xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopSimplify.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
11 // more effective.
12 //
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header.  This simplifies a
15 // number of analyses and transformations, such as LICM.
16 //
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header).  This simplifies transformations such as store-sinking
21 // that are built into LICM.
22 //
23 // This pass also guarantees that loops will have exactly one backedge.
24 //
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
29 //
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
32 //
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
35 // generated code.
36 //
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SetOperations.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/BasicAliasAnalysis.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/Utils.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/LoopUtils.h"
76 using namespace llvm;
77 
78 #define DEBUG_TYPE "loop-simplify"
79 
80 STATISTIC(NumNested  , "Number of nested loops split out");
81 
82 // If the block isn't already, move the new block to right after some 'outside
83 // block' block.  This prevents the preheader from being placed inside the loop
84 // body, e.g. when the loop hasn't been rotated.
85 static void placeSplitBlockCarefully(BasicBlock *NewBB,
86                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
87                                      Loop *L) {
88   // Check to see if NewBB is already well placed.
89   Function::iterator BBI = --NewBB->getIterator();
90   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
91     if (&*BBI == SplitPreds[i])
92       return;
93   }
94 
95   // If it isn't already after an outside block, move it after one.  This is
96   // always good as it makes the uncond branch from the outside block into a
97   // fall-through.
98 
99   // Figure out *which* outside block to put this after.  Prefer an outside
100   // block that neighbors a BB actually in the loop.
101   BasicBlock *FoundBB = nullptr;
102   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
103     Function::iterator BBI = SplitPreds[i]->getIterator();
104     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
105       FoundBB = SplitPreds[i];
106       break;
107     }
108   }
109 
110   // If our heuristic for a *good* bb to place this after doesn't find
111   // anything, just pick something.  It's likely better than leaving it within
112   // the loop.
113   if (!FoundBB)
114     FoundBB = SplitPreds[0];
115   NewBB->moveAfter(FoundBB);
116 }
117 
118 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
119 /// preheader, this method is called to insert one.  This method has two phases:
120 /// preheader insertion and analysis updating.
121 ///
122 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
123                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
124                                          bool PreserveLCSSA) {
125   BasicBlock *Header = L->getHeader();
126 
127   // Compute the set of predecessors of the loop that are not in the loop.
128   SmallVector<BasicBlock*, 8> OutsideBlocks;
129   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
130        PI != PE; ++PI) {
131     BasicBlock *P = *PI;
132     if (!L->contains(P)) {         // Coming in from outside the loop?
133       // If the loop is branched to from an indirect terminator, we won't
134       // be able to fully transform the loop, because it prohibits
135       // edge splitting.
136       if (P->getTerminator()->isIndirectTerminator())
137         return nullptr;
138 
139       // Keep track of it.
140       OutsideBlocks.push_back(P);
141     }
142   }
143 
144   // Split out the loop pre-header.
145   BasicBlock *PreheaderBB;
146   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
147                                        LI, MSSAU, PreserveLCSSA);
148   if (!PreheaderBB)
149     return nullptr;
150 
151   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
152                     << PreheaderBB->getName() << "\n");
153 
154   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
155   // code layout too horribly.
156   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
157 
158   return PreheaderBB;
159 }
160 
161 /// Add the specified block, and all of its predecessors, to the specified set,
162 /// if it's not already in there.  Stop predecessor traversal when we reach
163 /// StopBlock.
164 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
165                                   std::set<BasicBlock*> &Blocks) {
166   SmallVector<BasicBlock *, 8> Worklist;
167   Worklist.push_back(InputBB);
168   do {
169     BasicBlock *BB = Worklist.pop_back_val();
170     if (Blocks.insert(BB).second && BB != StopBlock)
171       // If BB is not already processed and it is not a stop block then
172       // insert its predecessor in the work list
173       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
174         BasicBlock *WBB = *I;
175         Worklist.push_back(WBB);
176       }
177   } while (!Worklist.empty());
178 }
179 
180 /// The first part of loop-nestification is to find a PHI node that tells
181 /// us how to partition the loops.
182 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
183                                         AssumptionCache *AC) {
184   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
185   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
186     PHINode *PN = cast<PHINode>(I);
187     ++I;
188     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
189       // This is a degenerate PHI already, don't modify it!
