1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MapValue function, which is shared by various parts of 10 // the lib/Transforms/Utils library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/ValueMapper.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/IR/Argument.h" 21 #include "llvm/IR/BasicBlock.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalAlias.h" 28 #include "llvm/IR/GlobalIFunc.h" 29 #include "llvm/IR/GlobalObject.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include <cassert> 42 #include <limits> 43 #include <memory> 44 #include <utility> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "value-mapper" 49 50 // Out of line method to get vtable etc for class. 51 void ValueMapTypeRemapper::anchor() {} 52 void ValueMaterializer::anchor() {} 53 54 namespace { 55 56 /// A basic block used in a BlockAddress whose function body is not yet 57 /// materialized. 58 struct DelayedBasicBlock { 59 BasicBlock *OldBB; 60 std::unique_ptr<BasicBlock> TempBB; 61 62 DelayedBasicBlock(const BlockAddress &Old) 63 : OldBB(Old.getBasicBlock()), 64 TempBB(BasicBlock::Create(Old.getContext())) {} 65 }; 66 67 struct WorklistEntry { 68 enum EntryKind { 69 MapGlobalInit, 70 MapAppendingVar, 71 MapAliasOrIFunc, 72 RemapFunction 73 }; 74 struct GVInitTy { 75 GlobalVariable *GV; 76 Constant *Init; 77 }; 78 struct AppendingGVTy { 79 GlobalVariable *GV; 80 Constant *InitPrefix; 81 }; 82 struct AliasOrIFuncTy { 83 GlobalValue *GV; 84 Constant *Target; 85 }; 86 87 unsigned Kind : 2; 88 unsigned MCID : 29; 89 unsigned AppendingGVIsOldCtorDtor : 1; 90 unsigned AppendingGVNumNewMembers; 91 union { 92 GVInitTy GVInit; 93 AppendingGVTy AppendingGV; 94 AliasOrIFuncTy AliasOrIFunc; 95 Function *RemapF; 96 } Data; 97 }; 98 99 struct MappingContext { 100 ValueToValueMapTy *VM; 101 ValueMaterializer *Materializer = nullptr; 102 103 /// Construct a MappingContext with a value map and materializer. 104 explicit MappingContext(ValueToValueMapTy &VM, 105 ValueMaterializer *Materializer = nullptr) 106 : VM(&VM), Materializer(Materializer) {} 107 }; 108 109 class Mapper { 110 friend class MDNodeMapper; 111 112 #ifndef NDEBUG 113 DenseSet<GlobalValue *> AlreadyScheduled; 114 #endif 115 116 RemapFlags Flags; 117 ValueMapTypeRemapper *TypeMapper; 118 unsigned CurrentMCID = 0; 119 SmallVector<MappingContext, 2> MCs; 120 SmallVector<WorklistEntry, 4> Worklist; 121 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 122 SmallVector<Constant *, 16> AppendingInits; 123 124 public: 125 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 126 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 127 : Flags(Flags), TypeMapper(TypeMapper), 128 MCs(1, MappingContext(VM, Materializer)) {} 129 130 /// ValueMapper should explicitly call \a flush() before destruction. 131 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 132 133 bool hasWorkToDo() const { return !Worklist.empty(); } 134 135 unsigned 136 registerAlternateMappingContext(ValueToValueMapTy &VM, 137 ValueMaterializer *Materializer = nullptr) { 138 MCs.push_back(MappingContext(VM, Materializer)); 139 return MCs.size() - 1; 140 } 141 142 void addFlags(RemapFlags Flags); 143 144 void remapGlobalObjectMetadata(GlobalObject &GO); 145 146 Value *mapValue(const Value *V); 147 void remapInstruction(Instruction *I); 148 void remapFunction(Function &F); 149 void remapDPValue(DPValue &DPV); 150 151 Constant *mapConstant(const Constant *C) { 152 return cast_or_null<Constant>(mapValue(C)); 153 } 154 155 /// Map metadata. 156 /// 157 /// Find the mapping for MD. Guarantees that the return will be resolved 158 /// (not an MDNode, or MDNode::isResolved() returns true). 159 Metadata *mapMetadata(const Metadata *MD); 160 161 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 162 unsigned MCID); 163 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 164 bool IsOldCtorDtor, 165 ArrayRef<Constant *> NewMembers, 166 unsigned MCID); 167 void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 168 unsigned MCID); 169 void scheduleRemapFunction(Function &F, unsigned MCID); 170 171 void flush(); 172 173 private: 174 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 175 bool IsOldCtorDtor, 176 ArrayRef<Constant *> NewMembers); 177 178 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 179 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 180 181 Value *mapBlockAddress(const BlockAddress &BA); 182 183 /// Map metadata that doesn't require visiting operands. 184 std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 185 186 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 187 Metadata *mapToSelf(const Metadata *MD); 188 }; 189 190 class MDNodeMapper { 191 Mapper &M; 192 193 /// Data about a node in \a UniquedGraph. 194 struct Data { 195 bool HasChanged = false; 196 unsigned ID = std::numeric_limits<unsigned>::max(); 197 TempMDNode Placeholder; 198 }; 199 200 /// A graph of uniqued nodes. 201 struct UniquedGraph { 202 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 203 SmallVector<MDNode *, 16> POT; // Post-order traversal. 204 205 /// Propagate changed operands through the post-order traversal. 