1 //===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This utility provides a simple wrapper around the LLVM Execution Engines, 10 // which allow the direct execution of LLVM programs through a Just-In-Time 11 // compiler, or through an interpreter if no JIT is available for this platform. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ForwardingMemoryManager.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/Bitcode/BitcodeReader.h" 18 #include "llvm/CodeGen/CommandFlags.h" 19 #include "llvm/CodeGen/LinkAllCodegenComponents.h" 20 #include "llvm/Config/llvm-config.h" 21 #include "llvm/ExecutionEngine/GenericValue.h" 22 #include "llvm/ExecutionEngine/Interpreter.h" 23 #include "llvm/ExecutionEngine/JITEventListener.h" 24 #include "llvm/ExecutionEngine/JITSymbol.h" 25 #include "llvm/ExecutionEngine/MCJIT.h" 26 #include "llvm/ExecutionEngine/ObjectCache.h" 27 #include "llvm/ExecutionEngine/Orc/DebugUtils.h" 28 #include "llvm/ExecutionEngine/Orc/Debugging/DebuggerSupport.h" 29 #include "llvm/ExecutionEngine/Orc/EPCDynamicLibrarySearchGenerator.h" 30 #include "llvm/ExecutionEngine/Orc/EPCEHFrameRegistrar.h" 31 #include "llvm/ExecutionEngine/Orc/EPCGenericRTDyldMemoryManager.h" 32 #include "llvm/ExecutionEngine/Orc/ExecutionUtils.h" 33 #include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h" 34 #include "llvm/ExecutionEngine/Orc/LLJIT.h" 35 #include "llvm/ExecutionEngine/Orc/ObjectTransformLayer.h" 36 #include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h" 37 #include "llvm/ExecutionEngine/Orc/SimpleRemoteEPC.h" 38 #include "llvm/ExecutionEngine/Orc/SymbolStringPool.h" 39 #include "llvm/ExecutionEngine/Orc/TargetProcess/JITLoaderGDB.h" 40 #include "llvm/ExecutionEngine/Orc/TargetProcess/RegisterEHFrames.h" 41 #include "llvm/ExecutionEngine/Orc/TargetProcess/TargetExecutionUtils.h" 42 #include "llvm/ExecutionEngine/SectionMemoryManager.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Verifier.h" 48 #include "llvm/IRReader/IRReader.h" 49 #include "llvm/Object/Archive.h" 50 #include "llvm/Object/ObjectFile.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/DynamicLibrary.h" 54 #include "llvm/Support/Format.h" 55 #include "llvm/Support/InitLLVM.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/Memory.h" 58 #include "llvm/Support/MemoryBuffer.h" 59 #include "llvm/Support/Path.h" 60 #include "llvm/Support/PluginLoader.h" 61 #include "llvm/Support/Process.h" 62 #include "llvm/Support/Program.h" 63 #include "llvm/Support/SourceMgr.h" 64 #include "llvm/Support/TargetSelect.h" 65 #include "llvm/Support/ToolOutputFile.h" 66 #include "llvm/Support/WithColor.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/TargetParser/Triple.h" 69 #include "llvm/Transforms/Instrumentation.h" 70 #include <cerrno> 71 #include <optional> 72 73 #if !defined(_MSC_VER) && !defined(__MINGW32__) 74 #include <unistd.h> 75 #else 76 #include <io.h> 77 #endif 78 79 #ifdef __CYGWIN__ 80 #include <cygwin/version.h> 81 #if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007 82 #define DO_NOTHING_ATEXIT 1 83 #endif 84 #endif 85 86 using namespace llvm; 87 88 static codegen::RegisterCodeGenFlags CGF; 89 90 #define DEBUG_TYPE "lli" 91 92 namespace { 93 94 enum class JITKind { MCJIT, Orc, OrcLazy }; 95 enum class JITLinkerKind { Default, RuntimeDyld, JITLink }; 96 97 cl::opt<std::string> 98 InputFile(cl::desc("<input bitcode>"), cl::Positional, cl::init("-")); 99 100 cl::list<std::string> 101 InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>...")); 102 103 cl::opt<bool> ForceInterpreter("force-interpreter", 104 cl::desc("Force interpretation: disable JIT"), 105 cl::init(false)); 106 107 cl::opt<JITKind> UseJITKind( 108 "jit-kind", cl::desc("Choose underlying JIT kind."), 109 cl::init(JITKind::Orc), 110 cl::values(clEnumValN(JITKind::MCJIT, "mcjit", "MCJIT"), 111 clEnumValN(JITKind::Orc, "orc", "Orc JIT"), 112 clEnumValN(JITKind::OrcLazy, "orc-lazy", 113 "Orc-based lazy JIT."))); 114 115 cl::opt<JITLinkerKind> 116 JITLinker("jit-linker", cl::desc("Choose the dynamic linker/loader."), 117 cl::init(JITLinkerKind::Default), 118 cl::values(clEnumValN(JITLinkerKind::Default, "default", 119 "Default for platform and JIT-kind"), 120 clEnumValN(JITLinkerKind::RuntimeDyld, "rtdyld", 121 "RuntimeDyld"), 122 clEnumValN(JITLinkerKind::JITLink, "jitlink", 123 "Orc-specific linker"))); 124 cl::opt<std::string> OrcRuntime("orc-runtime", 125 cl::desc("Use ORC runtime from given path"), 126 cl::init("")); 127 128 cl::opt<unsigned> 129 LazyJITCompileThreads("compile-threads", 130 cl::desc("Choose the number of compile threads " 131 "(jit-kind=orc-lazy only)"), 132 cl::init(0)); 133 134 cl::list<std::string> 135 ThreadEntryPoints("thread-entry", 136 cl::desc("calls the given entry-point on a new thread " 137 "(jit-kind=orc-lazy only)")); 138 139 cl::opt<bool> PerModuleLazy( 140 "per-module-lazy", 141 cl::desc("Performs lazy compilation on whole module boundaries " 142 "rather than individual functions"), 143 cl::init(false)); 144 145 cl::list<std::string> 146 JITDylibs("jd", 147 cl::desc("Specifies the JITDylib to be used for any subsequent " 148 "-extra-module arguments.")); 149 150 cl::list<std::string> 151 Dylibs("dlopen", cl::desc("Dynamic libraries to load before linking")); 152 153 // The MCJIT supports building for a target address space separate from 154 // the JIT compilation process. Use a forked process and a copying 155 // memory manager with IPC to execute using this functionality. 156 cl::opt<bool> RemoteMCJIT("remote-mcjit", 157 cl::desc("Execute MCJIT'ed code in a separate process."), 158 cl::init(false)); 159 160 // Manually specify the child process for remote execution. This overrides 161 // the simulated remote execution that allocates address space for child 162 // execution. The child process will be executed and will communicate with 163 // lli via stdin/stdout pipes. 