190       PN->replaceAllUsesWith(V);
191       PN->eraseFromParent();
192       continue;
193     }
194 
195     // Scan this PHI node looking for a use of the PHI node by itself.
196     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
197       if (PN->getIncomingValue(i) == PN &&
198           L->contains(PN->getIncomingBlock(i)))
199         // We found something tasty to remove.
200         return PN;
201   }
202   return nullptr;
203 }
204 
205 /// If this loop has multiple backedges, try to pull one of them out into
206 /// a nested loop.
207 ///
208 /// This is important for code that looks like
209 /// this:
210 ///
211 ///  Loop:
212 ///     ...
213 ///     br cond, Loop, Next
214 ///     ...
215 ///     br cond2, Loop, Out
216 ///
217 /// To identify this common case, we look at the PHI nodes in the header of the
218 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
219 /// that change in the "outer" loop, but not in the "inner" loop.
220 ///
221 /// If we are able to separate out a loop, return the new outer loop that was
222 /// created.
223 ///
224 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
225                                 DominatorTree *DT, LoopInfo *LI,
226                                 ScalarEvolution *SE, bool PreserveLCSSA,
227                                 AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
228   // Don't try to separate loops without a preheader.
229   if (!Preheader)
230     return nullptr;
231 
232   // The header is not a landing pad; preheader insertion should ensure this.
233   BasicBlock *Header = L->getHeader();
234   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
235 
236   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
237   if (!PN) return nullptr;  // No known way to partition.
238 
239   // Pull out all predecessors that have varying values in the loop.  This
240   // handles the case when a PHI node has multiple instances of itself as
241   // arguments.
242   SmallVector<BasicBlock*, 8> OuterLoopPreds;
243   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
244     if (PN->getIncomingValue(i) != PN ||
245         !L->contains(PN->getIncomingBlock(i))) {
246       // We can't split indirect control flow edges.
247       if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
248         return nullptr;
249       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
250     }
251   }
252   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
253 
254   // If ScalarEvolution is around and knows anything about values in
255   // this loop, tell it to forget them, because we're about to
256   // substantially change it.
257   if (SE)
258     SE->forgetLoop(L);
259 
260   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
261                                              DT, LI, MSSAU, PreserveLCSSA);
262 
263   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
264   // code layout too horribly.
265   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
266 
267   // Create the new outer loop.
268   Loop *NewOuter = LI->AllocateLoop();
269 
270   // Change the parent loop to use the outer loop as its child now.
271   if (Loop *Parent = L->getParentLoop())
272     Parent->replaceChildLoopWith(L, NewOuter);
273   else
274     LI->changeTopLevelLoop(L, NewOuter);
275 
276   // L is now a subloop of our outer loop.
277   NewOuter->addChildLoop(L);
278 
279   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
280        I != E; ++I)
281     NewOuter->addBlockEntry(*I);
282 
283   // Now reset the header in L, which had been moved by
284   // SplitBlockPredecessors for the outer loop.
285   L->moveToHeader(Header);
286 
287   // Determine which blocks should stay in L and which should be moved out to
288   // the Outer loop now.
289   std::set<BasicBlock*> BlocksInL;
290   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
291     BasicBlock *P = *PI;
292     if (DT->dominates(Header, P))
293       addBlockAndPredsToSet(P, Header, BlocksInL);
294   }
295 
296   // Scan all of the loop children of L, moving them to OuterLoop if they are
297   // not part of the inner loop.
298   const std::vector<Loop*> &SubLoops = L->getSubLoops();
299   for (size_t I = 0; I != SubLoops.size(); )
300     if (BlocksInL.count(SubLoops[I]->getHeader()))
301       ++I;   // Loop remains in L
302     else
303       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
304 
305   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
306   OuterLoopBlocks.push_back(NewBB);
307   // Now that we know which blocks are in L and which need to be moved to
308   // OuterLoop, move any blocks that need it.