206 /// 207 /// Iteratively update \a Data::HasChanged for each node based on \a 208 /// Data::HasChanged of its operands, until fixed point. 209 void propagateChanges(); 210 211 /// Get a forward reference to a node to use as an operand. 212 Metadata &getFwdReference(MDNode &Op); 213 }; 214 215 /// Worklist of distinct nodes whose operands need to be remapped. 216 SmallVector<MDNode *, 16> DistinctWorklist; 217 218 // Storage for a UniquedGraph. 219 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 220 SmallVector<MDNode *, 16> POTStorage; 221 222 public: 223 MDNodeMapper(Mapper &M) : M(M) {} 224 225 /// Map a metadata node (and its transitive operands). 226 /// 227 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 228 /// algorithm handles distinct nodes and uniqued node subgraphs using 229 /// different strategies. 230 /// 231 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 232 /// using \a mapDistinctNode(). Their mapping can always be computed 233 /// immediately without visiting operands, even if their operands change. 234 /// 235 /// The mapping for uniqued nodes depends on whether their operands change. 236 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 237 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 238 /// added to \a DistinctWorklist with \a mapDistinctNode(). 239 /// 240 /// After mapping \c N itself, this function remaps the operands of the 241 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 242 /// N has been mapped. 243 Metadata *map(const MDNode &N); 244 245 private: 246 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 247 /// 248 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 249 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 250 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 251 /// operands uses the identity mapping. 252 /// 253 /// The algorithm works as follows: 254 /// 255 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 256 /// save the post-order traversal in the given \a UniquedGraph, tracking 257 /// nodes' operands change. 258 /// 259 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 260 /// through the \a UniquedGraph until fixed point, following the rule 261 /// that if a node changes, any node that references must also change. 262 /// 263 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 264 /// (referencing new operands) where necessary. 265 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 266 267 /// Try to map the operand of an \a MDNode. 268 /// 269 /// If \c Op is already mapped, return the mapping. If it's not an \a 270 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 271 /// return the result of \a mapDistinctNode(). 272 /// 273 /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode. 274 /// \post getMappedOp(Op) only returns std::nullopt if this returns 275 /// std::nullopt. 276 std::optional<Metadata *> tryToMapOperand(const Metadata *Op); 277 278 /// Map a distinct node. 279 /// 280 /// Return the mapping for the distinct node \c N, saving the result in \a 281 /// DistinctWorklist for later remapping. 282 /// 283 /// \pre \c N is not yet mapped. 284 /// \pre \c N.isDistinct(). 285 MDNode *mapDistinctNode(const MDNode &N); 286 287 /// Get a previously mapped node. 288 std::optional<Metadata *> getMappedOp(const Metadata *Op) const; 289 290 /// Create a post-order traversal of an unmapped uniqued node subgraph. 291 /// 292 /// This traverses the metadata graph deeply enough to map \c FirstN. It 293 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 294 /// metadata that has already been mapped will not be part of the POT. 295 /// 296 /// Each node that has a changed operand from outside the graph (e.g., a 297 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 298 /// is marked with \a Data::HasChanged. 299 /// 300 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 301 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 302 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 303 /// to change because of operands outside the graph. 304 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 305 306 /// Visit the operands of a uniqued node in the POT. 307 /// 308 /// Visit the operands in the range from \c I to \c E, returning the first 309 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 310 /// where to continue the loop through the operands. 311 /// 312 /// This sets \c HasChanged if any of the visited operands change. 313 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 314 MDNode::op_iterator E, bool &HasChanged); 315 316 /// Map all the nodes in the given uniqued graph. 317 /// 318 /// This visits all the nodes in \c G in post-order, using the identity 319 /// mapping or creating a new node depending on \a Data::HasChanged. 320 /// 321 /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for 322 /// any of their operands outside of \c G. \pre \a Data::HasChanged is true 323 /// for a node in \c G iff any of its operands have changed. \post \a 324 /// getMappedOp() returns the mapped node for every node in \c G. 325 void mapNodesInPOT(UniquedGraph &G); 326 327 /// Remap a node's operands using the given functor. 