//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the MapValue function, which is shared by various parts of // the lib/Transforms/Utils library. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/ValueMapper.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/Argument.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalIFunc.h" #include "llvm/IR/GlobalObject.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "value-mapper" // Out of line method to get vtable etc for class. void ValueMapTypeRemapper::anchor() {} void ValueMaterializer::anchor() {} namespace { /// A basic block used in a BlockAddress whose function body is not yet /// materialized. struct DelayedBasicBlock { BasicBlock *OldBB; std::unique_ptr TempBB; DelayedBasicBlock(const BlockAddress &Old) : OldBB(Old.getBasicBlock()), TempBB(BasicBlock::Create(Old.getContext())) {} }; struct WorklistEntry { enum EntryKind { MapGlobalInit, MapAppendingVar, MapAliasOrIFunc, RemapFunction }; struct GVInitTy { GlobalVariable *GV; Constant *Init; }; struct AppendingGVTy { GlobalVariable *GV; Constant *InitPrefix; }; struct AliasOrIFuncTy { GlobalValue *GV; Constant *Target; }; unsigned Kind : 2; unsigned MCID : 29; unsigned AppendingGVIsOldCtorDtor : 1; unsigned AppendingGVNumNewMembers; union { GVInitTy GVInit; AppendingGVTy AppendingGV; AliasOrIFuncTy AliasOrIFunc; Function *RemapF; } Data; }; struct MappingContext { ValueToValueMapTy *VM; ValueMaterializer *Materializer = nullptr; /// Construct a MappingContext with a value map and materializer. explicit MappingContext(ValueToValueMapTy &VM, ValueMaterializer *Materializer = nullptr) : VM(&VM), Materializer(Materializer) {} }; class Mapper { friend class MDNodeMapper; #ifndef NDEBUG DenseSet AlreadyScheduled; #endif RemapFlags Flags; ValueMapTypeRemapper *TypeMapper; unsigned CurrentMCID = 0; SmallVector MCs; SmallVector Worklist; SmallVector DelayedBBs; SmallVector AppendingInits; public: Mapper(ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) : Flags(Flags), TypeMapper(TypeMapper), MCs(1, MappingContext(VM, Materializer)) {} /// ValueMapper should explicitly call \a flush() before destruction. ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } bool hasWorkToDo() const { return !Worklist.empty(); } unsigned registerAlternateMappingContext(ValueToValueMapTy &VM, ValueMaterializer *Materializer = nullptr) { MCs.push_back(MappingContext(VM, Materializer)); return MCs.size() - 1; } void addFlags(RemapFlags Flags); void remapGlobalObjectMetadata(GlobalObject &GO); Value *mapValue(const Value *V); void remapInstruction(Instruction *I); void remapFunction(Function &F); void remapDPValue(DPValue &DPV); Constant *mapConstant(const Constant *C) { return cast_or_null(mapValue(C)); } /// Map metadata. /// /// Find the mapping for MD. Guarantees that the return will be resolved /// (not an MDNode, or MDNode::isResolved() returns true). Metadata *mapMetadata(const Metadata *MD); void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, unsigned MCID); void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef NewMembers, unsigned MCID); void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, unsigned MCID); void scheduleRemapFunction(Function &F, unsigned MCID); void flush(); private: void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef NewMembers); ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } Value *mapBlockAddress(const BlockAddress &BA); /// Map metadata that doesn't require visiting operands. std::optional mapSimpleMetadata(const Metadata *MD); Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); Metadata *mapToSelf(const Metadata *MD); }; class MDNodeMapper { Mapper &M; /// Data about a node in \a UniquedGraph. struct Data { bool HasChanged = false; unsigned ID = std::numeric_limits::max(); TempMDNode Placeholder; }; /// A graph of uniqued nodes. struct UniquedGraph { SmallDenseMap Info; // Node properties. SmallVector POT; // Post-order traversal. /// Propagate changed operands through the post-order traversal. /// /// Iteratively update \a Data::HasChanged for each node based on \a /// Data::HasChanged of its operands, until fixed point. void propagateChanges(); /// Get a forward reference to a node to use as an operand. Metadata &getFwdReference(MDNode &Op); }; /// Worklist of distinct nodes whose operands need to be remapped. SmallVector DistinctWorklist; // Storage for a UniquedGraph. SmallDenseMap InfoStorage; SmallVector POTStorage; public: MDNodeMapper(Mapper &M) : M(M) {} /// Map a metadata node (and its transitive operands). /// /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative /// algorithm handles distinct nodes and uniqued node subgraphs using /// different strategies. /// /// Distinct nodes are immediately mapped and added to \a DistinctWorklist /// using \a mapDistinctNode(). Their mapping can always be computed /// immediately without visiting operands, even if their operands change. /// /// The mapping for uniqued nodes depends on whether their operands change. /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of /// a node to calculate uniqued node mappings in bulk. Distinct leafs are /// added to \a DistinctWorklist with \a mapDistinctNode(). /// /// After mapping \c N itself, this function remaps the operands of the /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c /// N has been mapped. Metadata *map(const MDNode &N); private: /// Map a top-level uniqued node and the uniqued subgraph underneath it. /// /// This builds up a post-order traversal of the (unmapped) uniqued subgraph /// underneath \c FirstN and calculates the nodes' mapping. Each node uses /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its /// operands uses the identity mapping. /// /// The algorithm works as follows: /// /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and /// save the post-order traversal in the given \a UniquedGraph, tracking /// nodes' operands change. /// /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands /// through the \a UniquedGraph until fixed point, following the rule /// that if a node changes, any node that references must also change. /// /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes /// (referencing new operands) where necessary. Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); /// Try to map the operand of an \a MDNode. /// /// If \c Op is already mapped, return the mapping. If it's not an \a /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, /// return the result of \a mapDistinctNode(). /// /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode. /// \post getMappedOp(Op) only returns std::nullopt if this returns /// std::nullopt. std::optional tryToMapOperand(const Metadata *Op); /// Map a distinct node. /// /// Return the mapping for the distinct node \c N, saving the result in \a /// DistinctWorklist for later remapping. /// /// \pre \c N is not yet mapped. /// \pre \c N.isDistinct(). MDNode *mapDistinctNode(const MDNode &N); /// Get a previously mapped node. std::optional getMappedOp(const Metadata *Op) const; /// Create a post-order traversal of an unmapped uniqued node subgraph. /// /// This traverses the metadata graph deeply enough to map \c FirstN. It /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any /// metadata that has already been mapped will not be part of the POT. /// /// Each node that has a changed operand from outside the graph (e.g., a /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) /// is marked with \a Data::HasChanged. /// /// \return \c true if any nodes in \c G have \a Data::HasChanged. /// \post \c G.POT is a post-order traversal ending with \c FirstN. /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs /// to change because of operands outside the graph. bool createPOT(UniquedGraph &G, const MDNode &FirstN); /// Visit the operands of a uniqued node in the POT. /// /// Visit the operands in the range from \c I to \c E, returning the first /// uniqued node we find that isn't yet in \c G. \c I is always advanced to /// where to continue the loop through the operands. /// /// This sets \c HasChanged if any of the visited operands change. MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, MDNode::op_iterator E, bool &HasChanged); /// Map all the nodes in the given uniqued graph. /// /// This visits all the nodes in \c G in post-order, using the identity /// mapping or creating a new node depending on \a Data::HasChanged. /// /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for /// any of their operands outside of \c G. \pre \a Data::HasChanged is true /// for a node in \c G iff any of its operands have changed. \post \a /// getMappedOp() returns the mapped node for every node in \c G. void mapNodesInPOT(UniquedGraph &G); /// Remap a node's operands using the given functor. /// /// Iterate through the operands of \c N and update them in place using \c /// mapOperand. /// /// \pre N.isDistinct() or N.isTemporary(). template void remapOperands(MDNode &N, OperandMapper mapOperand); }; } // end anonymous namespace Value *Mapper::mapValue(const Value *V) { ValueToValueMapTy::iterator I = getVM().find(V); // If the value already exists in the map, use it. if (I != getVM().end()) { assert(I->second && "Unexpected null mapping"); return I->second; } // If we have a materializer and it can materialize a value, use that. if (auto *Materializer = getMaterializer()) { if (Value *NewV = Materializer->materialize(const_cast(V))) { getVM()[V] = NewV; return NewV; } } // Global values do not need to be seeded into the VM if they // are using the identity mapping. if (isa(V)) { if (Flags & RF_NullMapMissingGlobalValues) return nullptr; return getVM()[V] = const_cast(V); } if (const InlineAsm *IA = dyn_cast(V)) { // Inline asm may need *type* remapping. FunctionType *NewTy = IA->getFunctionType(); if (TypeMapper) { NewTy = cast(TypeMapper->remapType(NewTy)); if (NewTy != IA->getFunctionType()) V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), IA->hasSideEffects(), IA->isAlignStack(), IA->getDialect(), IA->canThrow()); } return getVM()[V] = const_cast(V); } if (const auto *MDV = dyn_cast(V)) { const Metadata *MD = MDV->getMetadata(); if (auto *LAM = dyn_cast(MD)) { // Look through to grab the local value. if (Value *LV = mapValue(LAM->getValue())) { if (V == LAM->getValue()) return const_cast(V); return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); } // FIXME: always return nullptr once Verifier::verifyDominatesUse() // ensures metadata operands only reference defined SSA values. return (Flags & RF_IgnoreMissingLocals) ? nullptr : MetadataAsValue::get( V->getContext(), MDTuple::get(V->getContext(), std::nullopt)); } if (auto *AL = dyn_cast(MD)) { SmallVector MappedArgs; for (auto *VAM : AL->getArgs()) { // Map both Local and Constant VAMs here; they will both ultimately // be mapped via mapValue. The exceptions are constants when we have no // module level changes and locals when they have no existing mapped // value and RF_IgnoreMissingLocals is set; these have identity // mappings. if ((Flags & RF_NoModuleLevelChanges) && isa(VAM)) { MappedArgs.push_back(VAM); } else if (Value *LV = mapValue(VAM->getValue())) { MappedArgs.push_back( LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV)); } else if ((Flags & RF_IgnoreMissingLocals) && isa(VAM)) { MappedArgs.push_back(VAM); } else { // If we cannot map the value, set the argument as undef. MappedArgs.push_back(ValueAsMetadata::get( UndefValue::get(VAM->getValue()->getType()))); } } return MetadataAsValue::get(V->getContext(), DIArgList::get(V->getContext(), MappedArgs)); } // If this is a module-level metadata and we know that nothing at the module // level is changing, then use an identity mapping. if (Flags & RF_NoModuleLevelChanges) return getVM()[V] = const_cast(V); // Map the metadata and turn it into a value. auto *MappedMD = mapMetadata(MD); if (MD == MappedMD) return getVM()[V] = const_cast(V); return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); } // Okay, this either must be a constant (which may or may not be mappable) or // is something that is not in the mapping table. Constant *C = const_cast(dyn_cast(V)); if (!C) return nullptr; if (BlockAddress *BA = dyn_cast(C)) return mapBlockAddress(*BA); if (const auto *E = dyn_cast(C)) { auto *Val = mapValue(E->getGlobalValue()); GlobalValue *GV = dyn_cast(Val); if (GV) return getVM()[E] = DSOLocalEquivalent::get(GV); auto *Func = cast(Val->stripPointerCastsAndAliases()); Type *NewTy = E->getType(); if (TypeMapper) NewTy = TypeMapper->remapType(NewTy); return getVM()[E] = llvm::ConstantExpr::getBitCast( DSOLocalEquivalent::get(Func), NewTy); } if (const auto *NC = dyn_cast(C)) { auto *Val = mapValue(NC->getGlobalValue()); GlobalValue *GV = cast(Val); return getVM()[NC] = NoCFIValue::get(GV); } auto mapValueOrNull = [this](Value *V) { auto Mapped = mapValue(V); assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && "Unexpected null mapping for constant operand without " "NullMapMissingGlobalValues flag"); return Mapped; }; // Otherwise, we have some other constant to remap. Start by checking to see // if all operands have an identity remapping. unsigned OpNo = 0, NumOperands = C->getNumOperands(); Value *Mapped = nullptr; for (; OpNo != NumOperands; ++OpNo) { Value *Op = C->getOperand(OpNo); Mapped = mapValueOrNull(Op); if (!Mapped) return nullptr; if (Mapped != Op) break; } // See if the type mapper wants to remap the type as well. Type *NewTy = C->getType(); if (TypeMapper) NewTy = TypeMapper->remapType(NewTy); // If the result type and all operands match up, then just insert an identity // mapping. if (OpNo == NumOperands && NewTy == C->getType()) return getVM()[V] = C; // Okay, we need to create a new constant. We've already processed some or // all of the operands, set them all up now. SmallVector Ops; Ops.reserve(NumOperands); for (unsigned j = 0; j != OpNo; ++j) Ops.push_back(cast(C->getOperand(j))); // If one of the operands mismatch, push it and the other mapped operands. if (OpNo != NumOperands) { Ops.push_back(cast(Mapped)); // Map the rest of the operands that aren't processed yet. for (++OpNo; OpNo != NumOperands; ++OpNo) { Mapped = mapValueOrNull(C->getOperand(OpNo)); if (!Mapped) return nullptr; Ops.push_back(cast(Mapped)); } } Type *NewSrcTy = nullptr; if (TypeMapper) if (auto *GEPO = dyn_cast(C)) NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); if (ConstantExpr *CE = dyn_cast(C)) return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); if (isa(C)) return getVM()[V] = ConstantArray::get(cast(NewTy), Ops); if (isa(C)) return getVM()[V] = ConstantStruct::get(cast(NewTy), Ops); if (isa(C)) return getVM()[V] = ConstantVector::get(Ops); // If this is a no-operand constant, it must be because the type was remapped. if (isa(C)) return getVM()[V] = PoisonValue::get(NewTy); if (isa(C)) return getVM()[V] = UndefValue::get(NewTy); if (isa(C)) return getVM()[V] = ConstantAggregateZero::get(NewTy); if (isa(C)) return getVM()[V] = Constant::getNullValue(NewTy); assert(isa(C)); return getVM()[V] = ConstantPointerNull::get(cast(NewTy)); } void Mapper::remapDPValue(DPValue &V) { // Remap variables and DILocations. auto *MappedVar = mapMetadata(V.getVariable()); auto *MappedDILoc = mapMetadata(V.getDebugLoc()); V.setVariable(cast(MappedVar)); V.setDebugLoc(DebugLoc(cast(MappedDILoc))); bool IgnoreMissingLocals = Flags & RF_IgnoreMissingLocals; if (V.isDbgAssign()) { auto *NewAddr = mapValue(V.getAddress()); if (!IgnoreMissingLocals && !NewAddr) V.setKillAddress(); else if (NewAddr) V.setAddress(NewAddr); } // Find Value operands and remap those. SmallVector Vals, NewVals; for (Value *Val : V.location_ops()) Vals.push_back(Val); for (Value *Val : Vals) NewVals.push_back(mapValue(Val)); // If there are no changes to the Value operands, finished. if (Vals == NewVals) return; // Otherwise, do some replacement. if (!IgnoreMissingLocals && llvm::any_of(NewVals, [&](Value *V) { return V == nullptr; })) { V.setKillLocation(); } else { // Either we have all non-empty NewVals, or we're permitted to ignore // missing locals. for (unsigned int I = 0; I < Vals.size(); ++I) if (NewVals[I]) V.replaceVariableLocationOp(I, NewVals[I]); } } Value *Mapper::mapBlockAddress(const BlockAddress &BA) { Function *F = cast(mapValue(BA.getFunction())); // F may not have materialized its initializer. In that case, create a // dummy basic block for now, and replace it once we've materialized all // the initializers. BasicBlock *BB; if (F->empty()) { DelayedBBs.push_back(DelayedBasicBlock(BA)); BB = DelayedBBs.back().TempBB.get(); } else { BB = cast_or_null(mapValue(BA.getBasicBlock())); } return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); } Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { getVM().MD()[Key].reset(Val); return Val; } Metadata *Mapper::mapToSelf(const Metadata *MD) { return mapToMetadata(MD, const_cast(MD)); } std::optional MDNodeMapper::tryToMapOperand(const Metadata *Op) { if (!Op) return nullptr; if (std::optional MappedOp = M.mapSimpleMetadata(Op)) { #ifndef NDEBUG if (auto *CMD = dyn_cast(Op)) assert((!