1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs several transformations to transform natural loops into a 10 // simpler form, which makes subsequent analyses and transformations simpler and 11 // more effective. 12 // 13 // Loop pre-header insertion guarantees that there is a single, non-critical 14 // entry edge from outside of the loop to the loop header. This simplifies a 15 // number of analyses and transformations, such as LICM. 16 // 17 // Loop exit-block insertion guarantees that all exit blocks from the loop 18 // (blocks which are outside of the loop that have predecessors inside of the 19 // loop) only have predecessors from inside of the loop (and are thus dominated 20 // by the loop header). This simplifies transformations such as store-sinking 21 // that are built into LICM. 22 // 23 // This pass also guarantees that loops will have exactly one backedge. 24 // 25 // Indirectbr instructions introduce several complications. If the loop 26 // contains or is entered by an indirectbr instruction, it may not be possible 27 // to transform the loop and make these guarantees. Client code should check 28 // that these conditions are true before relying on them. 29 // 30 // Similar complications arise from callbr instructions, particularly in 31 // asm-goto where blockaddress expressions are used. 32 // 33 // Note that the simplifycfg pass will clean up blocks which are split out but 34 // end up being unnecessary, so usage of this pass should not pessimize 35 // generated code. 36 // 37 // This pass obviously modifies the CFG, but updates loop information and 38 // dominator information. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/Transforms/Utils/LoopSimplify.h" 43 #include "llvm/ADT/DepthFirstIterator.h" 44 #include "llvm/ADT/SetOperations.h" 45 #include "llvm/ADT/SetVector.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/AssumptionCache.h" 50 #include "llvm/Analysis/BasicAliasAnalysis.h" 51 #include "llvm/Analysis/BranchProbabilityInfo.h" 52 #include "llvm/Analysis/DependenceAnalysis.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemorySSA.h" 57 #include "llvm/Analysis/MemorySSAUpdater.h" 58 #include "llvm/Analysis/ScalarEvolution.h" 59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/LLVMContext.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Utils.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/LoopUtils.h" 76 using namespace llvm; 77 78 #define DEBUG_TYPE "loop-simplify" 79 80 STATISTIC(NumNested , "Number of nested loops split out"); 81 82 // If the block isn't already, move the new block to right after some 'outside 83 // block' block. This prevents the preheader from being placed inside the loop 84 // body, e.g. when the loop hasn't been rotated. 85 static void placeSplitBlockCarefully(BasicBlock *NewBB, 86 SmallVectorImpl<BasicBlock *> &SplitPreds, 87 Loop *L) { 88 // Check to see if NewBB is already well placed. 89 Function::iterator BBI = --NewBB->getIterator(); 90 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 91 if (&*BBI == SplitPreds[i]) 92 return; 93 } 94 95 // If it isn't already after an outside block, move it after one. This is 96 // always good as it makes the uncond branch from the outside block into a 97 // fall-through. 98 99 // Figure out *which* outside block to put this after. Prefer an outside 100 // block that neighbors a BB actually in the loop. 101 BasicBlock *FoundBB = nullptr; 102 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 103 Function::iterator BBI = SplitPreds[i]->getIterator(); 104 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { 105 FoundBB = SplitPreds[i]; 106 break; 107 } 108 } 109 110 // If our heuristic for a *good* bb to place this after doesn't find 111 // anything, just pick something. It's likely better than leaving it within 112 // the loop. 113 if (!FoundBB) 114 FoundBB = SplitPreds[0]; 115 NewBB->moveAfter(FoundBB); 116 } 117 118 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 119 /// preheader, this method is called to insert one. This method has two phases: 120 /// preheader insertion and analysis updating. 121 /// 122 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, 123 LoopInfo *LI, MemorySSAUpdater *MSSAU, 124 bool PreserveLCSSA) { 125 BasicBlock *Header = L->getHeader(); 126 127 // Compute the set of predecessors of the loop that are not in the loop. 128 SmallVector<BasicBlock*, 8> OutsideBlocks; 129 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 130 PI != PE; ++PI) { 131 BasicBlock *P = *PI; 132 if (!L->contains(P)) { // Coming in from outside the loop? 133 // If the loop is branched to from an indirect terminator, we won't 134 // be able to fully transform the loop, because it prohibits 135 // edge splitting. 