1 //===- DirectiveEmitter.cpp - Directive Language Emitter ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DirectiveEmitter uses the descriptions of directives and clauses to construct
10 // common code declarations to be used in Frontends.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/TableGen/DirectiveEmitter.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringSet.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/TableGen/Error.h"
22 #include "llvm/TableGen/Record.h"
23 #include "llvm/TableGen/TableGenBackend.h"
24
25 #include <numeric>
26 #include <vector>
27
28 using namespace llvm;
29
30 namespace {
31 // Simple RAII helper for defining ifdef-undef-endif scopes.
32 class IfDefScope {
33 public:
IfDefScope(StringRef Name,raw_ostream & OS)34 IfDefScope(StringRef Name, raw_ostream &OS) : Name(Name), OS(OS) {
35 OS << "#ifdef " << Name << "\n"
36 << "#undef " << Name << "\n";
37 }
38
~IfDefScope()39 ~IfDefScope() { OS << "\n#endif // " << Name << "\n\n"; }
40
41 private:
42 StringRef Name;
43 raw_ostream &OS;
44 };
45 } // namespace
46
47 // Generate enum class. Entries are emitted in the order in which they appear
48 // in the `Records` vector.
GenerateEnumClass(const std::vector<Record * > & Records,raw_ostream & OS,StringRef Enum,StringRef Prefix,const DirectiveLanguage & DirLang,bool ExportEnums)49 static void GenerateEnumClass(const std::vector<Record *> &Records,
50 raw_ostream &OS, StringRef Enum, StringRef Prefix,
51 const DirectiveLanguage &DirLang,
52 bool ExportEnums) {
53 OS << "\n";
54 OS << "enum class " << Enum << " {\n";
55 for (const auto &R : Records) {
56 BaseRecord Rec{R};
57 OS << " " << Prefix << Rec.getFormattedName() << ",\n";
58 }
59 OS << "};\n";
60 OS << "\n";
61 OS << "static constexpr std::size_t " << Enum
62 << "_enumSize = " << Records.size() << ";\n";
63
64 // Make the enum values available in the defined namespace. This allows us to
65 // write something like Enum_X if we have a `using namespace <CppNamespace>`.
66 // At the same time we do not loose the strong type guarantees of the enum
67 // class, that is we cannot pass an unsigned as Directive without an explicit
68 // cast.
69 if (ExportEnums) {
70 OS << "\n";
71 for (const auto &R : Records) {
72 BaseRecord Rec{R};
73 OS << "constexpr auto " << Prefix << Rec.getFormattedName() << " = "
74 << "llvm::" << DirLang.getCppNamespace() << "::" << Enum
75 << "::" << Prefix << Rec.getFormattedName() << ";\n";
76 }
77 }
78 }
79
80 // Generate enums for values that clauses can take.
81 // Also generate function declarations for get<Enum>Name(StringRef Str).
GenerateEnumClauseVal(const std::vector<Record * > & Records,raw_ostream & OS,const DirectiveLanguage & DirLang,std::string & EnumHelperFuncs)82 static void GenerateEnumClauseVal(const std::vector<Record *> &Records,
83 raw_ostream &OS,
84 const DirectiveLanguage &DirLang,
85 std::string &EnumHelperFuncs) {
86 for (const auto &R : Records) {
87 Clause C{R};
88 const auto &ClauseVals = C.getClauseVals();
89 if (ClauseVals.size() <= 0)
90 continue;
91
92 const auto &EnumName = C.getEnumName();
93 if (EnumName.size() == 0) {
94 PrintError("enumClauseValue field not set in Clause" +
95 C.getFormattedName() + ".");
96 return;
97 }
98
99 OS << "\n";
100 OS << "enum class " << EnumName << " {\n";
101 for (const auto &CV : ClauseVals) {
102 ClauseVal CVal{CV};
103 OS << " " << CV->getName() << "=" << CVal.getValue() << ",\n";
104 }
105 OS << "};\n";
106
107 if (DirLang.hasMakeEnumAvailableInNamespace()) {
108 OS << "\n";
109 for (const auto &CV : ClauseVals) {
110 OS << "constexpr auto " << CV->getName() << " = "
111 << "llvm::" << DirLang.getCppNamespace() << "::" << EnumName
112 << "::" << CV->getName() << ";\n";
113 }
114 EnumHelperFuncs += (llvm::Twine(EnumName) + llvm::Twine(" get") +
115 llvm::Twine(EnumName) + llvm::Twine("(StringRef);\n"))
116 .str();
117
118 EnumHelperFuncs +=
119 (llvm::Twine("llvm::StringRef get") + llvm::Twine(DirLang.getName()) +
120 llvm::Twine(EnumName) + llvm::Twine("Name(") +
121 llvm::Twine(EnumName) + llvm::Twine(");\n"))
122 .str();
123 }
124 }
125 }
126
HasDuplicateClauses(const std::vector<Record * > & Clauses,const Directive & Directive,llvm::StringSet<> & CrtClauses)127 static bool HasDuplicateClauses(const std::vector<Record *> &Clauses,
128 const Directive &Directive,
129 llvm::StringSet<> &CrtClauses) {
130 bool HasError = false;
131 for (const auto &C : Clauses) {
132 VersionedClause VerClause{C};
133 const auto insRes = CrtClauses.insert(VerClause.getClause().getName());
134 if (!insRes.second) {
135 PrintError("Clause " + VerClause.getClause().getRecordName() +
136 " already defined on directive " + Directive.getRecordName());
137 HasError = true;
138 }
139 }
140 return HasError;
141 }
142
143 // Check for duplicate clauses in lists. Clauses cannot appear twice in the
144 // three allowed list. Also, since required implies allowed, clauses cannot
145 // appear in both the allowedClauses and requiredClauses lists.
146 static bool
HasDuplicateClausesInDirectives(const std::vector<Record * > & Directives)147 HasDuplicateClausesInDirectives(const std::vector<Record *> &Directives) {
148 bool HasDuplicate = false;
149 for (const auto &D : Directives) {
150 Directive Dir{D};
151 llvm::StringSet<> Clauses;
152 // Check for duplicates in the three allowed lists.
153 if (HasDuplicateClauses(Dir.getAllowedClauses(), Dir, Clauses) ||
154 HasDuplicateClauses(Dir.getAllowedOnceClauses(), Dir, Clauses) ||
155 HasDuplicateClauses(Dir.getAllowedExclusiveClauses(), Dir, Clauses)) {
156 HasDuplicate = true;
157 }
158 // Check for duplicate between allowedClauses and required
159 Clauses.clear();
160 if (HasDuplicateClauses(Dir.getAllowedClauses(), Dir, Clauses) ||
161 HasDuplicateClauses(Dir.getRequiredClauses(), Dir, Clauses)) {
162 HasDuplicate = true;
163 }
164 if (HasDuplicate)
165 PrintFatalError("One or more clauses are defined multiple times on"
166 " directive " +
167 Dir.getRecordName());
168 }
169
170 return HasDuplicate;
171 }
172
173 // Check consitency of records. Return true if an error has been detected.
174 // Return false if the records are valid.
HasValidityErrors() const175 bool DirectiveLanguage::HasValidityErrors() const {
176 if (getDirectiveLanguages().size() != 1) {
177 PrintFatalError("A single definition of DirectiveLanguage is needed.");
178 return true;
179 }
180
181 return HasDuplicateClausesInDirectives(getDirectives());
182 }
183
184 // Count the maximum number of leaf constituents per construct.