*MappedOp || M.getVM().count(CMD->getValue()) || M.getVM().getMappedMD(Op)) && "Expected Value to be memoized"); else assert((isa(Op) || M.getVM().getMappedMD(Op)) && "Expected result to be memoized"); #endif return *MappedOp; } const MDNode &N = *cast(Op); if (N.isDistinct()) return mapDistinctNode(N); return std::nullopt; } MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { assert(N.isDistinct() && "Expected a distinct node"); assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); Metadata *NewM = nullptr; if (M.Flags & RF_ReuseAndMutateDistinctMDs) { NewM = M.mapToSelf(&N); } else { NewM = MDNode::replaceWithDistinct(N.clone()); LLVM_DEBUG(dbgs() << "\nMap " << N << "\n" << "To " << *NewM << "\n\n"); M.mapToMetadata(&N, NewM); } DistinctWorklist.push_back(cast(NewM)); return DistinctWorklist.back(); } static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, Value *MappedV) { if (CMD.getValue() == MappedV) return const_cast(&CMD); return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; } std::optional MDNodeMapper::getMappedOp(const Metadata *Op) const { if (!Op) return nullptr; if (std::optional MappedOp = M.getVM().getMappedMD(Op)) return *MappedOp; if (isa(Op)) return const_cast(Op); if (auto *CMD = dyn_cast(Op)) return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); return std::nullopt; } Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { auto Where = Info.find(&Op); assert(Where != Info.end() && "Expected a valid reference"); auto &OpD = Where->second; if (!OpD.HasChanged) return Op; // Lazily construct a temporary node. if (!OpD.Placeholder) OpD.Placeholder = Op.clone(); return *OpD.Placeholder; } template void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { assert(!N.isUniqued() && "Expected distinct or temporary nodes"); for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { Metadata *Old = N.getOperand(I); Metadata *New = mapOperand(Old); if (Old != New) LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in " << N << "\n"); if (Old != New) N.replaceOperandWith(I, New); } } namespace { /// An entry in the worklist for the post-order traversal. struct POTWorklistEntry { MDNode *N; ///< Current node. MDNode::op_iterator Op; ///< Current operand of \c N. /// Keep a flag of whether operands have changed in the worklist to avoid /// hitting the map in \a UniquedGraph. bool HasChanged = false; POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} }; } // end anonymous namespace bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { assert(G.Info.empty() && "Expected a fresh traversal"); assert(FirstN.isUniqued() && "Expected uniqued node in POT"); // Construct a post-order traversal of the uniqued subgraph under FirstN. bool AnyChanges = false; SmallVector Worklist; Worklist.push_back(POTWorklistEntry(const_cast(FirstN))); (void)G.Info[&FirstN]; while (!Worklist.empty()) { // Start or continue the traversal through the this node's operands. auto &WE = Worklist.back(); if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { // Push a new node to traverse first. Worklist.push_back(POTWorklistEntry(*N)); continue; } // Push the node onto the POT. assert(WE.N->isUniqued() && "Expected only uniqued nodes"); assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); auto &D = G.Info[WE.N]; AnyChanges |= D.HasChanged = WE.HasChanged; D.ID = G.POT.size(); G.POT.push_back(WE.N); // Pop the node off the worklist. Worklist.pop_back(); } return AnyChanges; } MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, MDNode::op_iterator E, bool &HasChanged) { while (I != E) { Metadata *Op = *I++; // Increment even on early return. if (std::optional MappedOp = tryToMapOperand(Op)) { // Check if the operand changes. HasChanged |= Op != *MappedOp; continue; } // A uniqued metadata node. MDNode &OpN = *cast(Op); assert(OpN.isUniqued() && "Only uniqued operands cannot be mapped immediately"); if (G.Info.insert(std::make_pair(&OpN, Data())).second) return &OpN; // This is a new one. Return it. } return nullptr; } void MDNodeMapper::UniquedGraph::propagateChanges() { bool AnyChanges; do { AnyChanges = false; for (MDNode *N : POT) { auto &D = Info[N]; if (D.HasChanged) continue; if (llvm::none_of(N->operands(), [&](const Metadata *Op) { auto Where = Info.find(Op); return Where != Info.end() && Where->second.HasChanged; })) continue; AnyChanges = D.HasChanged = true; } } while (AnyChanges); } void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { // Construct uniqued nodes, building forward references as necessary. SmallVector CyclicNodes; for (auto *N : G.POT) { auto &D = G.Info[N]; if (!D.HasChanged) { // The node hasn't changed. M.mapToSelf(N); continue; } // Remember whether this node had a placeholder. bool HadPlaceholder(D.Placeholder); // Clone the uniqued node and remap the operands. TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { if (std::optional MappedOp = getMappedOp(Old)) return *MappedOp; (void)D; assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); return &G.getFwdReference(*cast(Old)); }); auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); if (N && NewN && N != NewN) { LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n" << "To " << *NewN << "\n\n"); } M.mapToMetadata(N, NewN); // Nodes that were referenced out of order in the POT are involved in a // uniquing cycle. if (HadPlaceholder) CyclicNodes.push_back(NewN); } // Resolve cycles. for (auto *N : CyclicNodes) if (!N->isResolved()) N->resolveCycles(); } Metadata *MDNodeMapper::map(const MDNode &N) { assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); assert(!(M.Flags & RF_NoModuleLevelChanges) && "MDNodeMapper::map assumes module-level changes"); // Require resolved nodes whenever metadata might be remapped. assert(N.isResolved() && "Unexpected unresolved node"); Metadata *MappedN = N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); while (!DistinctWorklist.empty()) remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { if (std::optional MappedOp = tryToMapOperand(Old)) return *MappedOp; return mapTopLevelUniquedNode(*cast(Old)); }); return MappedN; } Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { assert(FirstN.isUniqued() && "Expected uniqued node"); // Create a post-order traversal of uniqued nodes under FirstN. UniquedGraph G; if (!createPOT(G, FirstN)) { // Return early if no nodes have changed. for (const MDNode *N : G.POT) M.mapToSelf(N); return &const_cast(FirstN); } // Update graph with all nodes that have changed. G.propagateChanges(); // Map all the nodes in the graph. mapNodesInPOT(G); // Return the original node, remapped. return *getMappedOp(&FirstN); } std::optional Mapper::mapSimpleMetadata(const Metadata *MD) { // If the value already exists in the map, use it. if (std::optional NewMD = getVM().getMappedMD(MD)) return *NewMD; if (isa(MD)) return const_cast(MD); // This is a module-level metadata. If nothing at the module level is // changing, use an identity mapping. if ((Flags & RF_NoModuleLevelChanges)) return const_cast(MD); if (auto *CMD = dyn_cast(MD)) { // Don't memoize ConstantAsMetadata. Instead of lasting until the // LLVMContext is destroyed, they can be deleted when the GlobalValue they // reference is destructed. These aren't super common, so the extra // indirection isn't that expensive. return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); } assert(isa(MD) && "Expected a metadata node"); return std::nullopt; } Metadata *Mapper::mapMetadata(const Metadata *MD) { assert(MD && "Expected valid metadata"); assert(!isa(MD) && "Unexpected local metadata"); if (std::optional NewMD = mapSimpleMetadata(MD)) return *NewMD; return MDNodeMapper(*this).map(*cast(MD)); } void Mapper::flush() { // Flush out the worklist of global values. while (!Worklist.empty()) { WorklistEntry E = Worklist.pop_back_val(); CurrentMCID = E.MCID; switch (E.Kind) { case WorklistEntry::MapGlobalInit: E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); remapGlobalObjectMetadata(*E.Data.GVInit.GV); break; case WorklistEntry::MapAppendingVar: { unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; // mapAppendingVariable call can change AppendingInits if initalizer for // the variable depends on another appending global, because of that inits // need to be extracted and updated before the call. SmallVector