328 /// 329 /// Iterate through the operands of \c N and update them in place using \c 330 /// mapOperand. 331 /// 332 /// \pre N.isDistinct() or N.isTemporary(). 333 template <class OperandMapper> 334 void remapOperands(MDNode &N, OperandMapper mapOperand); 335 }; 336 337 } // end anonymous namespace 338 339 Value *Mapper::mapValue(const Value *V) { 340 ValueToValueMapTy::iterator I = getVM().find(V); 341 342 // If the value already exists in the map, use it. 343 if (I != getVM().end()) { 344 assert(I->second && "Unexpected null mapping"); 345 return I->second; 346 } 347 348 // If we have a materializer and it can materialize a value, use that. 349 if (auto *Materializer = getMaterializer()) { 350 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 351 getVM()[V] = NewV; 352 return NewV; 353 } 354 } 355 356 // Global values do not need to be seeded into the VM if they 357 // are using the identity mapping. 358 if (isa<GlobalValue>(V)) { 359 if (Flags & RF_NullMapMissingGlobalValues) 360 return nullptr; 361 return getVM()[V] = const_cast<Value *>(V); 362 } 363 364 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 365 // Inline asm may need *type* remapping. 366 FunctionType *NewTy = IA->getFunctionType(); 367 if (TypeMapper) { 368 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 369 370 if (NewTy != IA->getFunctionType()) 371 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 372 IA->hasSideEffects(), IA->isAlignStack(), 373 IA->getDialect(), IA->canThrow()); 374 } 375 376 return getVM()[V] = const_cast<Value *>(V); 377 } 378 379 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 380 const Metadata *MD = MDV->getMetadata(); 381 382 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 383 // Look through to grab the local value. 384 if (Value *LV = mapValue(LAM->getValue())) { 385 if (V == LAM->getValue()) 386 return const_cast<Value *>(V); 387 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 388 } 389 390 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 391 // ensures metadata operands only reference defined SSA values. 392 return (Flags & RF_IgnoreMissingLocals) 393 ? nullptr 394 : MetadataAsValue::get( 395 V->getContext(), 396 MDTuple::get(V->getContext(), std::nullopt)); 397 } 398 if (auto *AL = dyn_cast<DIArgList>(MD)) { 399 SmallVector<ValueAsMetadata *, 4> MappedArgs; 400 for (auto *VAM : AL->getArgs()) { 401 // Map both Local and Constant VAMs here; they will both ultimately 402 // be mapped via mapValue. The exceptions are constants when we have no 403 // module level changes and locals when they have no existing mapped 404 // value and RF_IgnoreMissingLocals is set; these have identity 405 // mappings. 406 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) { 407 MappedArgs.push_back(VAM); 408 } else if (Value *LV = mapValue(VAM->getValue())) { 409 MappedArgs.push_back( 410 LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV)); 411 } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(VAM)) { 412 MappedArgs.push_back(VAM); 413 } else { 414 // If we cannot map the value, set the argument as undef. 415 MappedArgs.push_back(ValueAsMetadata::get( 416 UndefValue::get(VAM->getValue()->getType()))); 417 } 418 } 419 return MetadataAsValue::get(V->getContext(), 420 DIArgList::get(V->getContext(), MappedArgs)); 421 } 422 423 // If this is a module-level metadata and we know that nothing at the module 424 // level is changing, then use an identity mapping. 425 if (Flags & RF_NoModuleLevelChanges) 426 return getVM()[V] = const_cast<Value *>(V); 427 428 // Map the metadata and turn it into a value. 429 auto *MappedMD = mapMetadata(MD); 430 if (MD == MappedMD) 431 return getVM()[V] = const_cast<Value *>(V); 432 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 433 } 434 435 // Okay, this either must be a constant (which may or may not be mappable) or 436 // is something that is not in the mapping table. 437 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 438 if (!C) 439 return nullptr; 440 441 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 442 return mapBlockAddress(*BA); 443 444 if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) { 445 auto *Val = mapValue(E->getGlobalValue()); 446 GlobalValue *GV = dyn_cast<GlobalValue>(Val); 447 if (GV) 448 return getVM()[E] = DSOLocalEquivalent::get(GV); 449 450 auto *Func = cast<Function>(Val->stripPointerCastsAndAliases()); 451 Type *NewTy = E->getType(); 452 if (TypeMapper) 453 NewTy = TypeMapper->remapType(NewTy); 454 return getVM()[E] = llvm::ConstantExpr::getBitCast( 455 DSOLocalEquivalent::get(Func), NewTy); 456 } 457 458 if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 459 auto *Val = mapValue(NC->getGlobalValue()); 460 GlobalValue *GV = cast<GlobalValue>(Val); 461 return getVM()[NC] = NoCFIValue::get(GV); 462 } 463 464 auto mapValueOrNull = [this](Value *V) { 465 auto Mapped = mapValue(V); 466 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 467 "Unexpected null mapping for constant operand without " 468 "NullMapMissingGlobalValues flag"); 469 return Mapped; 470 }; 471 472 // Otherwise, we have some other constant to remap. Start by checking to see 473 // if all operands have an identity remapping. 