GetMaxLeafCount(const DirectiveLanguage & DirLang)185 static size_t GetMaxLeafCount(const DirectiveLanguage &DirLang) {
186 size_t MaxCount = 0;
187 for (Record *R : DirLang.getDirectives()) {
188 size_t Count = Directive{R}.getLeafConstructs().size();
189 MaxCount = std::max(MaxCount, Count);
190 }
191 return MaxCount;
192 }
193
194 // Generate the declaration section for the enumeration in the directive
195 // language
EmitDirectivesDecl(RecordKeeper & Records,raw_ostream & OS)196 static void EmitDirectivesDecl(RecordKeeper &Records, raw_ostream &OS) {
197 const auto DirLang = DirectiveLanguage{Records};
198 if (DirLang.HasValidityErrors())
199 return;
200
201 OS << "#ifndef LLVM_" << DirLang.getName() << "_INC\n";
202 OS << "#define LLVM_" << DirLang.getName() << "_INC\n";
203 OS << "\n#include \"llvm/ADT/ArrayRef.h\"\n";
204
205 if (DirLang.hasEnableBitmaskEnumInNamespace())
206 OS << "#include \"llvm/ADT/BitmaskEnum.h\"\n";
207
208 OS << "#include <cstddef>\n"; // for size_t
209 OS << "\n";
210 OS << "namespace llvm {\n";
211 OS << "class StringRef;\n";
212
213 // Open namespaces defined in the directive language
214 llvm::SmallVector<StringRef, 2> Namespaces;
215 llvm::SplitString(DirLang.getCppNamespace(), Namespaces, "::");
216 for (auto Ns : Namespaces)
217 OS << "namespace " << Ns << " {\n";
218
219 if (DirLang.hasEnableBitmaskEnumInNamespace())
220 OS << "\nLLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();\n";
221
222 // Emit Directive associations
223 std::vector<Record *> associations;
224 llvm::copy_if(
225 DirLang.getAssociations(), std::back_inserter(associations),
226 // Skip the "special" value
227 [](const Record *Def) { return Def->getName() != "AS_FromLeaves"; });
228 GenerateEnumClass(associations, OS, "Association",
229 /*Prefix=*/"", DirLang, /*ExportEnums=*/false);
230
231 GenerateEnumClass(DirLang.getCategories(), OS, "Category", /*Prefix=*/"",
232 DirLang, /*ExportEnums=*/false);
233
234 // Emit Directive enumeration
235 GenerateEnumClass(DirLang.getDirectives(), OS, "Directive",
236 DirLang.getDirectivePrefix(), DirLang,
237 DirLang.hasMakeEnumAvailableInNamespace());
238
239 // Emit Clause enumeration
240 GenerateEnumClass(DirLang.getClauses(), OS, "Clause",
241 DirLang.getClausePrefix(), DirLang,
242 DirLang.hasMakeEnumAvailableInNamespace());
243
244 // Emit ClauseVal enumeration
245 std::string EnumHelperFuncs;
246 GenerateEnumClauseVal(DirLang.getClauses(), OS, DirLang, EnumHelperFuncs);
247
248 // Generic function signatures
249 OS << "\n";
250 OS << "// Enumeration helper functions\n";
251 OS << "Directive get" << DirLang.getName()
252 << "DirectiveKind(llvm::StringRef Str);\n";
253 OS << "\n";
254 OS << "llvm::StringRef get" << DirLang.getName()
255 << "DirectiveName(Directive D);\n";
256 OS << "\n";
257 OS << "Clause get" << DirLang.getName()
258 << "ClauseKind(llvm::StringRef Str);\n";
259 OS << "\n";
260 OS << "llvm::StringRef get" << DirLang.getName() << "ClauseName(Clause C);\n";
261 OS << "\n";
262 OS << "/// Return true if \\p C is a valid clause for \\p D in version \\p "
263 << "Version.\n";
264 OS << "bool isAllowedClauseForDirective(Directive D, "
265 << "Clause C, unsigned Version);\n";
266 OS << "\n";
267 OS << "constexpr std::size_t getMaxLeafCount() { return "
268 << GetMaxLeafCount(DirLang) << "; }\n";
269 OS << "Association getDirectiveAssociation(Directive D);\n";
270 OS << "Category getDirectiveCategory(Directive D);\n";
271 if (EnumHelperFuncs.length() > 0) {
272 OS << EnumHelperFuncs;
273 OS << "\n";
274 }
275
276 // Closing namespaces
277 for (auto Ns : llvm::reverse(Namespaces))
278 OS << "} // namespace " << Ns << "\n";
279
280 OS << "} // namespace llvm\n";
281
282 OS << "#endif // LLVM_" << DirLang.getName() << "_INC\n";
283 }
284
285 // Generate function implementation for get<Enum>Name(StringRef Str)
GenerateGetName(const std::vector<Record * > & Records,raw_ostream & OS,StringRef Enum,const DirectiveLanguage & DirLang,StringRef Prefix)286 static void GenerateGetName(const std::vector<Record *> &Records,
287 raw_ostream &OS, StringRef Enum,
288 const DirectiveLanguage &DirLang,
289 StringRef Prefix) {
290 OS << "\n";
291 OS << "llvm::StringRef llvm::" << DirLang.getCppNamespace() << "::get"
292 << DirLang.getName() << Enum << "Name(" << Enum << " Kind) {\n";
293 OS << " switch (Kind) {\n";
294 for (const auto &R : Records) {
295 BaseRecord Rec{R};
296 OS << " case " << Prefix << Rec.getFormattedName() << ":\n";
297 OS << " return \"";
298 if (Rec.getAlternativeName().empty())
299 OS << Rec.getName();
300 else
301 OS << Rec.getAlternativeName();
302 OS << "\";\n";
303 }
304 OS << " }\n"; // switch
305 OS << " llvm_unreachable(\"Invalid " << DirLang.getName() << " " << Enum
306 << " kind\");\n";
307 OS << "}\n";
308 }
309
310 // Generate function implementation for get<Enum>Kind(StringRef Str)
GenerateGetKind(const std::vector<Record * > & Records,raw_ostream & OS,StringRef Enum,const DirectiveLanguage & DirLang,StringRef Prefix,bool ImplicitAsUnknown)311 static void GenerateGetKind(const std::vector<Record *> &Records,
312 raw_ostream &OS, StringRef Enum,
313 const DirectiveLanguage &DirLang, StringRef Prefix,
314 bool ImplicitAsUnknown) {
315
316 auto DefaultIt = llvm::find_if(
317 Records, [](Record *R) { return R->getValueAsBit("isDefault") == true; });
318
319 if (DefaultIt == Records.end()) {
320 PrintError("At least one " + Enum + " must be defined as default.");
321 return;
322 }
323
324 BaseRecord DefaultRec{(*DefaultIt)};
325
326 OS << "\n";
327 OS << Enum << " llvm::" << DirLang.getCppNamespace() << "::get"
328 << DirLang.getName() << Enum << "Kind(llvm::StringRef Str) {\n";
329 OS << " return llvm::StringSwitch<" << Enum << ">(Str)\n";
330
331 for (const auto &R : Records) {
332 BaseRecord Rec{R};
333 if (ImplicitAsUnknown && R->getValueAsBit("isImplicit")) {
334 OS << " .Case(\"" << Rec.getName() << "\"," << Prefix
