//===-- LoopUtils.cpp - Loop Utility functions -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines common loop utility functions. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/MustExecute.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/KnownBits.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "loop-utils" static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { bool Changed = false; // We re-use a vector for the in-loop predecesosrs. SmallVector InLoopPredecessors; auto RewriteExit = [&](BasicBlock *BB) { assert(InLoopPredecessors.empty() && "Must start with an empty predecessors list!"); auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); // See if there are any non-loop predecessors of this exit block and // keep track of the in-loop predecessors. bool IsDedicatedExit = true; for (auto *PredBB : predecessors(BB)) if (L->contains(PredBB)) { if (isa(PredBB->getTerminator())) // We cannot rewrite exiting edges from an indirectbr. return false; if (isa(PredBB->getTerminator())) // We cannot rewrite exiting edges from a callbr. return false; InLoopPredecessors.push_back(PredBB); } else { IsDedicatedExit = false; } assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); // Nothing to do if this is already a dedicated exit. if (IsDedicatedExit) return false; auto *NewExitBB = SplitBlockPredecessors( BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); if (!NewExitBB) LLVM_DEBUG( dbgs() << "WARNING: Can't create a dedicated exit block for loop: " << *L << "\n"); else LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " << NewExitBB->getName() << "\n"); return true; }; // Walk the exit blocks directly rather than building up a data structure for // them, but only visit each one once. SmallPtrSet Visited; for (auto *BB : L->blocks()) for (auto *SuccBB : successors(BB)) { // We're looking for exit blocks so skip in-loop successors. if (L->contains(SuccBB)) continue; // Visit each exit block exactly once. if (!Visited.insert(SuccBB).second) continue; Changed |= RewriteExit(SuccBB); } return Changed; } /// Returns the instructions that use values defined in the loop. SmallVector llvm::findDefsUsedOutsideOfLoop(Loop *L) { SmallVector UsedOutside; for (auto *Block : L->getBlocks()) // FIXME: I believe that this could use copy_if if the Inst reference could // be adapted into a pointer. for (auto &Inst : *Block) { auto Users = Inst.users(); if (any_of(Users, [&](User *U) { auto *Use = cast(U); return !L->contains(Use->getParent()); })) UsedOutside.push_back(&Inst); } return UsedOutside; } void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { // By definition, all loop passes need the LoopInfo analysis and the // Dominator tree it depends on. Because they all participate in the loop // pass manager, they must also preserve these. AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); // We must also preserve LoopSimplify and LCSSA. We locally access their IDs // here because users shouldn't directly get them from this header. extern char &LoopSimplifyID; extern char &LCSSAID; AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addPreservedID(LCSSAID); // This is used in the LPPassManager to perform LCSSA verification on passes // which preserve lcssa form AU.addRequired(); AU.addPreserved(); // Loop passes are designed to run inside of a loop pass manager which means // that any function analyses they require must be required by the first loop // pass in the manager (so that it is computed before the loop pass manager // runs) and preserved by all loop pasess in the manager. To make this // reasonably robust, the set needed for most loop passes is maintained here. // If your loop pass requires an analysis not listed here, you will need to // carefully audit the loop pass manager nesting structure that results. AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); // FIXME: When all loop passes preserve MemorySSA, it can be required and // preserved here instead of the individual handling in each pass. } /// Manually defined generic "LoopPass" dependency initialization. This is used /// to initialize the exact set of passes from above in \c /// getLoopAnalysisUsage. It can be used within a loop pass's initialization /// with: /// /// INITIALIZE_PASS_DEPENDENCY(LoopPass) /// /// As-if "LoopPass" were a pass. void llvm::initializeLoopPassPass(PassRegistry &Registry) { INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) } /// Create MDNode for input string. static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { LLVMContext &Context = TheLoop->getHeader()->getContext(); Metadata *MDs[] = { MDString::get(Context, Name), ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; return MDNode::get(Context, MDs); } /// Set input string into loop metadata by keeping other values intact. /// If the string is already in loop metadata update value if it is /// different. void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, unsigned