474 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 475 Value *Mapped = nullptr; 476 for (; OpNo != NumOperands; ++OpNo) { 477 Value *Op = C->getOperand(OpNo); 478 Mapped = mapValueOrNull(Op); 479 if (!Mapped) 480 return nullptr; 481 if (Mapped != Op) 482 break; 483 } 484 485 // See if the type mapper wants to remap the type as well. 486 Type *NewTy = C->getType(); 487 if (TypeMapper) 488 NewTy = TypeMapper->remapType(NewTy); 489 490 // If the result type and all operands match up, then just insert an identity 491 // mapping. 492 if (OpNo == NumOperands && NewTy == C->getType()) 493 return getVM()[V] = C; 494 495 // Okay, we need to create a new constant. We've already processed some or 496 // all of the operands, set them all up now. 497 SmallVector<Constant*, 8> Ops; 498 Ops.reserve(NumOperands); 499 for (unsigned j = 0; j != OpNo; ++j) 500 Ops.push_back(cast<Constant>(C->getOperand(j))); 501 502 // If one of the operands mismatch, push it and the other mapped operands. 503 if (OpNo != NumOperands) { 504 Ops.push_back(cast<Constant>(Mapped)); 505 506 // Map the rest of the operands that aren't processed yet. 507 for (++OpNo; OpNo != NumOperands; ++OpNo) { 508 Mapped = mapValueOrNull(C->getOperand(OpNo)); 509 if (!Mapped) 510 return nullptr; 511 Ops.push_back(cast<Constant>(Mapped)); 512 } 513 } 514 Type *NewSrcTy = nullptr; 515 if (TypeMapper) 516 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 517 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 518 519 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 520 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 521 if (isa<ConstantArray>(C)) 522 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 523 if (isa<ConstantStruct>(C)) 524 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 525 if (isa<ConstantVector>(C)) 526 return getVM()[V] = ConstantVector::get(Ops); 527 // If this is a no-operand constant, it must be because the type was remapped. 528 if (isa<PoisonValue>(C)) 529 return getVM()[V] = PoisonValue::get(NewTy); 530 if (isa<UndefValue>(C)) 531 return getVM()[V] = UndefValue::get(NewTy); 532 if (isa<ConstantAggregateZero>(C)) 533 return getVM()[V] = ConstantAggregateZero::get(NewTy); 534 if (isa<ConstantTargetNone>(C)) 535 return getVM()[V] = Constant::getNullValue(NewTy); 536 assert(isa<ConstantPointerNull>(C)); 537 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 538 } 539 540 void Mapper::remapDPValue(DPValue &V) { 541 // Remap variables and DILocations. 542 auto *MappedVar = mapMetadata(V.getVariable()); 543 auto *MappedDILoc = mapMetadata(V.getDebugLoc()); 544 V.setVariable(cast<DILocalVariable>(MappedVar)); 545 V.setDebugLoc(DebugLoc(cast<DILocation>(MappedDILoc))); 546 547 bool IgnoreMissingLocals = Flags & RF_IgnoreMissingLocals; 548 549 if (V.isDbgAssign()) { 550 auto *NewAddr = mapValue(V.getAddress()); 551 if (!IgnoreMissingLocals && !NewAddr) 552 V.setKillAddress(); 553 else if (NewAddr) 554 V.setAddress(NewAddr); 555 } 556 557 // Find Value operands and remap those. 558 SmallVector<Value *, 4> Vals, NewVals; 559 for (Value *Val : V.location_ops()) 560 Vals.push_back(Val); 561 for (Value *Val : Vals) 562 NewVals.push_back(mapValue(Val)); 563 564 // If there are no changes to the Value operands, finished. 565 if (Vals == NewVals) 566 return; 567 568 // Otherwise, do some replacement. 569 if (!IgnoreMissingLocals && 570 llvm::any_of(NewVals, [&](Value *V) { return V == nullptr; })) { 571 V.setKillLocation(); 572 } else { 573 // Either we have all non-empty NewVals, or we're permitted to ignore 574 // missing locals. 575 for (unsigned int I = 0; I < Vals.size(); ++I) 576 if (NewVals[I]) 577 V.replaceVariableLocationOp(I, NewVals[I]); 578 } 579 } 580 581 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 582 Function *F = cast<Function>(mapValue(BA.getFunction())); 583 584 // F may not have materialized its initializer. In that case, create a 585 // dummy basic block for now, and replace it once we've materialized all 586 // the initializers. 587 BasicBlock *BB; 588 if (F->empty()) { 589 DelayedBBs.push_back(DelayedBasicBlock(BA)); 590 BB = DelayedBBs.back().TempBB.get(); 591 } else { 592 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 593 } 594 595 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 596 } 597 598 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 599 getVM().MD()[Key].reset(Val); 600 return Val; 601 } 602 603 Metadata *Mapper::mapToSelf(const Metadata *MD) { 604 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 605 } 606 607 std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 608 if (!Op) 609 return nullptr; 610 611 if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 612 #ifndef NDEBUG 613 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 614 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 615 M.getVM().getMappedMD(Op)) && 616 "Expected Value to be memoized"); 617 else 618 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 619 "Expected result to be memoized"); 620 #endif 621 return *MappedOp; 622 } 