136 if (P->getTerminator()->isIndirectTerminator()) 137 return nullptr; 138 139 // Keep track of it. 140 OutsideBlocks.push_back(P); 141 } 142 } 143 144 // Split out the loop pre-header. 145 BasicBlock *PreheaderBB; 146 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 147 LI, MSSAU, PreserveLCSSA); 148 if (!PreheaderBB) 149 return nullptr; 150 151 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 152 << PreheaderBB->getName() << "\n"); 153 154 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 155 // code layout too horribly. 156 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 157 158 return PreheaderBB; 159 } 160 161 /// Add the specified block, and all of its predecessors, to the specified set, 162 /// if it's not already in there. Stop predecessor traversal when we reach 163 /// StopBlock. 164 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 165 std::set<BasicBlock*> &Blocks) { 166 SmallVector<BasicBlock *, 8> Worklist; 167 Worklist.push_back(InputBB); 168 do { 169 BasicBlock *BB = Worklist.pop_back_val(); 170 if (Blocks.insert(BB).second && BB != StopBlock) 171 // If BB is not already processed and it is not a stop block then 172 // insert its predecessor in the work list 173 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 174 BasicBlock *WBB = *I; 175 Worklist.push_back(WBB); 176 } 177 } while (!Worklist.empty()); 178 } 179 180 /// The first part of loop-nestification is to find a PHI node that tells 181 /// us how to partition the loops. 182 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 183 AssumptionCache *AC) { 184 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 185 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 186 PHINode *PN = cast<PHINode>(I); 187 ++I; 188 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 189 // This is a degenerate PHI already, don't modify it! 190 PN->replaceAllUsesWith(V); 191 PN->eraseFromParent(); 192 continue; 193 } 194 195 // Scan this PHI node looking for a use of the PHI node by itself. 196 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 197 if (PN->getIncomingValue(i) == PN && 198 L->contains(PN->getIncomingBlock(i))) 199 // We found something tasty to remove. 200 return PN; 201 } 202 return nullptr; 203 } 204 205 /// If this loop has multiple backedges, try to pull one of them out into 206 /// a nested loop. 207 /// 208 /// This is important for code that looks like 209 /// this: 210 /// 211 /// Loop: 212 /// ... 213 /// br cond, Loop, Next 214 /// ... 215 /// br cond2, Loop, Out 216 /// 217 /// To identify this common case, we look at the PHI nodes in the header of the 218 /// loop. PHI nodes with unchanging values on one backedge correspond to values 219 /// that change in the "outer" loop, but not in the "inner" loop. 220 /// 221 /// If we are able to separate out a loop, return the new outer loop that was 222 /// created. 223 /// 224 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 225 DominatorTree *DT, LoopInfo *LI, 226 ScalarEvolution *SE, bool PreserveLCSSA, 227 AssumptionCache *AC, MemorySSAUpdater *MSSAU) { 228 // Don't try to separate loops without a preheader. 229 if (!Preheader) 230 return nullptr; 231 232 // The header is not a landing pad; preheader insertion should ensure this. 233 BasicBlock *Header = L->getHeader(); 234 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 235 236 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 237 if (!PN) return nullptr; // No known way to partition. 238 239 // Pull out all predecessors that have varying values in the loop. This 240 // handles the case when a PHI node has multiple instances of itself as 241 // arguments. 242 SmallVector<BasicBlock*, 8> OuterLoopPreds; 243 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 244 if (PN->getIncomingValue(i) != PN || 245 !L->contains(PN->getIncomingBlock(i))) { 246 // We can't split indirect control flow edges. 247 if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator()) 248 return nullptr; 249 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 250 } 251 } 252 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 253 254 // If ScalarEvolution is around and knows anything about values in 255 // this loop, tell it to forget them, because we're about to 256 // substantially change it. 257 if (SE) 258 SE->forgetLoop(L); 259 260 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 261 DT, LI, MSSAU, PreserveLCSSA); 262 263 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 264 // code layout too horribly. 