1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/MustExecute.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 27 #include "llvm/Analysis/ScalarEvolutionExpander.h" 28 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/DIBuilder.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "loop-utils" 47 48 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 49 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 50 51 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 52 MemorySSAUpdater *MSSAU, 53 bool PreserveLCSSA) { 54 bool Changed = false; 55 56 // We re-use a vector for the in-loop predecesosrs. 57 SmallVector<BasicBlock *, 4> InLoopPredecessors; 58 59 auto RewriteExit = [&](BasicBlock *BB) { 60 assert(InLoopPredecessors.empty() && 61 "Must start with an empty predecessors list!"); 62 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 63 64 // See if there are any non-loop predecessors of this exit block and 65 // keep track of the in-loop predecessors. 66 bool IsDedicatedExit = true; 67 for (auto *PredBB : predecessors(BB)) 68 if (L->contains(PredBB)) { 69 if (isa<IndirectBrInst>(PredBB->getTerminator())) 70 // We cannot rewrite exiting edges from an indirectbr. 71 return false; 72 if (isa<CallBrInst>(PredBB->getTerminator())) 73 // We cannot rewrite exiting edges from a callbr. 74 return false; 75 76 InLoopPredecessors.push_back(PredBB); 77 } else { 78 IsDedicatedExit = false; 79 } 80 81 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 82 83 // Nothing to do if this is already a dedicated exit. 84 if (IsDedicatedExit) 85 return false; 86 87 auto *NewExitBB = SplitBlockPredecessors( 88 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 89 90 if (!NewExitBB) 91 LLVM_DEBUG( 92 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 93 << *L << "\n"); 94 else 95 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 96 << NewExitBB->getName() << "\n"); 97 return true; 98 }; 99 100 // Walk the exit blocks directly rather than building up a data structure for 101 // them, but only visit each one once. 102 SmallPtrSet<BasicBlock *, 4> Visited; 103 for (auto *BB : L->blocks()) 104 for (auto *SuccBB : successors(BB)) { 105 // We're looking for exit blocks so skip in-loop successors. 106 if (L->contains(SuccBB)) 107 continue; 108 109 // Visit each exit block exactly once. 110 if (!Visited.insert(SuccBB).second) 111 continue; 112 113 Changed |= RewriteExit(SuccBB); 114 } 115 116 return Changed; 117 } 118 119 /// Returns the instructions that use values defined in the loop. 120 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 121 SmallVector<Instruction *, 8> UsedOutside; 122 123 for (auto *Block : L->getBlocks()) 124 // FIXME: I believe that this could use copy_if if the Inst reference could 125 // be adapted into a pointer. 126 for (auto &Inst : *Block) { 127 auto Users = Inst.users(); 128 if (any_of(Users, [&](User *U) { 129 auto *Use = cast<Instruction>(U); 130 return !L->contains(Use->getParent()); 131 })) 132 UsedOutside.push_back(&Inst); 133 } 134 135 return UsedOutside; 136 } 137 138 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 139 // By definition, all loop passes need the LoopInfo analysis and the 140 // Dominator tree it depends on. Because they all participate in the loop 141 // pass manager, they must also preserve these. 142 AU.addRequired<DominatorTreeWrapperPass>(); 143 AU.addPreserved<DominatorTreeWrapperPass>(); 144 AU.addRequired<LoopInfoWrapperPass>(); 145 AU.addPreserved<LoopInfoWrapperPass>(); 146 147 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 148 // here because users shouldn't directly get them from this header. 149 extern char &LoopSimplifyID; 150 extern char &LCSSAID; 151 AU.addRequiredID(LoopSimplifyID); 152 AU.addPreservedID(LoopSimplifyID); 153 AU.addRequiredID(LCSSAID); 154 AU.addPreservedID(LCSSAID); 155 // This is used in the LPPassManager to perform LCSSA verification on passes 156 // which preserve lcssa form 157 AU.addRequired<LCSSAVerificationPass>(); 158 AU.addPreserved<LCSSAVerificationPass>(); 159 160 // Loop passes are designed to run inside of a loop pass manager which means 161 // that any function analyses they require must be required by the first loop 162 // pass in the manager (so that it is computed before the loop pass manager 163 // runs) and preserved by all loop pasess in the manager. To make this 164 // reasonably robust, the set needed for most loop passes is maintained here. 165 // If your loop pass requires an analysis not listed here, you will need to 166 // carefully audit the loop pass manager nesting structure that results. 