335 << DefaultRec.getFormattedName() << ")\n";
336 } else {
337 OS << " .Case(\"" << Rec.getName() << "\"," << Prefix
338 << Rec.getFormattedName() << ")\n";
339 }
340 }
341 OS << " .Default(" << Prefix << DefaultRec.getFormattedName() << ");\n";
342 OS << "}\n";
343 }
344
345 // Generate function implementation for get<ClauseVal>Kind(StringRef Str)
GenerateGetKindClauseVal(const DirectiveLanguage & DirLang,raw_ostream & OS)346 static void GenerateGetKindClauseVal(const DirectiveLanguage &DirLang,
347 raw_ostream &OS) {
348 for (const auto &R : DirLang.getClauses()) {
349 Clause C{R};
350 const auto &ClauseVals = C.getClauseVals();
351 if (ClauseVals.size() <= 0)
352 continue;
353
354 auto DefaultIt = llvm::find_if(ClauseVals, [](Record *CV) {
355 return CV->getValueAsBit("isDefault") == true;
356 });
357
358 if (DefaultIt == ClauseVals.end()) {
359 PrintError("At least one val in Clause " + C.getFormattedName() +
360 " must be defined as default.");
361 return;
362 }
363 const auto DefaultName = (*DefaultIt)->getName();
364
365 const auto &EnumName = C.getEnumName();
366 if (EnumName.size() == 0) {
367 PrintError("enumClauseValue field not set in Clause" +
368 C.getFormattedName() + ".");
369 return;
370 }
371
372 OS << "\n";
373 OS << EnumName << " llvm::" << DirLang.getCppNamespace() << "::get"
374 << EnumName << "(llvm::StringRef Str) {\n";
375 OS << " return llvm::StringSwitch<" << EnumName << ">(Str)\n";
376 for (const auto &CV : ClauseVals) {
377 ClauseVal CVal{CV};
378 OS << " .Case(\"" << CVal.getFormattedName() << "\"," << CV->getName()
379 << ")\n";
380 }
381 OS << " .Default(" << DefaultName << ");\n";
382 OS << "}\n";
383
384 OS << "\n";
385 OS << "llvm::StringRef llvm::" << DirLang.getCppNamespace() << "::get"
386 << DirLang.getName() << EnumName
387 << "Name(llvm::" << DirLang.getCppNamespace() << "::" << EnumName
388 << " x) {\n";
389 OS << " switch (x) {\n";
390 for (const auto &CV : ClauseVals) {
391 ClauseVal CVal{CV};
392 OS << " case " << CV->getName() << ":\n";
393 OS << " return \"" << CVal.getFormattedName() << "\";\n";
394 }
395 OS << " }\n"; // switch
396 OS << " llvm_unreachable(\"Invalid " << DirLang.getName() << " "
397 << EnumName << " kind\");\n";
398 OS << "}\n";
399 }
400 }
401
402 static void
GenerateCaseForVersionedClauses(const std::vector<Record * > & Clauses,raw_ostream & OS,StringRef DirectiveName,const DirectiveLanguage & DirLang,llvm::StringSet<> & Cases)403 GenerateCaseForVersionedClauses(const std::vector<Record *> &Clauses,
404 raw_ostream &OS, StringRef DirectiveName,
405 const DirectiveLanguage &DirLang,
406 llvm::StringSet<> &Cases) {
407 for (const auto &C : Clauses) {
408 VersionedClause VerClause{C};
409
410 const auto ClauseFormattedName = VerClause.getClause().getFormattedName();
411
412 if (Cases.insert(ClauseFormattedName).second) {
413 OS << " case " << DirLang.getClausePrefix() << ClauseFormattedName
414 << ":\n";
415 OS << " return " << VerClause.getMinVersion()
416 << " <= Version && " << VerClause.getMaxVersion() << " >= Version;\n";
417 }
418 }
419 }
420
GetDirectiveName(const DirectiveLanguage & DirLang,const Record * Rec)421 static std::string GetDirectiveName(const DirectiveLanguage &DirLang,
422 const Record *Rec) {
423 Directive Dir{Rec};
424 return (llvm::Twine("llvm::") + DirLang.getCppNamespace() +
425 "::" + DirLang.getDirectivePrefix() + Dir.getFormattedName())
426 .str();
427 }
428
GetDirectiveType(const DirectiveLanguage & DirLang)429 static std::string GetDirectiveType(const DirectiveLanguage &DirLang) {
430 return (llvm::Twine("llvm::") + DirLang.getCppNamespace() + "::Directive")
431 .str();
432 }
433
434 // Generate the isAllowedClauseForDirective function implementation.
GenerateIsAllowedClause(const DirectiveLanguage & DirLang,raw_ostream & OS)435 static void GenerateIsAllowedClause(const DirectiveLanguage &DirLang,
436 raw_ostream &OS) {
437 OS << "\n";
438 OS << "bool llvm::" << DirLang.getCppNamespace()
439 << "::isAllowedClauseForDirective("
440 << "Directive D, Clause C, unsigned Version) {\n";
441 OS << " assert(unsigned(D) <= llvm::" << DirLang.getCppNamespace()
442 << "::Directive_enumSize);\n";
443 OS << " assert(unsigned(C) <= llvm::" << DirLang.getCppNamespace()
444 << "::Clause_enumSize);\n";
445
446 OS << " switch (D) {\n";
447
448 for (const auto &D : DirLang.getDirectives()) {
449 Directive Dir{D};
450
451 OS << " case " << DirLang.getDirectivePrefix() << Dir.getFormattedName()
452 << ":\n";
453 if (Dir.getAllowedClauses().size() == 0 &&
454 Dir.getAllowedOnceClauses().size() == 0 &&
455 Dir.getAllowedExclusiveClauses().size() == 0 &&
456 Dir.getRequiredClauses().size() == 0) {
457 OS << " return false;\n";
458 } else {
459 OS << " switch (C) {\n";
460
461 llvm::StringSet<> Cases;
462
463 GenerateCaseForVersionedClauses(Dir.getAllowedClauses(), OS,
464 Dir.getName(), DirLang, Cases);
465
466 GenerateCaseForVersionedClauses(Dir.getAllowedOnceClauses(), OS,
467 Dir.getName(), DirLang, Cases);
468
469 GenerateCaseForVersionedClauses(Dir.getAllowedExclusiveClauses(), OS,
470 Dir.getName(), DirLang, Cases);
471
472 GenerateCaseForVersionedClauses(Dir.getRequiredClauses(), OS,
473 Dir.getName(), DirLang, Cases);
474
475 OS << " default:\n";
476 OS << " return false;\n";
477 OS << " }\n"; // End of clauses switch
478 }
479 OS << " break;\n";
480 }
481
482 OS << " }\n"; // End of directives switch
483 OS << " llvm_unreachable(\"Invalid " << DirLang.getName()
484 << " Directive kind\");\n";
485 OS << "}\n"; // End of function isAllowedClauseForDirective
486 }
487
EmitLeafTable(const DirectiveLanguage & DirLang,raw_ostream & OS,StringRef TableName)488 static void EmitLeafTable(const DirectiveLanguage &DirLang, raw_ostream &OS,
489 StringRef TableName) {
490 // The leaf constructs are emitted in a form of a 2D table, where each
491 // row corresponds to a directive (and there is a row for each directive).