309   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
310     BasicBlock *BB = L->getBlocks()[i];
311     if (!BlocksInL.count(BB)) {
312       // Move this block to the parent, updating the exit blocks sets
313       L->removeBlockFromLoop(BB);
314       if ((*LI)[BB] == L) {
315         LI->changeLoopFor(BB, NewOuter);
316         OuterLoopBlocks.push_back(BB);
317       }
318       --i;
319     }
320   }
321 
322   // Split edges to exit blocks from the inner loop, if they emerged in the
323   // process of separating the outer one.
324   formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
325 
326   if (PreserveLCSSA) {
327     // Fix LCSSA form for L. Some values, which previously were only used inside
328     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
329     // in corresponding exit blocks.
330     // We don't need to form LCSSA recursively, because there cannot be uses
331     // inside a newly created loop of defs from inner loops as those would
332     // already be a use of an LCSSA phi node.
333     formLCSSA(*L, *DT, LI, SE);
334 
335     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
336            "LCSSA is broken after separating nested loops!");
337   }
338 
339   return NewOuter;
340 }
341 
342 /// This method is called when the specified loop has more than one
343 /// backedge in it.
344 ///
345 /// If this occurs, revector all of these backedges to target a new basic block
346 /// and have that block branch to the loop header.  This ensures that loops
347 /// have exactly one backedge.
348 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
349                                              DominatorTree *DT, LoopInfo *LI,
350                                              MemorySSAUpdater *MSSAU) {
351   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
352 
353   // Get information about the loop
354   BasicBlock *Header = L->getHeader();
355   Function *F = Header->getParent();
356 
357   // Unique backedge insertion currently depends on having a preheader.
358   if (!Preheader)
359     return nullptr;
360 
361   // The header is not an EH pad; preheader insertion should ensure this.
362   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
363 
364   // Figure out which basic blocks contain back-edges to the loop header.
365   std::vector<BasicBlock*> BackedgeBlocks;
366   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
367     BasicBlock *P = *I;
368 
369     // Indirect edges cannot be split, so we must fail if we find one.
370     if (P->getTerminator()->isIndirectTerminator())
371       return nullptr;
372 
373     if (P != Preheader) BackedgeBlocks.push_back(P);
374   }
375 
376   // Create and insert the new backedge block...
377   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
378                                            Header->getName() + ".backedge", F);
379   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
380   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
381 
382   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
383                     << BEBlock->getName() << "\n");
384 
385   // Move the new backedge block to right after the last backedge block.
386   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
387   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
388 
389   // Now that the block has been inserted into the function, create PHI nodes in
390   // the backedge block which correspond to any PHI nodes in the header block.
391   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
392     PHINode *PN = cast<PHINode>(I);
393     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
394                                      PN->getName()+".be", BETerminator);
395 
396     // Loop over the PHI node, moving all entries except the one for the
397     // preheader over to the new PHI node.
398     unsigned PreheaderIdx = ~0U;
399     bool HasUniqueIncomingValue = true;
400     Value *UniqueValue = nullptr;
401     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
402       BasicBlock *IBB = PN->getIncomingBlock(i);
403       Value *IV = PN->getIncomingValue(i);
404       if (IBB == Preheader) {
405         PreheaderIdx = i;
406       } else {
407         NewPN->addIncoming(IV, IBB);
408         if (HasUniqueIncomingValue) {
409           if (!UniqueValue)
410             UniqueValue = IV;
411           else if (UniqueValue != IV)
412             HasUniqueIncomingValue = false;
413         }
414       }
415     }
416 
417     // Delete all of the incoming values from the old PN except the preheader's
418     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
419     if (PreheaderIdx != 0) {
420       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
421       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
422     }
423     // Nuke all entries except the zero'th.
424     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
425       PN->removeIncomingValue(e-i, false);
426 
427     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
428     PN->addIncoming(NewPN, BEBlock);
429 
430     // As an optimization, if all incoming values in the new PhiNode (which is a
431     // subset of the incoming values of the old PHI node) have the same value,
432     // eliminate the PHI Node.
433     if (HasUniqueIncomingValue) {
434       NewPN->replaceAllUsesWith(UniqueValue);
435       BEBlock->getInstList().erase(NewPN);
436     }
437   }
438 
439   // Now that all of the PHI nodes have been inserted and adjusted, modify the
440   // backedge blocks to jump to the BEBlock instead of the header.