167 AU.addRequired<AAResultsWrapperPass>(); 168 AU.addPreserved<AAResultsWrapperPass>(); 169 AU.addPreserved<BasicAAWrapperPass>(); 170 AU.addPreserved<GlobalsAAWrapperPass>(); 171 AU.addPreserved<SCEVAAWrapperPass>(); 172 AU.addRequired<ScalarEvolutionWrapperPass>(); 173 AU.addPreserved<ScalarEvolutionWrapperPass>(); 174 // FIXME: When all loop passes preserve MemorySSA, it can be required and 175 // preserved here instead of the individual handling in each pass. 176 } 177 178 /// Manually defined generic "LoopPass" dependency initialization. This is used 179 /// to initialize the exact set of passes from above in \c 180 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 181 /// with: 182 /// 183 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 184 /// 185 /// As-if "LoopPass" were a pass. 186 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 187 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 188 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 189 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 190 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 191 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 192 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 193 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 194 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 195 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 196 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 197 } 198 199 /// Create MDNode for input string. 200 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 201 LLVMContext &Context = TheLoop->getHeader()->getContext(); 202 Metadata *MDs[] = { 203 MDString::get(Context, Name), 204 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 205 return MDNode::get(Context, MDs); 206 } 207 208 /// Set input string into loop metadata by keeping other values intact. 209 /// If the string is already in loop metadata update value if it is 210 /// different. 211 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 212 unsigned V) { 213 SmallVector<Metadata *, 4> MDs(1); 214 // If the loop already has metadata, retain it. 215 MDNode *LoopID = TheLoop->getLoopID(); 216 if (LoopID) { 217 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 218 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 219 // If it is of form key = value, try to parse it. 220 if (Node->getNumOperands() == 2) { 221 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 222 if (S && S->getString().equals(StringMD)) { 223 ConstantInt *IntMD = 224 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 225 if (IntMD && IntMD->getSExtValue() == V) 226 // It is already in place. Do nothing. 227 return; 228 // We need to update the value, so just skip it here and it will 229 // be added after copying other existed nodes. 230 continue; 231 } 232 } 233 MDs.push_back(Node); 234 } 235 } 236 // Add new metadata. 237 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 238 // Replace current metadata node with new one. 239 LLVMContext &Context = TheLoop->getHeader()->getContext(); 240 MDNode *NewLoopID = MDNode::get(Context, MDs); 241 // Set operand 0 to refer to the loop id itself. 242 NewLoopID->replaceOperandWith(0, NewLoopID); 243 TheLoop->setLoopID(NewLoopID); 244 } 245 246 /// Find string metadata for loop 247 /// 248 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 249 /// operand or null otherwise. If the string metadata is not found return 250 /// Optional's not-a-value. 251 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 252 StringRef Name) { 253 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 254 if (!MD) 255 return None; 256 switch (MD->getNumOperands()) { 257 case 1: 258 return nullptr; 259 case 2: 260 return &MD->getOperand(1); 261 default: 262 llvm_unreachable("loop metadata has 0 or 1 operand"); 263 } 264 } 265 266 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 267 StringRef Name) { 268 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 269 if (!MD) 270 return None; 271 switch (MD->getNumOperands()) { 272 case 1: 273 // When the value is absent it is interpreted as 'attribute set'. 274 return true; 275 case 2: 276 if (ConstantInt *IntMD = 277 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 278 return IntMD->getZExtValue(); 279 return true; 280 } 281 llvm_unreachable("unexpected number of options"); 282 } 283 284 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 285 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 286 } 287 288 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 289 StringRef Name) { 290 const MDOperand *AttrMD = 291 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 292 if (!AttrMD) 293 return None; 294 295 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 296 if (!IntMD) 297 return None; 298 299 return IntMD->getSExtValue(); 300 } 301 302 Optional<MDNode *> llvm::makeFollowupLoopID( 303 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 304 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 305 if (!OrigLoopID) { 306 if (AlwaysNew) 307 return nullptr; 308 return None; 309 } 310 311 assert(OrigLoopID->getOperand(0) == OrigLoopID); 312 313 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 314 bool InheritSomeAttrs = 315 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 316 SmallVector<Metadata *, 8> MDs; 317 MDs.push_back(nullptr); 318 319 bool Changed = false; 320 if (InheritAllAttrs || InheritSomeAttrs) { 321 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { 322 MDNode *Op = cast<MDNode>(Existing.get()); 323 324 auto InheritThisAttribute = [InheritSomeAttrs, 325 InheritOptionsExceptPrefix](MDNode *Op) { 326 if (!InheritSomeAttrs) 327 return false; 328 329 // Skip malformatted attribute metadata nodes. 