164 cl::opt<std::string> 165 ChildExecPath("mcjit-remote-process", 166 cl::desc("Specify the filename of the process to launch " 167 "for remote MCJIT execution. If none is specified," 168 "\n\tremote execution will be simulated in-process."), 169 cl::value_desc("filename"), cl::init("")); 170 171 // Determine optimization level. 172 cl::opt<char> OptLevel("O", 173 cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] " 174 "(default = '-O2')"), 175 cl::Prefix, cl::init('2')); 176 177 cl::opt<std::string> 178 TargetTriple("mtriple", cl::desc("Override target triple for module")); 179 180 cl::opt<std::string> 181 EntryFunc("entry-function", 182 cl::desc("Specify the entry function (default = 'main') " 183 "of the executable"), 184 cl::value_desc("function"), 185 cl::init("main")); 186 187 cl::list<std::string> 188 ExtraModules("extra-module", 189 cl::desc("Extra modules to be loaded"), 190 cl::value_desc("input bitcode")); 191 192 cl::list<std::string> 193 ExtraObjects("extra-object", 194 cl::desc("Extra object files to be loaded"), 195 cl::value_desc("input object")); 196 197 cl::list<std::string> 198 ExtraArchives("extra-archive", 199 cl::desc("Extra archive files to be loaded"), 200 cl::value_desc("input archive")); 201 202 cl::opt<bool> 203 EnableCacheManager("enable-cache-manager", 204 cl::desc("Use cache manager to save/load modules"), 205 cl::init(false)); 206 207 cl::opt<std::string> 208 ObjectCacheDir("object-cache-dir", 209 cl::desc("Directory to store cached object files " 210 "(must be user writable)"), 211 cl::init("")); 212 213 cl::opt<std::string> 214 FakeArgv0("fake-argv0", 215 cl::desc("Override the 'argv[0]' value passed into the executing" 216 " program"), cl::value_desc("executable")); 217 218 cl::opt<bool> 219 DisableCoreFiles("disable-core-files", cl::Hidden, 220 cl::desc("Disable emission of core files if possible")); 221 222 cl::opt<bool> 223 NoLazyCompilation("disable-lazy-compilation", 224 cl::desc("Disable JIT lazy compilation"), 225 cl::init(false)); 226 227 cl::opt<bool> 228 GenerateSoftFloatCalls("soft-float", 229 cl::desc("Generate software floating point library calls"), 230 cl::init(false)); 231 232 cl::opt<bool> NoProcessSymbols( 233 "no-process-syms", 234 cl::desc("Do not resolve lli process symbols in JIT'd code"), 235 cl::init(false)); 236 237 enum class LLJITPlatform { Inactive, Auto, ExecutorNative, GenericIR }; 238 239 cl::opt<LLJITPlatform> Platform( 240 "lljit-platform", cl::desc("Platform to use with LLJIT"), 241 cl::init(LLJITPlatform::Auto), 242 cl::values(clEnumValN(LLJITPlatform::Auto, "Auto", 243 "Like 'ExecutorNative' if ORC runtime " 244 "provided, otherwise like 'GenericIR'"), 245 clEnumValN(LLJITPlatform::ExecutorNative, "ExecutorNative", 246 "Use the native platform for the executor." 247 "Requires -orc-runtime"), 248 clEnumValN(LLJITPlatform::GenericIR, "GenericIR", 249 "Use LLJITGenericIRPlatform"), 250 clEnumValN(LLJITPlatform::Inactive, "Inactive", 251 "Disable platform support explicitly")), 252 cl::Hidden); 253 254 enum class DumpKind { 255 NoDump, 256 DumpFuncsToStdOut, 257 DumpModsToStdOut, 258 DumpModsToDisk, 259 DumpDebugDescriptor, 260 DumpDebugObjects, 261 }; 262 263 cl::opt<DumpKind> OrcDumpKind( 264 "orc-lazy-debug", cl::desc("Debug dumping for the orc-lazy JIT."), 265 cl::init(DumpKind::NoDump), 266 cl::values( 267 clEnumValN(DumpKind::NoDump, "no-dump", "Don't dump anything."), 268 clEnumValN(DumpKind::DumpFuncsToStdOut, "funcs-to-stdout", 269 "Dump function names to stdout."), 270 clEnumValN(DumpKind::DumpModsToStdOut, "mods-to-stdout", 271 "Dump modules to stdout."), 272 clEnumValN(DumpKind::DumpModsToDisk, "mods-to-disk", 273 "Dump modules to the current " 274 "working directory. (WARNING: " 275 "will overwrite existing files)."), 276 clEnumValN(DumpKind::DumpDebugDescriptor, "jit-debug-descriptor", 277 "Dump __jit_debug_descriptor contents to stdout"), 278 clEnumValN(DumpKind::DumpDebugObjects, "jit-debug-objects", 279 "Dump __jit_debug_descriptor in-memory debug " 280 "objects as tool output")), 281 cl::Hidden); 282 283 ExitOnError ExitOnErr; 284 } 285 286 LLVM_ATTRIBUTE_USED void linkComponents() { 287 errs() << (void *)&llvm_orc_registerEHFrameSectionWrapper 288 << (void *)&llvm_orc_deregisterEHFrameSectionWrapper 289 << (void *)&llvm_orc_registerJITLoaderGDBWrapper 290 << (void *)&llvm_orc_registerJITLoaderGDBAllocAction; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Object cache 295 // 296 // This object cache implementation writes cached objects to disk to the 297 // directory specified by CacheDir, using a filename provided in the module 298 // descriptor. The cache tries to load a saved object using that path if the 299 // file exists. CacheDir defaults to "", in which case objects are cached 300 // alongside their originating bitcodes. 301 // 302 class LLIObjectCache : public ObjectCache { 303 public: 304 LLIObjectCache(const std::string& CacheDir) : CacheDir(CacheDir) { 305 // Add trailing '/' to cache dir if necessary. 306 if (!this->CacheDir.empty() && 307 this->CacheDir[this->CacheDir.size() - 1] != '/') 308 this->CacheDir += '/'; 309 } 310 ~LLIObjectCache() override {} 311 312 void notifyObjectCompiled(const Module *M, MemoryBufferRef Obj) override { 313 const std::string &ModuleID = M->getModuleIdentifier(); 314 std::string CacheName; 315 if (!getCacheFilename(ModuleID, CacheName)) 316 return; 317 if (!CacheDir.empty()) { // Create user-defined cache dir. 318 SmallString<128> dir(sys::path::parent_path(CacheName)); 319 sys::fs::create_directories(Twine(dir)); 320 } 321 322 std::error_code EC; 323 raw_fd_ostream outfile(CacheName, EC, sys::fs::OF_None); 324 outfile.write(Obj.getBufferStart(), Obj.getBufferSize()); 325 outfile.close(); 326 } 327 328 std::unique_ptr<MemoryBuffer> getObject(const Module* M) override { 329 const std::string &ModuleID = M->getModuleIdentifier(); 330 std::string CacheName; 331 if (!getCacheFilename(ModuleID, CacheName)) 332 return nullptr; 333 // Load the object from the cache filename 334 ErrorOr<std::unique_ptr<MemoryBuffer>> IRObjectBuffer = 335 MemoryBuffer::getFile(CacheName, /*IsText=*/false, 336 /*RequiresNullTerminator=*/false); 337 // If the file isn't there, that's OK. 338 if (!IRObjectBuffer) 339 return nullptr; 340 // MCJIT will want to write into this buffer, and we don't want that 341 // because the file has probably just been mmapped. Instead we make 342 // a copy. The filed-based buffer will be released when it goes 343 // out of scope. 