492 //
493 // Each row consists of
494 // - the id of the directive itself,
495 // - number of leaf constructs that will follow (0 for leafs),
496 // - ids of the leaf constructs (none if the directive is itself a leaf).
497 // The total number of these entries is at most MaxLeafCount+2. If this
498 // number is less than that, it is padded to occupy exactly MaxLeafCount+2
499 // entries in memory.
500 //
501 // The rows are stored in the table in the lexicographical order. This
502 // is intended to enable binary search when mapping a sequence of leafs
503 // back to the compound directive.
504 // The consequence of that is that in order to find a row corresponding
505 // to the given directive, we'd need to scan the first element of each
506 // row. To avoid this, an auxiliary ordering table is created, such that
507 // row for Dir_A = table[auxiliary[Dir_A]].
508
509 std::vector<Record *> Directives = DirLang.getDirectives();
510 DenseMap<Record *, int> DirId; // Record * -> llvm::omp::Directive
511
512 for (auto [Idx, Rec] : llvm::enumerate(Directives))
513 DirId.insert(std::make_pair(Rec, Idx));
514
515 using LeafList = std::vector<int>;
516 int MaxLeafCount = GetMaxLeafCount(DirLang);
517
518 // The initial leaf table, rows order is same as directive order.
519 std::vector<LeafList> LeafTable(Directives.size());
520 for (auto [Idx, Rec] : llvm::enumerate(Directives)) {
521 Directive Dir{Rec};
522 std::vector<Record *> Leaves = Dir.getLeafConstructs();
523
524 auto &List = LeafTable[Idx];
525 List.resize(MaxLeafCount + 2);
526 List[0] = Idx; // The id of the directive itself.
527 List[1] = Leaves.size(); // The number of leaves to follow.
528
529 for (int I = 0; I != MaxLeafCount; ++I)
530 List[I + 2] =
531 static_cast<size_t>(I) < Leaves.size() ? DirId.at(Leaves[I]) : -1;
532 }
533
534 // Some Fortran directives are delimited, i.e. they have the form of
535 // "directive"---"end directive". If "directive" is a compound construct,
536 // then the set of leaf constituents will be nonempty and the same for
537 // both directives. Given this set of leafs, looking up the corresponding
538 // compound directive should return "directive", and not "end directive".
539 // To avoid this problem, gather all "end directives" at the end of the
540 // leaf table, and only do the search on the initial segment of the table
541 // that excludes the "end directives".
542 // It's safe to find all directives whose names begin with "end ". The
543 // problem only exists for compound directives, like "end do simd".
544 // All existing directives with names starting with "end " are either
545 // "end directives" for an existing "directive", or leaf directives
546 // (such as "end declare target").
547 DenseSet<int> EndDirectives;
548 for (auto [Rec, Id] : DirId) {
549 if (Directive{Rec}.getName().starts_with_insensitive("end "))
550 EndDirectives.insert(Id);
551 }
552
553 // Avoid sorting the vector<vector> array, instead sort an index array.
554 // It will also be useful later to create the auxiliary indexing array.
555 std::vector<int> Ordering(Directives.size());
556 std::iota(Ordering.begin(), Ordering.end(), 0);
557
558 llvm::sort(Ordering, [&](int A, int B) {
559 auto &LeavesA = LeafTable[A];
560 auto &LeavesB = LeafTable[B];
561 int DirA = LeavesA[0], DirB = LeavesB[0];
562 // First of all, end directives compare greater than non-end directives.
563 int IsEndA = EndDirectives.count(DirA), IsEndB = EndDirectives.count(DirB);
564 if (IsEndA != IsEndB)
565 return IsEndA < IsEndB;
566 if (LeavesA[1] == 0 && LeavesB[1] == 0)
567 return DirA < DirB;
568 return std::lexicographical_compare(&LeavesA[2], &LeavesA[2] + LeavesA[1],
569 &LeavesB[2], &LeavesB[2] + LeavesB[1]);
570 });
571
572 // Emit the table
573
574 // The directives are emitted into a scoped enum, for which the underlying
575 // type is `int` (by default). The code above uses `int` to store directive
576 // ids, so make sure that we catch it when something changes in the
577 // underlying type.
578 std::string DirectiveType = GetDirectiveType(DirLang);
579 OS << "\nstatic_assert(sizeof(" << DirectiveType << ") == sizeof(int));\n";
580
581 OS << "[[maybe_unused]] static const " << DirectiveType << ' ' << TableName
582 << "[][" << MaxLeafCount + 2 << "] = {\n";
583 for (size_t I = 0, E = Directives.size(); I != E; ++I) {
584 auto &Leaves = LeafTable[Ordering[I]];
585 OS << " {" << GetDirectiveName(DirLang, Directives[Leaves[0]]);
586 OS << ", static_cast<" << DirectiveType << ">(" << Leaves[1] << "),";
587 for (size_t I = 2, E = Leaves.size(); I != E; ++I) {
588 int Idx = Leaves[I];
589 if (Idx >= 0)
590 OS << ' ' << GetDirectiveName(DirLang, Directives[Leaves[I]]) << ',';
591 else
592 OS << " static_cast<" << DirectiveType << ">(-1),";
593 }
594 OS << "},\n";
595 }
596 OS << "};\n\n";
597
598 // Emit a marker where the first "end directive" is.
599 auto FirstE = llvm::find_if(Ordering, [&](int RowIdx) {
600 return EndDirectives.count(LeafTable[RowIdx][0]);
601 });
602 OS << "[[maybe_unused]] static auto " << TableName
603 << "EndDirective = " << TableName << " + "
604 << std::distance(Ordering.begin(), FirstE) << ";\n\n";
605
606 // Emit the auxiliary index table: it's the inverse of the `Ordering`
607 // table above.
608 OS << "[[maybe_unused]] static const int " << TableName << "Ordering[] = {\n";
609 OS << " ";
610 std::vector<int> Reverse(Ordering.size());
611 for (int I = 0, E = Ordering.size(); I != E; ++I)
612 Reverse[Ordering[I]] = I;
613 for (int Idx : Reverse)
614 OS << ' ' << Idx << ',';
615 OS << "\n};\n";
616 }
617
GenerateGetDirectiveAssociation(const DirectiveLanguage & DirLang,raw_ostream & OS)618 static void GenerateGetDirectiveAssociation(const DirectiveLanguage &DirLang,