330 if (Op->getNumOperands() == 0) 331 return true; 332 Metadata *NameMD = Op->getOperand(0).get(); 333 if (!isa<MDString>(NameMD)) 334 return true; 335 StringRef AttrName = cast<MDString>(NameMD)->getString(); 336 337 // Do not inherit excluded attributes. 338 return !AttrName.startswith(InheritOptionsExceptPrefix); 339 }; 340 341 if (InheritThisAttribute(Op)) 342 MDs.push_back(Op); 343 else 344 Changed = true; 345 } 346 } else { 347 // Modified if we dropped at least one attribute. 348 Changed = OrigLoopID->getNumOperands() > 1; 349 } 350 351 bool HasAnyFollowup = false; 352 for (StringRef OptionName : FollowupOptions) { 353 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 354 if (!FollowupNode) 355 continue; 356 357 HasAnyFollowup = true; 358 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { 359 MDs.push_back(Option.get()); 360 Changed = true; 361 } 362 } 363 364 // Attributes of the followup loop not specified explicity, so signal to the 365 // transformation pass to add suitable attributes. 366 if (!AlwaysNew && !HasAnyFollowup) 367 return None; 368 369 // If no attributes were added or remove, the previous loop Id can be reused. 370 if (!AlwaysNew && !Changed) 371 return OrigLoopID; 372 373 // No attributes is equivalent to having no !llvm.loop metadata at all. 374 if (MDs.size() == 1) 375 return nullptr; 376 377 // Build the new loop ID. 378 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 379 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 380 return FollowupLoopID; 381 } 382 383 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 384 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 385 } 386 387 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 388 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 389 } 390 391 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 392 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 393 return TM_SuppressedByUser; 394 395 Optional<int> Count = 396 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 397 if (Count.hasValue()) 398 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 399 400 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 401 return TM_ForcedByUser; 402 403 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 404 return TM_ForcedByUser; 405 406 if (hasDisableAllTransformsHint(L)) 407 return TM_Disable; 408 409 return TM_Unspecified; 410 } 411 412 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 413 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 414 return TM_SuppressedByUser; 415 416 Optional<int> Count = 417 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 418 if (Count.hasValue()) 419 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 420 421 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 422 return TM_ForcedByUser; 423 424 if (hasDisableAllTransformsHint(L)) 425 return TM_Disable; 426 427 return TM_Unspecified; 428 } 429 430 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 431 Optional<bool> Enable = 432 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 433 434 if (Enable == false) 435 return TM_SuppressedByUser; 436 437 Optional<int> VectorizeWidth = 438 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); 439 Optional<int> InterleaveCount = 440 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 441 442 // 'Forcing' vector width and interleave count to one effectively disables 443 // this tranformation. 444 if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) 445 return TM_SuppressedByUser; 446 447 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 448 return TM_Disable; 449 450 if (Enable == true) 451 return TM_ForcedByUser; 452 453 if (VectorizeWidth == 1 && InterleaveCount == 1) 454 return TM_Disable; 455 456 if (VectorizeWidth > 1 || InterleaveCount > 1) 457 return TM_Enable; 458 459 if (hasDisableAllTransformsHint(L)) 460 return TM_Disable; 461 462 return TM_Unspecified; 463 } 464 465 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 466 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 467 return TM_ForcedByUser; 468 469 if (hasDisableAllTransformsHint(L)) 470 return TM_Disable; 471 472 return TM_Unspecified; 473 } 474 475 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 476 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 477 return TM_SuppressedByUser; 478 479 if (hasDisableAllTransformsHint(L)) 480 return TM_Disable; 481 482 return TM_Unspecified; 483 } 484 485 /// Does a BFS from a given node to all of its children inside a given loop. 486 /// The returned vector of nodes includes the starting point. 