344 return MemoryBuffer::getMemBufferCopy(IRObjectBuffer.get()->getBuffer()); 345 } 346 347 private: 348 std::string CacheDir; 349 350 bool getCacheFilename(const std::string &ModID, std::string &CacheName) { 351 std::string Prefix("file:"); 352 size_t PrefixLength = Prefix.length(); 353 if (ModID.substr(0, PrefixLength) != Prefix) 354 return false; 355 356 std::string CacheSubdir = ModID.substr(PrefixLength); 357 // Transform "X:\foo" => "/X\foo" for convenience on Windows. 358 if (is_style_windows(llvm::sys::path::Style::native) && 359 isalpha(CacheSubdir[0]) && CacheSubdir[1] == ':') { 360 CacheSubdir[1] = CacheSubdir[0]; 361 CacheSubdir[0] = '/'; 362 } 363 364 CacheName = CacheDir + CacheSubdir; 365 size_t pos = CacheName.rfind('.'); 366 CacheName.replace(pos, CacheName.length() - pos, ".o"); 367 return true; 368 } 369 }; 370 371 // On Mingw and Cygwin, an external symbol named '__main' is called from the 372 // generated 'main' function to allow static initialization. To avoid linking 373 // problems with remote targets (because lli's remote target support does not 374 // currently handle external linking) we add a secondary module which defines 375 // an empty '__main' function. 376 static void addCygMingExtraModule(ExecutionEngine &EE, LLVMContext &Context, 377 StringRef TargetTripleStr) { 378 IRBuilder<> Builder(Context); 379 Triple TargetTriple(TargetTripleStr); 380 381 // Create a new module. 382 std::unique_ptr<Module> M = std::make_unique<Module>("CygMingHelper", Context); 383 M->setTargetTriple(TargetTripleStr); 384 385 // Create an empty function named "__main". 386 Type *ReturnTy; 387 if (TargetTriple.isArch64Bit()) 388 ReturnTy = Type::getInt64Ty(Context); 389 else 390 ReturnTy = Type::getInt32Ty(Context); 391 Function *Result = 392 Function::Create(FunctionType::get(ReturnTy, {}, false), 393 GlobalValue::ExternalLinkage, "__main", M.get()); 394 395 BasicBlock *BB = BasicBlock::Create(Context, "__main", Result); 396 Builder.SetInsertPoint(BB); 397 Value *ReturnVal = ConstantInt::get(ReturnTy, 0); 398 Builder.CreateRet(ReturnVal); 399 400 // Add this new module to the ExecutionEngine. 401 EE.addModule(std::move(M)); 402 } 403 404 CodeGenOptLevel getOptLevel() { 405 if (auto Level = CodeGenOpt::parseLevel(OptLevel)) 406 return *Level; 407 WithColor::error(errs(), "lli") << "invalid optimization level.\n"; 408 exit(1); 409 } 410 411 [[noreturn]] static void reportError(SMDiagnostic Err, const char *ProgName) { 412 Err.print(ProgName, errs()); 413 exit(1); 414 } 415 416 Error loadDylibs(); 417 int runOrcJIT(const char *ProgName); 418 void disallowOrcOptions(); 419 Expected<std::unique_ptr<orc::ExecutorProcessControl>> launchRemote(); 420 421 //===----------------------------------------------------------------------===// 422 // main Driver function 423 // 424 int main(int argc, char **argv, char * const *envp) { 425 InitLLVM X(argc, argv); 426 427 if (argc > 1) 428 ExitOnErr.setBanner(std::string(argv[0]) + ": "); 429 430 // If we have a native target, initialize it to ensure it is linked in and 431 // usable by the JIT. 432 InitializeNativeTarget(); 433 InitializeNativeTargetAsmPrinter(); 434 InitializeNativeTargetAsmParser(); 435 436 cl::ParseCommandLineOptions(argc, argv, 437 "llvm interpreter & dynamic compiler\n"); 438 439 // If the user doesn't want core files, disable them. 440 if (DisableCoreFiles) 441 sys::Process::PreventCoreFiles(); 442 443 ExitOnErr(loadDylibs()); 444 445 if (EntryFunc.empty()) { 446 WithColor::error(errs(), argv[0]) 447 << "--entry-function name cannot be empty\n"; 448 exit(1); 449 } 450 451 if (UseJITKind == JITKind::MCJIT || ForceInterpreter) 452 disallowOrcOptions(); 453 else 454 return runOrcJIT(argv[0]); 455 456 // Old lli implementation based on ExecutionEngine and MCJIT. 457 LLVMContext Context; 458 459 // Load the bitcode... 460 SMDiagnostic Err; 461 std::unique_ptr<Module> Owner = parseIRFile(InputFile, Err, Context); 462 Module *Mod = Owner.get(); 463 if (!Mod) 464 reportError(Err, argv[0]); 465 466 if (EnableCacheManager) { 467 std::string CacheName("file:"); 468 CacheName.append(InputFile); 469 Mod->setModuleIdentifier(CacheName); 470 } 471 472 // If not jitting lazily, load the whole bitcode file eagerly too. 473 if (NoLazyCompilation) { 474 // Use *argv instead of argv[0] to work around a wrong GCC warning. 475 ExitOnError ExitOnErr(std::string(*argv) + 476 ": bitcode didn't read correctly: "); 477 ExitOnErr(Mod->materializeAll()); 478 } 479 480 std::string ErrorMsg; 481 EngineBuilder builder(std::move(Owner)); 482 builder.setMArch(codegen::getMArch()); 483 builder.setMCPU(codegen::getCPUStr()); 484 builder.setMAttrs(codegen::getFeatureList()); 485 if (auto RM = codegen::getExplicitRelocModel()) 486 builder.setRelocationModel(*RM); 487 if (auto CM = codegen::getExplicitCodeModel()) 488 builder.setCodeModel(*CM); 489 builder.setErrorStr(&ErrorMsg); 490 builder.setEngineKind(ForceInterpreter 491 ? EngineKind::Interpreter 492 : EngineKind::JIT); 493 494 // If we are supposed to override the target triple, do so now. 495 if (!TargetTriple.empty()) 496 Mod->setTargetTriple(Triple::normalize(TargetTriple)); 497 498 // Enable MCJIT if desired. 