623 624 const MDNode &N = *cast<MDNode>(Op); 625 if (N.isDistinct()) 626 return mapDistinctNode(N); 627 return std::nullopt; 628 } 629 630 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 631 assert(N.isDistinct() && "Expected a distinct node"); 632 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 633 Metadata *NewM = nullptr; 634 635 if (M.Flags & RF_ReuseAndMutateDistinctMDs) { 636 NewM = M.mapToSelf(&N); 637 } else { 638 NewM = MDNode::replaceWithDistinct(N.clone()); 639 LLVM_DEBUG(dbgs() << "\nMap " << N << "\n" 640 << "To " << *NewM << "\n\n"); 641 M.mapToMetadata(&N, NewM); 642 } 643 DistinctWorklist.push_back(cast<MDNode>(NewM)); 644 645 return DistinctWorklist.back(); 646 } 647 648 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 649 Value *MappedV) { 650 if (CMD.getValue() == MappedV) 651 return const_cast<ConstantAsMetadata *>(&CMD); 652 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 653 } 654 655 std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 656 if (!Op) 657 return nullptr; 658 659 if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 660 return *MappedOp; 661 662 if (isa<MDString>(Op)) 663 return const_cast<Metadata *>(Op); 664 665 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 666 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 667 668 return std::nullopt; 669 } 670 671 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 672 auto Where = Info.find(&Op); 673 assert(Where != Info.end() && "Expected a valid reference"); 674 675 auto &OpD = Where->second; 676 if (!OpD.HasChanged) 677 return Op; 678 679 // Lazily construct a temporary node. 680 if (!OpD.Placeholder) 681 OpD.Placeholder = Op.clone(); 682 683 return *OpD.Placeholder; 684 } 685 686 template <class OperandMapper> 687 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 688 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 689 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 690 Metadata *Old = N.getOperand(I); 691 Metadata *New = mapOperand(Old); 692 if (Old != New) 693 LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in " 694 << N << "\n"); 695 696 if (Old != New) 697 N.replaceOperandWith(I, New); 698 } 699 } 700 701 namespace { 702 703 /// An entry in the worklist for the post-order traversal. 704 struct POTWorklistEntry { 705 MDNode *N; ///< Current node. 706 MDNode::op_iterator Op; ///< Current operand of \c N. 707 708 /// Keep a flag of whether operands have changed in the worklist to avoid 709 /// hitting the map in \a UniquedGraph. 710 bool HasChanged = false; 711 712 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 713 }; 714 715 } // end anonymous namespace 716 717 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 718 assert(G.Info.empty() && "Expected a fresh traversal"); 719 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 720 721 // Construct a post-order traversal of the uniqued subgraph under FirstN. 722 bool AnyChanges = false; 723 SmallVector<POTWorklistEntry, 16> Worklist; 724 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 725 (void)G.Info[&FirstN]; 726 while (!Worklist.empty()) { 727 // Start or continue the traversal through the this node's operands. 728 auto &WE = Worklist.back(); 729 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 730 // Push a new node to traverse first. 731 Worklist.push_back(POTWorklistEntry(*N)); 732 continue; 733 } 734 735 // Push the node onto the POT. 736 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 737 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 738 auto &D = G.Info[WE.N]; 739 AnyChanges |= D.HasChanged = WE.HasChanged; 740 D.ID = G.POT.size(); 741 G.POT.push_back(WE.N); 742 743 // Pop the node off the worklist. 744 Worklist.pop_back(); 745 } 746 return AnyChanges; 747 } 748 749 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 750 MDNode::op_iterator E, bool &HasChanged) { 751 while (I != E) { 752 Metadata *Op = *I++; // Increment even on early return. 753 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 754 // Check if the operand changes. 755 HasChanged |= Op != *MappedOp; 756 continue; 757 } 758 759 // A uniqued metadata node. 760 MDNode &OpN = *cast<MDNode>(Op); 761 assert(OpN.isUniqued() && 762 "Only uniqued operands cannot be mapped immediately"); 763 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 764 return &OpN; // This is a new one. Return it. 765 } 766 return nullptr; 767 } 768 769 void MDNodeMapper::UniquedGraph::propagateChanges() { 770 bool AnyChanges; 771 do { 772 AnyChanges = false; 773 for (MDNode *N : POT) { 774 auto &D = Info[N]; 775 if (D.HasChanged) 776 continue; 777 778 if (llvm::none_of(N->operands(), [&](const Metadata *Op) { 779 auto Where = Info.find(Op); 780 return Where != Info.end() && Where->second.HasChanged; 781 })) 782 continue; 783 784 AnyChanges = D.HasChanged = true; 785 } 786 } while (AnyChanges); 787 } 788 789 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 790 // Construct uniqued nodes, building forward references as necessary. 791 SmallVector<MDNode *, 16> CyclicNodes; 792 for (auto *N : G.POT) { 793 auto &D = G.Info[N]; 794 if (!D.HasChanged) { 795 // The node hasn't changed. 