487 SmallVector<DomTreeNode *, 16> 488 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 489 SmallVector<DomTreeNode *, 16> Worklist; 490 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 491 // Only include subregions in the top level loop. 492 BasicBlock *BB = DTN->getBlock(); 493 if (CurLoop->contains(BB)) 494 Worklist.push_back(DTN); 495 }; 496 497 AddRegionToWorklist(N); 498 499 for (size_t I = 0; I < Worklist.size(); I++) 500 for (DomTreeNode *Child : Worklist[I]->getChildren()) 501 AddRegionToWorklist(Child); 502 503 return Worklist; 504 } 505 506 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, 507 ScalarEvolution *SE = nullptr, 508 LoopInfo *LI = nullptr) { 509 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 510 auto *Preheader = L->getLoopPreheader(); 511 assert(Preheader && "Preheader should exist!"); 512 513 // Now that we know the removal is safe, remove the loop by changing the 514 // branch from the preheader to go to the single exit block. 515 // 516 // Because we're deleting a large chunk of code at once, the sequence in which 517 // we remove things is very important to avoid invalidation issues. 518 519 // Tell ScalarEvolution that the loop is deleted. Do this before 520 // deleting the loop so that ScalarEvolution can look at the loop 521 // to determine what it needs to clean up. 522 if (SE) 523 SE->forgetLoop(L); 524 525 auto *ExitBlock = L->getUniqueExitBlock(); 526 assert(ExitBlock && "Should have a unique exit block!"); 527 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 528 529 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 530 assert(OldBr && "Preheader must end with a branch"); 531 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 532 // Connect the preheader to the exit block. Keep the old edge to the header 533 // around to perform the dominator tree update in two separate steps 534 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 535 // preheader -> header. 536 // 537 // 538 // 0. Preheader 1. Preheader 2. Preheader 539 // | | | | 540 // V | V | 541 // Header <--\ | Header <--\ | Header <--\ 542 // | | | | | | | | | | | 543 // | V | | | V | | | V | 544 // | Body --/ | | Body --/ | | Body --/ 545 // V V V V V 546 // Exit Exit Exit 547 // 548 // By doing this is two separate steps we can perform the dominator tree 549 // update without using the batch update API. 550 // 551 // Even when the loop is never executed, we cannot remove the edge from the 552 // source block to the exit block. Consider the case where the unexecuted loop 553 // branches back to an outer loop. If we deleted the loop and removed the edge 554 // coming to this inner loop, this will break the outer loop structure (by 555 // deleting the backedge of the outer loop). If the outer loop is indeed a 556 // non-loop, it will be deleted in a future iteration of loop deletion pass. 557 IRBuilder<> Builder(OldBr); 558 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 559 // Remove the old branch. The conditional branch becomes a new terminator. 560 OldBr->eraseFromParent(); 561 562 // Rewrite phis in the exit block to get their inputs from the Preheader 563 // instead of the exiting block. 564 for (PHINode &P : ExitBlock->phis()) { 565 // Set the zero'th element of Phi to be from the preheader and remove all 566 // other incoming values. Given the loop has dedicated exits, all other 567 // incoming values must be from the exiting blocks. 568 int PredIndex = 0; 569 P.setIncomingBlock(PredIndex, Preheader); 570 // Removes all incoming values from all other exiting blocks (including 571 // duplicate values from an exiting block). 572 // Nuke all entries except the zero'th entry which is the preheader entry. 573 // NOTE! We need to remove Incoming Values in the reverse order as done 574 // below, to keep the indices valid for deletion (removeIncomingValues 575 // updates getNumIncomingValues and shifts all values down into the operand 576 // being deleted). 577 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 578 P.removeIncomingValue(e - i, false); 579 580 assert((P.getNumIncomingValues() == 1 && 581 P.getIncomingBlock(PredIndex) == Preheader) && 582 "Should have exactly one value and that's from the preheader!"); 583 } 584 585 // Disconnect the loop body by branching directly to its exit. 586 Builder.SetInsertPoint(Preheader->getTerminator()); 587 Builder.CreateBr(ExitBlock); 588 // Remove the old branch. 589 Preheader->getTerminator()->eraseFromParent(); 590 591 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 592 if (DT) { 593 // Update the dominator tree by informing it about the new edge from the 594 // preheader to the exit and the removed edge. 595 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}, 596 {DominatorTree::Delete, Preheader, L->getHeader()}}); 597 } 598 599 // Use a map to unique and a vector to guarantee deterministic ordering. 600 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 601 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 602 603 // Given LCSSA form is satisfied, we should not have users of instructions 604 // within the dead loop outside of the loop. However, LCSSA doesn't take 605 // unreachable uses into account. We handle them here. 606 // We could do it after drop all references (in this case all users in the 607 // loop will be already eliminated and we have less work to do but according 608 // to API doc of User::dropAllReferences only valid operation after dropping 609 // references, is deletion. So let's substitute all usages of 610 // instruction from the loop with undef value of corresponding type first. 