441   // If one of the backedges has llvm.loop metadata attached, we remove
442   // it from the backedge and add it to BEBlock.
443   unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
444   MDNode *LoopMD = nullptr;
445   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
446     Instruction *TI = BackedgeBlocks[i]->getTerminator();
447     if (!LoopMD)
448       LoopMD = TI->getMetadata(LoopMDKind);
449     TI->setMetadata(LoopMDKind, nullptr);
450     TI->replaceSuccessorWith(Header, BEBlock);
451   }
452   BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
453 
454   //===--- Update all analyses which we must preserve now -----------------===//
455 
456   // Update Loop Information - we know that this block is now in the current
457   // loop and all parent loops.
458   L->addBasicBlockToLoop(BEBlock, *LI);
459 
460   // Update dominator information
461   DT->splitBlock(BEBlock);
462 
463   if (MSSAU)
464     MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
465                                                       BEBlock);
466 
467   return BEBlock;
468 }
469 
470 /// Simplify one loop and queue further loops for simplification.
471 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
472                             DominatorTree *DT, LoopInfo *LI,
473                             ScalarEvolution *SE, AssumptionCache *AC,
474                             MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
475   bool Changed = false;
476   if (MSSAU && VerifyMemorySSA)
477     MSSAU->getMemorySSA()->verifyMemorySSA();
478 
479 ReprocessLoop:
480 
481   // Check to see that no blocks (other than the header) in this loop have
482   // predecessors that are not in the loop.  This is not valid for natural
483   // loops, but can occur if the blocks are unreachable.  Since they are
484   // unreachable we can just shamelessly delete those CFG edges!
485   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
486        BB != E; ++BB) {
487     if (*BB == L->getHeader()) continue;
488 
489     SmallPtrSet<BasicBlock*, 4> BadPreds;
490     for (pred_iterator PI = pred_begin(*BB),
491          PE = pred_end(*BB); PI != PE; ++PI) {
492       BasicBlock *P = *PI;
493       if (!L->contains(P))
494         BadPreds.insert(P);
495     }
496 
497     // Delete each unique out-of-loop (and thus dead) predecessor.
498     for (BasicBlock *P : BadPreds) {
499 
500       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
501                         << P->getName() << "\n");
502 
503       // Zap the dead pred's terminator and replace it with unreachable.
504       Instruction *TI = P->getTerminator();
505       changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA,
506                           /*DTU=*/nullptr, MSSAU);
507       Changed = true;
508     }
509   }
510 
511   if (MSSAU && VerifyMemorySSA)
512     MSSAU->getMemorySSA()->verifyMemorySSA();
513 
514   // If there are exiting blocks with branches on undef, resolve the undef in
515   // the direction which will exit the loop. This will help simplify loop
516   // trip count computations.
517   SmallVector<BasicBlock*, 8> ExitingBlocks;
518   L->getExitingBlocks(ExitingBlocks);
519   for (BasicBlock *ExitingBlock : ExitingBlocks)
520     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
521       if (BI->isConditional()) {
522         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
523 
524           LLVM_DEBUG(dbgs()
525                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
526                      << ExitingBlock->getName() << "\n");
527 
528           BI->setCondition(ConstantInt::get(Cond->getType(),
529                                             !L->contains(BI->getSuccessor(0))));
530 
531           Changed = true;
532         }
533       }
534 
535   // Does the loop already have a preheader?  If so, don't insert one.
536   BasicBlock *Preheader = L->getLoopPreheader();
537   if (!Preheader) {
538     Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
539     if (Preheader)
540       Changed = true;
541   }
542 
543   // Next, check to make sure that all exit nodes of the loop only have
544   // predecessors that are inside of the loop.  This check guarantees that the
545   // loop preheader/header will dominate the exit blocks.  If the exit block has
546   // predecessors from outside of the loop, split the edge now.
547   if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
548     Changed = true;
549 
550   if (MSSAU && VerifyMemorySSA)
551     MSSAU->getMemorySSA()->verifyMemorySSA();
552 
553   // If the header has more than two predecessors at this point (from the
554   // preheader and from multiple backedges), we must adjust the loop.