499 RTDyldMemoryManager *RTDyldMM = nullptr; 500 if (!ForceInterpreter) { 501 if (RemoteMCJIT) 502 RTDyldMM = new ForwardingMemoryManager(); 503 else 504 RTDyldMM = new SectionMemoryManager(); 505 506 // Deliberately construct a temp std::unique_ptr to pass in. Do not null out 507 // RTDyldMM: We still use it below, even though we don't own it. 508 builder.setMCJITMemoryManager( 509 std::unique_ptr<RTDyldMemoryManager>(RTDyldMM)); 510 } else if (RemoteMCJIT) { 511 WithColor::error(errs(), argv[0]) 512 << "remote process execution does not work with the interpreter.\n"; 513 exit(1); 514 } 515 516 builder.setOptLevel(getOptLevel()); 517 518 TargetOptions Options = 519 codegen::InitTargetOptionsFromCodeGenFlags(Triple(TargetTriple)); 520 if (codegen::getFloatABIForCalls() != FloatABI::Default) 521 Options.FloatABIType = codegen::getFloatABIForCalls(); 522 523 builder.setTargetOptions(Options); 524 525 std::unique_ptr<ExecutionEngine> EE(builder.create()); 526 if (!EE) { 527 if (!ErrorMsg.empty()) 528 WithColor::error(errs(), argv[0]) 529 << "error creating EE: " << ErrorMsg << "\n"; 530 else 531 WithColor::error(errs(), argv[0]) << "unknown error creating EE!\n"; 532 exit(1); 533 } 534 535 std::unique_ptr<LLIObjectCache> CacheManager; 536 if (EnableCacheManager) { 537 CacheManager.reset(new LLIObjectCache(ObjectCacheDir)); 538 EE->setObjectCache(CacheManager.get()); 539 } 540 541 // Load any additional modules specified on the command line. 542 for (unsigned i = 0, e = ExtraModules.size(); i != e; ++i) { 543 std::unique_ptr<Module> XMod = parseIRFile(ExtraModules[i], Err, Context); 544 if (!XMod) 545 reportError(Err, argv[0]); 546 if (EnableCacheManager) { 547 std::string CacheName("file:"); 548 CacheName.append(ExtraModules[i]); 549 XMod->setModuleIdentifier(CacheName); 550 } 551 EE->addModule(std::move(XMod)); 552 } 553 554 for (unsigned i = 0, e = ExtraObjects.size(); i != e; ++i) { 555 Expected<object::OwningBinary<object::ObjectFile>> Obj = 556 object::ObjectFile::createObjectFile(ExtraObjects[i]); 557 if (!Obj) { 558 // TODO: Actually report errors helpfully. 559 consumeError(Obj.takeError()); 560 reportError(Err, argv[0]); 561 } 562 object::OwningBinary<object::ObjectFile> &O = Obj.get(); 563 EE->addObjectFile(std::move(O)); 564 } 565 566 for (unsigned i = 0, e = ExtraArchives.size(); i != e; ++i) { 567 ErrorOr<std::unique_ptr<MemoryBuffer>> ArBufOrErr = 568 MemoryBuffer::getFileOrSTDIN(ExtraArchives[i]); 569 if (!ArBufOrErr) 570 reportError(Err, argv[0]); 571 std::unique_ptr<MemoryBuffer> &ArBuf = ArBufOrErr.get(); 572 573 Expected<std::unique_ptr<object::Archive>> ArOrErr = 574 object::Archive::create(ArBuf->getMemBufferRef()); 575 if (!ArOrErr) { 576 std::string Buf; 577 raw_string_ostream OS(Buf); 578 logAllUnhandledErrors(ArOrErr.takeError(), OS); 579 OS.flush(); 580 errs() << Buf; 581 exit(1); 582 } 583 std::unique_ptr<object::Archive> &Ar = ArOrErr.get(); 584 585 object::OwningBinary<object::Archive> OB(std::move(Ar), std::move(ArBuf)); 586 587 EE->addArchive(std::move(OB)); 588 } 589 590 // If the target is Cygwin/MingW and we are generating remote code, we 591 // need an extra module to help out with linking. 592 if (RemoteMCJIT && Triple(Mod->getTargetTriple()).isOSCygMing()) { 593 addCygMingExtraModule(*EE, Context, Mod->getTargetTriple()); 594 } 595 596 // The following functions have no effect if their respective profiling 597 // support wasn't enabled in the build configuration. 598 EE->RegisterJITEventListener( 599 JITEventListener::createOProfileJITEventListener()); 600 EE->RegisterJITEventListener( 601 JITEventListener::createIntelJITEventListener()); 602 if (!RemoteMCJIT) 603 EE->RegisterJITEventListener( 604 JITEventListener::createPerfJITEventListener()); 605 606 if (!NoLazyCompilation && RemoteMCJIT) { 607 WithColor::warning(errs(), argv[0]) 608 << "remote mcjit does not support lazy compilation\n"; 609 NoLazyCompilation = true; 610 } 611 EE->DisableLazyCompilation(NoLazyCompilation); 612 613 // If the user specifically requested an argv[0] to pass into the program, 614 // do it now. 615 if (!FakeArgv0.empty()) { 616 InputFile = static_cast<std::string>(FakeArgv0); 617 } else { 618 // Otherwise, if there is a .bc suffix on the executable strip it off, it 619 // might confuse the program. 620 if (StringRef(InputFile).ends_with(".bc")) 621 InputFile.erase(InputFile.length() - 3); 622 } 623 624 // Add the module's name to the start of the vector of arguments to main(). 625 InputArgv.insert(InputArgv.begin(), InputFile); 626 627 // Call the main function from M as if its signature were: 628 // int main (int argc, char **argv, const char **envp) 629 // using the contents of Args to determine argc & argv, and the contents of 630 // EnvVars to determine envp. 631 // 632 Function *EntryFn = Mod->getFunction(EntryFunc); 633 if (!EntryFn) { 634 WithColor::error(errs(), argv[0]) 635 << '\'' << EntryFunc << "\' function not found in module.\n"; 636 return -1; 637 } 638 639 // Reset errno to zero on entry to main. 640 errno = 0; 641 642 int Result = -1; 643 644 // Sanity check use of remote-jit: LLI currently only supports use of the 645 // remote JIT on Unix platforms. 646 if (RemoteMCJIT) { 647 #ifndef LLVM_ON_UNIX 648 WithColor::warning(errs(), argv[0]) 649 << "host does not support external remote targets.\n"; 650 WithColor::note() << "defaulting to local execution\n"; 651 return -1; 652 #else 653 if (ChildExecPath.empty()) { 654 WithColor::error(errs(), argv[0]) 655 << "-remote-mcjit requires -mcjit-remote-process.\n"; 656 exit(1); 657 } else if (!sys::fs::can_execute(ChildExecPath)) { 658 WithColor::error(errs(), argv[0]) 659 << "unable to find usable child executable: '" << ChildExecPath 660 << "'\n"; 661 return -1; 662 } 663 #endif 664 } 665 666 if (!RemoteMCJIT) { 667 // If the program doesn't explicitly call exit, we will need the Exit 668 // function later on to make an explicit call, so get the function now. 669 FunctionCallee Exit = Mod->getOrInsertFunction( 670 "exit", Type::getVoidTy(Context), Type::getInt32Ty(Context)); 671 672 // Run static constructors. 