611 for (auto *Block : L->blocks()) 612 for (Instruction &I : *Block) { 613 auto *Undef = UndefValue::get(I.getType()); 614 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 615 Use &U = *UI; 616 ++UI; 617 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 618 if (L->contains(Usr->getParent())) 619 continue; 620 // If we have a DT then we can check that uses outside a loop only in 621 // unreachable block. 622 if (DT) 623 assert(!DT->isReachableFromEntry(U) && 624 "Unexpected user in reachable block"); 625 U.set(Undef); 626 } 627 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 628 if (!DVI) 629 continue; 630 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 631 if (Key != DeadDebugSet.end()) 632 continue; 633 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 634 DeadDebugInst.push_back(DVI); 635 } 636 637 // After the loop has been deleted all the values defined and modified 638 // inside the loop are going to be unavailable. 639 // Since debug values in the loop have been deleted, inserting an undef 640 // dbg.value truncates the range of any dbg.value before the loop where the 641 // loop used to be. This is particularly important for constant values. 642 DIBuilder DIB(*ExitBlock->getModule()); 643 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 644 assert(InsertDbgValueBefore && 645 "There should be a non-PHI instruction in exit block, else these " 646 "instructions will have no parent."); 647 for (auto *DVI : DeadDebugInst) 648 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 649 DVI->getVariable(), DVI->getExpression(), 650 DVI->getDebugLoc(), InsertDbgValueBefore); 651 652 // Remove the block from the reference counting scheme, so that we can 653 // delete it freely later. 654 for (auto *Block : L->blocks()) 655 Block->dropAllReferences(); 656 657 if (LI) { 658 // Erase the instructions and the blocks without having to worry 659 // about ordering because we already dropped the references. 660 // NOTE: This iteration is safe because erasing the block does not remove 661 // its entry from the loop's block list. We do that in the next section. 662 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 663 LpI != LpE; ++LpI) 664 (*LpI)->eraseFromParent(); 665 666 // Finally, the blocks from loopinfo. This has to happen late because 667 // otherwise our loop iterators won't work. 668 669 SmallPtrSet<BasicBlock *, 8> blocks; 670 blocks.insert(L->block_begin(), L->block_end()); 671 for (BasicBlock *BB : blocks) 672 LI->removeBlock(BB); 673 674 // The last step is to update LoopInfo now that we've eliminated this loop. 675 LI->erase(L); 676 } 677 } 678 679 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 680 // Support loops with an exiting latch and other existing exists only 681 // deoptimize. 682 683 // Get the branch weights for the loop's backedge. 684 BasicBlock *Latch = L->getLoopLatch(); 685 if (!Latch) 686 return None; 687 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 688 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 689 return None; 690 691 assert((LatchBR->getSuccessor(0) == L->getHeader() || 692 LatchBR->getSuccessor(1) == L->getHeader()) && 693 "At least one edge out of the latch must go to the header"); 694 695 SmallVector<BasicBlock *, 4> ExitBlocks; 696 L->getUniqueNonLatchExitBlocks(ExitBlocks); 697 if (any_of(ExitBlocks, [](const BasicBlock *EB) { 698 return !EB->getTerminatingDeoptimizeCall(); 699 })) 700 return None; 701 702 // To estimate the number of times the loop body was executed, we want to 703 // know the number of times the backedge was taken, vs. the number of times 704 // we exited the loop. 705 uint64_t TrueVal, FalseVal; 706 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 707 return None; 708 709 if (!TrueVal || !FalseVal) 710 return 0; 711 712 // Divide the count of the backedge by the count of the edge exiting the loop, 713 // rounding to nearest. 714 if (LatchBR->getSuccessor(0) == L->getHeader()) 715 return (TrueVal + (FalseVal / 2)) / FalseVal; 716 else 717 return (FalseVal + (TrueVal / 2)) / TrueVal; 718 } 719 720 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 721 ScalarEvolution &SE) { 722 Loop *OuterL = InnerLoop->getParentLoop(); 723 if (!OuterL) 724 return true; 725 726 // Get the backedge taken count for the inner loop 727 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 728 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 729 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 730 !InnerLoopBECountSC->getType()->isIntegerTy()) 731 return false; 732 733 // Get whether count is invariant to the outer loop 734 ScalarEvolution::LoopDisposition LD = 735 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 