555   BasicBlock *LoopLatch = L->getLoopLatch();
556   if (!LoopLatch) {
557     // If this is really a nested loop, rip it out into a child loop.  Don't do
558     // this for loops with a giant number of backedges, just factor them into a
559     // common backedge instead.
560     if (L->getNumBackEdges() < 8) {
561       if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
562                                             PreserveLCSSA, AC, MSSAU)) {
563         ++NumNested;
564         // Enqueue the outer loop as it should be processed next in our
565         // depth-first nest walk.
566         Worklist.push_back(OuterL);
567 
568         // This is a big restructuring change, reprocess the whole loop.
569         Changed = true;
570         // GCC doesn't tail recursion eliminate this.
571         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
572         goto ReprocessLoop;
573       }
574     }
575 
576     // If we either couldn't, or didn't want to, identify nesting of the loops,
577     // insert a new block that all backedges target, then make it jump to the
578     // loop header.
579     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
580     if (LoopLatch)
581       Changed = true;
582   }
583 
584   if (MSSAU && VerifyMemorySSA)
585     MSSAU->getMemorySSA()->verifyMemorySSA();
586 
587   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
588 
589   // Scan over the PHI nodes in the loop header.  Since they now have only two
590   // incoming values (the loop is canonicalized), we may have simplified the PHI
591   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
592   PHINode *PN;
593   for (BasicBlock::iterator I = L->getHeader()->begin();
594        (PN = dyn_cast<PHINode>(I++)); )
595     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
596       if (SE) SE->forgetValue(PN);
597       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
598         PN->replaceAllUsesWith(V);
599         PN->eraseFromParent();
600       }
601     }
602 
603   // If this loop has multiple exits and the exits all go to the same
604   // block, attempt to merge the exits. This helps several passes, such
605   // as LoopRotation, which do not support loops with multiple exits.
606   // SimplifyCFG also does this (and this code uses the same utility
607   // function), however this code is loop-aware, where SimplifyCFG is
608   // not. That gives it the advantage of being able to hoist
609   // loop-invariant instructions out of the way to open up more
610   // opportunities, and the disadvantage of having the responsibility
611   // to preserve dominator information.
612   auto HasUniqueExitBlock = [&]() {
613     BasicBlock *UniqueExit = nullptr;
614     for (auto *ExitingBB : ExitingBlocks)
615       for (auto *SuccBB : successors(ExitingBB)) {
616         if (L->contains(SuccBB))
617           continue;
618 
619         if (!UniqueExit)
620           UniqueExit = SuccBB;
621         else if (UniqueExit != SuccBB)
622           return false;
623       }
624 
625     return true;
626   };
627   if (HasUniqueExitBlock()) {
628     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
629       BasicBlock *ExitingBlock = ExitingBlocks[i];
630       if (!ExitingBlock->getSinglePredecessor()) continue;
631       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
632       if (!BI || !BI->isConditional()) continue;
633       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
634       if (!CI || CI->getParent() != ExitingBlock) continue;
635 
636       // Attempt to hoist out all instructions except for the
637       // comparison and the branch.
638       bool AllInvariant = true;
639       bool AnyInvariant = false;
640       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
641         Instruction *Inst = &*I++;
642         if (Inst == CI)
643           continue;
644         if (!L->makeLoopInvariant(
645                 Inst, AnyInvariant,
646                 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) {
647           AllInvariant = false;
648           break;
649         }
650       }
651       if (AnyInvariant) {
652         Changed = true;
653         // The loop disposition of all SCEV expressions that depend on any
654         // hoisted values have also changed.
655         if (SE)
656           SE->forgetLoopDispositions(L);
657       }
658       if (!AllInvariant) continue;
659 
660       // The block has now been cleared of all instructions except for
661       // a comparison and a conditional branch. SimplifyCFG may be able
662       // to fold it now.
663       if (!FoldBranchToCommonDest(BI, MSSAU))
664         continue;
665 
666       // Success. The block is now dead, so remove it from the loop,
667       // update the dominator tree and delete it.