796 M.mapToSelf(N); 797 continue; 798 } 799 800 // Remember whether this node had a placeholder. 801 bool HadPlaceholder(D.Placeholder); 802 803 // Clone the uniqued node and remap the operands. 804 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 805 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 806 if (std::optional<Metadata *> MappedOp = getMappedOp(Old)) 807 return *MappedOp; 808 (void)D; 809 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 810 return &G.getFwdReference(*cast<MDNode>(Old)); 811 }); 812 813 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 814 if (N && NewN && N != NewN) { 815 LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n" 816 << "To " << *NewN << "\n\n"); 817 } 818 819 M.mapToMetadata(N, NewN); 820 821 // Nodes that were referenced out of order in the POT are involved in a 822 // uniquing cycle. 823 if (HadPlaceholder) 824 CyclicNodes.push_back(NewN); 825 } 826 827 // Resolve cycles. 828 for (auto *N : CyclicNodes) 829 if (!N->isResolved()) 830 N->resolveCycles(); 831 } 832 833 Metadata *MDNodeMapper::map(const MDNode &N) { 834 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 835 assert(!(M.Flags & RF_NoModuleLevelChanges) && 836 "MDNodeMapper::map assumes module-level changes"); 837 838 // Require resolved nodes whenever metadata might be remapped. 839 assert(N.isResolved() && "Unexpected unresolved node"); 840 841 Metadata *MappedN = 842 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 843 while (!DistinctWorklist.empty()) 844 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 845 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Old)) 846 return *MappedOp; 847 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 848 }); 849 return MappedN; 850 } 851 852 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 853 assert(FirstN.isUniqued() && "Expected uniqued node"); 854 855 // Create a post-order traversal of uniqued nodes under FirstN. 856 UniquedGraph G; 857 if (!createPOT(G, FirstN)) { 858 // Return early if no nodes have changed. 859 for (const MDNode *N : G.POT) 860 M.mapToSelf(N); 861 return &const_cast<MDNode &>(FirstN); 862 } 863 864 // Update graph with all nodes that have changed. 865 G.propagateChanges(); 866 867 // Map all the nodes in the graph. 868 mapNodesInPOT(G); 869 870 // Return the original node, remapped. 871 return *getMappedOp(&FirstN); 872 } 873 874 std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 875 // If the value already exists in the map, use it. 876 if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 877 return *NewMD; 878 879 if (isa<MDString>(MD)) 880 return const_cast<Metadata *>(MD); 881 882 // This is a module-level metadata. If nothing at the module level is 883 // changing, use an identity mapping. 884 if ((Flags & RF_NoModuleLevelChanges)) 885 return const_cast<Metadata *>(MD); 886 887 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 888 // Don't memoize ConstantAsMetadata. Instead of lasting until the 889 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 890 // reference is destructed. These aren't super common, so the extra 891 // indirection isn't that expensive. 892 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 893 } 894 895 assert(isa<MDNode>(MD) && "Expected a metadata node"); 896 897 return std::nullopt; 898 } 899 900 Metadata *Mapper::mapMetadata(const Metadata *MD) { 901 assert(MD && "Expected valid metadata"); 902 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 903 904 if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 905 return *NewMD; 906 907 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 908 } 909 910 void Mapper::flush() { 911 // Flush out the worklist of global values. 912 while (!Worklist.empty()) { 913 WorklistEntry E = Worklist.pop_back_val(); 914 CurrentMCID = E.MCID; 915 switch (E.Kind) { 916 case WorklistEntry::MapGlobalInit: 917 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 918 remapGlobalObjectMetadata(*E.Data.GVInit.GV); 919 break; 920 case WorklistEntry::MapAppendingVar: { 921 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 922 // mapAppendingVariable call can change AppendingInits if initalizer for 923 // the variable depends on another appending global, because of that inits 924 // need to be extracted and updated before the call. 925 SmallVector<Constant *, 8> NewInits( 926 drop_begin(AppendingInits, PrefixSize)); 927 AppendingInits.resize(PrefixSize); 928 mapAppendingVariable(*E.Data.AppendingGV.GV, 929 E.Data.AppendingGV.InitPrefix, 930 E.AppendingGVIsOldCtorDtor, ArrayRef(NewInits)); 931 break; 932 } 933 case WorklistEntry::MapAliasOrIFunc: { 934 GlobalValue *GV = E.Data.AliasOrIFunc.GV; 935 Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target); 936 if (auto *GA = dyn_cast<GlobalAlias>(GV)) 937 GA->setAliasee(Target); 938 else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) 939 GI->setResolver(Target); 940 else 941 llvm_unreachable("Not alias or ifunc"); 942 break; 943 } 944 case WorklistEntry::RemapFunction: 945 remapFunction(*E.Data.RemapF); 946 break; 947 } 948 } 949 CurrentMCID = 0; 950 951 // Finish logic for block addresses now that all global values have been 952 // handled. 