[i]; kmp_hw_t temp = types[i]; types[i] = types[j]; types[j] = temp; hwloc_types[i] = hwloc_types[j]; hwloc_types[j] = hwloc_temp; } // Allocate the data structure to be returned. __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); hw_thread_index = 0; pu = NULL; while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) { int index = depth - 1; bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); if (included) { hw_thread.clear(); hw_thread.ids[index] = pu->logical_index; hw_thread.os_id = pu->os_index; // If multiple core types, then set that attribute for the hardware thread if (cpukinds) { int cpukind_index = -1; for (int i = 0; i < nr_cpu_kinds; ++i) { if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { cpukind_index = i; break; } } if (cpukind_index >= 0) { hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); } } index--; } obj = pu; prev = obj; while (obj != root && obj != NULL) { obj = obj->parent; #if HWLOC_API_VERSION >= 0x00020000 // NUMA Nodes are handled differently since they are not within the // parent/child structure anymore. They are separate children // of obj (memory_first_child points to first memory child) if (obj->memory_arity) { hwloc_obj_t memory; for (memory = obj->memory_first_child; memory; memory = hwloc_get_next_child(tp, obj, memory)) { if (memory->type == HWLOC_OBJ_NUMANODE) break; } if (memory && memory->type == HWLOC_OBJ_NUMANODE) { sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); if (included) { hw_thread.ids[index] = memory->logical_index; hw_thread.ids[index + 1] = sub_id; index--; } prev = memory; } prev = obj; } #endif type = __kmp_hwloc_type_2_topology_type(obj); if (type != KMP_HW_UNKNOWN) { sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); if (included) { hw_thread.ids[index] = obj->logical_index; hw_thread.ids[index + 1] = sub_id; index--; } prev = obj; } } if (included) hw_thread_index++; } // Free the core types information if (cpukinds) { for (int idx = 0; idx < nr_cpu_kinds; ++idx) hwloc_bitmap_free(cpukinds[idx].mask); __kmp_free(cpukinds); } __kmp_topology->sort_ids(); return true; } #endif // KMP_USE_HWLOC // If we don't know how to retrieve the machine's processor topology, or // encounter an error in doing so, this routine is called to form a "flat" // mapping of os thread id's <-> processor id's. static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { *msg_id = kmp_i18n_null; int depth = 3; kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; if (__kmp_affinity_verbose) { KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); } // Even if __kmp_affinity_type == affinity_none, this routine might still // called to set __kmp_ncores, as well as // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. if (!KMP_AFFINITY_CAPABLE()) { KMP_ASSERT(__kmp_affinity_type == affinity_none); __kmp_ncores = nPackages = __kmp_xproc; __kmp_nThreadsPerCore = nCoresPerPkg = 1; return true; } // When affinity is off, this routine will still be called to set // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. // Make sure all these vars are set correctly, and return now if affinity is // not enabled. __kmp_ncores = nPackages = __kmp_avail_proc; __kmp_nThreadsPerCore = nCoresPerPkg = 1; // Construct the data structure to be returned. __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); int avail_ct = 0; int i; KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { // Skip this proc if it is not included in the machine model. if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { continue; } kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); hw_thread.clear(); hw_thread.os_id = i; hw_thread.ids[0] = i; hw_thread.ids[1] = 0; hw_thread.ids[2] = 0; avail_ct++; } if (__kmp_affinity_verbose) { KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); } return true; } #if KMP_GROUP_AFFINITY // If multiple Windows* OS processor groups exist, we can create a 2-level // topology map with the groups at level 0 and the individual procs at level 1. // This facilitates letting the threads float among all procs in a group, // if granularity=group (the default when there are multiple groups). static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { *msg_id = kmp_i18n_null; int depth = 3; kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); if (__kmp_affinity_verbose) { KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); } // If we aren't affinity capable, then use flat topology if (!KMP_AFFINITY_CAPABLE()) { KMP_ASSERT(__kmp_affinity_type == affinity_none); nPackages = __kmp_num_proc_groups; __kmp_nThreadsPerCore = 1; __kmp_ncores = __kmp_xproc; nCoresPerPkg = nPackages / __kmp_ncores; return true; } // Construct the data structure to be returned. __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); int avail_ct = 0; int i; KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { // Skip this proc if it is not included in the machine model. if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { continue; } kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); hw_thread.clear(); hw_thread.os_id = i; hw_thread.ids[0] = i / BITS_PER_GROUP; hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; } return true; } #endif /* KMP_GROUP_AFFINITY */ #if KMP_ARCH_X86 || KMP_ARCH_X86_64 template static inline unsigned __kmp_extract_bits(kmp_uint32 v) { const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; const kmp_uint32 SHIFT_RIGHT = LSB; kmp_uint32 retval = v; retval <<= SHIFT_LEFT; retval >>= (SHIFT_LEFT + SHIFT_RIGHT); return retval; } static int __kmp_cpuid_mask_width(int count) { int r = 0; while ((1 << r) < count) ++r; return r; } class apicThreadInfo { public: unsigned osId; // param to __kmp_affinity_bind_thread unsigned apicId; // from cpuid after binding unsigned maxCoresPerPkg; // "" unsigned maxThreadsPerPkg; // "" unsigned pkgId; // inferred from above values unsigned coreId; // "" unsigned threadId; // "" }; static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b) { const apicThreadInfo *aa = (const apicThreadInfo *)a; const apicThreadInfo *bb = (const apicThreadInfo *)b; if (aa->pkgId < bb->pkgId) return -1; if (aa->pkgId > bb->pkgId) return 1; if (aa->coreId < bb->coreId) return -1; if (aa->coreId > bb->coreId) return 1; if (aa->threadId < bb->threadId) return -1; if (aa->threadId > bb->threadId) return 1; return 0; } class kmp_cache_info_t { public: struct info_t { unsigned level, mask; }; kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } size_t get_depth() const { return depth; } info_t &operator[](size_t index) { return table[index]; } const info_t &operator[](size_t index) const { return table[index]; } static kmp_hw_t get_topology_type(unsigned level) { KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); switch (level) { case 1: return KMP_HW_L1; case 2: return KMP_HW_L2; case 3: return KMP_HW_L3; } return KMP_HW_UNKNOWN; } private: static const int MAX_CACHE_LEVEL = 3; size_t depth; info_t table[MAX_CACHE_LEVEL]; void get_leaf4_levels() { unsigned level = 0; while (depth < MAX_CACHE_LEVEL) { unsigned cache_type, max_threads_sharing; unsigned cache_level, cache_mask_width; kmp_cpuid buf2; __kmp_x86_cpuid(4, level, &buf2); cache_type = __kmp_extract_bits<0, 4>(buf2.eax); if (!cache_type) break; // Skip instruction caches if (cache_type == 2) { level++; continue; } max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); cache_level = __kmp_extract_bits<5, 7>(buf2.eax); table[depth].level = cache_level; table[depth].mask = ((-1) << cache_mask_width); depth++; level++; } } }; // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use // an algorithm which cycles through the available os threads, setting // the current thread's affinity mask to that thread, and then retrieves // the Apic Id for each thread context using the cpuid instruction. static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { kmp_cpuid buf; *msg_id = kmp_i18n_null; if (__kmp_affinity_verbose) { KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); } // Check if cpuid leaf 4 is supported. __kmp_x86_cpuid(0, 0, &buf); if (buf.eax < 4) { *msg_id = kmp_i18n_str_NoLeaf4Support; return false; } // The algorithm used starts by setting the affinity to each available thread // and retrieving info from the cpuid instruction, so if we are not capable of // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we // need to do something else - use the defaults that we calculated from // issuing cpuid without binding to each proc. if (!KMP_AFFINITY_CAPABLE()) { // Hack to try and infer the machine topology using only the data // available from cpuid on the current thread, and __kmp_xproc. KMP_ASSERT(__kmp_affinity_type == affinity_none); // Get an upper bound on the number of threads per package using cpuid(1). // On some OS/chps combinations where HT is supported by the chip but is // disabled, this value will be 2 on a single core chip. Usually, it will be // 2 if HT is enabled and 1 if HT is disabled. __kmp_x86_cpuid(1, 0, &buf); int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; if (maxThreadsPerPkg == 0) { maxThreadsPerPkg = 1; } // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded // value. // // The author of cpu_count.cpp treated this only an upper bound on the // number of cores, but I haven't seen any cases where it was greater than // the actual number of cores, so we will treat it as exact in this block of // code. // // First, we need to check if cpuid(4) is supported on this chip. To see if // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or // greater. __kmp_x86_cpuid(0, 0, &buf); if (buf.eax >= 4) { __kmp_x86_cpuid(4, 0, &buf); nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; } else { nCoresPerPkg = 1; } // There is no way to reliably tell if HT is enabled without issuing the // cpuid instruction from every thread, can correlating the cpuid info, so // if the machine is not affinity capable, we assume that HT is off. We have // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine // does not support HT. // // - Older OSes are usually found on machines with older chips, which do not // support HT. // - The performance penalty for mistakenly identifying a machine as HT when // it isn't (which results in blocktime being incorrectly set to 0) is // greater than the penalty when for mistakenly identifying a machine as // being 1 thread/core when it is really HT enabled (which results in // blocktime being incorrectly set to a positive value). __kmp_ncores = __kmp_xproc; nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; __kmp_nThreadsPerCore = 1; return true; } // From here on, we can assume that it is safe to call // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if // __kmp_affinity_type = affinity_none. // Save the affinity mask for the current thread. kmp_affinity_raii_t previous_affinity; // Run through each of the available contexts, binding the current thread // to it, and obtaining the pertinent information using the cpuid instr. // // The relevant information is: // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value // of this field determines the width of the core# + thread# fields in the // Apic Id. It is also an upper bound on the number of threads per // package, but it has been verified that situations happen were it is not // exact. In particular, on certain OS/chip combinations where Intel(R) // Hyper-Threading Technology is supported by the chip but has been // disabled, the value of this field will be 2 (for a single core chip). // On