736 if (LD != ScalarEvolution::LoopInvariant) 737 return false; 738 739 return true; 740 } 741 742 Value *llvm::createMinMaxOp(IRBuilder<> &Builder, 743 RecurrenceDescriptor::MinMaxRecurrenceKind RK, 744 Value *Left, Value *Right) { 745 CmpInst::Predicate P = CmpInst::ICMP_NE; 746 switch (RK) { 747 default: 748 llvm_unreachable("Unknown min/max recurrence kind"); 749 case RecurrenceDescriptor::MRK_UIntMin: 750 P = CmpInst::ICMP_ULT; 751 break; 752 case RecurrenceDescriptor::MRK_UIntMax: 753 P = CmpInst::ICMP_UGT; 754 break; 755 case RecurrenceDescriptor::MRK_SIntMin: 756 P = CmpInst::ICMP_SLT; 757 break; 758 case RecurrenceDescriptor::MRK_SIntMax: 759 P = CmpInst::ICMP_SGT; 760 break; 761 case RecurrenceDescriptor::MRK_FloatMin: 762 P = CmpInst::FCMP_OLT; 763 break; 764 case RecurrenceDescriptor::MRK_FloatMax: 765 P = CmpInst::FCMP_OGT; 766 break; 767 } 768 769 // We only match FP sequences that are 'fast', so we can unconditionally 770 // set it on any generated instructions. 771 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 772 FastMathFlags FMF; 773 FMF.setFast(); 774 Builder.setFastMathFlags(FMF); 775 776 Value *Cmp; 777 if (RK == RecurrenceDescriptor::MRK_FloatMin || 778 RK == RecurrenceDescriptor::MRK_FloatMax) 779 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 780 else 781 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 782 783 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 784 return Select; 785 } 786 787 // Helper to generate an ordered reduction. 788 Value * 789 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, 790 unsigned Op, 791 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 792 ArrayRef<Value *> RedOps) { 793 unsigned VF = Src->getType()->getVectorNumElements(); 794 795 // Extract and apply reduction ops in ascending order: 796 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 797 Value *Result = Acc; 798 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 799 Value *Ext = 800 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 801 802 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 803 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 804 "bin.rdx"); 805 } else { 806 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 807 "Invalid min/max"); 808 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); 809 } 810 811 if (!RedOps.empty()) 812 propagateIRFlags(Result, RedOps); 813 } 814 815 return Result; 816 } 817 818 // Helper to generate a log2 shuffle reduction. 819 Value * 820 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 821 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 822 ArrayRef<Value *> RedOps) { 823 unsigned VF = Src->getType()->getVectorNumElements(); 824 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 825 // and vector ops, reducing the set of values being computed by half each 826 // round. 827 assert(isPowerOf2_32(VF) && 828 "Reduction emission only supported for pow2 vectors!"); 829 Value *TmpVec = Src; 830 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 831 for (unsigned i = VF; i != 1; i >>= 1) { 832 // Move the upper half of the vector to the lower half. 833 for (unsigned j = 0; j != i / 2; ++j) 834 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 835 836 // Fill the rest of the mask with undef. 837 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 838 UndefValue::get(Builder.getInt32Ty())); 839 840 Value *Shuf = Builder.CreateShuffleVector( 841 TmpVec, UndefValue::get(TmpVec->getType()), 842 ConstantVector::get(ShuffleMask), "rdx.shuf"); 843 844 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 845 // The builder propagates its fast-math-flags setting. 846 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 847 "bin.rdx"); 848 } else { 849 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 850 "Invalid min/max"); 851 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); 852 } 853 if (!RedOps.empty()) 854 propagateIRFlags(TmpVec, RedOps); 855 } 856 // The result is in the first element of the vector. 857 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 858 } 859 860 /// Create a simple vector reduction specified by an opcode and some 861 /// flags (if generating min/max reductions). 862 Value *llvm::createSimpleTargetReduction( 863 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 864 Value *Src, TargetTransformInfo::ReductionFlags Flags, 865 ArrayRef<Value *> RedOps) { 866 assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 867 868 std::function<Value *()> BuildFunc; 869 using RD = RecurrenceDescriptor; 870 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 871 872 switch (Opcode) { 873 case Instruction::Add: 874 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 875 break; 876 case Instruction::Mul: 877 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 878 break; 879 case Instruction::And: 880 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 881 break; 882 case Instruction::Or: 883 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 884 break; 885 case Instruction::Xor: 886 