619 raw_ostream &OS) {
620 enum struct Association {
621 None = 0, // None should be the smallest value.
622 Block, // The values of the rest don't matter.
623 Declaration,
624 Delimited,
625 Loop,
626 Separating,
627 FromLeaves,
628 Invalid,
629 };
630
631 std::vector<Record *> associations = DirLang.getAssociations();
632
633 auto getAssocValue = [](StringRef name) -> Association {
634 return StringSwitch<Association>(name)
635 .Case("AS_Block", Association::Block)
636 .Case("AS_Declaration", Association::Declaration)
637 .Case("AS_Delimited", Association::Delimited)
638 .Case("AS_Loop", Association::Loop)
639 .Case("AS_None", Association::None)
640 .Case("AS_Separating", Association::Separating)
641 .Case("AS_FromLeaves", Association::FromLeaves)
642 .Default(Association::Invalid);
643 };
644
645 auto getAssocName = [&](Association A) -> StringRef {
646 if (A != Association::Invalid && A != Association::FromLeaves) {
647 auto F = llvm::find_if(associations, [&](const Record *R) {
648 return getAssocValue(R->getName()) == A;
649 });
650 if (F != associations.end())
651 return (*F)->getValueAsString("name"); // enum name
652 }
653 llvm_unreachable("Unexpected association value");
654 };
655
656 auto errorPrefixFor = [&](Directive D) -> std::string {
657 return (Twine("Directive '") + D.getName() + "' in namespace '" +
658 DirLang.getCppNamespace() + "' ")
659 .str();
660 };
661
662 auto reduce = [&](Association A, Association B) -> Association {
663 if (A > B)
664 std::swap(A, B);
665
666 // Calculate the result using the following rules:
667 // x + x = x
668 // AS_None + x = x
669 // AS_Block + AS_Loop = AS_Loop
670 if (A == Association::None || A == B)
671 return B;
672 if (A == Association::Block && B == Association::Loop)
673 return B;
674 if (A == Association::Loop && B == Association::Block)
675 return A;
676 return Association::Invalid;
677 };
678
679 llvm::DenseMap<const Record *, Association> AsMap;
680
681 auto compAssocImpl = [&](const Record *R, auto &&Self) -> Association {
682 if (auto F = AsMap.find(R); F != AsMap.end())
683 return F->second;
684
685 Directive D{R};
686 Association AS = getAssocValue(D.getAssociation()->getName());
687 if (AS == Association::Invalid) {
688 PrintFatalError(errorPrefixFor(D) +
689 "has an unrecognized value for association: '" +
690 D.getAssociation()->getName() + "'");
691 }
692 if (AS != Association::FromLeaves) {
693 AsMap.insert(std::make_pair(R, AS));
694 return AS;
695 }
696 // Compute the association from leaf constructs.
697 std::vector<Record *> leaves = D.getLeafConstructs();
698 if (leaves.empty()) {
699 llvm::errs() << D.getName() << '\n';
700 PrintFatalError(errorPrefixFor(D) +
701 "requests association to be computed from leaves, "
702 "but it has no leaves");
703 }
704
705 Association Result = Self(leaves[0], Self);
706 for (int I = 1, E = leaves.size(); I < E; ++I) {
707 Association A = Self(leaves[I], Self);
708 Association R = reduce(Result, A);
709 if (R == Association::Invalid) {
710 PrintFatalError(errorPrefixFor(D) +
711 "has leaves with incompatible association values: " +
712 getAssocName(A) + " and " + getAssocName(R));
713 }
714 Result = R;
715 }
716
717 assert(Result != Association::Invalid);
718 assert(Result != Association::FromLeaves);
719 AsMap.insert(std::make_pair(R, Result));
720 return Result;
721 };
722
723 for (Record *R : DirLang.getDirectives())
724 compAssocImpl(R, compAssocImpl); // Updates AsMap.
725
726 OS << '\n';
727
728 auto getQualifiedName = [&](StringRef Formatted) -> std::string {
729 return (llvm::Twine("llvm::") + DirLang.getCppNamespace() +
730 "::Directive::" + DirLang.getDirectivePrefix() + Formatted)
731 .str();
732 };
733
734 std::string DirectiveTypeName =
735 std::string("llvm::") + DirLang.getCppNamespace().str() + "::Directive";
736 std::string AssociationTypeName =
737 std::string("llvm::") + DirLang.getCppNamespace().str() + "::Association";
738
739 OS << AssociationTypeName << " llvm::" << DirLang.getCppNamespace()
740 << "::getDirectiveAssociation(" << DirectiveTypeName << " Dir) {\n";
741 OS << " switch (Dir) {\n";
742 for (Record *R : DirLang.getDirectives()) {
743 if (auto F = AsMap.find(R); F != AsMap.end()) {
744 Directive Dir{R};
745 OS << " case " << getQualifiedName(Dir.getFormattedName()) << ":\n";
746 OS << " return " << AssociationTypeName
747 << "::" << getAssocName(F->second) << ";\n";
748 }
749 }
750 OS << " } // switch (Dir)\n";
751 OS << " llvm_unreachable(\"Unexpected directive\");\n";
752 OS << "}\n";
753 }
754
GenerateGetDirectiveCategory(const DirectiveLanguage & DirLang,raw_ostream & OS)755 static void GenerateGetDirectiveCategory(const DirectiveLanguage &DirLang,
756 raw_ostream &OS) {
757 std::string LangNamespace = "llvm::" + DirLang.getCppNamespace().str();
758 std::string CategoryTypeName = LangNamespace + "::Category";
759 std::string CategoryNamespace = CategoryTypeName + "::";
760
761 OS << '\n';
762 OS << CategoryTypeName << ' ' << LangNamespace << "::getDirectiveCategory("
763 << GetDirectiveType(DirLang) << " Dir) {\n";
764 OS << " switch (Dir) {\n";
765
766 for (Record *R : DirLang.getDirectives()) {
767 Directive D{R};
768 OS << " case " << GetDirectiveName(DirLang, R) << ":\n";
769 OS << " return " << CategoryNamespace
770 << D.getCategory()->getValueAsString("name") << ";\n";
771 }
772 OS << " } // switch (Dir)\n";
773 OS << " llvm_unreachable(\"Unexpected directive\");\n";
774 OS << "}\n";
775 }
776
777 // Generate a simple enum set with the give clauses.
GenerateClauseSet(const std::vector<Record * > & Clauses,raw_ostream & OS,StringRef ClauseSetPrefix,Directive & Dir,const DirectiveLanguage & DirLang)778 static void GenerateClauseSet(const std::vector<Record *> &Clauses,
779 raw_ostream &OS, StringRef ClauseSetPrefix,
780 Directive &Dir,
781 const DirectiveLanguage &DirLang) {
782
783 OS << "\n";
784 OS << " static " << DirLang.getClauseEnumSetClass() << " " << ClauseSetPrefix
785 << DirLang.getDirectivePrefix() << Dir.getFormattedName() << " {\n";
786
787 for (const auto &C : Clauses) {
788 VersionedClause VerClause{C};
789 OS << " llvm::" << DirLang.getCppNamespace()
790 << "::Clause::" << DirLang.getClausePrefix()
791 << VerClause.getClause().getFormattedName() << ",\n";
792 }
793 OS << " };\n";
794 }
795
796 // Generate an enum set for the 4 kinds of clauses linked to a directive.
GenerateDirectiveClauseSets(const DirectiveLanguage & DirLang,raw_ostream & OS)797 static void GenerateDirectiveClauseSets(const DirectiveLanguage &DirLang,
798 raw_ostream &OS) {
799
800 IfDefScope Scope("GEN_FLANG_DIRECTIVE_CLAUSE_SETS", OS);
801
802 OS << "\n";
803 OS << "namespace llvm {\n";
804
805 // Open namespaces defined in the directive language.