265 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 266 267 // Create the new outer loop. 268 Loop *NewOuter = LI->AllocateLoop(); 269 270 // Change the parent loop to use the outer loop as its child now. 271 if (Loop *Parent = L->getParentLoop()) 272 Parent->replaceChildLoopWith(L, NewOuter); 273 else 274 LI->changeTopLevelLoop(L, NewOuter); 275 276 // L is now a subloop of our outer loop. 277 NewOuter->addChildLoop(L); 278 279 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 280 I != E; ++I) 281 NewOuter->addBlockEntry(*I); 282 283 // Now reset the header in L, which had been moved by 284 // SplitBlockPredecessors for the outer loop. 285 L->moveToHeader(Header); 286 287 // Determine which blocks should stay in L and which should be moved out to 288 // the Outer loop now. 289 std::set<BasicBlock*> BlocksInL; 290 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 291 BasicBlock *P = *PI; 292 if (DT->dominates(Header, P)) 293 addBlockAndPredsToSet(P, Header, BlocksInL); 294 } 295 296 // Scan all of the loop children of L, moving them to OuterLoop if they are 297 // not part of the inner loop. 298 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 299 for (size_t I = 0; I != SubLoops.size(); ) 300 if (BlocksInL.count(SubLoops[I]->getHeader())) 301 ++I; // Loop remains in L 302 else 303 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 304 305 SmallVector<BasicBlock *, 8> OuterLoopBlocks; 306 OuterLoopBlocks.push_back(NewBB); 307 // Now that we know which blocks are in L and which need to be moved to 308 // OuterLoop, move any blocks that need it. 309 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 310 BasicBlock *BB = L->getBlocks()[i]; 311 if (!BlocksInL.count(BB)) { 312 // Move this block to the parent, updating the exit blocks sets 313 L->removeBlockFromLoop(BB); 314 if ((*LI)[BB] == L) { 315 LI->changeLoopFor(BB, NewOuter); 316 OuterLoopBlocks.push_back(BB); 317 } 318 --i; 319 } 320 } 321 322 // Split edges to exit blocks from the inner loop, if they emerged in the 323 // process of separating the outer one. 324 formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA); 325 326 if (PreserveLCSSA) { 327 // Fix LCSSA form for L. Some values, which previously were only used inside 328 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them 329 // in corresponding exit blocks. 330 // We don't need to form LCSSA recursively, because there cannot be uses 331 // inside a newly created loop of defs from inner loops as those would 332 // already be a use of an LCSSA phi node. 333 formLCSSA(*L, *DT, LI, SE); 334 335 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && 336 "LCSSA is broken after separating nested loops!"); 337 } 338 339 return NewOuter; 340 } 341 342 /// This method is called when the specified loop has more than one 343 /// backedge in it. 344 /// 345 /// If this occurs, revector all of these backedges to target a new basic block 346 /// and have that block branch to the loop header. This ensures that loops 347 /// have exactly one backedge. 348 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 349 DominatorTree *DT, LoopInfo *LI, 350 MemorySSAUpdater *MSSAU) { 351 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 352 353 // Get information about the loop 354 BasicBlock *Header = L->getHeader(); 355 Function *F = Header->getParent(); 356 357 // Unique backedge insertion currently depends on having a preheader. 358 if (!Preheader) 359 return nullptr; 360 361 // The header is not an EH pad; preheader insertion should ensure this. 362 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 363 364 // Figure out which basic blocks contain back-edges to the loop header. 365 std::vector<BasicBlock*> BackedgeBlocks; 366 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 367 BasicBlock *P = *I; 368 369 // Indirect edges cannot be split, so we must fail if we find one. 370 if (P->getTerminator()->isIndirectTerminator()) 371 return nullptr; 372 373 if (P != Preheader) BackedgeBlocks.push_back(P); 374 } 375 376 // Create and insert the new backedge block... 377 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 378 Header->getName() + ".backedge", F); 379 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 380 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); 381 382 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 383 << BEBlock->getName() << "\n"); 384 385 // Move the new backedge block to right after the last backedge block. 386 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); 387 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 388 389 // Now that the block has been inserted into the function, create PHI nodes in 390 // the backedge block which correspond to any PHI nodes in the header block. 