673 if (!ForceInterpreter) { 674 // Give MCJIT a chance to apply relocations and set page permissions. 675 EE->finalizeObject(); 676 } 677 EE->runStaticConstructorsDestructors(false); 678 679 // Trigger compilation separately so code regions that need to be 680 // invalidated will be known. 681 (void)EE->getPointerToFunction(EntryFn); 682 // Clear instruction cache before code will be executed. 683 if (RTDyldMM) 684 static_cast<SectionMemoryManager*>(RTDyldMM)->invalidateInstructionCache(); 685 686 // Run main. 687 Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp); 688 689 // Run static destructors. 690 EE->runStaticConstructorsDestructors(true); 691 692 // If the program didn't call exit explicitly, we should call it now. 693 // This ensures that any atexit handlers get called correctly. 694 if (Function *ExitF = 695 dyn_cast<Function>(Exit.getCallee()->stripPointerCasts())) { 696 if (ExitF->getFunctionType() == Exit.getFunctionType()) { 697 std::vector<GenericValue> Args; 698 GenericValue ResultGV; 699 ResultGV.IntVal = APInt(32, Result); 700 Args.push_back(ResultGV); 701 EE->runFunction(ExitF, Args); 702 WithColor::error(errs(), argv[0]) 703 << "exit(" << Result << ") returned!\n"; 704 abort(); 705 } 706 } 707 WithColor::error(errs(), argv[0]) << "exit defined with wrong prototype!\n"; 708 abort(); 709 } else { 710 // else == "if (RemoteMCJIT)" 711 std::unique_ptr<orc::ExecutorProcessControl> EPC = ExitOnErr(launchRemote()); 712 713 // Remote target MCJIT doesn't (yet) support static constructors. No reason 714 // it couldn't. This is a limitation of the LLI implementation, not the 715 // MCJIT itself. FIXME. 716 717 // Create a remote memory manager. 718 auto RemoteMM = ExitOnErr( 719 orc::EPCGenericRTDyldMemoryManager::CreateWithDefaultBootstrapSymbols( 720 *EPC)); 721 722 // Forward MCJIT's memory manager calls to the remote memory manager. 723 static_cast<ForwardingMemoryManager*>(RTDyldMM)->setMemMgr( 724 std::move(RemoteMM)); 725 726 // Forward MCJIT's symbol resolution calls to the remote. 727 static_cast<ForwardingMemoryManager *>(RTDyldMM)->setResolver( 728 ExitOnErr(RemoteResolver::Create(*EPC))); 729 // Grab the target address of the JIT'd main function on the remote and call 730 // it. 731 // FIXME: argv and envp handling. 732 auto Entry = 733 orc::ExecutorAddr(EE->getFunctionAddress(EntryFn->getName().str())); 734 EE->finalizeObject(); 735 LLVM_DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at 0x" 736 << format("%llx", Entry.getValue()) << "\n"); 737 Result = ExitOnErr(EPC->runAsMain(Entry, {})); 738 739 // Like static constructors, the remote target MCJIT support doesn't handle 740 // this yet. It could. FIXME. 741 742 // Delete the EE - we need to tear it down *before* we terminate the session 743 // with the remote, otherwise it'll crash when it tries to release resources 744 // on a remote that has already been disconnected. 745 EE.reset(); 746 747 // Signal the remote target that we're done JITing. 748 ExitOnErr(EPC->disconnect()); 749 } 750 751 return Result; 752 } 753 754 // JITLink debug support plugins put information about JITed code in this GDB 755 // JIT Interface global from OrcTargetProcess. 756 extern "C" struct jit_descriptor __jit_debug_descriptor; 757 758 static struct jit_code_entry * 759 findNextDebugDescriptorEntry(struct jit_code_entry *Latest) { 760 if (Latest == nullptr) 761 return __jit_debug_descriptor.first_entry; 762 if (Latest->next_entry) 763 return Latest->next_entry; 764 return nullptr; 765 } 766 767 static ToolOutputFile &claimToolOutput() { 768 static std::unique_ptr<ToolOutputFile> ToolOutput = nullptr; 769 if (ToolOutput) { 770 WithColor::error(errs(), "lli") 771 << "Can not claim stdout for tool output twice\n"; 772 exit(1); 773 } 774 std::error_code EC; 775 ToolOutput = std::make_unique<ToolOutputFile>("-", EC, sys::fs::OF_None); 776 if (EC) { 777 WithColor::error(errs(), "lli") 778 << "Failed to create tool output file: " << EC.message() << "\n"; 779 exit(1); 780 } 781 return *ToolOutput; 782 } 783 784 static std::function<void(Module &)> createIRDebugDumper() { 785 switch (OrcDumpKind) { 786 case DumpKind::NoDump: 787 case DumpKind::DumpDebugDescriptor: 788 case DumpKind::DumpDebugObjects: 789 return [](Module &M) {}; 790 791 case DumpKind::DumpFuncsToStdOut: 792 return [](Module &M) { 793 printf("[ "); 794 795 for (const auto &F : M) { 796 if (F.isDeclaration()) 797 continue; 798 799 if (F.hasName()) { 800 std::string Name(std::string(F.getName())); 801 printf("%s ", Name.c_str()); 802 } else 803 printf("<anon> "); 804 } 805 806 printf("]\n"); 807 }; 808 809 case DumpKind::DumpModsToStdOut: 810 return [](Module &M) { 811 outs() << "----- Module Start -----\n" << M << "----- Module End -----\n"; 812 }; 813 814 case DumpKind::DumpModsToDisk: 815 return [](Module &M) { 816 std::error_code EC; 817 raw_fd_ostream Out(M.getModuleIdentifier() + ".ll", EC, 818 sys::fs::OF_TextWithCRLF); 819 if (EC) { 820 errs() << "Couldn't open " << M.getModuleIdentifier() 821 << " for dumping.