V) { SmallVector MDs(1); // If the loop already has metadata, retain it. MDNode *LoopID = TheLoop->getLoopID(); if (LoopID) { for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { MDNode *Node = cast(LoopID->getOperand(i)); // If it is of form key = value, try to parse it. if (Node->getNumOperands() == 2) { MDString *S = dyn_cast(Node->getOperand(0)); if (S && S->getString().equals(StringMD)) { ConstantInt *IntMD = mdconst::extract_or_null(Node->getOperand(1)); if (IntMD && IntMD->getSExtValue() == V) // It is already in place. Do nothing. return; // We need to update the value, so just skip it here and it will // be added after copying other existed nodes. continue; } } MDs.push_back(Node); } } // Add new metadata. MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); // Replace current metadata node with new one. LLVMContext &Context = TheLoop->getHeader()->getContext(); MDNode *NewLoopID = MDNode::get(Context, MDs); // Set operand 0 to refer to the loop id itself. NewLoopID->replaceOperandWith(0, NewLoopID); TheLoop->setLoopID(NewLoopID); } /// Find string metadata for loop /// /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an /// operand or null otherwise. If the string metadata is not found return /// Optional's not-a-value. Optional llvm::findStringMetadataForLoop(const Loop *TheLoop, StringRef Name) { MDNode *MD = findOptionMDForLoop(TheLoop, Name); if (!MD) return None; switch (MD->getNumOperands()) { case 1: return nullptr; case 2: return &MD->getOperand(1); default: llvm_unreachable("loop metadata has 0 or 1 operand"); } } static Optional getOptionalBoolLoopAttribute(const Loop *TheLoop, StringRef Name) { MDNode *MD = findOptionMDForLoop(TheLoop, Name); if (!MD) return None; switch (MD->getNumOperands()) { case 1: // When the value is absent it is interpreted as 'attribute set'. return true; case 2: if (ConstantInt *IntMD = mdconst::extract_or_null(MD->getOperand(1).get())) return IntMD->getZExtValue(); return true; } llvm_unreachable("unexpected number of options"); } static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); } llvm::Optional llvm::getOptionalIntLoopAttribute(Loop *TheLoop, StringRef Name) { const MDOperand *AttrMD = findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); if (!AttrMD) return None; ConstantInt *IntMD = mdconst::extract_or_null(AttrMD->get()); if (!IntMD) return None; return IntMD->getSExtValue(); } Optional llvm::makeFollowupLoopID( MDNode *OrigLoopID, ArrayRef FollowupOptions, const char *InheritOptionsExceptPrefix, bool AlwaysNew) { if (!OrigLoopID) { if (AlwaysNew) return nullptr; return None; } assert(OrigLoopID->getOperand(0) == OrigLoopID); bool InheritAllAttrs = !InheritOptionsExceptPrefix; bool InheritSomeAttrs = InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; SmallVector MDs; MDs.push_back(nullptr); bool Changed = false; if (InheritAllAttrs || InheritSomeAttrs) { for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { MDNode *Op = cast(Existing.get()); auto InheritThisAttribute = [InheritSomeAttrs, InheritOptionsExceptPrefix](MDNode *Op) { if (!InheritSomeAttrs) return false; // Skip malformatted attribute metadata nodes. if (Op->getNumOperands() == 0) return true; Metadata *NameMD = Op->getOperand(0).get(); if (!isa(NameMD)) return true; StringRef AttrName = cast(NameMD)->getString(); // Do not inherit excluded attributes. return !AttrName.startswith(InheritOptionsExceptPrefix); }; if (InheritThisAttribute(Op)) MDs.push_back(Op); else Changed = true; } } else { // Modified if we dropped at least one attribute. Changed = OrigLoopID->getNumOperands() > 1; } bool HasAnyFollowup = false; for (StringRef OptionName : FollowupOptions) { MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); if (!FollowupNode) continue; HasAnyFollowup = true; for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { MDs.push_back(Option.get()); Changed = true; } } // Attributes of the followup loop not specified explicity, so signal to the // transformation pass to add suitable attributes. if (!AlwaysNew && !HasAnyFollowup) return None; // If no attributes were added or remove, the previous loop Id can be reused. if (!AlwaysNew && !Changed) return OrigLoopID; // No attributes is equivalent to having no !llvm.loop metadata at all. if (MDs.size() == 1) return nullptr; // Build the new loop ID. MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); FollowupLoopID->replaceOperandWith(0, FollowupLoopID); return FollowupLoopID; } bool llvm::hasDisableAllTransformsHint(const Loop *L) { return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); } bool llvm::hasDisableLICMTransformsHint(const Loop *L) { return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); } TransformationMode llvm::hasUnrollTransformation(Loop *L) { if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) return TM_SuppressedByUser; Optional Count = getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); if (Count.hasValue()) return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) return TM_ForcedByUser; if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) return TM_ForcedByUser; if (hasDisableAllTransformsHint(L)) return TM_Disable; return TM_Unspecified; } TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) return TM_SuppressedByUser; Optional Count = getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); if (Count.hasValue()) return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) return TM_ForcedByUser; if (hasDisableAllTransformsHint(L)) return TM_Disable; return TM_Unspecified; } TransformationMode llvm::hasVectorizeTransformation(Loop *L) { Optional Enable = getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); if (Enable == false) return TM_SuppressedByUser; Optional VectorizeWidth = getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); Optional InterleaveCount = getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); // 'Forcing' vector width and interleave count to one effectively disables // this tranformation. if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) return TM_SuppressedByUser; if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) return TM_Disable; if (Enable == true) return TM_ForcedByUser; if (VectorizeWidth == 1 && InterleaveCount == 1) return TM_Disable; if (VectorizeWidth > 1 || InterleaveCount > 1) return TM_Enable; if (hasDisableAllTransformsHint(L)) return TM_Disable; return TM_Unspecified; } TransformationMode llvm::hasDistributeTransformation(Loop *L) { if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) return TM_ForcedByUser; if (hasDisableAllTransformsHint(L)) return TM_Disable; return TM_Unspecified; } TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) return TM_SuppressedByUser; if (hasDisableAllTransformsHint(L)) return TM_Disable; return TM_Unspecified; } /// Does a BFS from a given node to all of its children inside a given loop. /// The returned vector of nodes includes the starting point. SmallVector llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { SmallVector Worklist; auto AddRegionToWorklist = [&](DomTreeNode *DTN) { // Only include subregions in the top level loop. BasicBlock *BB = DTN->getBlock(); if (CurLoop->contains(BB)) Worklist.push_back(DTN); }; AddRegionToWorklist(N); for (size_t I = 0; I < Worklist.size(); I++) for (DomTreeNode *Child : Worklist[I]->getChildren()) AddRegionToWorklist(Child); return Worklist; } void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, ScalarEvolution *SE = nullptr, LoopInfo *LI = nullptr) { assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); auto *Preheader = L->getLoopPreheader(); assert(Preheader && "Preheader should exist!"); // Now that we know the removal is safe, remove the loop by changing the // branch from the preheader to go to the single exit block. // // Because we're deleting a large chunk of code at once, the sequence in which // we remove things is very important to avoid invalidation issues. // Tell ScalarEvolution that the loop is deleted. Do this before // deleting the loop so that ScalarEvolution can look at the loop // to determine what it needs to clean up. if (SE) SE->forgetLoop(L); auto *ExitBlock = L->getUniqueExitBlock(); assert(ExitBlock && "Should have a unique exit block!"); assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); auto *OldBr = dyn_cast(Preheader->getTerminator()); assert(OldBr && "Preheader must end with a branch"); assert(OldBr->isUnconditional() && "Preheader must have a single successor"); // Connect the preheader to the exit block. Keep the old edge to the header // around to perform the dominator tree update in two separate steps // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge // preheader -> header. // // // 0. Preheader 1. Preheader 2. Preheader // | | | | // V | V | // Header <--\ | Header <--\ | Header <--\ // | | | | | | | | | | | // | V | | | V | | | V | // | Body --/ | | Body --/ | | Body --/ // V V V V V // Exit Exit Exit // // By doing this is two separate steps we can perform the dominator tree // update without using the batch update API. // // Even when the loop is never executed, we cannot remove the edge from the // source block to the exit block. Consider the case where the unexecuted loop // branches back to an outer loop. If we deleted the loop and removed the edge // coming to this inner loop, this will break the outer loop structure (by // deleting the backedge of the outer loop). If the outer loop is indeed a // non-loop, it will be deleted in a future iteration of loop deletion pass. IRBuilder<> Builder(OldBr); Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); // Remove the old branch. The conditional branch becomes a new terminator. OldBr->eraseFromParent(); // Rewrite phis in the exit block to get their inputs from the Preheader // instead of the exiting block. for (PHINode &P : ExitBlock->phis()) { // Set the zero'th element of Phi to be from the preheader and remove all // other incoming values. Given the loop has dedicated exits, all other // incoming values must be from the exiting blocks. int PredIndex = 0; P.setIncomingBlock(PredIndex, Preheader); // Removes all incoming values from all other exiting blocks (including // duplicate values from an exiting block). // Nuke all entries except the zero'th entry which is the preheader entry. // NOTE! We need to remove Incoming Values in the reverse order as done // below, to keep the indices valid for deletion (removeIncomingValues // updates getNumIncomingValues and shifts all values down into the operand // being deleted). for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) P.removeIncomingValue(e - i, false); assert((P.getNumIncomingValues() == 1 && P.getIncomingBlock(PredIndex) == Preheader) && "Should have exactly one value and that's from the preheader!"); } // Disconnect the loop body by branching directly to its exit. Builder.SetInsertPoint(Preheader->getTerminator()); Builder.CreateBr(ExitBlock); // Remove the old branch. Preheader->getTerminator()->eraseFromParent(); DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); if (DT) { // Update the dominator tree by informing it about the new edge from the // preheader to the exit and the removed edge. DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}, {DominatorTree::Delete, Preheader, L->getHeader()}}); } // Use a map to unique and a vector to guarantee deterministic ordering. llvm::SmallDenseSet, 4> DeadDebugSet; llvm::SmallVector DeadDebugInst; // Given LCSSA form is satisfied, we should not have users of instructions // within the dead loop outside of the loop. However, LCSSA doesn't take // unreachable uses into account. We handle them here. // We could do it after drop all references (in this case all users in the // loop will be already eliminated and we have less work to do but according // to API doc of User::dropAllReferences only valid operation after dropping // references, is deletion. So let's substitute all usages of // instruction from the loop with undef value of corresponding type first. for (auto *Block : L->blocks()) for (Instruction &I : *Block) { auto *Undef = UndefValue::get(I.getType()); for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { Use &U = *UI; ++UI; if (auto *Usr = dyn_cast(U.getUser())) if (L->contains(Usr->getParent())) continue; // If we have a DT then we can check that uses outside a loop only in // unreachable block. if (DT) assert(!DT->isReachableFromEntry(U) && "Unexpected user in reachable block"); U.set(Undef); } auto *DVI = dyn_cast(&I); if (!DVI) continue; auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); if (Key != DeadDebugSet.end()) continue; DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); DeadDebugInst.push_back(DVI); } // After the loop has been deleted all the values defined and modified // inside the loop are going to be unavailable. // Since debug values in the loop have been deleted, inserting an undef // dbg.value truncates the range of any dbg.value before the loop where the // loop used to be. This is particularly important for constant values. DIBuilder DIB(*ExitBlock->getModule()); Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); assert(InsertDbgValueBefore && "There should be a non-PHI instruction in exit block, else these " "instructions will have no parent."); for (auto *DVI : DeadDebugInst) DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(), DVI->getExpression(), DVI->getDebugLoc(), InsertDbgValueBefore); // Remove the block from the reference counting scheme, so that we can // delete it freely later. for (auto *Block : L->blocks()) Block->dropAllReferences(); if (LI) { // Erase the instructions and the blocks without having to worry // about ordering because we already dropped the references. // NOTE: This iteration is safe because erasing the block does not remove // its entry from the loop's block list. We do that in the next section. for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); LpI != LpE; ++LpI) (*LpI)->eraseFromParent(); // Finally, the blocks from loopinfo. This has to happen late because // otherwise our loop iterators won't work. SmallPtrSet blocks; blocks.insert(L->block_begin(), L->block_end()); for (BasicBlock *BB : blocks) LI->removeBlock(BB); // The last step is to update LoopInfo now that we've eliminated this loop. LI->erase(L); } } Optional llvm::getLoopEstimatedTripCount(Loop *L) { // Support loops with an exiting latch and other existing exists only // deoptimize. // Get the branch weights for the loop's backedge. BasicBlock *Latch = L->getLoopLatch(); if (!Latch) return None; BranchInst *LatchBR = dyn_cast(Latch->getTerminator()); if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) return None; assert((LatchBR->getSuccessor(0) == L->getHeader() || LatchBR->getSuccessor(1) == L->getHeader()) && "At