391 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 392 PHINode *PN = cast<PHINode>(I); 393 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 394 PN->getName()+".be", BETerminator); 395 396 // Loop over the PHI node, moving all entries except the one for the 397 // preheader over to the new PHI node. 398 unsigned PreheaderIdx = ~0U; 399 bool HasUniqueIncomingValue = true; 400 Value *UniqueValue = nullptr; 401 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 402 BasicBlock *IBB = PN->getIncomingBlock(i); 403 Value *IV = PN->getIncomingValue(i); 404 if (IBB == Preheader) { 405 PreheaderIdx = i; 406 } else { 407 NewPN->addIncoming(IV, IBB); 408 if (HasUniqueIncomingValue) { 409 if (!UniqueValue) 410 UniqueValue = IV; 411 else if (UniqueValue != IV) 412 HasUniqueIncomingValue = false; 413 } 414 } 415 } 416 417 // Delete all of the incoming values from the old PN except the preheader's 418 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 419 if (PreheaderIdx != 0) { 420 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 421 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 422 } 423 // Nuke all entries except the zero'th. 424 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 425 PN->removeIncomingValue(e-i, false); 426 427 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 428 PN->addIncoming(NewPN, BEBlock); 429 430 // As an optimization, if all incoming values in the new PhiNode (which is a 431 // subset of the incoming values of the old PHI node) have the same value, 432 // eliminate the PHI Node. 433 if (HasUniqueIncomingValue) { 434 NewPN->replaceAllUsesWith(UniqueValue); 435 BEBlock->getInstList().erase(NewPN); 436 } 437 } 438 439 // Now that all of the PHI nodes have been inserted and adjusted, modify the 440 // backedge blocks to jump to the BEBlock instead of the header. 441 // If one of the backedges has llvm.loop metadata attached, we remove 442 // it from the backedge and add it to BEBlock. 443 unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop"); 444 MDNode *LoopMD = nullptr; 445 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 446 Instruction *TI = BackedgeBlocks[i]->getTerminator(); 447 if (!LoopMD) 448 LoopMD = TI->getMetadata(LoopMDKind); 449 TI->setMetadata(LoopMDKind, nullptr); 450 TI->replaceSuccessorWith(Header, BEBlock); 451 } 452 BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD); 453 454 //===--- Update all analyses which we must preserve now -----------------===// 455 456 // Update Loop Information - we know that this block is now in the current 457 // loop and all parent loops. 458 L->addBasicBlockToLoop(BEBlock, *LI); 459 460 // Update dominator information 461 DT->splitBlock(BEBlock); 462 463 if (MSSAU) 464 MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader, 465 BEBlock); 466 467 return BEBlock; 468 } 469 470 /// Simplify one loop and queue further loops for simplification. 471 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 472 DominatorTree *DT, LoopInfo *LI, 473 ScalarEvolution *SE, AssumptionCache *AC, 474 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 475 bool Changed = false; 476 if (MSSAU && VerifyMemorySSA) 477 MSSAU->getMemorySSA()->verifyMemorySSA(); 478 479 ReprocessLoop: 480 481 // Check to see that no blocks (other than the header) in this loop have 482 // predecessors that are not in the loop. This is not valid for natural 483 // loops, but can occur if the blocks are unreachable. Since they are 484 // unreachable we can just shamelessly delete those CFG edges! 485 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 486 BB != E; ++BB) { 487 if (*BB == L->getHeader()) continue; 488 489 SmallPtrSet<BasicBlock*, 4> BadPreds; 490 for (pred_iterator PI = pred_begin(*BB), 491 PE = pred_end(*BB); PI != PE; ++PI) { 492 BasicBlock *P = *PI; 493 if (!L->contains(P)) 494 BadPreds.insert(P); 495 } 496 497 // Delete each unique out-of-loop (and thus dead) predecessor. 498 for (BasicBlock *P : BadPreds) { 499 500 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 501 << P->getName() << "\n"); 502 503 // Zap the dead pred's terminator and replace it with unreachable. 504 Instruction *TI = P->getTerminator(); 505 changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA, 506 /*DTU=*/nullptr, MSSAU); 507 Changed = true; 508 } 509 } 510 511 if (MSSAU && VerifyMemorySSA) 512 MSSAU->getMemorySSA()->verifyMemorySSA(); 513 514 // If there are exiting blocks with branches on undef, resolve the undef in 515 // the direction which will exit the loop. This will help simplify loop 516 // trip count computations. 