\nError:" << EC.message() << "\n"; 822 exit(1); 823 } 824 Out << M; 825 }; 826 } 827 llvm_unreachable("Unknown DumpKind"); 828 } 829 830 static std::function<void(MemoryBuffer &)> createObjDebugDumper() { 831 switch (OrcDumpKind) { 832 case DumpKind::NoDump: 833 case DumpKind::DumpFuncsToStdOut: 834 case DumpKind::DumpModsToStdOut: 835 case DumpKind::DumpModsToDisk: 836 return [](MemoryBuffer &) {}; 837 838 case DumpKind::DumpDebugDescriptor: { 839 // Dump the empty descriptor at startup once 840 fprintf(stderr, "jit_debug_descriptor 0x%016" PRIx64 "\n", 841 pointerToJITTargetAddress(__jit_debug_descriptor.first_entry)); 842 return [](MemoryBuffer &) { 843 // Dump new entries as they appear 844 static struct jit_code_entry *Latest = nullptr; 845 while (auto *NewEntry = findNextDebugDescriptorEntry(Latest)) { 846 fprintf(stderr, "jit_debug_descriptor 0x%016" PRIx64 "\n", 847 pointerToJITTargetAddress(NewEntry)); 848 Latest = NewEntry; 849 } 850 }; 851 } 852 853 case DumpKind::DumpDebugObjects: { 854 return [](MemoryBuffer &Obj) { 855 static struct jit_code_entry *Latest = nullptr; 856 static ToolOutputFile &ToolOutput = claimToolOutput(); 857 while (auto *NewEntry = findNextDebugDescriptorEntry(Latest)) { 858 ToolOutput.os().write(NewEntry->symfile_addr, NewEntry->symfile_size); 859 Latest = NewEntry; 860 } 861 }; 862 } 863 } 864 llvm_unreachable("Unknown DumpKind"); 865 } 866 867 Error loadDylibs() { 868 for (const auto &Dylib : Dylibs) { 869 std::string ErrMsg; 870 if (sys::DynamicLibrary::LoadLibraryPermanently(Dylib.c_str(), &ErrMsg)) 871 return make_error<StringError>(ErrMsg, inconvertibleErrorCode()); 872 } 873 874 return Error::success(); 875 } 876 877 static void exitOnLazyCallThroughFailure() { exit(1); } 878 879 Expected<orc::ThreadSafeModule> 880 loadModule(StringRef Path, orc::ThreadSafeContext TSCtx) { 881 SMDiagnostic Err; 882 auto M = parseIRFile(Path, Err, *TSCtx.getContext()); 883 if (!M) { 884 std::string ErrMsg; 885 { 886 raw_string_ostream ErrMsgStream(ErrMsg); 887 Err.print("lli", ErrMsgStream); 888 } 889 return make_error<StringError>(std::move(ErrMsg), inconvertibleErrorCode()); 890 } 891 892 if (EnableCacheManager) 893 M->setModuleIdentifier("file:" + M->getModuleIdentifier()); 894 895 return orc::ThreadSafeModule(std::move(M), std::move(TSCtx)); 896 } 897 898 int mingw_noop_main(void) { 899 // Cygwin and MinGW insert calls from the main function to the runtime 900 // function __main. The __main function is responsible for setting up main's 901 // environment (e.g. running static constructors), however this is not needed 902 // when running under lli: the executor process will have run non-JIT ctors, 903 // and ORC will take care of running JIT'd ctors. To avoid a missing symbol 904 // error we just implement __main as a no-op. 905 // 906 // FIXME: Move this to ORC-RT (and the ORC-RT substitution library once it 907 // exists). That will allow it to work out-of-process, and for all 908 // ORC tools (the problem isn't lli specific). 909 return 0; 910 } 911 912 // Try to enable debugger support for the given instance. 913 // This alway returns success, but prints a warning if it's not able to enable 914 // debugger support. 915 Error tryEnableDebugSupport(orc::LLJIT &J) { 916 if (auto Err = enableDebuggerSupport(J)) { 917 [[maybe_unused]] std::string ErrMsg = toString(std::move(Err)); 918 LLVM_DEBUG(dbgs() << "lli: " << ErrMsg << "\n"); 919 } 920 return Error::success(); 921 } 922 923 int runOrcJIT(const char *ProgName) { 924 // Start setting up the JIT environment. 925 926 // Parse the main module. 927 orc::ThreadSafeContext TSCtx(std::make_unique<LLVMContext>()); 928 auto MainModule = ExitOnErr(loadModule(InputFile, TSCtx)); 929 930 // Get TargetTriple and DataLayout from the main module if they're explicitly 931 // set. 932 std::optional<Triple> TT; 933 std::optional<DataLayout> DL; 934 MainModule.withModuleDo([&](Module &M) { 935 if (!M.getTargetTriple().empty()) 936 TT = Triple(M.getTargetTriple()); 937 if (!M.getDataLayout().isDefault()) 938 DL = M.getDataLayout(); 939 }); 940 941 orc::LLLazyJITBuilder Builder; 942 943 Builder.setJITTargetMachineBuilder( 944 TT ? orc::JITTargetMachineBuilder(*TT) 945 : ExitOnErr(orc::JITTargetMachineBuilder::detectHost())); 946 947 TT = Builder.getJITTargetMachineBuilder()->getTargetTriple(); 948 if (DL) 949 Builder.setDataLayout(DL); 950 951 if (!codegen::getMArch().empty()) 952 Builder.getJITTargetMachineBuilder()->getTargetTriple().setArchName( 953 codegen::getMArch()); 954 955 Builder.getJITTargetMachineBuilder() 956 ->setCPU(codegen::getCPUStr()) 957 .addFeatures(codegen::getFeatureList()) 958 .setRelocationModel(codegen::getExplicitRelocModel()) 959 .setCodeModel(codegen::getExplicitCodeModel()); 960 961 // Link process symbols unless NoProcessSymbols is set. 962 Builder.setLinkProcessSymbolsByDefault(!NoProcessSymbols); 963 964 // FIXME: Setting a dummy call-through manager in non-lazy mode prevents the 965 // JIT builder to instantiate a default (which would fail with an error for 966 // unsupported architectures). 967 if (UseJITKind != JITKind::OrcLazy) { 968 auto ES = std::make_unique<orc::ExecutionSession>( 969 ExitOnErr(orc::SelfExecutorProcessControl::Create())); 970 Builder.setLazyCallthroughManager( 971 std::make_unique<orc::LazyCallThroughManager>(*ES, orc::ExecutorAddr(), 972 nullptr)); 973 Builder.setExecutionSession(std::move(ES)); 974 } 975 976 Builder.setLazyCompileFailureAddr( 977 orc::ExecutorAddr::fromPtr(exitOnLazyCallThroughFailure)); 978 Builder.setNumCompileThreads(LazyJITCompileThreads); 979 980 // If the object cache is enabled then set a custom compile function 981 // creator to use the cache. 982 std::unique_ptr<LLIObjectCache> CacheManager; 983 if (EnableCacheManager) { 984 985 CacheManager = std::make_unique<LLIObjectCache>(ObjectCacheDir); 986 987 Builder.setCompileFunctionCreator( 988 [&](orc::JITTargetMachineBuilder JTMB) 989 -> Expected<std::unique_ptr<orc::IRCompileLayer::IRCompiler>> { 990 if (LazyJITCompileThreads > 0) 991 return std::make_unique<orc::ConcurrentIRCompiler>(std::move(JTMB), 992 CacheManager.get()); 993 994 auto TM = JTMB.createTargetMachine(); 995 if (!TM) 996 return TM.takeError(); 997 998 return std::make_unique<orc::TMOwningSimpleCompiler>(std::move(*TM), 999 CacheManager.get()); 1000 }); 1001 } 1002 1003 // Enable debugging of JIT'd code (only works on JITLink for ELF and MachO). 1004 Builder.setPrePlatformSetup(tryEnableDebugSupport); 1005 1006 // Set up LLJIT platform. 