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 887 break; 888 case Instruction::FAdd: 889 BuildFunc = [&]() { 890 auto Rdx = Builder.CreateFAddReduce( 891 Constant::getNullValue(Src->getType()->getVectorElementType()), Src); 892 return Rdx; 893 }; 894 break; 895 case Instruction::FMul: 896 BuildFunc = [&]() { 897 Type *Ty = Src->getType()->getVectorElementType(); 898 auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src); 899 return Rdx; 900 }; 901 break; 902 case Instruction::ICmp: 903 if (Flags.IsMaxOp) { 904 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 905 BuildFunc = [&]() { 906 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 907 }; 908 } else { 909 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 910 BuildFunc = [&]() { 911 return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 912 }; 913 } 914 break; 915 case Instruction::FCmp: 916 if (Flags.IsMaxOp) { 917 MinMaxKind = RD::MRK_FloatMax; 918 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 919 } else { 920 MinMaxKind = RD::MRK_FloatMin; 921 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 922 } 923 break; 924 default: 925 llvm_unreachable("Unhandled opcode"); 926 break; 927 } 928 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 929 return BuildFunc(); 930 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 931 } 932 933 /// Create a vector reduction using a given recurrence descriptor. 934 Value *llvm::createTargetReduction(IRBuilder<> &B, 935 const TargetTransformInfo *TTI, 936 RecurrenceDescriptor &Desc, Value *Src, 937 bool NoNaN) { 938 // TODO: Support in-order reductions based on the recurrence descriptor. 939 using RD = RecurrenceDescriptor; 940 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 941 TargetTransformInfo::ReductionFlags Flags; 942 Flags.NoNaN = NoNaN; 943 944 // All ops in the reduction inherit fast-math-flags from the recurrence 945 // descriptor. 946 IRBuilder<>::FastMathFlagGuard FMFGuard(B); 947 B.setFastMathFlags(Desc.getFastMathFlags()); 948 949 switch (RecKind) { 950 case RD::RK_FloatAdd: 951 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 952 case RD::RK_FloatMult: 953 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 954 case RD::RK_IntegerAdd: 955 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 956 case RD::RK_IntegerMult: 957 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 958 case RD::RK_IntegerAnd: 959 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 960 case RD::RK_IntegerOr: 961 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 962 case RD::RK_IntegerXor: 963 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 964 case RD::RK_IntegerMinMax: { 965 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 966 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 967 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 968 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 969 } 970 case RD::RK_FloatMinMax: { 971 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 972 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 973 } 974 default: 975 llvm_unreachable("Unhandled RecKind"); 976 } 977 } 978 979 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 980 auto *VecOp = dyn_cast<Instruction>(I); 981 if (!VecOp) 982 return; 983 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 984 : dyn_cast<Instruction>(OpValue); 985 if (!Intersection) 986 return; 987 const unsigned Opcode = Intersection->getOpcode(); 988 VecOp->copyIRFlags(Intersection); 989 for (auto *V : VL) { 990 auto *Instr = dyn_cast<Instruction>(V); 991 if (!Instr) 992 continue; 993 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 994 VecOp->andIRFlags(V); 995 } 996 } 997 998 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 999 ScalarEvolution &SE) { 1000 const SCEV *Zero = SE.getZero(S->getType()); 1001 return SE.isAvailableAtLoopEntry(S, L) && 1002 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1003 } 1004 1005 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1006 ScalarEvolution &SE) { 1007 const SCEV *Zero = SE.getZero(S->getType()); 1008 return SE.isAvailableAtLoopEntry(S, L) && 1009 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1010 } 1011 1012 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1013 bool Signed) { 1014 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1015 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1016 APInt::getMinValue(BitWidth); 1017 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1018 return SE.isAvailableAtLoopEntry(S, L) && 1019 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1020 SE.getConstant(Min)); 1021 } 1022 1023 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1024 bool Signed) { 1025 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1026 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1027 APInt::getMaxValue(BitWidth); 1028 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1029 return SE.isAvailableAtLoopEntry(S, L) && 1030 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1031 SE.getConstant(Max)); 1032 } 1033