517 SmallVector<BasicBlock*, 8> ExitingBlocks; 518 L->getExitingBlocks(ExitingBlocks); 519 for (BasicBlock *ExitingBlock : ExitingBlocks) 520 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) 521 if (BI->isConditional()) { 522 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 523 524 LLVM_DEBUG(dbgs() 525 << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 526 << ExitingBlock->getName() << "\n"); 527 528 BI->setCondition(ConstantInt::get(Cond->getType(), 529 !L->contains(BI->getSuccessor(0)))); 530 531 Changed = true; 532 } 533 } 534 535 // Does the loop already have a preheader? If so, don't insert one. 536 BasicBlock *Preheader = L->getLoopPreheader(); 537 if (!Preheader) { 538 Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA); 539 if (Preheader) 540 Changed = true; 541 } 542 543 // Next, check to make sure that all exit nodes of the loop only have 544 // predecessors that are inside of the loop. This check guarantees that the 545 // loop preheader/header will dominate the exit blocks. If the exit block has 546 // predecessors from outside of the loop, split the edge now. 547 if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA)) 548 Changed = true; 549 550 if (MSSAU && VerifyMemorySSA) 551 MSSAU->getMemorySSA()->verifyMemorySSA(); 552 553 // If the header has more than two predecessors at this point (from the 554 // preheader and from multiple backedges), we must adjust the loop. 555 BasicBlock *LoopLatch = L->getLoopLatch(); 556 if (!LoopLatch) { 557 // If this is really a nested loop, rip it out into a child loop. Don't do 558 // this for loops with a giant number of backedges, just factor them into a 559 // common backedge instead. 560 if (L->getNumBackEdges() < 8) { 561 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, 562 PreserveLCSSA, AC, MSSAU)) { 563 ++NumNested; 564 // Enqueue the outer loop as it should be processed next in our 565 // depth-first nest walk. 566 Worklist.push_back(OuterL); 567 568 // This is a big restructuring change, reprocess the whole loop. 569 Changed = true; 570 // GCC doesn't tail recursion eliminate this. 571 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 572 goto ReprocessLoop; 573 } 574 } 575 576 // If we either couldn't, or didn't want to, identify nesting of the loops, 577 // insert a new block that all backedges target, then make it jump to the 578 // loop header. 579 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU); 580 if (LoopLatch) 581 Changed = true; 582 } 583 584 if (MSSAU && VerifyMemorySSA) 585 MSSAU->getMemorySSA()->verifyMemorySSA(); 586 587 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 588 589 // Scan over the PHI nodes in the loop header. Since they now have only two 590 // incoming values (the loop is canonicalized), we may have simplified the PHI 591 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 592 PHINode *PN; 593 for (BasicBlock::iterator I = L->getHeader()->begin(); 594 (PN = dyn_cast<PHINode>(I++)); ) 595 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 596 if (SE) SE->forgetValue(PN); 597 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { 598 PN->replaceAllUsesWith(V); 599 PN->eraseFromParent(); 600 } 601 } 602 603 // If this loop has multiple exits and the exits all go to the same 604 // block, attempt to merge the exits. This helps several passes, such 605 // as LoopRotation, which do not support loops with multiple exits. 606 // SimplifyCFG also does this (and this code uses the same utility 607 // function), however this code is loop-aware, where SimplifyCFG is 608 // not. That gives it the advantage of being able to hoist 609 // loop-invariant instructions out of the way to open up more 610 // opportunities, and the disadvantage of having the responsibility 611 // to preserve dominator information. 612 auto HasUniqueExitBlock = [&]() { 613 BasicBlock *UniqueExit = nullptr; 614 for (auto *ExitingBB : ExitingBlocks) 615 for (auto *SuccBB : successors(ExitingBB)) { 616 if (L->contains(SuccBB)) 617 continue; 618 619 if (!UniqueExit) 620 UniqueExit = SuccBB; 621 else if (UniqueExit != SuccBB) 622 return false; 623 } 624 625 return true; 626 }; 627 if (HasUniqueExitBlock()) { 628 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 629 BasicBlock *ExitingBlock = ExitingBlocks[i]; 630 if (!ExitingBlock->getSinglePredecessor()) continue; 631 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 632 if (!BI || !BI->isConditional()) continue; 633 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 634 if (!CI || CI->getParent() != ExitingBlock) continue; 635 636 // Attempt to hoist out all instructions except for the 637 // comparison and the branch. 638 bool AllInvariant = true; 639 bool AnyInvariant = false; 640 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { 641 Instruction *Inst = &*I++; 642 if (Inst == CI) 643 continue; 644 if (!L->makeLoopInvariant( 645 Inst, AnyInvariant, 646 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) { 647 AllInvariant = false; 648 break; 649 } 650 } 651 if (AnyInvariant) { 652 Changed = true; 653 // The loop disposition of all SCEV expressions that depend on any 654 // hoisted values have also changed. 