806 llvm::SmallVector<StringRef, 2> Namespaces;
807 llvm::SplitString(DirLang.getCppNamespace(), Namespaces, "::");
808 for (auto Ns : Namespaces)
809 OS << "namespace " << Ns << " {\n";
810
811 for (const auto &D : DirLang.getDirectives()) {
812 Directive Dir{D};
813
814 OS << "\n";
815 OS << " // Sets for " << Dir.getName() << "\n";
816
817 GenerateClauseSet(Dir.getAllowedClauses(), OS, "allowedClauses_", Dir,
818 DirLang);
819 GenerateClauseSet(Dir.getAllowedOnceClauses(), OS, "allowedOnceClauses_",
820 Dir, DirLang);
821 GenerateClauseSet(Dir.getAllowedExclusiveClauses(), OS,
822 "allowedExclusiveClauses_", Dir, DirLang);
823 GenerateClauseSet(Dir.getRequiredClauses(), OS, "requiredClauses_", Dir,
824 DirLang);
825 }
826
827 // Closing namespaces
828 for (auto Ns : llvm::reverse(Namespaces))
829 OS << "} // namespace " << Ns << "\n";
830
831 OS << "} // namespace llvm\n";
832 }
833
834 // Generate a map of directive (key) with DirectiveClauses struct as values.
835 // The struct holds the 4 sets of enumeration for the 4 kinds of clauses
836 // allowances (allowed, allowed once, allowed exclusive and required).
GenerateDirectiveClauseMap(const DirectiveLanguage & DirLang,raw_ostream & OS)837 static void GenerateDirectiveClauseMap(const DirectiveLanguage &DirLang,
838 raw_ostream &OS) {
839
840 IfDefScope Scope("GEN_FLANG_DIRECTIVE_CLAUSE_MAP", OS);
841
842 OS << "\n";
843 OS << "{\n";
844
845 for (const auto &D : DirLang.getDirectives()) {
846 Directive Dir{D};
847 OS << " {llvm::" << DirLang.getCppNamespace()
848 << "::Directive::" << DirLang.getDirectivePrefix()
849 << Dir.getFormattedName() << ",\n";
850 OS << " {\n";
851 OS << " llvm::" << DirLang.getCppNamespace() << "::allowedClauses_"
852 << DirLang.getDirectivePrefix() << Dir.getFormattedName() << ",\n";
853 OS << " llvm::" << DirLang.getCppNamespace() << "::allowedOnceClauses_"
854 << DirLang.getDirectivePrefix() << Dir.getFormattedName() << ",\n";
855 OS << " llvm::" << DirLang.getCppNamespace()
856 << "::allowedExclusiveClauses_" << DirLang.getDirectivePrefix()
857 << Dir.getFormattedName() << ",\n";
858 OS << " llvm::" << DirLang.getCppNamespace() << "::requiredClauses_"
859 << DirLang.getDirectivePrefix() << Dir.getFormattedName() << ",\n";
860 OS << " }\n";
861 OS << " },\n";
862 }
863
864 OS << "}\n";
865 }
866
867 // Generate classes entry for Flang clauses in the Flang parse-tree
868 // If the clause as a non-generic class, no entry is generated.
869 // If the clause does not hold a value, an EMPTY_CLASS is used.
870 // If the clause class is generic then a WRAPPER_CLASS is used. When the value
871 // is optional, the value class is wrapped into a std::optional.
GenerateFlangClauseParserClass(const DirectiveLanguage & DirLang,raw_ostream & OS)872 static void GenerateFlangClauseParserClass(const DirectiveLanguage &DirLang,
873 raw_ostream &OS) {
874
875 IfDefScope Scope("GEN_FLANG_CLAUSE_PARSER_CLASSES", OS);
876
877 OS << "\n";
878
879 for (const auto &C : DirLang.getClauses()) {
880 Clause Clause{C};
881 if (!Clause.getFlangClass().empty()) {
882 OS << "WRAPPER_CLASS(" << Clause.getFormattedParserClassName() << ", ";
883 if (Clause.isValueOptional() && Clause.isValueList()) {
884 OS << "std::optional<std::list<" << Clause.getFlangClass() << ">>";
885 } else if (Clause.isValueOptional()) {
886 OS << "std::optional<" << Clause.getFlangClass() << ">";
887 } else if (Clause.isValueList()) {
888 OS << "std::list<" << Clause.getFlangClass() << ">";
889 } else {
890 OS << Clause.getFlangClass();
891 }
892 } else {
893 OS << "EMPTY_CLASS(" << Clause.getFormattedParserClassName();
894 }
895 OS << ");\n";
896 }
897 }
898
899 // Generate a list of the different clause classes for Flang.
GenerateFlangClauseParserClassList(const DirectiveLanguage & DirLang,raw_ostream & OS)900 static void GenerateFlangClauseParserClassList(const DirectiveLanguage &DirLang,
901 raw_ostream &OS) {
902
903 IfDefScope Scope("GEN_FLANG_CLAUSE_PARSER_CLASSES_LIST", OS);
904
905 OS << "\n";
906 llvm::interleaveComma(DirLang.getClauses(), OS, [&](Record *C) {
907 Clause Clause{C};
908 OS << Clause.getFormattedParserClassName() << "\n";
909 });
910 }
911
912 // Generate dump node list for the clauses holding a generic class name.
GenerateFlangClauseDump(const DirectiveLanguage & DirLang,raw_ostream & OS)913 static void GenerateFlangClauseDump(const DirectiveLanguage &DirLang,
914 raw_ostream &OS) {
915
916 IfDefScope Scope("GEN_FLANG_DUMP_PARSE_TREE_CLAUSES", OS);
917
918 OS << "\n";
919 for (const auto &C : DirLang.getClauses()) {
920 Clause Clause{C};
921 OS << "NODE(" << DirLang.getFlangClauseBaseClass() << ", "
922 << Clause.getFormattedParserClassName() << ")\n";
923 }
924 }
925
926 // Generate Unparse functions for clauses classes in the Flang parse-tree
927 // If the clause is a non-generic class, no entry is generated.
GenerateFlangClauseUnparse(const DirectiveLanguage & DirLang,raw_ostream & OS)928 static void GenerateFlangClauseUnparse(const DirectiveLanguage &DirLang,
929 raw_ostream &OS) {
930
931 IfDefScope Scope("GEN_FLANG_CLAUSE_UNPARSE", OS);
932
933 OS << "\n";
934
935 for (const auto &C : DirLang.getClauses()) {
936 Clause Clause{C};
937 if (!Clause.getFlangClass().empty()) {
938 if (Clause.isValueOptional() && Clause.getDefaultValue().empty()) {
939 OS << "void Unparse(const " << DirLang.getFlangClauseBaseClass()
940 << "::" << Clause.getFormattedParserClassName() << " &x) {\n";
941 OS << " Word(\"" << Clause.getName().upper() << "\");\n";
942
943 OS << " Walk(\"(\", x.v, \")\");\n";
944 OS << "}\n";
945 } else if (Clause.isValueOptional()) {
946 OS << "void Unparse(const " << DirLang.getFlangClauseBaseClass()
947 << "::" << Clause.getFormattedParserClassName() << " &x) {\n";
948 OS << " Word(\"" << Clause.getName().upper() << "\");\n";
949 OS << " Put(\"(\");\n";
950 OS << " if (x.v.has_value())\n";
951 if (Clause.isValueList())
952 OS << " Walk(x.v, \",\");\n";
953 else
954 OS << " Walk(x.v);\n";
955 OS << " else\n";
956 OS << " Put(\"" << Clause.getDefaultValue() << "\");\n";
957 OS << " Put(\")\");\n";
958 OS << "}\n";
959 } else {
960 OS << "void Unparse(const " << DirLang.getFlangClauseBaseClass()
961 << "::" << Clause.getFormattedParserClassName() << " &x) {\n";
962 OS << " Word(\"" << Clause.getName().upper() << "\");\n";
963 OS << " Put(\"(\");\n";
964 if (Clause.isValueList())
965 OS << " Walk(x.v, \",\");\n";
966 else
967 OS << " Walk(x.v);\n";
968 OS << " Put(\")\");\n";
969 OS << "}\n";
970 }
971 } else {
972 OS << "void Before(const " << DirLang.getFlangClauseBaseClass()
973 << "::" << Clause.getFormattedParserClassName() << " &) { Word(\""
974 << Clause.getName().upper() << "\"); }\n";
975 }
976 }
977 }
978
979 // Generate check in the Enter functions for clauses classes.