other OS/chip combinations supporting Intel(R) Hyper-Threading // Technology, the value of this field will be 1 when Intel(R) // Hyper-Threading Technology is disabled and 2 when it is enabled. // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value // of this field (+1) determines the width of the core# field in the Apic // Id. The comments in "cpucount.cpp" say that this value is an upper // bound, but the IA-32 architecture manual says that it is exactly the // number of cores per package, and I haven't seen any case where it // wasn't. // // From this information, deduce the package Id, core Id, and thread Id, // and set the corresponding fields in the apicThreadInfo struct. unsigned i; apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( __kmp_avail_proc * sizeof(apicThreadInfo)); unsigned nApics = 0; KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { // Skip this proc if it is not included in the machine model. if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { continue; } KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); __kmp_affinity_dispatch->bind_thread(i); threadInfo[nApics].osId = i; // The apic id and max threads per pkg come from cpuid(1). __kmp_x86_cpuid(1, 0, &buf); if (((buf.edx >> 9) & 1) == 0) { __kmp_free(threadInfo); *msg_id = kmp_i18n_str_ApicNotPresent; return false; } threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; if (threadInfo[nApics].maxThreadsPerPkg == 0) { threadInfo[nApics].maxThreadsPerPkg = 1; } // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded // value. // // First, we need to check if cpuid(4) is supported on this chip. To see if // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n // or greater. __kmp_x86_cpuid(0, 0, &buf); if (buf.eax >= 4) { __kmp_x86_cpuid(4, 0, &buf); threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; } else { threadInfo[nApics].maxCoresPerPkg = 1; } // Infer the pkgId / coreId / threadId using only the info obtained locally. int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); int widthT = widthCT - widthC; if (widthT < 0) { // I've never seen this one happen, but I suppose it could, if the cpuid // instruction on a chip was really screwed up. Make sure to restore the // affinity mask before the tail call. __kmp_free(threadInfo); *msg_id = kmp_i18n_str_InvalidCpuidInfo; return false; } int maskC = (1 << widthC) - 1; threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; int maskT = (1 << widthT) - 1; threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; nApics++; } // We've collected all the info we need. // Restore the old affinity mask for this thread. previous_affinity.restore(); // Sort the threadInfo table by physical Id. qsort(threadInfo, nApics, sizeof(*threadInfo), __kmp_affinity_cmp_apicThreadInfo_phys_id); // The table is now sorted by pkgId / coreId / threadId, but we really don't // know the radix of any of the fields. pkgId's may be sparsely assigned among // the chips on a system. Although coreId's are usually assigned // [0 .. coresPerPkg-1] and threadId's are usually assigned // [0..threadsPerCore-1], we don't want to make any such assumptions. // // For that matter, we don't know what coresPerPkg and threadsPerCore (or the // total # packages) are at this point - we want to determine that now. We // only have an upper bound on the first two figures. // // We also perform a consistency check at this point: the values returned by // the cpuid instruction for any thread bound to a given package had better // return the same info for maxThreadsPerPkg and maxCoresPerPkg. nPackages = 1; nCoresPerPkg = 1; __kmp_nThreadsPerCore = 1; unsigned nCores = 1; unsigned pkgCt = 1; // to determine radii unsigned lastPkgId = threadInfo[0].pkgId; unsigned coreCt = 1; unsigned lastCoreId = threadInfo[0].coreId; unsigned threadCt = 1; unsigned lastThreadId = threadInfo[0].threadId; // intra-pkg consist checks unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; for (i = 1; i < nApics; i++) { if (threadInfo[i].pkgId != lastPkgId) { nCores++; pkgCt++; lastPkgId = threadInfo[i].pkgId; if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt; coreCt = 1; lastCoreId = threadInfo[i].coreId; if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; threadCt = 1; lastThreadId = threadInfo[i].threadId; // This is a different package, so go on to the next iteration without // doing any consistency checks. Reset the consistency check vars, though. prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; continue; } if (threadInfo[i].coreId != lastCoreId) { nCores++; coreCt++; lastCoreId = threadInfo[i].coreId; if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; threadCt = 1; lastThreadId = threadInfo[i].threadId; } else if (threadInfo[i].threadId != lastThreadId) { threadCt++; lastThreadId = threadInfo[i].threadId; } else { __kmp_free(threadInfo); *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; return false; } // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg // fields agree between all the threads bounds to a given package. if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { __kmp_free(threadInfo); *msg_id = kmp_i18n_str_InconsistentCpuidInfo; return false; } } // When affinity is off, this routine will still be called to set // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. // Make sure all these vars are set correctly nPackages = pkgCt; if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt; if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; __kmp_ncores = nCores; KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); // Now that we've determined the number of packages, the number of cores per // package, and the number of threads per core, we can construct the data // structure that is to be returned. int idx = 0; int pkgLevel = 0; int coreLevel = 1; int threadLevel = 2; //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); kmp_hw_t types[3]; if (pkgLevel >= 0) types[idx++] = KMP_HW_SOCKET; if (coreLevel >= 0) types[idx++] = KMP_HW_CORE; if (threadLevel >= 0) types[idx++] = KMP_HW_THREAD; KMP_ASSERT(depth > 0); __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); for (i = 0; i < nApics; ++i) { idx = 0; unsigned os = threadInfo[i].osId; kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); hw_thread.clear(); if (pkgLevel >= 0) { hw_thread.ids[idx++] = threadInfo[i].pkgId; } if (coreLevel >= 0) { hw_thread.ids[idx++] = threadInfo[i].coreId; } if (threadLevel >= 0) { hw_thread.ids[idx++] = threadInfo[i].threadId; } hw_thread.os_id = os; } __kmp_free(threadInfo); __kmp_topology->sort_ids(); if (!__kmp_topology->check_ids()) { kmp_topology_t::deallocate(__kmp_topology); __kmp_topology = nullptr; *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; return false; } return true; } // Hybrid cpu detection using CPUID.1A // Thread should be pinned to processor already static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, unsigned *native_model_id) { kmp_cpuid buf; __kmp_x86_cpuid(0x1a, 0, &buf); *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax); switch (*type) { case KMP_HW_CORE_TYPE_ATOM: *efficiency = 0; break; case KMP_HW_CORE_TYPE_CORE: *efficiency = 1; break; default: *efficiency = 0; } *native_model_id = __kmp_extract_bits<0, 23>(buf.eax); } // Intel(R) microarchitecture code name Nehalem, Dunnington and later // architectures support a newer interface for specifying the x2APIC Ids, // based on CPUID.B or CPUID.1F /* * CPUID.B or 1F, Input ECX (sub leaf # aka level number) Bits Bits Bits Bits 31-16 15-8 7-4 4-0 ---+-----------+--------------+-------------+-----------------+ EAX| reserved | reserved | reserved | Bits to Shift | ---+-----------|--------------+-------------+-----------------| EBX| reserved | Num logical processors at level (16 bits) | ---+-----------|--------------+-------------------------------| ECX| reserved | Level Type | Level Number (8 bits) | ---+-----------+--------------+-------------------------------| EDX| X2APIC ID (32 bits) | ---+----------------------------------------------------------+ */ enum { INTEL_LEVEL_TYPE_INVALID = 0, // Package level INTEL_LEVEL_TYPE_SMT = 1, INTEL_LEVEL_TYPE_CORE = 2, INTEL_LEVEL_TYPE_TILE = 3, INTEL_LEVEL_TYPE_MODULE = 4, INTEL_LEVEL_TYPE_DIE = 5, INTEL_LEVEL_TYPE_LAST = 6, }; struct cpuid_level_info_t { unsigned level_type, mask, mask_width, nitems, cache_mask; }; static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { switch (intel_type) { case INTEL_LEVEL_TYPE_INVALID: return KMP_HW_SOCKET; case INTEL_LEVEL_TYPE_SMT: return KMP_HW_THREAD; case INTEL_LEVEL_TYPE_CORE: return KMP_HW_CORE; case INTEL_LEVEL_TYPE_TILE: return KMP_HW_TILE; case INTEL_LEVEL_TYPE_MODULE: return KMP_HW_MODULE; case INTEL_LEVEL_TYPE_DIE: return KMP_HW_DIE; } return KMP_HW_UNKNOWN; } // This function takes the topology leaf, a levels array to store the levels // detected and a bitmap of the known levels. // Returns the number of levels in the topology static unsigned __kmp_x2apicid_get_levels(int leaf, cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], kmp_uint64 known_levels) { unsigned level, levels_index; unsigned level_type, mask_width, nitems; kmp_cpuid buf; // New algorithm has known topology layers act as highest unknown topology // layers when unknown topology layers exist. // e.g., Suppose layers were SMT CORE PACKAGE, where // are unknown topology layers, Then SMT will take the characteristics of // (SMT x ) and CORE will take the characteristics of (CORE x x ). // This eliminates unknown portions of the topology while still keeping the // correct structure. level = levels_index = 0; do { __kmp_x86_cpuid(leaf, level, &buf); level_type = __kmp_extract_bits<8, 15>(buf.ecx); mask_width = __kmp_extract_bits<0, 4>(buf.eax); nitems = __kmp_extract_bits<0, 15>(buf.ebx); if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) return 0; if (known_levels & (1ull << level_type)) { // Add a new level to the topology KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); levels[levels_index].level_type = level_type; levels[levels_index].mask_width = mask_width; levels[levels_index].nitems = nitems; levels_index++; } else { // If it is an unknown level, then logically move the previous layer up if (levels_index > 0) { levels[levels_index - 1].mask_width = mask_width; levels[levels_index - 1].nitems = nitems; } } level++; } while (level_type != INTEL_LEVEL_TYPE_INVALID); // Set the masks to & with apicid for (unsigned i = 0; i < levels_index; ++i) { if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { levels[i].mask = ~((-1) << levels[i].mask_width); levels[i].cache_mask = (-1) << levels[i].mask_width; for (unsigned j = 0; j < i; ++j) levels[i].mask ^= levels[j].mask; } else { KMP_DEBUG_ASSERT(levels_index > 0); levels[i].mask = (-1) << levels[i - 1].mask_width; levels[i].cache_mask = 0; } } return levels_index; } static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; unsigned levels_index; kmp_cpuid buf; kmp_uint64 known_levels; int topology_leaf, highest_leaf, apic_id; int num_leaves; static int leaves[] = {0, 0}; kmp_i18n_id_t leaf_message_id; KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); *msg_id = kmp_i18n_null; if (__kmp_affinity_verbose) { KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); } // Figure out the known topology levels known_levels = 0ull; for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { known_levels |= (1ull << i); } } // Get the highest cpuid leaf supported __kmp_x86_cpuid(0, 0, &buf); highest_leaf = buf.eax; // If a specific topology method was requested, only allow that specific leaf // otherwise, try both leaves 31 and 11 in that order num_leaves = 0; if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { num_leaves = 1; leaves[0] = 11; leaf_message_id = kmp_i18n_str_NoLeaf11Support; } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { num_leaves = 1; leaves[0] = 31; leaf_message_id = kmp_i18n_str_NoLeaf31Support; } else { num_leaves = 2; leaves[0] = 31; leaves[1] = 11; leaf_message_id = kmp_i18n_str_NoLeaf11Support; } // Check to see if cpuid leaf 31 or 11 is supported. __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; topology_leaf = -1; for (int i = 0; i < num_leaves; ++i) { int leaf = leaves[i]; if (highest_leaf < leaf) continue; __kmp_x86_cpuid(leaf, 0, &buf); if (buf.ebx == 0) continue; topology_leaf = leaf; levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); if (levels_index == 0) continue; break; } if (topology_leaf == -1 || levels_index == 0) { *msg_id = leaf_message_id; return false; } KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); // The algorithm used starts by setting the affinity to each available thread // and retrieving info from the cpuid instruction, so if we are not capable of // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then // we need to do something else - use the defaults that we calculated from // issuing cpuid without binding to each proc. if (!KMP_AFFINITY_CAPABLE()) { // Hack to try and infer the machine topology using only the data // available from cpuid on the current thread, and __kmp_xproc. KMP_ASSERT(__kmp_affinity_type == affinity_none); for (unsigned i = 0; i < levels_index; ++i) { if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { __kmp_nThreadsPerCore = levels[i].nitems; } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { nCoresPerPkg = levels[i].nitems; } } __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; return true; } // Allocate the data structure to be returned. int depth = levels_index; for (int i = depth - 1, j = 0; i >= 0; --i, ++j) types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); // Insert equivalent cache types if they exist kmp_cache_info_t cache_info; for (size_t i = 0; i < cache_info.get_depth(); ++i) { const kmp_cache_info_t::info_t &info = cache_info[i]; unsigned cache_mask = info.mask; unsigned cache_level = info.level; for (unsigned j = 0; j < levels_index; ++j) { unsigned hw_cache_mask = levels[j].cache_mask; kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); if (hw_cache_mask == cache_mask && j < levels_index - 1) { kmp_hw_t type = __kmp_intel_type_2_topology_type(levels[j + 1].level_type); __kmp_topology->set_equivalent_type(cache_type, type); } } } // From here on, we can assume that it is safe to call // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if // __kmp_affinity_type = affinity_none. // Save the affinity mask for the current thread. kmp_affinity_raii_t previous_affinity; // Run through each of the available contexts, binding the current thread // to it, and obtaining the pertinent information using the cpuid instr. unsigned int proc; int hw_thread_index = 0; KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; unsigned my_levels_index; // Skip this proc if it is not included in the machine model. if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { continue; } KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); __kmp_affinity_dispatch->bind_thread(proc); // New algorithm __kmp_x86_cpuid(topology_leaf, 0, &buf); apic_id = buf.edx; kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); my_levels_index = __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); if (my_levels_index == 0 || my_levels_index != levels_index) { *msg_id = kmp_i18n_str_InvalidCpuidInfo; return false; } hw_thread.clear(); hw_thread.os_id = proc; // Put in topology information for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { hw_thread.ids[idx] = apic_id & my_levels[j].mask; if (j > 0) { hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; } } // Hybrid information if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { kmp_hw_core_type_t type; unsigned native_model_id; int efficiency; __kmp_get_hybrid_info(&type, &efficiency, &native_model_id); hw_thread.attrs.set_core_type(type); hw_thread.attrs.set_core_eff(efficiency); } hw_thread_index++; } KMP_ASSERT(hw_thread_index > 0); __kmp_topology->sort_ids(); if (!__kmp_topology->check_ids()) { kmp_topology_t::deallocate(__kmp_topology); __kmp_topology = nullptr; *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; return false; } return true; } #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ #define osIdIndex 0 #define threadIdIndex 1 #define coreIdIndex 2 #define pkgIdIndex 3 #define nodeIdIndex 4 typedef unsigned *ProcCpuInfo; static unsigned maxIndex = pkgIdIndex; static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b) { unsigned i; const unsigned *aa = *(unsigned *const *)a; const unsigned *bb = *(unsigned *const *)b; for (i = maxIndex;; i--) { if (aa[i] < bb[i]) return -1; if (aa[i] > bb[i]) return 1; if (i == osIdIndex) break; } return 0; } #if KMP_USE_HIER_SCHED // Set the array sizes for the hierarchy layers static void __kmp_dispatch_set_hierarchy_values() { // Set the maximum number of L1's to number of cores // Set the maximum number of L2's to to either number of cores / 2 for // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing // Or the number of cores for Intel(R) Xeon(R) processors // Set the maximum number of NUMA nodes and L3's to number of packages __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ KMP_MIC_SUPPORTED if (__kmp_mic_type >= mic3) __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; else #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; // Set the number of threads per unit // Number of hardware threads per L1/L2/L3/NUMA/LOOP __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_nThreadsPerCore; #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ KMP_MIC_SUPPORTED if (__kmp_mic_type >= mic3) __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2 * __kmp_nThreadsPerCore; else #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_nThreadsPerCore; __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = nCoresPerPkg * __kmp_nThreadsPerCore; __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = nCoresPerPkg * __kmp_nThreadsPerCore; __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; } // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) // i.e., this thread's L1 or this thread's L2, etc. int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { int index = type + 1; int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); if (type == kmp_hier_layer_e::LAYER_THREAD) return tid; else if (type == kmp_hier_layer_e::LAYER_LOOP) return 0; KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); if (tid >= num_hw_threads) tid = tid % num_hw_threads; return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; } // Return the number of t1's per t2 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { int i1 = t1 + 1; int i2 = t2 + 1; KMP_DEBUG_ASSERT(i1 <= i2); KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); // (nthreads/t2) / (nthreads/t1) = t1 / t2 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; } #endif // KMP_USE_HIER_SCHED static inline const char *__kmp_cpuinfo_get_filename() { const char *filename; if (__kmp_cpuinfo_file != nullptr) filename = __kmp_cpuinfo_file; else filename = "/proc/cpuinfo"; return filename; } static inline const char *__kmp_cpuinfo_get_envvar() { const char *envvar = nullptr; if (__kmp_cpuinfo_file != nullptr) envvar = "KMP_CPUINFO_FILE"; return envvar; } // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the // affinity map. static bool __kmp_affinity_create_cpuinfo_map(int *line, kmp_i18n_id_t *const msg_id) { const char *filename = __kmp_cpuinfo_get_filename(); const char *envvar = __kmp_cpuinfo_get_envvar(); *msg_id = kmp_i18n_null; if (__kmp_affinity_verbose) { KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); } kmp_safe_raii_file_t f(filename, "r", envvar); // Scan of the file, and count the number of "processor" (osId) fields, // and find the highest value of for a node_ field. char buf[256]; unsigned num_records = 0; while (!feof(f)) { buf[sizeof(buf) - 1] = 1; if (!fgets(buf, sizeof(buf), f)) { // Read errors presumably because of EOF break; } char s1[] = "processor"; if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { num_records++; continue; } // FIXME - this will match "node_ " unsigned level; if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { // validate the input fisrt: if (level > (unsigned)__kmp_xproc) { // level is too big level = __kmp_xproc; } if (nodeIdIndex + level >= maxIndex) { maxIndex = nodeIdIndex + level; } continue; } } // Check for empty file / no valid processor records, or too many. The number // of records can't exceed the number of valid bits in the affinity mask. if (num_records == 0) { *msg_id = kmp_i18n_str_NoProcRecords; return false; } if (num_records > (unsigned)__kmp_xproc) { *msg_id = kmp_i18n_str_TooManyProcRecords; return false; } // Set the file pointer back to the beginning, so that we can scan the file // again, this time performing a full parse of the data. Allocate a vector of // ProcCpuInfo object, where we will place the data. Adding an extra element // at the end allows us to remove a lot of extra checks for termination // conditions. if (fseek(f, 0, SEEK_SET) != 0) { *msg_id = kmp_i18n_str_CantRewindCpuinfo; return false; } // Allocate the array of records to store the proc info in. The dummy // element at the end makes the logic in filling them out easier to code. unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); unsigned i; for (i = 0; i <= num_records; i++) { threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); } #define CLEANUP_THREAD_INFO \ for (i = 0; i <= num_records; i++) { \ __kmp_free(threadInfo[i]); \ } \ __kmp_free(threadInfo); // A value of UINT_MAX means that we didn't find the field unsigned __index; #define INIT_PROC_INFO(p) \ for (__index = 0; __index <= maxIndex; __index++) { \ (p)[__index] = UINT_MAX; \ } for (i = 0; i <= num_records; i++) { INIT_PROC_INFO(threadInfo[i]); } unsigned num_avail = 0; *line = 0; while (!feof(f)) { // Create an inner scoping level, so that all the goto targets at the end of // the loop appear in an outer scoping level. This avoids warnings about // jumping past an initialization to a target in the same block. { buf[sizeof(buf) - 1] = 1; bool long_line = false; if (!fgets(buf, sizeof(buf), f)) { // Read errors presumably because of EOF // If there is valid data in threadInfo[num_avail], then fake // a blank line in ensure that the last address gets parsed. bool valid = false; for (i = 0; i <= maxIndex; i++) { if (threadInfo[num_avail][i] != UINT_MAX) { valid = true; } } if (!valid) { break; } buf[0] = 0; } else if (!buf[sizeof(buf) - 1]) { // The line is longer than the buffer. Set a flag and don't // emit an error if we were going to ignore the line, anyway. long_line = true; #define CHECK_LINE \ if (long_line) { \ CLEANUP_THREAD_INFO; \ *msg_id = kmp_i18n_str_LongLineCpuinfo; \ return false; \ } } (*line)++; char s1[] = "processor"; if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { CHECK_LINE; char *p = strchr(buf + sizeof(s1) - 1, ':'); unsigned val; if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; if (threadInfo[num_avail][osIdIndex] != UINT_MAX) #if