1007 LLJITPlatform P = Platform; 1008 if (P == LLJITPlatform::Auto) 1009 P = OrcRuntime.empty() ? LLJITPlatform::GenericIR 1010 : LLJITPlatform::ExecutorNative; 1011 1012 switch (P) { 1013 case LLJITPlatform::ExecutorNative: { 1014 Builder.setPlatformSetUp(orc::ExecutorNativePlatform(OrcRuntime)); 1015 break; 1016 } 1017 case LLJITPlatform::GenericIR: 1018 // Nothing to do: LLJITBuilder will use this by default. 1019 break; 1020 case LLJITPlatform::Inactive: 1021 Builder.setPlatformSetUp(orc::setUpInactivePlatform); 1022 break; 1023 default: 1024 llvm_unreachable("Unrecognized platform value"); 1025 } 1026 1027 std::unique_ptr<orc::ExecutorProcessControl> EPC = nullptr; 1028 if (JITLinker == JITLinkerKind::JITLink) { 1029 EPC = ExitOnErr(orc::SelfExecutorProcessControl::Create( 1030 std::make_shared<orc::SymbolStringPool>())); 1031 1032 Builder.getJITTargetMachineBuilder() 1033 ->setRelocationModel(Reloc::PIC_) 1034 .setCodeModel(CodeModel::Small); 1035 Builder.setObjectLinkingLayerCreator([&P](orc::ExecutionSession &ES, 1036 const Triple &TT) { 1037 auto L = std::make_unique<orc::ObjectLinkingLayer>(ES); 1038 if (P != LLJITPlatform::ExecutorNative) 1039 L->addPlugin(std::make_unique<orc::EHFrameRegistrationPlugin>( 1040 ES, ExitOnErr(orc::EPCEHFrameRegistrar::Create(ES)))); 1041 return L; 1042 }); 1043 } 1044 1045 auto J = ExitOnErr(Builder.create()); 1046 1047 auto *ObjLayer = &J->getObjLinkingLayer(); 1048 if (auto *RTDyldObjLayer = dyn_cast<orc::RTDyldObjectLinkingLayer>(ObjLayer)) { 1049 RTDyldObjLayer->registerJITEventListener( 1050 *JITEventListener::createGDBRegistrationListener()); 1051 #if LLVM_USE_OPROFILE 1052 RTDyldObjLayer->registerJITEventListener( 1053 *JITEventListener::createOProfileJITEventListener()); 1054 #endif 1055 #if LLVM_USE_INTEL_JITEVENTS 1056 RTDyldObjLayer->registerJITEventListener( 1057 *JITEventListener::createIntelJITEventListener()); 1058 #endif 1059 #if LLVM_USE_PERF 1060 RTDyldObjLayer->registerJITEventListener( 1061 *JITEventListener::createPerfJITEventListener()); 1062 #endif 1063 } 1064 1065 if (PerModuleLazy) 1066 J->setPartitionFunction(orc::CompileOnDemandLayer::compileWholeModule); 1067 1068 auto IRDump = createIRDebugDumper(); 1069 J->getIRTransformLayer().setTransform( 1070 [&](orc::ThreadSafeModule TSM, 1071 const orc::MaterializationResponsibility &R) { 1072 TSM.withModuleDo([&](Module &M) { 1073 if (verifyModule(M, &dbgs())) { 1074 dbgs() << "Bad module: " << &M << "\n"; 1075 exit(1); 1076 } 1077 IRDump(M); 1078 }); 1079 return TSM; 1080 }); 1081 1082 auto ObjDump = createObjDebugDumper(); 1083 J->getObjTransformLayer().setTransform( 1084 [&](std::unique_ptr<MemoryBuffer> Obj) 1085 -> Expected<std::unique_ptr<MemoryBuffer>> { 1086 ObjDump(*Obj); 1087 return std::move(Obj); 1088 }); 1089 1090 // If this is a Mingw or Cygwin executor then we need to alias __main to 1091 // orc_rt_int_void_return_0. 1092 if (J->getTargetTriple().isOSCygMing()) 1093 ExitOnErr(J->getProcessSymbolsJITDylib()->define( 1094 orc::absoluteSymbols({{J->mangleAndIntern("__main"), 1095 {orc::ExecutorAddr::fromPtr(mingw_noop_main), 1096 JITSymbolFlags::Exported}}}))); 1097 1098 // Regular modules are greedy: They materialize as a whole and trigger 1099 // materialization for all required symbols recursively. Lazy modules go 1100 // through partitioning and they replace outgoing calls with reexport stubs 1101 // that resolve on call-through. 1102 auto AddModule = [&](orc::JITDylib &JD, orc::ThreadSafeModule M) { 1103 return UseJITKind == JITKind::OrcLazy ? J->addLazyIRModule(JD, std::move(M)) 1104 : J->addIRModule(JD, std::move(M)); 1105 }; 1106 1107 // Add the main module. 1108 ExitOnErr(AddModule(J->getMainJITDylib(), std::move(MainModule))); 1109 1110 // Create JITDylibs and add any extra modules. 1111 { 1112 // Create JITDylibs, keep a map from argument index to dylib. We will use 1113 // -extra-module argument indexes to determine what dylib to use for each 1114 // -extra-module. 1115 std::map<unsigned, orc::JITDylib *> IdxToDylib; 1116 IdxToDylib[0] = &J->getMainJITDylib(); 1117 for (auto JDItr = JITDylibs.begin(), JDEnd = JITDylibs.end(); 1118 JDItr != JDEnd; ++JDItr) { 1119 orc::JITDylib *JD = J->getJITDylibByName(*JDItr); 1120 if (!JD) { 1121 JD = &ExitOnErr(J->createJITDylib(*JDItr)); 1122 J->getMainJITDylib().addToLinkOrder(*JD); 1123 JD->addToLinkOrder(J->getMainJITDylib()); 1124 } 1125 IdxToDylib[JITDylibs.getPosition(JDItr - JITDylibs.begin())] = JD; 1126 } 1127 1128 for (auto EMItr = ExtraModules.begin(), EMEnd = ExtraModules.end(); 1129 EMItr != EMEnd; ++EMItr) { 1130 auto M = ExitOnErr(loadModule(*EMItr, TSCtx)); 1131 1132 auto EMIdx = ExtraModules.getPosition(EMItr - ExtraModules.begin()); 1133 assert(EMIdx != 0 && "ExtraModule should have index > 0"); 1134 auto JDItr = std::prev(IdxToDylib.lower_bound(EMIdx)); 1135 auto &JD = *JDItr->second; 1136 ExitOnErr(AddModule(JD, std::move(M))); 1137 } 1138 1139 for (auto EAItr = ExtraArchives.begin(), EAEnd = ExtraArchives.end(); 1140 EAItr != EAEnd; ++EAItr) { 1141 auto EAIdx = ExtraArchives.getPosition(EAItr - ExtraArchives.begin()); 1142 assert(EAIdx != 0 && "ExtraArchive should have index > 0"); 1143 auto JDItr = std::prev(IdxToDylib.lower_bound(EAIdx)); 1144 auto &JD = *JDItr->second; 1145 ExitOnErr(J->linkStaticLibraryInto(JD, EAItr->c_str())); 1146 } 1147 } 1148 1149 // Add the objects. 1150 for (auto &ObjPath : ExtraObjects) { 1151 auto Obj = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ObjPath))); 1152 ExitOnErr(J->addObjectFile(std::move(Obj))); 1153 } 1154 1155 // Run any static constructors. 1156 ExitOnErr(J->initialize(J->getMainJITDylib())); 1157 1158 // Run any -thread-entry points. 1159 std::vector<std::thread> AltEntryThreads; 1160 for (auto &ThreadEntryPoint : ThreadEntryPoints) { 1161 auto EntryPointSym = ExitOnErr(J->lookup(ThreadEntryPoint)); 1162 typedef void (*EntryPointPtr)(); 1163 auto EntryPoint = EntryPointSym.toPtr<EntryPointPtr>(); 1164 AltEntryThreads.push_back(std::thread([EntryPoint]() { EntryPoint(); })); 1165 } 1166 1167 // Resolve and run the main function. 