655 if (SE) 656 SE->forgetLoopDispositions(L); 657 } 658 if (!AllInvariant) continue; 659 660 // The block has now been cleared of all instructions except for 661 // a comparison and a conditional branch. SimplifyCFG may be able 662 // to fold it now. 663 if (!FoldBranchToCommonDest(BI, MSSAU)) 664 continue; 665 666 // Success. The block is now dead, so remove it from the loop, 667 // update the dominator tree and delete it. 668 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 669 << ExitingBlock->getName() << "\n"); 670 671 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 672 Changed = true; 673 LI->removeBlock(ExitingBlock); 674 675 DomTreeNode *Node = DT->getNode(ExitingBlock); 676 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 677 Node->getChildren(); 678 while (!Children.empty()) { 679 DomTreeNode *Child = Children.front(); 680 DT->changeImmediateDominator(Child, Node->getIDom()); 681 } 682 DT->eraseNode(ExitingBlock); 683 if (MSSAU) { 684 SmallSetVector<BasicBlock *, 8> ExitBlockSet; 685 ExitBlockSet.insert(ExitingBlock); 686 MSSAU->removeBlocks(ExitBlockSet); 687 } 688 689 BI->getSuccessor(0)->removePredecessor( 690 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 691 BI->getSuccessor(1)->removePredecessor( 692 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 693 ExitingBlock->eraseFromParent(); 694 } 695 } 696 697 // Changing exit conditions for blocks may affect exit counts of this loop and 698 // any of its paretns, so we must invalidate the entire subtree if we've made 699 // any changes. 700 if (Changed && SE) 701 SE->forgetTopmostLoop(L); 702 703 if (MSSAU && VerifyMemorySSA) 704 MSSAU->getMemorySSA()->verifyMemorySSA(); 705 706 return Changed; 707 } 708 709 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, 710 ScalarEvolution *SE, AssumptionCache *AC, 711 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 712 bool Changed = false; 713 714 #ifndef NDEBUG 715 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA 716 // form. 717 if (PreserveLCSSA) { 718 assert(DT && "DT not available."); 719 assert(LI && "LI not available."); 720 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 721 "Requested to preserve LCSSA, but it's already broken."); 722 } 723 #endif 724 725 // Worklist maintains our depth-first queue of loops in this nest to process. 726 SmallVector<Loop *, 4> Worklist; 727 Worklist.push_back(L); 728 729 // Walk the worklist from front to back, pushing newly found sub loops onto 730 // the back. This will let us process loops from back to front in depth-first 731 // order. We can use this simple process because loops form a tree. 732 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 733 Loop *L2 = Worklist[Idx]; 734 Worklist.append(L2->begin(), L2->end()); 735 } 736 737 while (!Worklist.empty()) 738 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, 739 AC, MSSAU, PreserveLCSSA); 740 741 return Changed; 742 } 743 744 namespace { 745 struct LoopSimplify : public FunctionPass { 746 static char ID; // Pass identification, replacement for typeid 747 LoopSimplify() : FunctionPass(ID) { 748 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 749 } 750 751 bool runOnFunction(Function &F) override; 752 753 void getAnalysisUsage(AnalysisUsage &AU) const override { 754 AU.addRequired<AssumptionCacheTracker>(); 755 756 // We need loop information to identify the loops... 757 AU.addRequired<DominatorTreeWrapperPass>(); 758 AU.addPreserved<DominatorTreeWrapperPass>(); 759 760 AU.addRequired<LoopInfoWrapperPass>(); 761 AU.addPreserved<LoopInfoWrapperPass>(); 762 763 AU.addPreserved<BasicAAWrapperPass>(); 764 AU.addPreserved<AAResultsWrapperPass>(); 765 AU.addPreserved<GlobalsAAWrapperPass>(); 766 AU.addPreserved<ScalarEvolutionWrapperPass>(); 767 AU.addPreserved<SCEVAAWrapperPass>(); 768 AU.addPreservedID(LCSSAID); 769 AU.addPreserved<DependenceAnalysisWrapperPass>(); 770 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 771 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 772 if (EnableMSSALoopDependency) 773 AU.addPreserved<MemorySSAWrapperPass>(); 774 } 775 776 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 777 void verifyAnalysis() const override; 778 }; 779 } 780 781 char LoopSimplify::ID = 0; 782 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 783 "Canonicalize natural loops", false, false) 784 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 785 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 786 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 787 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 788 "Canonicalize natural loops", false, false) 789 790 // Publicly exposed interface to pass... 791 char &llvm::LoopSimplifyID = LoopSimplify::ID; 792 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 793 794 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 795 /// it in any convenient order) inserting preheaders... 