668       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
669                         << ExitingBlock->getName() << "\n");
670 
671       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
672       Changed = true;
673       LI->removeBlock(ExitingBlock);
674 
675       DomTreeNode *Node = DT->getNode(ExitingBlock);
676       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
677         Node->getChildren();
678       while (!Children.empty()) {
679         DomTreeNode *Child = Children.front();
680         DT->changeImmediateDominator(Child, Node->getIDom());
681       }
682       DT->eraseNode(ExitingBlock);
683       if (MSSAU) {
684         SmallSetVector<BasicBlock *, 8> ExitBlockSet;
685         ExitBlockSet.insert(ExitingBlock);
686         MSSAU->removeBlocks(ExitBlockSet);
687       }
688 
689       BI->getSuccessor(0)->removePredecessor(
690           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
691       BI->getSuccessor(1)->removePredecessor(
692           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
693       ExitingBlock->eraseFromParent();
694     }
695   }
696 
697   // Changing exit conditions for blocks may affect exit counts of this loop and
698   // any of its paretns, so we must invalidate the entire subtree if we've made
699   // any changes.
700   if (Changed && SE)
701     SE->forgetTopmostLoop(L);
702 
703   if (MSSAU && VerifyMemorySSA)
704     MSSAU->getMemorySSA()->verifyMemorySSA();
705 
706   return Changed;
707 }
708 
709 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
710                         ScalarEvolution *SE, AssumptionCache *AC,
711                         MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
712   bool Changed = false;
713 
714 #ifndef NDEBUG
715   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
716   // form.
717   if (PreserveLCSSA) {
718     assert(DT && "DT not available.");
719     assert(LI && "LI not available.");
720     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
721            "Requested to preserve LCSSA, but it's already broken.");
722   }
723 #endif
724 
725   // Worklist maintains our depth-first queue of loops in this nest to process.
726   SmallVector<Loop *, 4> Worklist;
727   Worklist.push_back(L);
728 
729   // Walk the worklist from front to back, pushing newly found sub loops onto
730   // the back. This will let us process loops from back to front in depth-first
731   // order. We can use this simple process because loops form a tree.
732   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
733     Loop *L2 = Worklist[Idx];
734     Worklist.append(L2->begin(), L2->end());
735   }
736 
737   while (!Worklist.empty())
738     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
739                                AC, MSSAU, PreserveLCSSA);
740 
741   return Changed;
742 }
743 
744 namespace {
745   struct LoopSimplify : public FunctionPass {
746     static char ID; // Pass identification, replacement for typeid
747     LoopSimplify() : FunctionPass(ID) {
748       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
749     }
750 
751     bool runOnFunction(Function &F) override;
752 
753     void getAnalysisUsage(AnalysisUsage &AU) const override {
754       AU.addRequired<AssumptionCacheTracker>();
755 
756       // We need loop information to identify the loops...
757       AU.addRequired<DominatorTreeWrapperPass>();
758       AU.addPreserved<DominatorTreeWrapperPass>();
759 
760       AU.addRequired<LoopInfoWrapperPass>();
761       AU.addPreserved<LoopInfoWrapperPass>();
762 
763       AU.addPreserved<BasicAAWrapperPass>();
764       AU.addPreserved<AAResultsWrapperPass>();
765       AU.addPreserved<GlobalsAAWrapperPass>();
766       AU.addPreserved<ScalarEvolutionWrapperPass>();
767       AU.addPreserved<SCEVAAWrapperPass>();
768       AU.addPreservedID(LCSSAID);
769       AU.addPreserved<DependenceAnalysisWrapperPass>();
770       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
771       AU.addPreserved<BranchProbabilityInfoWrapperPass>();
772       if (EnableMSSALoopDependency)
773         AU.addPreserved<MemorySSAWrapperPass>();
774     }
775 
776     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
777     void verifyAnalysis() const override;
778   };
779 }
780 
781 char LoopSimplify::ID = 0;
782 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
783                 "Canonicalize natural loops", false, false)
784 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
785 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
786 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
787 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
788                 "Canonicalize natural loops", false, false)
789 
790 // Publicly exposed interface to pass...
791 char &llvm::LoopSimplifyID = LoopSimplify::ID;
792 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
793 
794 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
795 /// it in any convenient order) inserting preheaders...