1168 auto MainAddr = ExitOnErr(J->lookup(EntryFunc)); 1169 int Result; 1170 1171 if (EPC) { 1172 // ExecutorProcessControl-based execution with JITLink. 1173 Result = ExitOnErr(EPC->runAsMain(MainAddr, InputArgv)); 1174 } else { 1175 // Manual in-process execution with RuntimeDyld. 1176 using MainFnTy = int(int, char *[]); 1177 auto MainFn = MainAddr.toPtr<MainFnTy *>(); 1178 Result = orc::runAsMain(MainFn, InputArgv, StringRef(InputFile)); 1179 } 1180 1181 // Wait for -entry-point threads. 1182 for (auto &AltEntryThread : AltEntryThreads) 1183 AltEntryThread.join(); 1184 1185 // Run destructors. 1186 ExitOnErr(J->deinitialize(J->getMainJITDylib())); 1187 1188 return Result; 1189 } 1190 1191 void disallowOrcOptions() { 1192 // Make sure nobody used an orc-lazy specific option accidentally. 1193 1194 if (LazyJITCompileThreads != 0) { 1195 errs() << "-compile-threads requires -jit-kind=orc-lazy\n"; 1196 exit(1); 1197 } 1198 1199 if (!ThreadEntryPoints.empty()) { 1200 errs() << "-thread-entry requires -jit-kind=orc-lazy\n"; 1201 exit(1); 1202 } 1203 1204 if (PerModuleLazy) { 1205 errs() << "-per-module-lazy requires -jit-kind=orc-lazy\n"; 1206 exit(1); 1207 } 1208 } 1209 1210 Expected<std::unique_ptr<orc::ExecutorProcessControl>> launchRemote() { 1211 #ifndef LLVM_ON_UNIX 1212 llvm_unreachable("launchRemote not supported on non-Unix platforms"); 1213 #else 1214 int PipeFD[2][2]; 1215 pid_t ChildPID; 1216 1217 // Create two pipes. 1218 if (pipe(PipeFD[0]) != 0 || pipe(PipeFD[1]) != 0) 1219 perror("Error creating pipe: "); 1220 1221 ChildPID = fork(); 1222 1223 if (ChildPID == 0) { 1224 // In the child... 1225 1226 // Close the parent ends of the pipes 1227 close(PipeFD[0][1]); 1228 close(PipeFD[1][0]); 1229 1230 1231 // Execute the child process. 1232 std::unique_ptr<char[]> ChildPath, ChildIn, ChildOut; 1233 { 1234 ChildPath.reset(new char[ChildExecPath.size() + 1]); 1235 std::copy(ChildExecPath.begin(), ChildExecPath.end(), &ChildPath[0]); 1236 ChildPath[ChildExecPath.size()] = '\0'; 1237 std::string ChildInStr = utostr(PipeFD[0][0]); 1238 ChildIn.reset(new char[ChildInStr.size() + 1]); 1239 std::copy(ChildInStr.begin(), ChildInStr.end(), &ChildIn[0]); 1240 ChildIn[ChildInStr.size()] = '\0'; 1241 std::string ChildOutStr = utostr(PipeFD[1][1]); 1242 ChildOut.reset(new char[ChildOutStr.size() + 1]); 1243 std::copy(ChildOutStr.begin(), ChildOutStr.end(), &ChildOut[0]); 1244 ChildOut[ChildOutStr.size()] = '\0'; 1245 } 1246 1247 char * const args[] = { &ChildPath[0], &ChildIn[0], &ChildOut[0], nullptr }; 1248 int rc = execv(ChildExecPath.c_str(), args); 1249 if (rc != 0) 1250 perror("Error executing child process: "); 1251 llvm_unreachable("Error executing child process"); 1252 } 1253 // else we're the parent... 1254 1255 // Close the child ends of the pipes 1256 close(PipeFD[0][0]); 1257 close(PipeFD[1][1]); 1258 1259 // Return a SimpleRemoteEPC instance connected to our end of the pipes. 1260 return orc::SimpleRemoteEPC::Create<orc::FDSimpleRemoteEPCTransport>( 1261 std::make_unique<llvm::orc::InPlaceTaskDispatcher>(), 1262 llvm::orc::SimpleRemoteEPC::Setup(), PipeFD[1][0], PipeFD[0][1]); 1263 #endif 1264 } 1265 1266 // For MinGW environments, manually export the __chkstk function from the lli 1267 // executable. 1268 // 1269 // Normally, this function is provided by compiler-rt builtins or libgcc. 1270 // It is named "_alloca" on i386, "___chkstk_ms" on x86_64, and "__chkstk" on 1271 // arm/aarch64. In MSVC configurations, it's named "__chkstk" in all 1272 // configurations. 1273 // 1274 // When Orc tries to resolve symbols at runtime, this succeeds in MSVC 1275 // configurations, somewhat by accident/luck; kernelbase.dll does export a 1276 // symbol named "__chkstk" which gets found by Orc, even if regular applications 1277 // never link against that function from that DLL (it's linked in statically 1278 // from a compiler support library). 1279 // 1280 // The MinGW specific symbol names aren't available in that DLL though. 1281 // Therefore, manually export the relevant symbol from lli, to let it be 1282 // found at runtime during tests. 1283 // 1284 // For real JIT uses, the real compiler support libraries should be linked 1285 // in, somehow; this is a workaround to let tests pass. 1286 // 1287 // We need to make sure that this symbol actually is linked in when we 1288 // try to export it; if no functions allocate a large enough stack area, 1289 // nothing would reference it. Therefore, manually declare it and add a 1290 // reference to it. (Note, the declarations of _alloca/___chkstk_ms/__chkstk 1291 // are somewhat bogus, these functions use a different custom calling 1292 // convention.) 1293 // 1294 // TODO: Move this into libORC at some point, see 1295 // https://github.com/llvm/llvm-project/issues/56603. 1296 #ifdef __MINGW32__ 1297 // This is a MinGW version of #pragma comment(linker, "...") that doesn't 1298 // require compiling with -fms-extensions. 1299 #if defined(__i386__) 1300 #undef _alloca 1301 extern "C" void _alloca(void); 1302 static __attribute__((used)) void (*const ref_func)(void) = _alloca; 1303 static __attribute__((section(".drectve"), used)) const char export_chkstk[] = 1304 "-export:_alloca"; 1305 #elif defined(__x86_64__) 1306 extern "C" void ___chkstk_ms(void); 1307 static __attribute__((used)) void (*const ref_func)(void) = ___chkstk_ms; 1308 static __attribute__((section(".drectve"), used)) const char export_chkstk[] = 1309 "-export:___chkstk_ms"; 1310 #else 1311 extern "C" void __chkstk(void); 1312 static __attribute__((used)) void (*const ref_func)(void) = __chkstk; 1313 static __attribute__((section(".drectve"), used)) const char export_chkstk[] = 1314 "-export:__chkstk"; 1315 #endif 1316 #endif 1317