KMP_ARCH_AARCH64 // Handle the old AArch64 /proc/cpuinfo layout differently, // it contains all of the 'processor' entries listed in a // single 'Processor' section, therefore the normal looking // for duplicates in that section will always fail. num_avail++; #else goto dup_field; #endif threadInfo[num_avail][osIdIndex] = val; #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) char path[256]; KMP_SNPRINTF( path, sizeof(path), "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", threadInfo[num_avail][osIdIndex]); __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); KMP_SNPRINTF(path, sizeof(path), "/sys/devices/system/cpu/cpu%u/topology/core_id", threadInfo[num_avail][osIdIndex]); __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); continue; #else } char s2[] = "physical id"; if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { CHECK_LINE; char *p = strchr(buf + sizeof(s2) - 1, ':'); unsigned val; if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field; threadInfo[num_avail][pkgIdIndex] = val; continue; } char s3[] = "core id"; if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { CHECK_LINE; char *p = strchr(buf + sizeof(s3) - 1, ':'); unsigned val; if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field; threadInfo[num_avail][coreIdIndex] = val; continue; #endif // KMP_OS_LINUX && USE_SYSFS_INFO } char s4[] = "thread id"; if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { CHECK_LINE; char *p = strchr(buf + sizeof(s4) - 1, ':'); unsigned val; if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field; threadInfo[num_avail][threadIdIndex] = val; continue; } unsigned level; if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { CHECK_LINE; char *p = strchr(buf + sizeof(s4) - 1, ':'); unsigned val; if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; // validate the input before using level: if (level > (unsigned)__kmp_xproc) { // level is too big level = __kmp_xproc; } if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field; threadInfo[num_avail][nodeIdIndex + level] = val; continue; } // We didn't recognize the leading token on the line. There are lots of // leading tokens that we don't recognize - if the line isn't empty, go on // to the next line. if ((*buf != 0) && (*buf != '\n')) { // If the line is longer than the buffer, read characters // until we find a newline. if (long_line) { int ch; while (((ch = fgetc(f)) != EOF) && (ch != '\n')) ; } continue; } // A newline has signalled the end of the processor record. // Check that there aren't too many procs specified. if ((int)num_avail == __kmp_xproc) { CLEANUP_THREAD_INFO; *msg_id = kmp_i18n_str_TooManyEntries; return false; } // Check for missing fields. The osId field must be there, and we // currently require that the physical id field is specified, also. if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { CLEANUP_THREAD_INFO; *msg_id = kmp_i18n_str_MissingProcField; return false; } if (threadInfo[0][pkgIdIndex] == UINT_MAX) { CLEANUP_THREAD_INFO; *msg_id = kmp_i18n_str_MissingPhysicalIDField; return false; } // Skip this proc if it is not included in the machine model. if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], __kmp_affin_fullMask)) { INIT_PROC_INFO(threadInfo[num_avail]); continue; } // We have a successful parse of this proc's info. // Increment the counter, and prepare for the next proc. num_avail++; KMP_ASSERT(num_avail <= num_records); INIT_PROC_INFO(threadInfo[num_avail]); } continue; no_val: CLEANUP_THREAD_INFO; *msg_id = kmp_i18n_str_MissingValCpuinfo; return false; dup_field: CLEANUP_THREAD_INFO; *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; return false; } *line = 0; #if KMP_MIC && REDUCE_TEAM_SIZE unsigned teamSize = 0; #endif // KMP_MIC && REDUCE_TEAM_SIZE // check for num_records == __kmp_xproc ??? // If it is configured to omit the package level when there is only a single // package, the logic at the end of this routine won't work if there is only a // single thread KMP_ASSERT(num_avail > 0); KMP_ASSERT(num_avail <= num_records); // Sort the threadInfo table by physical Id. qsort(threadInfo, num_avail, sizeof(*threadInfo), __kmp_affinity_cmp_ProcCpuInfo_phys_id); // The table is now sorted by pkgId / coreId / threadId, but we really don't // know the radix of any of the fields. pkgId's may be sparsely assigned among // the chips on a system. Although coreId's are usually assigned // [0 .. coresPerPkg-1] and threadId's are usually assigned // [0..threadsPerCore-1], we don't want to make any such assumptions. // // For that matter, we don't know what coresPerPkg and threadsPerCore (or the // total # packages) are at this point - we want to determine that now. We // only have an upper bound on the first two figures. unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); bool assign_thread_ids = false; unsigned threadIdCt; unsigned index; restart_radix_check: threadIdCt = 0; // Initialize the counter arrays with data from threadInfo[0]. if (assign_thread_ids) { if (threadInfo[0][threadIdIndex] == UINT_MAX) { threadInfo[0][threadIdIndex] = threadIdCt++; } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { threadIdCt = threadInfo[0][threadIdIndex] + 1; } } for (index = 0; index <= maxIndex; index++) { counts[index] = 1; maxCt[index] = 1; totals[index] = 1; lastId[index] = threadInfo[0][index]; ; } // Run through the rest of the OS procs. for (i = 1; i < num_avail; i++) { // Find the most significant index whose id differs from the id for the // previous OS proc. for (index = maxIndex; index >= threadIdIndex; index--) { if (assign_thread_ids && (index == threadIdIndex)) { // Auto-assign the thread id field if it wasn't specified. if (threadInfo[i][threadIdIndex] == UINT_MAX) { threadInfo[i][threadIdIndex] = threadIdCt++; } // Apparently the thread id field was specified for some entries and not // others. Start the thread id counter off at the next higher thread id. else if (threadIdCt <= threadInfo[i][threadIdIndex]) { threadIdCt = threadInfo[i][threadIdIndex] + 1; } } if (threadInfo[i][index] != lastId[index]) { // Run through all indices which are less significant, and reset the // counts to 1. At all levels up to and including index, we need to // increment the totals and record the last id. unsigned index2; for (index2 = threadIdIndex; index2 < index; index2++) { totals[index2]++; if (counts[index2] > maxCt[index2]) { maxCt[index2] = counts[index2]; } counts[index2] = 1; lastId[index2] = threadInfo[i][index2]; } counts[index]++; totals[index]++; lastId[index] = threadInfo[i][index]; if (assign_thread_ids && (index > threadIdIndex)) { #if KMP_MIC && REDUCE_TEAM_SIZE // The default team size is the total #threads in the machine // minus 1 thread for every core that has 3 or more threads. teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); #endif // KMP_MIC && REDUCE_TEAM_SIZE // Restart the thread counter, as we are on a new core. threadIdCt = 0; // Auto-assign the thread id field if it wasn't specified. if (threadInfo[i][threadIdIndex] == UINT_MAX) { threadInfo[i][threadIdIndex] = threadIdCt++; } // Apparently the thread id field was specified for some entries and // not others. Start the thread id counter off at the next higher // thread id. else if (threadIdCt <= threadInfo[i][threadIdIndex]) { threadIdCt = threadInfo[i][threadIdIndex] + 1; } } break; } } if (index < threadIdIndex) { // If thread ids were specified, it is an error if they are not unique. // Also, check that we waven't already restarted the loop (to be safe - // shouldn't need to). if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { __kmp_free(lastId); __kmp_free(totals); __kmp_free(maxCt); __kmp_free(counts); CLEANUP_THREAD_INFO; *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; return false; } // If the thread ids were not specified and we see entries entries that // are duplicates, start the loop over and assign the thread ids manually. assign_thread_ids = true; goto restart_radix_check; } } #if KMP_MIC && REDUCE_TEAM_SIZE // The default team size is the total #threads in the machine // minus 1 thread for every core that has 3 or more threads. teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); #endif // KMP_MIC && REDUCE_TEAM_SIZE for (index = threadIdIndex; index <= maxIndex; index++) { if (counts[index] > maxCt[index]) { maxCt[index] = counts[index]; } } __kmp_nThreadsPerCore = maxCt[threadIdIndex]; nCoresPerPkg = maxCt[coreIdIndex]; nPackages = totals[pkgIdIndex]; // When affinity is off, this routine will still be called to set // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. // Make sure all these vars are set correctly, and return now if affinity is // not enabled. __kmp_ncores = totals[coreIdIndex]; if (!KMP_AFFINITY_CAPABLE()) { KMP_ASSERT(__kmp_affinity_type == affinity_none); return true; } #if KMP_MIC && REDUCE_TEAM_SIZE // Set the default team size. if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { __kmp_dflt_team_nth = teamSize; KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " "__kmp_dflt_team_nth = %d\n", __kmp_dflt_team_nth)); } #endif // KMP_MIC && REDUCE_TEAM_SIZE KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); // Count the number of levels which have more nodes at that level than at the // parent's level (with there being an implicit root node of the top level). // This is equivalent to saying that there is at least one node at this level // which has a sibling. These levels are in the map, and the package level is // always in the map. bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); for (index = threadIdIndex; index < maxIndex; index++) { KMP_ASSERT(totals[index] >= totals[index + 1]); inMap[index] = (totals[index] > totals[index + 1]); } inMap[maxIndex] = (totals[maxIndex] > 1); inMap[pkgIdIndex] = true; inMap[coreIdIndex] = true; inMap[threadIdIndex] = true; int depth = 0; int idx = 0; kmp_hw_t types[KMP_HW_LAST]; int pkgLevel = -1; int coreLevel = -1; int threadLevel = -1; for (index = threadIdIndex; index <= maxIndex; index++) { if (inMap[index]) { depth++; } } if (inMap[pkgIdIndex]) { pkgLevel = idx; types[idx++] = KMP_HW_SOCKET; } if (inMap[coreIdIndex]) { coreLevel = idx; types[idx++] = KMP_HW_CORE; } if (inMap[threadIdIndex]) { threadLevel = idx; types[idx++] = KMP_HW_THREAD; } KMP_ASSERT(depth > 0); // Construct the data structure that is to be returned. __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); for (i = 0; i < num_avail; ++i) { unsigned os = threadInfo[i][osIdIndex]; int src_index; int dst_index = 0; kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); hw_thread.clear(); hw_thread.os_id = os; idx = 0; for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { if (!inMap[src_index]) { continue; } if (src_index == pkgIdIndex) { hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; } else if (src_index == coreIdIndex) { hw_thread.ids[coreLevel] = threadInfo[i][src_index]; } else if (src_index == threadIdIndex) { hw_thread.ids[threadLevel] = threadInfo[i][src_index]; } dst_index++; } } __kmp_free(inMap); __kmp_free(lastId); __kmp_free(totals); __kmp_free(maxCt); __kmp_free(counts); CLEANUP_THREAD_INFO; __kmp_topology->sort_ids(); if (!