796 ///
797 bool LoopSimplify::runOnFunction(Function &F) {
798   bool Changed = false;
799   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
800   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
801   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
802   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
803   AssumptionCache *AC =
804       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
805   MemorySSA *MSSA = nullptr;
806   std::unique_ptr<MemorySSAUpdater> MSSAU;
807   if (EnableMSSALoopDependency) {
808     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
809     if (MSSAAnalysis) {
810       MSSA = &MSSAAnalysis->getMSSA();
811       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
812     }
813   }
814 
815   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
816 
817   // Simplify each loop nest in the function.
818   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
819     Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
820 
821 #ifndef NDEBUG
822   if (PreserveLCSSA) {
823     bool InLCSSA = all_of(
824         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
825     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
826   }
827 #endif
828   return Changed;
829 }
830 
831 PreservedAnalyses LoopSimplifyPass::run(Function &F,
832                                         FunctionAnalysisManager &AM) {
833   bool Changed = false;
834   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
835   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
836   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
837   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
838   auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
839   std::unique_ptr<MemorySSAUpdater> MSSAU;
840   if (MSSAAnalysis) {
841     auto *MSSA = &MSSAAnalysis->getMSSA();
842     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
843   }
844 
845 
846   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
847   // after simplifying the loops. MemorySSA is preserved if it exists.
848   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
849     Changed |=
850         simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
851 
852   if (!Changed)
853     return PreservedAnalyses::all();
854 
855   PreservedAnalyses PA;
856   PA.preserve<DominatorTreeAnalysis>();
857   PA.preserve<LoopAnalysis>();
858   PA.preserve<BasicAA>();
859   PA.preserve<GlobalsAA>();
860   PA.preserve<SCEVAA>();
861   PA.preserve<ScalarEvolutionAnalysis>();
862   PA.preserve<DependenceAnalysis>();
863   if (MSSAAnalysis)
864     PA.preserve<MemorySSAAnalysis>();
865   // BPI maps conditional terminators to probabilities, LoopSimplify can insert
866   // blocks, but it does so only by splitting existing blocks and edges. This
867   // results in the interesting property that all new terminators inserted are
868   // unconditional branches which do not appear in BPI. All deletions are
869   // handled via ValueHandle callbacks w/in BPI.
870   PA.preserve<BranchProbabilityAnalysis>();
871   return PA;
872 }
873 
874 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
875 // below.
876 #if 0
877 static void verifyLoop(Loop *L) {
878   // Verify subloops.
879   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
880     verifyLoop(*I);
881 
882   // It used to be possible to just assert L->isLoopSimplifyForm(), however
883   // with the introduction of indirectbr, there are now cases where it's
884   // not possible to transform a loop as necessary. We can at least check
885   // that there is an indirectbr near any time there's trouble.
886 
887   // Indirectbr can interfere with preheader and unique backedge insertion.
888   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
889     bool HasIndBrPred = false;
890     for (pred_iterator PI = pred_begin(L->getHeader()),
891          PE = pred_end(L->getHeader()); PI != PE; ++PI)
892       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
893         HasIndBrPred = true;
894         break;
895       }
896     assert(HasIndBrPred &&
897            "LoopSimplify has no excuse for missing loop header info!");
898     (void)HasIndBrPred;
899   }
900 
901   // Indirectbr can interfere with exit block canonicalization.
902   if (!L->hasDedicatedExits()) {
903     bool HasIndBrExiting = false;
904     SmallVector<BasicBlock*, 8> ExitingBlocks;
905     L->getExitingBlocks(ExitingBlocks);
906     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
907       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
908         HasIndBrExiting = true;
909         break;
910       }
911     }
912 
913     assert(HasIndBrExiting &&
914            "LoopSimplify has no excuse for missing exit block info!");
915     (void)HasIndBrExiting;
916   }
917 }
918 #endif
919 
920 void LoopSimplify::verifyAnalysis() const {
921   // FIXME: This routine is being called mid-way through the loop pass manager
922   // as loop passes destroy this analysis. That's actually fine, but we have no
923   // way of expressing that here. Once all of the passes that destroy this are
924   // hoisted out of the loop pass manager we can add back verification here.
925 #if 0
926   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
927     verifyLoop(*I);
928 #endif
929 }
930