GenerateFlangClauseCheckPrototypes(const DirectiveLanguage & DirLang,raw_ostream & OS)980 static void GenerateFlangClauseCheckPrototypes(const DirectiveLanguage &DirLang,
981 raw_ostream &OS) {
982
983 IfDefScope Scope("GEN_FLANG_CLAUSE_CHECK_ENTER", OS);
984
985 OS << "\n";
986 for (const auto &C : DirLang.getClauses()) {
987 Clause Clause{C};
988 OS << "void Enter(const parser::" << DirLang.getFlangClauseBaseClass()
989 << "::" << Clause.getFormattedParserClassName() << " &);\n";
990 }
991 }
992
993 // Generate the mapping for clauses between the parser class and the
994 // corresponding clause Kind
GenerateFlangClauseParserKindMap(const DirectiveLanguage & DirLang,raw_ostream & OS)995 static void GenerateFlangClauseParserKindMap(const DirectiveLanguage &DirLang,
996 raw_ostream &OS) {
997
998 IfDefScope Scope("GEN_FLANG_CLAUSE_PARSER_KIND_MAP", OS);
999
1000 OS << "\n";
1001 for (const auto &C : DirLang.getClauses()) {
1002 Clause Clause{C};
1003 OS << "if constexpr (std::is_same_v<A, parser::"
1004 << DirLang.getFlangClauseBaseClass()
1005 << "::" << Clause.getFormattedParserClassName();
1006 OS << ">)\n";
1007 OS << " return llvm::" << DirLang.getCppNamespace()
1008 << "::Clause::" << DirLang.getClausePrefix() << Clause.getFormattedName()
1009 << ";\n";
1010 }
1011
1012 OS << "llvm_unreachable(\"Invalid " << DirLang.getName()
1013 << " Parser clause\");\n";
1014 }
1015
compareClauseName(Record * R1,Record * R2)1016 static bool compareClauseName(Record *R1, Record *R2) {
1017 Clause C1{R1};
1018 Clause C2{R2};
1019 return (C1.getName() > C2.getName());
1020 }
1021
1022 // Generate the parser for the clauses.
GenerateFlangClausesParser(const DirectiveLanguage & DirLang,raw_ostream & OS)1023 static void GenerateFlangClausesParser(const DirectiveLanguage &DirLang,
1024 raw_ostream &OS) {
1025 std::vector<Record *> Clauses = DirLang.getClauses();
1026 // Sort clauses in reverse alphabetical order so with clauses with same
1027 // beginning, the longer option is tried before.
1028 llvm::sort(Clauses, compareClauseName);
1029 IfDefScope Scope("GEN_FLANG_CLAUSES_PARSER", OS);
1030 OS << "\n";
1031 unsigned index = 0;
1032 unsigned lastClauseIndex = DirLang.getClauses().size() - 1;
1033 OS << "TYPE_PARSER(\n";
1034 for (const auto &C : Clauses) {
1035 Clause Clause{C};
1036 if (Clause.getAliases().empty()) {
1037 OS << " \"" << Clause.getName() << "\"";
1038 } else {
1039 OS << " ("
1040 << "\"" << Clause.getName() << "\"_tok";
1041 for (StringRef alias : Clause.getAliases()) {
1042 OS << " || \"" << alias << "\"_tok";
1043 }
1044 OS << ")";
1045 }
1046
1047 OS << " >> construct<" << DirLang.getFlangClauseBaseClass()
1048 << ">(construct<" << DirLang.getFlangClauseBaseClass()
1049 << "::" << Clause.getFormattedParserClassName() << ">(";
1050 if (Clause.getFlangClass().empty()) {
1051 OS << "))";
1052 if (index != lastClauseIndex)
1053 OS << " ||";
1054 OS << "\n";
1055 ++index;
1056 continue;
1057 }
1058
1059 if (Clause.isValueOptional())
1060 OS << "maybe(";
1061 OS << "parenthesized(";
1062 if (Clause.isValueList())
1063 OS << "nonemptyList(";
1064
1065 if (!Clause.getPrefix().empty())
1066 OS << "\"" << Clause.getPrefix() << ":\" >> ";
1067
1068 // The common Flang parser are used directly. Their name is identical to
1069 // the Flang class with first letter as lowercase. If the Flang class is
1070 // not a common class, we assume there is a specific Parser<>{} with the
1071 // Flang class name provided.
1072 llvm::SmallString<128> Scratch;
1073 StringRef Parser =
1074 llvm::StringSwitch<StringRef>(Clause.getFlangClass())
1075 .Case("Name", "name")
1076 .Case("ScalarIntConstantExpr", "scalarIntConstantExpr")
1077 .Case("ScalarIntExpr", "scalarIntExpr")
1078 .Case("ScalarExpr", "scalarExpr")
1079 .Case("ScalarLogicalExpr", "scalarLogicalExpr")
1080 .Default(("Parser<" + Clause.getFlangClass() + ">{}")
1081 .toStringRef(Scratch));
1082 OS << Parser;
1083 if (!Clause.getPrefix().empty() && Clause.isPrefixOptional())
1084 OS << " || " << Parser;
1085 if (Clause.isValueList()) // close nonemptyList(.
1086 OS << ")";
1087 OS << ")"; // close parenthesized(.
1088
1089 if (Clause.isValueOptional()) // close maybe(.