__kmp_topology->check_ids()) { kmp_topology_t::deallocate(__kmp_topology); __kmp_topology = nullptr; *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; return false; } return true; } // Create and return a table of affinity masks, indexed by OS thread ID. // This routine handles OR'ing together all the affinity masks of threads // that are sufficiently close, if granularity > fine. static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, unsigned *numUnique) { // First form a table of affinity masks in order of OS thread id. int maxOsId; int i; int numAddrs = __kmp_topology->get_num_hw_threads(); int depth = __kmp_topology->get_depth(); KMP_ASSERT(numAddrs); KMP_ASSERT(depth); maxOsId = 0; for (i = numAddrs - 1;; --i) { int osId = __kmp_topology->at(i).os_id; if (osId > maxOsId) { maxOsId = osId; } if (i == 0) break; } kmp_affin_mask_t *osId2Mask; KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); KMP_ASSERT(__kmp_affinity_gran_levels >= 0); if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); } if (__kmp_affinity_gran_levels >= (int)depth) { if (__kmp_affinity_verbose || (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { KMP_WARNING(AffThreadsMayMigrate); } } // Run through the table, forming the masks for all threads on each core. // Threads on the same core will have identical kmp_hw_thread_t objects, not // considering the last level, which must be the thread id. All threads on a // core will appear consecutively. int unique = 0; int j = 0; // index of 1st thread on core int leader = 0; kmp_affin_mask_t *sum; KMP_CPU_ALLOC_ON_STACK(sum); KMP_CPU_ZERO(sum); KMP_CPU_SET(__kmp_topology->at(0).os_id, sum); for (i = 1; i < numAddrs; i++) { // If this thread is sufficiently close to the leader (within the // granularity setting), then set the bit for this os thread in the // affinity mask for this group, and go on to the next thread. if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) { KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); continue; } // For every thread in this group, copy the mask to the thread's entry in // the osId2Mask table. Mark the first address as a leader. for (; j < i; j++) { int osId = __kmp_topology->at(j).os_id; KMP_DEBUG_ASSERT(osId <= maxOsId); kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); KMP_CPU_COPY(mask, sum); __kmp_topology->at(j).leader = (j == leader); } unique++; // Start a new mask. leader = i; KMP_CPU_ZERO(sum); KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); } // For every thread in last group, copy the mask to the thread's // entry in the osId2Mask table. for (; j < i; j++) { int osId = __kmp_topology->at(j).os_id; KMP_DEBUG_ASSERT(osId <= maxOsId); kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); KMP_CPU_COPY(mask, sum); __kmp_topology->at(j).leader = (j == leader); } unique++; KMP_CPU_FREE_FROM_STACK(sum); *maxIndex = maxOsId; *numUnique = unique; return osId2Mask; } // Stuff for the affinity proclist parsers. It's easier to declare these vars // as file-static than to try and pass them through the calling sequence of // the recursive-descent OMP_PLACES parser. static kmp_affin_mask_t *newMasks; static int numNewMasks; static int nextNewMask; #define ADD_MASK(_mask) \ { \ if (nextNewMask >= numNewMasks) { \ int i; \ numNewMasks *= 2; \ kmp_affin_mask_t *temp; \ KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ for (i = 0; i < numNewMasks / 2; i++) { \ kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ KMP_CPU_COPY(dest, src); \ } \ KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ newMasks = temp; \ } \ KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ nextNewMask++; \ } #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ { \ if (((_osId) > _maxOsId) || \ (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ if (__kmp_affinity_verbose || \ (__kmp_affinity_warnings && \ (__kmp_affinity_type != affinity_none))) { \ KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ } \ } else { \ ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ } \ } // Re-parse the proclist (for the explicit affinity type), and form the list // of affinity newMasks indexed by gtid. static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, unsigned int *out_numMasks, const char *proclist, kmp_affin_mask_t *osId2Mask, int maxOsId) { int i; const char *scan = proclist; const char *next = proclist; // We use malloc() for the temporary mask vector, so that we can use // realloc() to extend it. numNewMasks = 2; KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); nextNewMask = 0; kmp_affin_mask_t *sumMask; KMP_CPU_ALLOC(sumMask); int setSize = 0; for (;;) { int start, end, stride; SKIP_WS(scan); next = scan; if (*next == '\0') { break; } if (*next == '{') { int num; setSize = 0; next++; // skip '{' SKIP_WS(next); scan = next; // Read the first integer in the set. KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); SKIP_DIGITS(next); num = __kmp_str_to_int(scan, *next); KMP_ASSERT2(num >= 0, "bad explicit proc list"); // Copy the mask for that osId to the sum (union) mask. if ((num > maxOsId) || (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { if (__kmp_affinity_verbose || (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { KMP_WARNING(AffIgnoreInvalidProcID, num); } KMP_CPU_ZERO(sumMask); } else { KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); setSize = 1; } for (;;) { // Check for end of set. SKIP_WS(next); if (*next == '}') { next++; // skip '}' break; } // Skip optional comma. if (*next == ',') { next++; } SKIP_WS(next); // Read the next integer in the set. scan = next; KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); SKIP_DIGITS(next); num = __kmp_str_to_int(scan, *next); KMP_ASSERT2(num >= 0, "bad explicit proc list"); // Add the mask for that osId to the sum mask. if ((num > maxOsId) || (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { if (__kmp_affinity_verbose || (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { KMP_WARNING(AffIgnoreInvalidProcID, num); } } else { KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); setSize++; } } if (setSize > 0) { ADD_MASK(sumMask); } SKIP_WS(next); if (*next == ',') { next++; } scan = next; continue; } // Read the first integer. KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); SKIP_DIGITS(next); start = __kmp_str_to_int(scan, *next); KMP_ASSERT2(start >= 0, "bad explicit proc list"); SKIP_WS(next); // If this isn't a range, then add a mask to the list and go on. if (*next != '-') { ADD_MASK_OSID(start, osId2Mask, maxOsId); // Skip optional comma. if (*next == ',') { next++; } scan = next; continue; } // This is a range. Skip over the '-' and read in the 2nd int. next++; // skip '-' SKIP_WS(next); scan = next; KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); SKIP_DIGITS(next); end = __kmp_str_to_int(scan, *next); KMP_ASSERT2(end >= 0, "bad explicit proc list"); // Check for a stride parameter stride = 1; SKIP_WS(next); if (*next == ':') { // A stride is specified. Skip over the ':" and read the 3rd int. int sign = +1; next++; // skip ':' SKIP_WS(next); scan = next; if (*next == '-') { sign = -1; next++; SKIP_WS(next); scan = next; } KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); SKIP_DIGITS(next); stride = __kmp_str_to_int(scan, *next); KMP_ASSERT2(stride >= 0, "bad explicit proc list"); stride *= sign; } // Do some range checks. KMP_ASSERT2(stride != 0, "bad explicit proc list"); if (stride > 0) { KMP_ASSERT2(start <= end, "bad explicit proc list"); } else { KMP_ASSERT2(start >= end, "bad explicit proc list"); } KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); // Add the mask for each OS proc # to the list. if (stride > 0) { do { ADD_MASK_OSID(start, osId2Mask, maxOsId); start += stride; } while (start <= end); } else { do { ADD_MASK_OSID(start, osId2Mask, maxOsId); start += stride; } while (start >= end); } // Skip optional comma. SKIP_WS(next); if (*next == ',') { next++; } scan = next; } *out_numMasks = nextNewMask; if (nextNewMask == 0) { *out_masks = NULL; KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); return; } KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); for (i = 0; i < nextNewMask; i++) { kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); KMP_CPU_COPY(dest, src); } KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); KMP_CPU_FREE(sumMask); } /*----------------------------------------------------------------------------- Re-parse the OMP_PLACES proc id list, forming the newMasks for the different places. Again, Here is the grammar: place_list := place place_list := place , place_list place := num place := place : num place := place : num : signed place := { subplacelist } place := ! place // (lowest priority) subplace_list := subplace subplace_list := subplace , subplace_list subplace := num subplace := num : num subplace := num : num : signed signed := num signed := + signed signed := - signed -----------------------------------------------------------------------------*/ static void __kmp_process_subplace_list(const char **scan, kmp_affin_mask_t *osId2Mask, int maxOsId, kmp_affin_mask_t *tempMask, int *setSize) { const char *next; for (;;) { int start, count, stride, i; // Read in the starting proc id SKIP_WS(*scan); KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); next = *scan; SKIP_DIGITS(next); start = __kmp_str_to_int(*scan, *next); KMP_ASSERT(start >= 0); *scan = next; // valid follow sets are ',' ':' and '}' SKIP_WS(*scan); if (**scan == '}' || **scan == ',') { if ((start > maxOsId) || (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { if (__kmp_affinity_verbose || (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { KMP_WARNING(AffIgnoreInvalidProcID, start); } } else { KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); (*setSize)++; } if (**scan == '}') { break; } (*scan)++; // skip ',' continue; } KMP_ASSERT2(**scan == ':', "bad explicit places list"); (*scan)++; // skip ':' // Read count parameter SKIP_WS(*scan); KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); next = *scan; SKIP_DIGITS(next); count = __kmp_str_to_int(*scan, *next); KMP_ASSERT(count >= 0); *scan = next; // valid follow sets are ',' ':' and '}' SKIP_WS(*scan); if (**scan == '}' || **scan == ',') { for (i = 0; i < count; i++) { if ((start > maxOsId) || (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { if (__kmp_affinity_verbose || (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { KMP_WARNING(AffIgnoreInvalidProcID, start); } break; // don't proliferate warnings for large count } else { KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); start++; (*setSize)++; } } if (**scan == '}') { break; } (*scan)++; // skip ',' continue; } KMP_ASSERT2(**scan == ':', "bad explicit places list"); (*scan)++; // skip ':' // Read stride parameter int sign = +1; for (;;) { SKIP_WS(*scan); if (**scan == '+') { (*scan)++; // skip '+' continue; } if (**scan == '-') { sign *= -1; (*scan)++; // skip '-' continue; } break; } SKIP_WS(*scan); KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); next = *scan; SKIP_DIGITS(next); stride = __kmp_str_to_int(*scan, *next); KMP_ASSERT(stride >= 0); *scan = next; stride *= sign; // valid follow sets are ',' and '}' SKIP_WS(*scan); if (**scan == '}' || **scan == ',') { for (i = 0; i < count; i++) { if ((start > maxOsId) || (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { if (__kmp_affinity_verbose || (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { KMP_WARNING(AffIgnoreInvalidProcID, start); } break; // don't proliferate warnings for large count } else { KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); start += stride; (*setSize)++; } } if (**scan == '}') { break; } (*scan)++; // skip ',' continue; } KMP_ASSERT2(0, "bad explicit places