least one edge out of the latch must go to the header"); SmallVector ExitBlocks; L->getUniqueNonLatchExitBlocks(ExitBlocks); if (any_of(ExitBlocks, [](const BasicBlock *EB) { return !EB->getTerminatingDeoptimizeCall(); })) return None; // To estimate the number of times the loop body was executed, we want to // know the number of times the backedge was taken, vs. the number of times // we exited the loop. uint64_t TrueVal, FalseVal; if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) return None; if (!TrueVal || !FalseVal) return 0; // Divide the count of the backedge by the count of the edge exiting the loop, // rounding to nearest. if (LatchBR->getSuccessor(0) == L->getHeader()) return (TrueVal + (FalseVal / 2)) / FalseVal; else return (FalseVal + (TrueVal / 2)) / TrueVal; } bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, ScalarEvolution &SE) { Loop *OuterL = InnerLoop->getParentLoop(); if (!OuterL) return true; // Get the backedge taken count for the inner loop BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); if (isa(InnerLoopBECountSC) || !InnerLoopBECountSC->getType()->isIntegerTy()) return false; // Get whether count is invariant to the outer loop ScalarEvolution::LoopDisposition LD = SE.getLoopDisposition(InnerLoopBECountSC, OuterL); if (LD != ScalarEvolution::LoopInvariant) return false; return true; } Value *llvm::createMinMaxOp(IRBuilder<> &Builder, RecurrenceDescriptor::MinMaxRecurrenceKind RK, Value *Left, Value *Right) { CmpInst::Predicate P = CmpInst::ICMP_NE; switch (RK) { default: llvm_unreachable("Unknown min/max recurrence kind"); case RecurrenceDescriptor::MRK_UIntMin: P = CmpInst::ICMP_ULT; break; case RecurrenceDescriptor::MRK_UIntMax: P = CmpInst::ICMP_UGT; break; case RecurrenceDescriptor::MRK_SIntMin: P = CmpInst::ICMP_SLT; break; case RecurrenceDescriptor::MRK_SIntMax: P = CmpInst::ICMP_SGT; break; case RecurrenceDescriptor::MRK_FloatMin: P = CmpInst::FCMP_OLT; break; case RecurrenceDescriptor::MRK_FloatMax: P = CmpInst::FCMP_OGT; break; } // We only match FP sequences that are 'fast', so we can unconditionally // set it on any generated instructions. IRBuilder<>::FastMathFlagGuard FMFG(Builder); FastMathFlags FMF; FMF.setFast(); Builder.setFastMathFlags(FMF); Value *Cmp; if (RK == RecurrenceDescriptor::MRK_FloatMin || RK == RecurrenceDescriptor::MRK_FloatMax) Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); else Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); return Select; } // Helper to generate an ordered reduction. Value * llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, unsigned Op, RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, ArrayRef RedOps) { unsigned VF = Src->getType()->getVectorNumElements(); // Extract and apply reduction ops in ascending order: // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] Value *Result = Acc; for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { Value *Ext = Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); if (Op != Instruction::ICmp && Op != Instruction::FCmp) { Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, "bin.rdx"); } else { assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && "Invalid min/max"); Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); } if (!RedOps.empty()) propagateIRFlags(Result, RedOps); } return Result; } // Helper to generate a log2 shuffle reduction. Value * llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, ArrayRef RedOps) { unsigned VF = Src->getType()->getVectorNumElements(); // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles // and vector ops, reducing the set of values being computed by half each // round. assert(isPowerOf2_32(VF) && "Reduction emission only supported for pow2 vectors!"); Value *TmpVec = Src; SmallVector ShuffleMask(VF, nullptr); for (unsigned i = VF; i != 1; i >>= 1) { // Move the upper half of the vector to the lower half. for (unsigned j = 0; j != i / 2; ++j) ShuffleMask[j] = Builder.getInt32(i / 2 + j); // Fill the rest of the mask with undef. std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), UndefValue::get(Builder.getInt32Ty())); Value *Shuf = Builder.CreateShuffleVector( TmpVec, UndefValue::get(TmpVec->getType()), ConstantVector::get(ShuffleMask), "rdx.shuf"); if (Op != Instruction::ICmp && Op != Instruction::FCmp) { // The builder propagates its fast-math-flags setting. TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"); } else { assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && "Invalid min/max"); TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); } if (!RedOps.empty()) propagateIRFlags(TmpVec, RedOps); } // The result is in the first element of the vector. return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); } /// Create a simple vector reduction specified by an opcode and some /// flags (if generating min/max reductions). Value *llvm::createSimpleTargetReduction( IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, Value *Src, TargetTransformInfo::ReductionFlags Flags, ArrayRef RedOps) { assert(isa(Src->getType()) && "Type must be a vector"); std::function BuildFunc; using RD = RecurrenceDescriptor; RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; switch (Opcode) { case Instruction::Add: BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; break; case Instruction::Mul: BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; break; case Instruction::And: BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; break; case Instruction::Or: BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; break; case Instruction::Xor: BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; break; case Instruction::FAdd: BuildFunc = [&]() { auto Rdx = Builder.CreateFAddReduce( Constant::getNullValue(Src->getType()->getVectorElementType()), Src); return Rdx; }; break; case Instruction::FMul: BuildFunc = [&]() { Type *Ty = Src->getType()->getVectorElementType(); auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src); return Rdx; }; break; case Instruction::ICmp: if (Flags.IsMaxOp) { MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; BuildFunc = [&]() { return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); }; } else { MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; BuildFunc = [&]() { return Builder.CreateIntMinReduce(Src, Flags.IsSigned); }; } break; case Instruction::FCmp: if (Flags.IsMaxOp) { MinMaxKind = RD::MRK_FloatMax; BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; } else { MinMaxKind = RD::MRK_FloatMin; BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; } break; default: llvm_unreachable("Unhandled opcode"); break; } if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) return BuildFunc(); return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); } /// Create a vector reduction using a given recurrence descriptor. Value *llvm::createTargetReduction(IRBuilder<> &B, const TargetTransformInfo *TTI, RecurrenceDescriptor &Desc, Value *Src, bool NoNaN) { // TODO: Support in-order reductions based on the recurrence descriptor. using RD = RecurrenceDescriptor; RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); TargetTransformInfo::ReductionFlags Flags; Flags.NoNaN = NoNaN; // All ops in the reduction inherit fast-math-flags from the recurrence // descriptor. IRBuilder<>::FastMathFlagGuard FMFGuard(B); B.setFastMathFlags(Desc.getFastMathFlags()); switch (RecKind) { case RD::RK_FloatAdd: return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); case RD::RK_FloatMult: return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); case RD::RK_IntegerAdd: return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); case RD::RK_IntegerMult: return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); case RD::RK_IntegerAnd: return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); case RD::RK_IntegerOr: return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); case RD::RK_IntegerXor: return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); case RD::RK_IntegerMinMax: { RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); } case RD::RK_FloatMinMax: { Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); } default: llvm_unreachable("Unhandled RecKind"); } } void llvm::propagateIRFlags(Value *I, ArrayRef VL, Value *OpValue) { auto *VecOp = dyn_cast(I); if (!VecOp) return; auto *Intersection = (OpValue == nullptr) ? dyn_cast(VL[0]) : dyn_cast(OpValue); if (!Intersection) return; const unsigned Opcode = Intersection->getOpcode(); VecOp->copyIRFlags(Intersection); for (auto *V : VL) { auto *Instr = dyn_cast(V); if (!Instr) continue; if (OpValue == nullptr || Opcode == Instr->getOpcode()) VecOp->andIRFlags(V); } } bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE) { const SCEV *Zero = SE.getZero(S->getType()); return SE.isAvailableAtLoopEntry(S, L) && SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); } bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE) { const SCEV *Zero = SE.getZero(S->getType()); return SE.isAvailableAtLoopEntry(S, L) && SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); } bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed) { unsigned BitWidth = cast(S->getType())->getBitWidth(); APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : APInt::getMinValue(BitWidth); auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; return SE.isAvailableAtLoopEntry(S, L) && SE.isLoopEntryGuardedByCond(L, Predicate, S, SE.getConstant(Min)); } bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed) { unsigned BitWidth = cast(S->getType())->getBitWidth(); APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : APInt::getMaxValue(BitWidth); auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; return SE.isAvailableAtLoopEntry(S, L) && SE.isLoopEntryGuardedByCond(L, Predicate, S, SE.getConstant(Max)); }