1090 OS << ")";
1091 OS << "))";
1092 if (index != lastClauseIndex)
1093 OS << " ||";
1094 OS << "\n";
1095 ++index;
1096 }
1097 OS << ")\n";
1098 }
1099
1100 // Generate the implementation section for the enumeration in the directive
1101 // language
EmitDirectivesFlangImpl(const DirectiveLanguage & DirLang,raw_ostream & OS)1102 static void EmitDirectivesFlangImpl(const DirectiveLanguage &DirLang,
1103 raw_ostream &OS) {
1104
1105 GenerateDirectiveClauseSets(DirLang, OS);
1106
1107 GenerateDirectiveClauseMap(DirLang, OS);
1108
1109 GenerateFlangClauseParserClass(DirLang, OS);
1110
1111 GenerateFlangClauseParserClassList(DirLang, OS);
1112
1113 GenerateFlangClauseDump(DirLang, OS);
1114
1115 GenerateFlangClauseUnparse(DirLang, OS);
1116
1117 GenerateFlangClauseCheckPrototypes(DirLang, OS);
1118
1119 GenerateFlangClauseParserKindMap(DirLang, OS);
1120
1121 GenerateFlangClausesParser(DirLang, OS);
1122 }
1123
GenerateClauseClassMacro(const DirectiveLanguage & DirLang,raw_ostream & OS)1124 static void GenerateClauseClassMacro(const DirectiveLanguage &DirLang,
1125 raw_ostream &OS) {
1126 // Generate macros style information for legacy code in clang
1127 IfDefScope Scope("GEN_CLANG_CLAUSE_CLASS", OS);
1128
1129 OS << "\n";
1130
1131 OS << "#ifndef CLAUSE\n";
1132 OS << "#define CLAUSE(Enum, Str, Implicit)\n";
1133 OS << "#endif\n";
1134 OS << "#ifndef CLAUSE_CLASS\n";
1135 OS << "#define CLAUSE_CLASS(Enum, Str, Class)\n";
1136 OS << "#endif\n";
1137 OS << "#ifndef CLAUSE_NO_CLASS\n";
1138 OS << "#define CLAUSE_NO_CLASS(Enum, Str)\n";
1139 OS << "#endif\n";
1140 OS << "\n";
1141 OS << "#define __CLAUSE(Name, Class) \\\n";
1142 OS << " CLAUSE(" << DirLang.getClausePrefix()
1143 << "##Name, #Name, /* Implicit */ false) \\\n";
1144 OS << " CLAUSE_CLASS(" << DirLang.getClausePrefix()
1145 << "##Name, #Name, Class)\n";
1146 OS << "#define __CLAUSE_NO_CLASS(Name) \\\n";
1147 OS << " CLAUSE(" << DirLang.getClausePrefix()
1148 << "##Name, #Name, /* Implicit */ false) \\\n";
1149 OS << " CLAUSE_NO_CLASS(" << DirLang.getClausePrefix() << "##Name, #Name)\n";
1150 OS << "#define __IMPLICIT_CLAUSE_CLASS(Name, Str, Class) \\\n";
1151 OS << " CLAUSE(" << DirLang.getClausePrefix()
1152 << "##Name, Str, /* Implicit */ true) \\\n";
1153 OS << " CLAUSE_CLASS(" << DirLang.getClausePrefix()
1154 << "##Name, Str, Class)\n";
1155 OS << "#define __IMPLICIT_CLAUSE_NO_CLASS(Name, Str) \\\n";
1156 OS << " CLAUSE(" << DirLang.getClausePrefix()
1157 << "##Name, Str, /* Implicit */ true) \\\n";
1158 OS << " CLAUSE_NO_CLASS(" << DirLang.getClausePrefix() << "##Name, Str)\n";
1159 OS << "\n";
1160
1161 for (const auto &R : DirLang.getClauses()) {
1162 Clause C{R};
1163 if (C.getClangClass().empty()) { // NO_CLASS
1164 if (C.isImplicit()) {
1165 OS << "__IMPLICIT_CLAUSE_NO_CLASS(" << C.getFormattedName() << ", \""
1166 << C.getFormattedName() << "\")\n";
1167 } else {
1168 OS << "__CLAUSE_NO_CLASS(" << C.getFormattedName() << ")\n";
1169 }
1170 } else { // CLASS
1171 if (C.isImplicit()) {
1172 OS << "__IMPLICIT_CLAUSE_CLASS(" << C.getFormattedName() << ", \""
1173 << C.getFormattedName() << "\", " << C.getClangClass() << ")\n";
1174 } else {
1175 OS << "__CLAUSE(" << C.getFormattedName() << ", " << C.getClangClass()
1176 << ")\n";
1177 }
1178 }
1179 }
1180
1181 OS << "\n";
1182 OS << "#undef __IMPLICIT_CLAUSE_NO_CLASS\n";
1183 OS << "#undef __IMPLICIT_CLAUSE_CLASS\n";
1184 OS << "#undef __CLAUSE_NO_CLASS\n";
1185 OS << "#undef __CLAUSE\n";
1186 OS << "#undef CLAUSE_NO_CLASS\n";
1187 OS << "#undef CLAUSE_CLASS\n";
1188 OS << "#undef CLAUSE\n";
1189 }
1190
1191 // Generate the implemenation for the enumeration in the directive
1192 // language. This code can be included in library.
EmitDirectivesBasicImpl(const DirectiveLanguage & DirLang,raw_ostream & OS)1193 void EmitDirectivesBasicImpl(const DirectiveLanguage &DirLang,
1194 raw_ostream &OS) {
1195 IfDefScope Scope("GEN_DIRECTIVES_IMPL", OS);
1196
1197 OS << "\n#include \"llvm/Support/ErrorHandling.h\"\n";
1198
1199 // getDirectiveKind(StringRef Str)
1200 GenerateGetKind(DirLang.getDirectives(), OS, "Directive", DirLang,
1201 DirLang.getDirectivePrefix(), /*ImplicitAsUnknown=*/false);
1202
1203 // getDirectiveName(Directive Kind)
1204 GenerateGetName(DirLang.getDirectives(), OS, "Directive", DirLang,
1205 DirLang.getDirectivePrefix());
1206
1207 // getClauseKind(StringRef Str)
1208 GenerateGetKind(DirLang.getClauses(), OS, "Clause", DirLang,
1209 DirLang.getClausePrefix(),
1210 /*ImplicitAsUnknown=*/true);
1211
1212 // getClauseName(Clause Kind)
1213 GenerateGetName(DirLang.getClauses(), OS, "Clause", DirLang,
1214 DirLang.getClausePrefix());
1215
1216 // get<ClauseVal>Kind(StringRef Str)
1217 GenerateGetKindClauseVal(DirLang, OS);
1218
1219 // isAllowedClauseForDirective(Directive D, Clause C, unsigned Version)
1220 GenerateIsAllowedClause(DirLang, OS);
1221
1222 // getDirectiveAssociation(Directive D)
1223 GenerateGetDirectiveAssociation(DirLang, OS);
1224
1225 // getDirectiveCategory(Directive D)
1226 GenerateGetDirectiveCategory(DirLang, OS);
1227
1228 // Leaf table for getLeafConstructs, etc.
1229 EmitLeafTable(DirLang, OS, "LeafConstructTable");
1230 }
1231
1232 // Generate the implemenation section for the enumeration in the directive
1233 // language.
EmitDirectivesImpl(RecordKeeper & Records,raw_ostream & OS)1234 static void EmitDirectivesImpl(RecordKeeper &Records, raw_ostream &OS) {
1235 const auto DirLang = DirectiveLanguage{Records};
1236 if (DirLang.HasValidityErrors())
1237 return;
1238
1239 EmitDirectivesFlangImpl(DirLang, OS);
1240
1241 GenerateClauseClassMacro(DirLang, OS);
1242
1243 EmitDirectivesBasicImpl(DirLang, OS);
1244 }
1245
1246 static TableGen::Emitter::Opt
1247 X("gen-directive-decl", EmitDirectivesDecl,
1248 "Generate directive related declaration code (header file)");
1249
1250 static TableGen::Emitter::Opt
1251 Y("gen-directive-impl", EmitDirectivesImpl,
1252 "Generate directive related implementation code");
1253