NewInits( drop_begin(AppendingInits, PrefixSize)); AppendingInits.resize(PrefixSize); mapAppendingVariable(*E.Data.AppendingGV.GV, E.Data.AppendingGV.InitPrefix, E.AppendingGVIsOldCtorDtor, ArrayRef(NewInits)); break; } case WorklistEntry::MapAliasOrIFunc: { GlobalValue *GV = E.Data.AliasOrIFunc.GV; Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target); if (auto *GA = dyn_cast(GV)) GA->setAliasee(Target); else if (auto *GI = dyn_cast(GV)) GI->setResolver(Target); else llvm_unreachable("Not alias or ifunc"); break; } case WorklistEntry::RemapFunction: remapFunction(*E.Data.RemapF); break; } } CurrentMCID = 0; // Finish logic for block addresses now that all global values have been // handled. while (!DelayedBBs.empty()) { DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); BasicBlock *BB = cast_or_null(mapValue(DBB.OldBB)); DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); } } void Mapper::remapInstruction(Instruction *I) { // Remap operands. for (Use &Op : I->operands()) { Value *V = mapValue(Op); // If we aren't ignoring missing entries, assert that something happened. if (V) Op = V; else assert((Flags & RF_IgnoreMissingLocals) && "Referenced value not in value map!"); } // Remap phi nodes' incoming blocks. if (PHINode *PN = dyn_cast(I)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *V = mapValue(PN->getIncomingBlock(i)); // If we aren't ignoring missing entries, assert that something happened. if (V) PN->setIncomingBlock(i, cast(V)); else assert((Flags & RF_IgnoreMissingLocals) && "Referenced block not in value map!"); } } // Remap attached metadata. SmallVector, 4> MDs; I->getAllMetadata(MDs); for (const auto &MI : MDs) { MDNode *Old = MI.second; MDNode *New = cast_or_null(mapMetadata(Old)); if (New != Old) I->setMetadata(MI.first, New); } if (!TypeMapper) return; // If the instruction's type is being remapped, do so now. if (auto *CB = dyn_cast(I)) { SmallVector Tys; FunctionType *FTy = CB->getFunctionType(); Tys.reserve(FTy->getNumParams()); for (Type *Ty : FTy->params()) Tys.push_back(TypeMapper->remapType(Ty)); CB->mutateFunctionType(FunctionType::get( TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); LLVMContext &C = CB->getContext(); AttributeList Attrs = CB->getAttributes(); for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { for (int AttrIdx = Attribute::FirstTypeAttr; AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; if (Type *Ty = Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, TypeMapper->remapType(Ty)); break; } } } CB->setAttributes(Attrs); return; } if (auto *AI = dyn_cast(I)) AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); if (auto *GEP = dyn_cast(I)) { GEP->setSourceElementType( TypeMapper->remapType(GEP->getSourceElementType())); GEP->setResultElementType( TypeMapper->remapType(GEP->getResultElementType())); } I->mutateType(TypeMapper->remapType(I->getType())); } void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { SmallVector, 8> MDs; GO.getAllMetadata(MDs); GO.clearMetadata(); for (const auto &I : MDs) GO.addMetadata(I.first, *cast(mapMetadata(I.second))); } void Mapper::remapFunction(Function &F) { // Remap the operands. for (Use &Op : F.operands()) if (Op) Op = mapValue(Op); // Remap the metadata attachments. remapGlobalObjectMetadata(F); // Remap the argument types. if (TypeMapper) for (Argument &A : F.args()) A.mutateType(TypeMapper->remapType(A.getType())); // Remap the instructions. for (BasicBlock &BB : F) for (Instruction &I : BB) remapInstruction(&I); } void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef NewMembers) { SmallVector Elements; if (InitPrefix) { unsigned NumElements = cast(InitPrefix->getType())->getNumElements(); for (unsigned I = 0; I != NumElements; ++I) Elements.push_back(InitPrefix->getAggregateElement(I)); } PointerType *VoidPtrTy; Type *EltTy; if (IsOldCtorDtor) { // FIXME: This upgrade is done during linking to support the C API. See // also IRLinker::linkAppendingVarProto() in IRMover.cpp. VoidPtrTy = PointerType::getUnqual(GV.getContext()); auto &ST = *cast(NewMembers.front()->getType()); Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; EltTy = StructType::get(GV.getContext(), Tys, false); } for (auto *V : NewMembers) { Constant *NewV; if (IsOldCtorDtor) { auto *S = cast(V); auto *E1 = cast(mapValue(S->getOperand(0))); auto *E2 = cast(mapValue(S->getOperand(1))); Constant *Null = Constant::getNullValue(VoidPtrTy); NewV = ConstantStruct::get(cast(EltTy), E1, E2, Null); } else { NewV = cast_or_null(mapValue(V)); } Elements.push_back(NewV); } GV.setInitializer( ConstantArray::get(cast(GV.getValueType()), Elements)); } void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, unsigned MCID) { assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); assert(MCID < MCs.size() && "Invalid mapping context"); WorklistEntry WE; WE.Kind = WorklistEntry::MapGlobalInit; WE.MCID = MCID; WE.Data.GVInit.GV = &GV; WE.Data.GVInit.Init = &Init; Worklist.push_back(WE); } void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef NewMembers, unsigned MCID) { assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); assert(MCID < MCs.size() && "Invalid mapping context"); WorklistEntry WE; WE.Kind = WorklistEntry::MapAppendingVar; WE.MCID = MCID; WE.Data.AppendingGV.GV = &GV; WE.Data.AppendingGV.InitPrefix = InitPrefix; WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; WE.AppendingGVNumNewMembers = NewMembers.size(); Worklist.push_back(WE); AppendingInits.append(NewMembers.begin(), NewMembers.end()); } void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, unsigned MCID) { assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); assert((isa(GV) || isa(GV)) && "Should be alias or ifunc"); assert(MCID < MCs.size() && "Invalid mapping context"); WorklistEntry WE; WE.Kind = WorklistEntry::MapAliasOrIFunc; WE.MCID = MCID; WE.Data.AliasOrIFunc.GV = &GV; WE.Data.AliasOrIFunc.Target = &Target; Worklist.push_back(WE); } void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); assert(MCID < MCs.size() && "Invalid mapping context"); WorklistEntry WE; WE.Kind = WorklistEntry::RemapFunction; WE.MCID = MCID; WE.Data.RemapF = &F; Worklist.push_back(WE); } void Mapper::addFlags(RemapFlags Flags) { assert(!hasWorkToDo() && "Expected to have flushed the worklist"); this->Flags = this->Flags | Flags; } static Mapper *getAsMapper(void *pImpl) { return reinterpret_cast(pImpl); } namespace { class FlushingMapper { Mapper &M; public: explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { assert(!M.hasWorkToDo() && "Expected to be flushed"); } ~FlushingMapper() { M.flush(); } Mapper *operator->() const { return &M; } }; } // end anonymous namespace ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } unsigned ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, ValueMaterializer *Materializer) { return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); } void ValueMapper::addFlags(RemapFlags Flags) { FlushingMapper(pImpl)->addFlags(Flags); } Value *ValueMapper::mapValue(const Value &V) { return FlushingMapper(pImpl)->mapValue(&V); } Constant *ValueMapper::mapConstant(const Constant &C) { return cast_or_null(mapValue(C)); } Metadata *ValueMapper::mapMetadata(const Metadata &MD) { return FlushingMapper(pImpl)->mapMetadata(&MD); } MDNode *ValueMapper::mapMDNode(const MDNode &N) { return cast_or_null(mapMetadata(N)); } void ValueMapper::remapInstruction(Instruction &I) { FlushingMapper(pImpl)->remapInstruction(&I); } void ValueMapper::remapDPValue(Module *M, DPValue &V) { FlushingMapper(pImpl)->remapDPValue(V); } void ValueMapper::remapDPValueRange( Module *M, iterator_range Range) { for (DPValue &DPV : Range) { remapDPValue(M, DPV); } } void ValueMapper::remapFunction(Function &F) { FlushingMapper(pImpl)->remapFunction(F); } void ValueMapper::remapGlobalObjectMetadata(GlobalObject &GO) { FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO); } void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, unsigned MCID) { getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); } void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef NewMembers, unsigned MCID) { getAsMapper(pImpl)->scheduleMapAppendingVariable( GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); } void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, unsigned MCID) { getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID); } void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, unsigned MCID) { getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID); } void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); }