796 /// 797 bool LoopSimplify::runOnFunction(Function &F) { 798 bool Changed = false; 799 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 800 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 801 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 802 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; 803 AssumptionCache *AC = 804 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 805 MemorySSA *MSSA = nullptr; 806 std::unique_ptr<MemorySSAUpdater> MSSAU; 807 if (EnableMSSALoopDependency) { 808 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 809 if (MSSAAnalysis) { 810 MSSA = &MSSAAnalysis->getMSSA(); 811 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 812 } 813 } 814 815 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 816 817 // Simplify each loop nest in the function. 818 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 819 Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA); 820 821 #ifndef NDEBUG 822 if (PreserveLCSSA) { 823 bool InLCSSA = all_of( 824 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); 825 assert(InLCSSA && "LCSSA is broken after loop-simplify."); 826 } 827 #endif 828 return Changed; 829 } 830 831 PreservedAnalyses LoopSimplifyPass::run(Function &F, 832 FunctionAnalysisManager &AM) { 833 bool Changed = false; 834 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); 835 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 836 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 837 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); 838 auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F); 839 std::unique_ptr<MemorySSAUpdater> MSSAU; 840 if (MSSAAnalysis) { 841 auto *MSSA = &MSSAAnalysis->getMSSA(); 842 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 843 } 844 845 846 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA 847 // after simplifying the loops. MemorySSA is preserved if it exists. 848 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 849 Changed |= 850 simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false); 851 852 if (!Changed) 853 return PreservedAnalyses::all(); 854 855 PreservedAnalyses PA; 856 PA.preserve<DominatorTreeAnalysis>(); 857 PA.preserve<LoopAnalysis>(); 858 PA.preserve<BasicAA>(); 859 PA.preserve<GlobalsAA>(); 860 PA.preserve<SCEVAA>(); 861 PA.preserve<ScalarEvolutionAnalysis>(); 862 PA.preserve<DependenceAnalysis>(); 863 if (MSSAAnalysis) 864 PA.preserve<MemorySSAAnalysis>(); 865 // BPI maps conditional terminators to probabilities, LoopSimplify can insert 866 // blocks, but it does so only by splitting existing blocks and edges. This 867 // results in the interesting property that all new terminators inserted are 868 // unconditional branches which do not appear in BPI. All deletions are 869 // handled via ValueHandle callbacks w/in BPI. 870 PA.preserve<BranchProbabilityAnalysis>(); 871 return PA; 872 } 873 874 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 875 // below. 876 #if 0 877 static void verifyLoop(Loop *L) { 878 // Verify subloops. 879 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 880 verifyLoop(*I); 881 882 // It used to be possible to just assert L->isLoopSimplifyForm(), however 883 // with the introduction of indirectbr, there are now cases where it's 884 // not possible to transform a loop as necessary. We can at least check 885 // that there is an indirectbr near any time there's trouble. 886 887 // Indirectbr can interfere with preheader and unique backedge insertion. 888 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 889 bool HasIndBrPred = false; 890 for (pred_iterator PI = pred_begin(L->getHeader()), 891 PE = pred_end(L->getHeader()); PI != PE; ++PI) 892 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 893 HasIndBrPred = true; 894 break; 895 } 896 assert(HasIndBrPred && 897 "LoopSimplify has no excuse for missing loop header info!"); 898 (void)HasIndBrPred; 899 } 900 901 // Indirectbr can interfere with exit block canonicalization. 902 if (!L->hasDedicatedExits()) { 903 bool HasIndBrExiting = false; 904 SmallVector<BasicBlock*, 8> ExitingBlocks; 905 L->getExitingBlocks(ExitingBlocks); 906 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 907 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 908 HasIndBrExiting = true; 909 break; 910 } 911 } 912 913 assert(HasIndBrExiting && 914 "LoopSimplify has no excuse for missing exit block info!"); 915 (void)HasIndBrExiting; 916 } 917 } 918 #endif 919 920 void LoopSimplify::verifyAnalysis() const { 921 // FIXME: This routine is being called mid-way through the loop pass manager 922 // as loop passes destroy this analysis. That's actually fine, but we have no 923 // way of expressing that here. Once all of the passes that destroy this are 924 // hoisted out of the loop pass manager we can add back verification here. 925 #if 0 926 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 927 verifyLoop(*I); 928 #endif 929 } 930