953 while (!DelayedBBs.empty()) { 954 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 955 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 956 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 957 } 958 } 959 960 void Mapper::remapInstruction(Instruction *I) { 961 // Remap operands. 962 for (Use &Op : I->operands()) { 963 Value *V = mapValue(Op); 964 // If we aren't ignoring missing entries, assert that something happened. 965 if (V) 966 Op = V; 967 else 968 assert((Flags & RF_IgnoreMissingLocals) && 969 "Referenced value not in value map!"); 970 } 971 972 // Remap phi nodes' incoming blocks. 973 if (PHINode *PN = dyn_cast<PHINode>(I)) { 974 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 975 Value *V = mapValue(PN->getIncomingBlock(i)); 976 // If we aren't ignoring missing entries, assert that something happened. 977 if (V) 978 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 979 else 980 assert((Flags & RF_IgnoreMissingLocals) && 981 "Referenced block not in value map!"); 982 } 983 } 984 985 // Remap attached metadata. 986 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 987 I->getAllMetadata(MDs); 988 for (const auto &MI : MDs) { 989 MDNode *Old = MI.second; 990 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 991 if (New != Old) 992 I->setMetadata(MI.first, New); 993 } 994 995 if (!TypeMapper) 996 return; 997 998 // If the instruction's type is being remapped, do so now. 999 if (auto *CB = dyn_cast<CallBase>(I)) { 1000 SmallVector<Type *, 3> Tys; 1001 FunctionType *FTy = CB->getFunctionType(); 1002 Tys.reserve(FTy->getNumParams()); 1003 for (Type *Ty : FTy->params()) 1004 Tys.push_back(TypeMapper->remapType(Ty)); 1005 CB->mutateFunctionType(FunctionType::get( 1006 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 1007 1008 LLVMContext &C = CB->getContext(); 1009 AttributeList Attrs = CB->getAttributes(); 1010 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 1011 for (int AttrIdx = Attribute::FirstTypeAttr; 1012 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 1013 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 1014 if (Type *Ty = 1015 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 1016 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 1017 TypeMapper->remapType(Ty)); 1018 break; 1019 } 1020 } 1021 } 1022 CB->setAttributes(Attrs); 1023 return; 1024 } 1025 if (auto *AI = dyn_cast<AllocaInst>(I)) 1026 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 1027 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 1028 GEP->setSourceElementType( 1029 TypeMapper->remapType(GEP->getSourceElementType())); 1030 GEP->setResultElementType( 1031 TypeMapper->remapType(GEP->getResultElementType())); 1032 } 1033 I->mutateType(TypeMapper->remapType(I->getType())); 1034 } 1035 1036 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { 1037 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1038 GO.getAllMetadata(MDs); 1039 GO.clearMetadata(); 1040 for (const auto &I : MDs) 1041 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 1042 } 1043 1044 void Mapper::remapFunction(Function &F) { 1045 // Remap the operands. 1046 for (Use &Op : F.operands()) 1047 if (Op) 1048 Op = mapValue(Op); 1049 1050 // Remap the metadata attachments. 1051 remapGlobalObjectMetadata(F); 1052 1053 // Remap the argument types. 1054 if (TypeMapper) 1055 for (Argument &A : F.args()) 1056 A.mutateType(TypeMapper->remapType(A.getType())); 1057 1058 // Remap the instructions. 1059 for (BasicBlock &BB : F) 1060 for (Instruction &I : BB) 1061 remapInstruction(&I); 1062 } 1063 1064 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 1065 bool IsOldCtorDtor, 1066 ArrayRef<Constant *> NewMembers) { 1067 SmallVector<Constant *, 16> Elements; 1068 if (InitPrefix) { 1069 unsigned NumElements = 1070 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 1071 for (unsigned I = 0; I != NumElements; ++I) 1072 Elements.push_back(InitPrefix->getAggregateElement(I)); 1073 } 1074 1075 PointerType *VoidPtrTy; 1076 Type *EltTy; 1077 if (IsOldCtorDtor) { 1078 // FIXME: This upgrade is done during linking to support the C API. See 1079 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 1080 VoidPtrTy = PointerType::getUnqual(GV.getContext()); 1081 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 1082 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 1083 EltTy = StructType::get(GV.getContext(), Tys, false); 1084 } 1085 1086 for (auto *V : NewMembers) { 1087 Constant *NewV; 1088 if (IsOldCtorDtor) { 1089 auto *S = cast<ConstantStruct>(V); 1090 auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); 1091 auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); 1092 Constant *Null = Constant::getNullValue(VoidPtrTy); 1093 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); 1094 } else { 1095 NewV = cast_or_null<Constant>(mapValue(V)); 1096 } 1097 Elements.push_back(NewV); 1098 } 1099 1100 GV.setInitializer( 1101 ConstantArray::get(cast<ArrayType>(GV.getValueType()), Elements)); 1102 } 1103 1104 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 