list"); } } static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, int maxOsId, kmp_affin_mask_t *tempMask, int *setSize) { const char *next; // valid follow sets are '{' '!' and num SKIP_WS(*scan); if (**scan == '{') { (*scan)++; // skip '{' __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); KMP_ASSERT2(**scan == '}', "bad explicit places list"); (*scan)++; // skip '}' } else if (**scan == '!') { (*scan)++; // skip '!' __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); KMP_CPU_COMPLEMENT(maxOsId, tempMask); } else if ((**scan >= '0') && (**scan <= '9')) { next = *scan; SKIP_DIGITS(next); int num = __kmp_str_to_int(*scan, *next); KMP_ASSERT(num >= 0); if ((num > maxOsId) || (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { if (__kmp_affinity_verbose || (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { KMP_WARNING(AffIgnoreInvalidProcID, num); } } else { KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); (*setSize)++; } *scan = next; // skip num } else { KMP_ASSERT2(0, "bad explicit places list"); } } // static void void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, unsigned int *out_numMasks, const char *placelist, kmp_affin_mask_t *osId2Mask, int maxOsId) { int i, j, count, stride, sign; const char *scan = placelist; const char *next = placelist; numNewMasks = 2; KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); nextNewMask = 0; // tempMask is modified based on the previous or initial // place to form the current place // previousMask contains the previous place kmp_affin_mask_t *tempMask; kmp_affin_mask_t *previousMask; KMP_CPU_ALLOC(tempMask); KMP_CPU_ZERO(tempMask); KMP_CPU_ALLOC(previousMask); KMP_CPU_ZERO(previousMask); int setSize = 0; for (;;) { __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); // valid follow sets are ',' ':' and EOL SKIP_WS(scan); if (*scan == '\0' || *scan == ',') { if (setSize > 0) { ADD_MASK(tempMask); } KMP_CPU_ZERO(tempMask); setSize = 0; if (*scan == '\0') { break; } scan++; // skip ',' continue; } KMP_ASSERT2(*scan == ':', "bad explicit places list"); scan++; // skip ':' // Read count parameter SKIP_WS(scan); KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); next = scan; SKIP_DIGITS(next); count = __kmp_str_to_int(scan, *next); KMP_ASSERT(count >= 0); scan = next; // valid follow sets are ',' ':' and EOL SKIP_WS(scan); if (*scan == '\0' || *scan == ',') { stride = +1; } else { KMP_ASSERT2(*scan == ':', "bad explicit places list"); scan++; // skip ':' // Read stride parameter sign = +1; for (;;) { SKIP_WS(scan); if (*scan == '+') { scan++; // skip '+' continue; } if (*scan == '-') { sign *= -1; scan++; // skip '-' continue; } break; } SKIP_WS(scan); KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); next = scan; SKIP_DIGITS(next); stride = __kmp_str_to_int(scan, *next); KMP_DEBUG_ASSERT(stride >= 0); scan = next; stride *= sign; } // Add places determined by initial_place : count : stride for (i = 0; i < count; i++) { if (setSize == 0) { break; } // Add the current place, then build the next place (tempMask) from that KMP_CPU_COPY(previousMask, tempMask); ADD_MASK(previousMask); KMP_CPU_ZERO(tempMask); setSize = 0; KMP_CPU_SET_ITERATE(j, previousMask) { if (!KMP_CPU_ISSET(j, previousMask)) { continue; } if ((j + stride > maxOsId) || (j + stride < 0) || (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || (!KMP_CPU_ISSET(j + stride, KMP_CPU_INDEX(osId2Mask, j + stride)))) { if ((__kmp_affinity_verbose || (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) && i < count - 1) { KMP_WARNING(AffIgnoreInvalidProcID, j + stride); } continue; } KMP_CPU_SET(j + stride, tempMask); setSize++; } } KMP_CPU_ZERO(tempMask); setSize = 0; // valid follow sets are ',' and EOL SKIP_WS(scan); if (*scan == '\0') { break; } if (*scan == ',') { scan++; // skip ',' continue; } KMP_ASSERT2(0, "bad explicit places list"); } *out_numMasks = nextNewMask; if (nextNewMask == 0) { *out_masks = NULL; KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); return; } KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); KMP_CPU_FREE(tempMask); KMP_CPU_FREE(previousMask); for (i = 0; i < nextNewMask; i++) { kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); KMP_CPU_COPY(dest, src); } KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); } #undef ADD_MASK #undef ADD_MASK_OSID // This function figures out the deepest level at which there is at least one // cluster/core with more than one processing unit bound to it. static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { int core_level = 0; for (int i = 0; i < nprocs; i++) { const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); for (int j = bottom_level; j > 0; j--) { if (hw_thread.ids[j] > 0) { if (core_level < (j - 1)) { core_level = j - 1; } } } } return core_level; } // This function counts number of clusters/cores at given level. static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, int core_level) { return __kmp_topology->get_count(core_level); } // This function finds to which cluster/core given processing unit is bound. static int __kmp_affinity_find_core(int proc, int bottom_level, int core_level) { int core = 0; KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); for (int i = 0; i <= proc; ++i) { if (i + 1 <= proc) { for (int j = 0; j <= core_level; ++j) { if (__kmp_topology->at(i + 1).sub_ids[j] != __kmp_topology->at(i).sub_ids[j]) { core++; break; } } } } return core; } // This function finds maximal number of processing units bound to a // cluster/core at given level. static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, int core_level) { if (core_level >= bottom_level) return 1; int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); return __kmp_topology->calculate_ratio(thread_level, core_level); } static int *procarr = NULL; static int __kmp_aff_depth = 0; // Create a one element mask array (set of places) which only contains the // initial process's affinity mask static void __kmp_create_affinity_none_places() { KMP_ASSERT(__kmp_affin_fullMask != NULL); KMP_ASSERT(__kmp_affinity_type == affinity_none); __kmp_affinity_num_masks = 1; KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); KMP_CPU_COPY(dest, __kmp_affin_fullMask); } static void __kmp_aux_affinity_initialize(void) { if (__kmp_affinity_masks != NULL) { KMP_ASSERT(__kmp_affin_fullMask != NULL); return; } // Create the "full" mask - this defines all of the processors that we // consider to be in the machine model. If respect is set, then it is the // initialization thread's affinity mask. Otherwise, it is all processors that // we know about on the machine. if (__kmp_affin_fullMask == NULL) { KMP_CPU_ALLOC(__kmp_affin_fullMask); } if (KMP_AFFINITY_CAPABLE()) { __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); if (__kmp_affinity_respect_mask) { // Count the number of available processors. unsigned i; __kmp_avail_proc = 0; KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { continue; } __kmp_avail_proc++; } if (__kmp_avail_proc > __kmp_xproc) { if (__kmp_affinity_verbose || (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { KMP_WARNING(ErrorInitializeAffinity); } __kmp_affinity_type = affinity_none; KMP_AFFINITY_DISABLE(); return; } if (__kmp_affinity_verbose) { char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, __kmp_affin_fullMask); KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); } } else { if (__kmp_affinity_verbose) { char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, __kmp_affin_fullMask); KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); } __kmp_avail_proc = __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); #if KMP_OS_WINDOWS // Set the process affinity mask since threads' affinity // masks must be subset of process mask in Windows* OS __kmp_affin_fullMask->set_process_affinity(true); #endif } } kmp_i18n_id_t msg_id = kmp_i18n_null; // For backward compatibility, setting KMP_CPUINFO_FILE => // KMP_TOPOLOGY_METHOD=cpuinfo if ((__kmp_cpuinfo_file != NULL) && (__kmp_affinity_top_method == affinity_top_method_all)) { __kmp_affinity_top_method = affinity_top_method_cpuinfo; } bool success = false; if (__kmp_affinity_top_method == affinity_top_method_all) { // In the default code path, errors are not fatal - we just try using // another method. We only emit a warning message if affinity is on, or the // verbose flag is set, an the nowarnings flag was not set. #if KMP_USE_HWLOC if (!success && __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { if (!__kmp_hwloc_error) { success = __kmp_affinity_create_hwloc_map(&msg_id); if (!success && __kmp_affinity_verbose) { KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); } } else if (__kmp_affinity_verbose) { KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); } } #endif #if KMP_ARCH_X86 || KMP_ARCH_X86_64 if (!success) { success = __kmp_affinity_create_x2apicid_map(&msg_id); if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); } } if (!success) { success = __kmp_affinity_create_apicid_map(&msg_id); if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); } } #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ #if KMP_OS_LINUX if (!success) { int line = 0; success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); } } #endif /* KMP_OS_LINUX */ #if KMP_GROUP_AFFINITY if (!success && (__kmp_num_proc_groups > 1)) { success = __kmp_affinity_create_proc_group_map(&msg_id); if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); } } #endif /* KMP_GROUP_AFFINITY */ if (!success) { success = __kmp_affinity_create_flat_map(&msg_id); if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); } KMP_ASSERT(success); } } // If the user has specified that a paricular topology discovery method is to be // used, then we abort if that method fails. The exception is group affinity, // which might have been implicitly set. #if KMP_USE_HWLOC else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); success = __kmp_affinity_create_hwloc_map(&msg_id); if (!success) { KMP_ASSERT(msg_id != kmp_i18n_null); KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); } } #endif // KMP_USE_HWLOC #if KMP_ARCH_X86 || KMP_ARCH_X86_64 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { success = __kmp_affinity_create_x2apicid_map(&msg_id); if (!success) { KMP_ASSERT(msg_id != kmp_i18n_null); KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); } } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { success = __kmp_affinity_create_apicid_map(&msg_id); if (!success) { KMP_ASSERT(msg_id != kmp_i18n_null); KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); } } #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { int line = 0; success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); if (!success) { KMP_ASSERT(msg_id != kmp_i18n_null); const char *filename = __kmp_cpuinfo_get_filename(); if (line > 0) { KMP_FATAL(FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id)); } else { KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); } } } #if KMP_GROUP_AFFINITY else if (__kmp_affinity_top_method == affinity_top_method_group) { success = __kmp_affinity_create_proc_group_map(&msg_id); KMP_ASSERT(success); if (!success) { KMP_ASSERT(msg_id != kmp_i18n_null); KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); } } #endif /* KMP_GROUP_AFFINITY */ else if (__kmp_affinity_top_method == affinity_top_method_flat) { success = __kmp_affinity_create_flat_map(&msg_id); // should not fail KMP_ASSERT(success); } // Early exit if topology could not be created if (!