1105 unsigned MCID) { 1106 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1107 assert(MCID < MCs.size() && "Invalid mapping context"); 1108 1109 WorklistEntry WE; 1110 WE.Kind = WorklistEntry::MapGlobalInit; 1111 WE.MCID = MCID; 1112 WE.Data.GVInit.GV = &GV; 1113 WE.Data.GVInit.Init = &Init; 1114 Worklist.push_back(WE); 1115 } 1116 1117 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1118 Constant *InitPrefix, 1119 bool IsOldCtorDtor, 1120 ArrayRef<Constant *> NewMembers, 1121 unsigned MCID) { 1122 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1123 assert(MCID < MCs.size() && "Invalid mapping context"); 1124 1125 WorklistEntry WE; 1126 WE.Kind = WorklistEntry::MapAppendingVar; 1127 WE.MCID = MCID; 1128 WE.Data.AppendingGV.GV = &GV; 1129 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1130 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1131 WE.AppendingGVNumNewMembers = NewMembers.size(); 1132 Worklist.push_back(WE); 1133 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1134 } 1135 1136 void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 1137 unsigned MCID) { 1138 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1139 assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) && 1140 "Should be alias or ifunc"); 1141 assert(MCID < MCs.size() && "Invalid mapping context"); 1142 1143 WorklistEntry WE; 1144 WE.Kind = WorklistEntry::MapAliasOrIFunc; 1145 WE.MCID = MCID; 1146 WE.Data.AliasOrIFunc.GV = &GV; 1147 WE.Data.AliasOrIFunc.Target = &Target; 1148 Worklist.push_back(WE); 1149 } 1150 1151 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1152 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1153 assert(MCID < MCs.size() && "Invalid mapping context"); 1154 1155 WorklistEntry WE; 1156 WE.Kind = WorklistEntry::RemapFunction; 1157 WE.MCID = MCID; 1158 WE.Data.RemapF = &F; 1159 Worklist.push_back(WE); 1160 } 1161 1162 void Mapper::addFlags(RemapFlags Flags) { 1163 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1164 this->Flags = this->Flags | Flags; 1165 } 1166 1167 static Mapper *getAsMapper(void *pImpl) { 1168 return reinterpret_cast<Mapper *>(pImpl); 1169 } 1170 1171 namespace { 1172 1173 class FlushingMapper { 1174 Mapper &M; 1175 1176 public: 1177 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1178 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1179 } 1180 1181 ~FlushingMapper() { M.flush(); } 1182 1183 Mapper *operator->() const { return &M; } 1184 }; 1185 1186 } // end anonymous namespace 1187 1188 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1189 ValueMapTypeRemapper *TypeMapper, 1190 ValueMaterializer *Materializer) 1191 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1192 1193 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1194 1195 unsigned 1196 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1197 ValueMaterializer *Materializer) { 1198 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1199 } 1200 1201 void ValueMapper::addFlags(RemapFlags Flags) { 1202 FlushingMapper(pImpl)->addFlags(Flags); 1203 } 1204 1205 Value *ValueMapper::mapValue(const Value &V) { 1206 return FlushingMapper(pImpl)->mapValue(&V); 1207 } 1208 1209 Constant *ValueMapper::mapConstant(const Constant &C) { 1210 return cast_or_null<Constant>(mapValue(C)); 1211 } 1212 1213 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1214 return FlushingMapper(pImpl)->mapMetadata(&MD); 1215 } 1216 1217 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1218 return cast_or_null<MDNode>(mapMetadata(N)); 1219 } 1220 1221 void ValueMapper::remapInstruction(Instruction &I) { 1222 FlushingMapper(pImpl)->remapInstruction(&I); 1223 } 1224 1225 void ValueMapper::remapDPValue(Module *M, DPValue &V) { 1226 FlushingMapper(pImpl)->remapDPValue(V); 1227 } 1228 1229 void ValueMapper::remapDPValueRange( 1230 Module *M, iterator_range<DPValue::self_iterator> Range) { 1231 for (DPValue &DPV : Range) { 1232 remapDPValue(M, DPV); 1233 } 1234 } 1235 1236 void ValueMapper::remapFunction(Function &F) { 1237 FlushingMapper(pImpl)->remapFunction(F); 1238 } 1239 1240 void ValueMapper::remapGlobalObjectMetadata(GlobalObject &GO) { 1241 FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO); 1242 } 1243 1244 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1245 Constant &Init, 1246 unsigned MCID) { 1247 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1248 } 1249 1250 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1251 Constant *InitPrefix, 1252 bool IsOldCtorDtor, 1253 ArrayRef<Constant *> NewMembers, 1254 unsigned MCID) { 1255 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1256 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1257 } 1258 1259 void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, 1260 unsigned MCID) { 1261 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID); 1262 } 1263 1264 void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, 1265 unsigned MCID) { 1266 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID); 1267 } 1268 1269 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1270 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1271 } 1272