__kmp_topology) { if (KMP_AFFINITY_CAPABLE() && (__kmp_affinity_verbose || (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { KMP_WARNING(ErrorInitializeAffinity); } if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && __kmp_ncores > 0) { __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); __kmp_topology->canonicalize(nPackages, nCoresPerPkg, __kmp_nThreadsPerCore, __kmp_ncores); if (__kmp_affinity_verbose) { __kmp_topology->print("KMP_AFFINITY"); } } __kmp_affinity_type = affinity_none; __kmp_create_affinity_none_places(); #if KMP_USE_HIER_SCHED __kmp_dispatch_set_hierarchy_values(); #endif KMP_AFFINITY_DISABLE(); return; } // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and // initialize other data structures which depend on the topology __kmp_topology->canonicalize(); if (__kmp_affinity_verbose) __kmp_topology->print("KMP_AFFINITY"); bool filtered = __kmp_topology->filter_hw_subset(); if (filtered && __kmp_affinity_verbose) __kmp_topology->print("KMP_HW_SUBSET"); machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); // If KMP_AFFINITY=none, then only create the single "none" place // which is the process's initial affinity mask or the number of // hardware threads depending on respect,norespect if (__kmp_affinity_type == affinity_none) { __kmp_create_affinity_none_places(); #if KMP_USE_HIER_SCHED __kmp_dispatch_set_hierarchy_values(); #endif return; } int depth = __kmp_topology->get_depth(); // Create the table of masks, indexed by thread Id. unsigned maxIndex; unsigned numUnique; kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique); if (__kmp_affinity_gran_levels == 0) { KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); } switch (__kmp_affinity_type) { case affinity_explicit: KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { __kmp_affinity_process_proclist( &__kmp_affinity_masks, &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask, maxIndex); } else { __kmp_affinity_process_placelist( &__kmp_affinity_masks, &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask, maxIndex); } if (__kmp_affinity_num_masks == 0) { if (__kmp_affinity_verbose || (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { KMP_WARNING(AffNoValidProcID); } __kmp_affinity_type = affinity_none; __kmp_create_affinity_none_places(); return; } break; // The other affinity types rely on sorting the hardware threads according to // some permutation of the machine topology tree. Set __kmp_affinity_compact // and __kmp_affinity_offset appropriately, then jump to a common code // fragment to do the sort and create the array of affinity masks. case affinity_logical: __kmp_affinity_compact = 0; if (__kmp_affinity_offset) { __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; } goto sortTopology; case affinity_physical: if (__kmp_nThreadsPerCore > 1) { __kmp_affinity_compact = 1; if (__kmp_affinity_compact >= depth) { __kmp_affinity_compact = 0; } } else { __kmp_affinity_compact = 0; } if (__kmp_affinity_offset) { __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; } goto sortTopology; case affinity_scatter: if (__kmp_affinity_compact >= depth) { __kmp_affinity_compact = 0; } else { __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; } goto sortTopology; case affinity_compact: if (__kmp_affinity_compact >= depth) { __kmp_affinity_compact = depth - 1; } goto sortTopology; case affinity_balanced: if (depth <= 1) { if (__kmp_affinity_verbose || __kmp_affinity_warnings) { KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); } __kmp_affinity_type = affinity_none; __kmp_create_affinity_none_places(); return; } else if (!__kmp_topology->is_uniform()) { // Save the depth for further usage __kmp_aff_depth = depth; int core_level = __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, core_level); int maxprocpercore = __kmp_affinity_max_proc_per_core( __kmp_avail_proc, depth - 1, core_level); int nproc = ncores * maxprocpercore; if ((nproc < 2) || (nproc < __kmp_avail_proc)) { if (__kmp_affinity_verbose || __kmp_affinity_warnings) { KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); } __kmp_affinity_type = affinity_none; return; } procarr = (int *)__kmp_allocate(sizeof(int) * nproc); for (int i = 0; i < nproc; i++) { procarr[i] = -1; } int lastcore = -1; int inlastcore = 0; for (int i = 0; i < __kmp_avail_proc; i++) { int proc = __kmp_topology->at(i).os_id; int core = __kmp_affinity_find_core(i, depth - 1, core_level); if (core == lastcore) { inlastcore++; } else { inlastcore = 0; } lastcore = core; procarr[core * maxprocpercore + inlastcore] = proc; } } if (__kmp_affinity_compact >= depth) { __kmp_affinity_compact = depth - 1; } sortTopology: // Allocate the gtid->affinity mask table. if (__kmp_affinity_dups) { __kmp_affinity_num_masks = __kmp_avail_proc; } else { __kmp_affinity_num_masks = numUnique; } if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && (__kmp_affinity_num_places > 0) && ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { __kmp_affinity_num_masks = __kmp_affinity_num_places; } KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); // Sort the topology table according to the current setting of // __kmp_affinity_compact, then fill out __kmp_affinity_masks. __kmp_topology->sort_compact(); { int i; unsigned j; int num_hw_threads = __kmp_topology->get_num_hw_threads(); for (i = 0, j = 0; i < num_hw_threads; i++) { if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) { continue; } int osId = __kmp_topology->at(i).os_id; kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); KMP_ASSERT(KMP_CPU_ISSET(osId, src)); KMP_CPU_COPY(dest, src); if (++j >= __kmp_affinity_num_masks) { break; } } KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); } // Sort the topology back using ids __kmp_topology->sort_ids(); break; default: KMP_ASSERT2(0, "Unexpected affinity setting"); } KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); } void __kmp_affinity_initialize(void) { // Much of the code above was written assuming that if a machine was not // affinity capable, then __kmp_affinity_type == affinity_none. We now // explicitly represent this as __kmp_affinity_type == affinity_disabled. // There are too many checks for __kmp_affinity_type == affinity_none // in this code. Instead of trying to change them all, check if // __kmp_affinity_type == affinity_disabled, and if so, slam it with // affinity_none, call the real initialization routine, then restore // __kmp_affinity_type to affinity_disabled. int disabled = (__kmp_affinity_type == affinity_disabled); if (!KMP_AFFINITY_CAPABLE()) { KMP_ASSERT(disabled); } if (disabled) { __kmp_affinity_type = affinity_none; } __kmp_aux_affinity_initialize(); if (disabled) { __kmp_affinity_type = affinity_disabled; } } void __kmp_affinity_uninitialize(void) { if (__kmp_affinity_masks != NULL) { KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); __kmp_affinity_masks = NULL; } if (__kmp_affin_fullMask != NULL) { KMP_CPU_FREE(__kmp_affin_fullMask); __kmp_affin_fullMask = NULL; } __kmp_affinity_num_masks = 0; __kmp_affinity_type = affinity_default; __kmp_affinity_num_places = 0; if (__kmp_affinity_proclist != NULL) { __kmp_free(__kmp_affinity_proclist); __kmp_affinity_proclist = NULL; } if (procarr != NULL) { __kmp_free(procarr); procarr = NULL; } #if KMP_USE_HWLOC if (__kmp_hwloc_topology != NULL) { hwloc_topology_destroy(__kmp_hwloc_topology); __kmp_hwloc_topology = NULL; } #endif if (__kmp_hw_subset) { kmp_hw_subset_t::deallocate(__kmp_hw_subset); __kmp_hw_subset = nullptr; } if (__kmp_topology) { kmp_topology_t::deallocate(__kmp_topology); __kmp_topology = nullptr; } KMPAffinity::destroy_api(); } void __kmp_affinity_set_init_mask(int gtid, int isa_root) { if (!KMP_AFFINITY_CAPABLE()) { return; } kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); if (th->th.th_affin_mask == NULL) { KMP_CPU_ALLOC(th->th.th_affin_mask); } else { KMP_CPU_ZERO(th->th.th_affin_mask); } // Copy the thread mask to the kmp_info_t structure. If // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, // then the full mask is the same as the mask of the initialization thread. kmp_affin_mask_t *mask; int i; if (KMP_AFFINITY_NON_PROC_BIND) { if ((__kmp_affinity_type == affinity_none) || (__kmp_affinity_type == affinity_balanced) || KMP_HIDDEN_HELPER_THREAD(gtid)) { #if KMP_GROUP_AFFINITY if (__kmp_num_proc_groups > 1) { return; } #endif KMP_ASSERT(__kmp_affin_fullMask != NULL); i = 0; mask = __kmp_affin_fullMask; } else { int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); } } else { if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { #if KMP_GROUP_AFFINITY if (__kmp_num_proc_groups > 1) { return; } #endif KMP_ASSERT(__kmp_affin_fullMask != NULL); i = KMP_PLACE_ALL; mask = __kmp_affin_fullMask; } else { // int i = some hash function or just a counter that doesn't // always start at 0. Use adjusted gtid for now. int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); } } th->th.th_current_place = i; if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) { th->th.th_new_place = i; th->th.th_first_place = 0; th->th.th_last_place = __kmp_affinity_num_masks - 1; } else if (KMP_AFFINITY_NON_PROC_BIND) { // When using a Non-OMP_PROC_BIND affinity method, // set all threads' place-partition-var to the entire place list th->th.th_first_place = 0; th->th.th_last_place = __kmp_affinity_num_masks - 1; } if (i == KMP_PLACE_ALL) { KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", gtid)); } else { KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", gtid, i)); } KMP_CPU_COPY(th->th.th_affin_mask, mask); if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid) /* to avoid duplicate printing (will be correctly printed on barrier) */ && (__kmp_affinity_type == affinity_none || (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, th->th.th_affin_mask); KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), __kmp_gettid(), gtid, buf); } #if KMP_DEBUG // Hidden helper thread affinity only printed for debug builds if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) { char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, th->th.th_affin_mask); KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)", (kmp_int32)getpid(), __kmp_gettid(), gtid, buf); } #endif #if KMP_OS_WINDOWS // On Windows* OS, the process affinity mask might have changed. If the user // didn't request affinity and this call fails, just continue silently. // See CQ171393. if (__kmp_affinity_type == affinity_none) { __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); } else #endif __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); } void __kmp_affinity_set_place(int gtid) { if (!KMP_AFFINITY_CAPABLE()) { return; } kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " "place = %d)\n", gtid, th->th.th_new_place, th->th.th_current_place)); // Check that the new place is within this thread's partition. KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); KMP_ASSERT(th->th.th_new_place >= 0); KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); if (th->th.th_first_place <= th->th.th_last_place) { KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && (th->th.th_new_place <= th->th.th_last_place)); } else { KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || (th->th.th_new_place >= th->th.th_last_place)); } // Copy the thread mask to the kmp_info_t structure, // and set this thread's affinity. kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); KMP_CPU_COPY(th->th.th_affin_mask, mask); th->th.th_current_place = th->th.th_new_place; if (__kmp_affinity_verbose) { char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, th->th.th_affin_mask); KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), __kmp_gettid(), gtid, buf); } __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); } int __kmp_aux_set_affinity(void **mask) { int gtid; kmp_info_t *th; int retval; if (!KMP_AFFINITY_CAPABLE()) { return -1; } gtid = __kmp_entry_gtid(); KA_TRACE( 1000, (""); { char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf( "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid, buf); }); if (__kmp_env_consistency_check) { if ((mask == NULL) || (*mask == NULL)) { KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); } else { unsigned proc; int num_procs = 0; KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); } if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { continue; } num_procs++; } if (num_procs == 0) { KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); } #if KMP_GROUP_AFFINITY if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); } #endif /* KMP_GROUP_AFFINITY */ } } th = __kmp_threads[gtid]; KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); if (retval == 0) { KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); } th->th.th_current_place = KMP_PLACE_UNDEFINED; th->th.th_new_place = KMP_PLACE_UNDEFINED; th->th.th_first_place = 0; th->th.th_last_place = __kmp_affinity_num_masks - 1; // Turn off 4.0 affinity for the current tread at this parallel level. th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; return retval; } int __kmp_aux_get_affinity(void **mask) { int gtid; int retval; #if KMP_OS_WINDOWS || KMP_DEBUG kmp_info_t *th; #endif if (!KMP_AFFINITY_CAPABLE()) { return -1; } gtid = __kmp_entry_gtid(); #if KMP_OS_WINDOWS || KMP_DEBUG th = __kmp_threads[gtid]; #else (void)gtid; // unused variable #endif KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); KA_TRACE( 1000, (""); { char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, th->th.th_affin_mask); __kmp_printf( "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, buf); }); if (__kmp_env_consistency_check) { if ((mask == NULL) || (*mask == NULL)) { KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); } } #if !KMP_OS_WINDOWS retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); KA_TRACE( 1000, (""); { char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, (kmp_affin_mask_t *)(*mask)); __kmp_printf( "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, buf); }); return retval; #else (void)retval; KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); return 0; #endif /* KMP_OS_WINDOWS */ } int __kmp_aux_get_affinity_max_proc() { if (!KMP_AFFINITY_CAPABLE()) { return 0; } #if KMP_GROUP_AFFINITY if (__kmp_num_proc_groups > 1) { return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); } #endif return __kmp_xproc; } int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { if (!KMP_AFFINITY_CAPABLE()) { return -1; } KA_TRACE( 1000, (""); { int gtid = __kmp_entry_gtid(); char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " "affinity mask for thread %d = %s\n", proc, gtid, buf); }); if (__kmp_env_consistency_check) { if ((mask == NULL) || (*mask == NULL)) { KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); } } if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { return -1; } if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { return -2; } KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); return 0; } int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { if (!KMP_AFFINITY_CAPABLE()) { return -1; } KA_TRACE( 1000, (""); { int gtid = __kmp_entry_gtid(); char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " "affinity mask for thread %d = %s\n", proc, gtid, buf); }); if (__kmp_env_consistency_check) { if ((mask == NULL) || (*mask == NULL)) { KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); } } if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { return -1; } if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { return -2; } KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); return 0; } int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { if (!KMP_AFFINITY_CAPABLE()) { return -1; } KA_TRACE( 1000, (""); { int gtid = __kmp_entry_gtid(); char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, (kmp_affin_mask_t *)(*mask)); __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " "affinity mask for thread %d = %s\n", proc, gtid, buf); }); if (__kmp_env_consistency_check) { if ((mask == NULL) || (*mask == NULL)) { KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); } } if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { return -1; } if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { return 0; } return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); } // Dynamic affinity settings - Affinity balanced void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { KMP_DEBUG_ASSERT(th); bool fine_gran = true; int tid = th->th.th_info.ds.ds_tid; // Do not perform balanced affinity for the hidden helper threads if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) return; switch (__kmp_affinity_gran) { case KMP_HW_THREAD: break; case KMP_HW_CORE: if (__kmp_nThreadsPerCore > 1) { fine_gran = false; } break; case KMP_HW_SOCKET: if (nCoresPerPkg > 1) { fine_gran = false; } break; default: fine_gran = false; } if (__kmp_topology->is_uniform()) { int coreID; int threadID; // Number of hyper threads per core in HT machine int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; // Number of cores int ncores = __kmp_ncores; if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { __kmp_nth_per_core = __kmp_avail_proc / nPackages; ncores = nPackages; } // How many threads will be bound to each core int chunk = nthreads / ncores; // How many cores will have an additional thread bound to it - "big cores" int big_cores = nthreads % ncores; // Number of threads on the big cores int big_nth = (chunk + 1) * big_cores; if (tid < big_nth) { coreID = tid / (chunk + 1); threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; } else { // tid >= big_nth coreID = (tid - big_cores) / chunk; threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; } KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), "Illegal set affinity operation when not capable"); kmp_affin_mask_t *mask = th->th.th_affin_mask; KMP_CPU_ZERO(mask); if (fine_gran) { int osID = __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; KMP_CPU_SET(osID, mask); } else { for (int i = 0; i < __kmp_nth_per_core; i++) { int osID; osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; KMP_CPU_SET(osID, mask); } } if (__kmp_affinity_verbose) { char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), __kmp_gettid(), tid, buf); } __kmp_set_system_affinity(mask, TRUE); } else { // Non-uniform topology kmp_affin_mask_t *mask = th->th.th_affin_mask; KMP_CPU_ZERO(mask); int core_level = __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, __kmp_aff_depth - 1, core_level); int nth_per_core = __kmp_affinity_max_proc_per_core( __kmp_avail_proc, __kmp_aff_depth - 1, core_level); // For performance gain consider the special case nthreads == // __kmp_avail_proc if (nthreads == __kmp_avail_proc) { if (fine_gran) { int osID = __kmp_topology->at(tid).os_id; KMP_CPU_SET(osID, mask); } else { int core = __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); for (int i = 0; i < __kmp_avail_proc; i++) { int osID = __kmp_topology->at(i).os_id; if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == core) { KMP_CPU_SET(osID, mask); } } } } else if (nthreads <= ncores) { int core = 0; for (int i = 0; i < ncores; i++) { // Check if this core from procarr[] is in the mask int in_mask = 0; for (int j = 0; j < nth_per_core; j++) { if (procarr[i * nth_per_core + j] != -1) { in_mask = 1; break; } } if (in_mask) { if (tid == core) { for (int j = 0; j < nth_per_core; j++) { int osID = procarr[i * nth_per_core + j]; if (osID != -1) { KMP_CPU_SET(osID, mask); // For fine granularity it is enough to set the first available // osID for this core if (fine_gran) { break; } } } break; } else { core++; } } } } else { // nthreads > ncores // Array to save the number of processors at each core int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); // Array to save the number of cores with "x" available processors; int *ncores_with_x_procs = (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); // Array to save the number of cores with # procs from x to nth_per_core int *ncores_with_x_to_max_procs = (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); for (int i = 0; i <= nth_per_core; i++) { ncores_with_x_procs[i] = 0; ncores_with_x_to_max_procs[i] = 0; } for (int i = 0; i < ncores; i++) { int cnt = 0; for (int j = 0; j < nth_per_core; j++) { if (procarr[i * nth_per_core + j] != -1) { cnt++; } } nproc_at_core[i] = cnt; ncores_with_x_procs[cnt]++; } for (int i = 0; i <= nth_per_core; i++) { for (int j = i; j <= nth_per_core; j++) { ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; } } // Max number of processors int nproc = nth_per_core * ncores; // An array to keep number of threads per each context int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); for (int i = 0; i < nproc; i++) { newarr[i] = 0; } int nth = nthreads; int flag = 0; while (nth > 0) { for (int j = 1; j <= nth_per_core; j++) { int cnt = ncores_with_x_to_max_procs[j]; for (int i = 0; i < ncores; i++) { // Skip the core with 0 processors if (nproc_at_core[i] == 0) { continue; } for (int k = 0; k < nth_per_core; k++) { if (procarr[i * nth_per_core + k] != -1) { if (newarr[i * nth_per_core + k] == 0) { newarr[i * nth_per_core + k] = 1; cnt--; nth--; break; } else { if (flag != 0) { newarr[i * nth_per_core + k]++; cnt--; nth--; break; } } } } if (cnt == 0 || nth == 0) { break; } } if (nth == 0) { break; } } flag = 1; } int sum = 0; for (int i = 0; i < nproc; i++) { sum += newarr[i]; if (sum > tid) { if (fine_gran) { int osID = procarr[i]; KMP_CPU_SET(osID, mask); } else { int coreID = i / nth_per_core; for (int ii = 0; ii < nth_per_core; ii++) { int osID = procarr[coreID * nth_per_core + ii]; if (osID != -1) { KMP_CPU_SET(osID, mask); } } } break; } } __kmp_free(newarr); } if (__kmp_affinity_verbose) { char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), __kmp_gettid(), tid, buf); } __kmp_set_system_affinity(mask, TRUE); } } #if KMP_OS_LINUX || KMP_OS_FREEBSD // We don't need this entry for Windows because // there is GetProcessAffinityMask() api // // The intended usage is indicated by these steps: // 1) The user gets the current affinity mask // 2) Then sets the affinity by calling this function // 3) Error check the return value // 4) Use non-OpenMP parallelization // 5) Reset the affinity to what was stored in step 1) #ifdef __cplusplus extern "C" #endif int kmp_set_thread_affinity_mask_initial() // the function returns 0 on success, // -1 if we cannot bind thread // >0 (errno) if an error happened during binding { int gtid = __kmp_get_gtid(); if (gtid < 0) { // Do not touch non-omp threads KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " "non-omp thread, returning\n")); return -1; } if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " "affinity not initialized, returning\n")); return -1; } KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " "set full mask for thread %d\n", gtid)); KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); } #endif #endif // KMP_AFFINITY_SUPPORTED