//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass performs several transformations to transform natural loops into a // simpler form, which makes subsequent analyses and transformations simpler and // more effective. // // Loop pre-header insertion guarantees that there is a single, non-critical // entry edge from outside of the loop to the loop header. This simplifies a // number of analyses and transformations, such as LICM. // // Loop exit-block insertion guarantees that all exit blocks from the loop // (blocks which are outside of the loop that have predecessors inside of the // loop) only have predecessors from inside of the loop (and are thus dominated // by the loop header). This simplifies transformations such as store-sinking // that are built into LICM. // // This pass also guarantees that loops will have exactly one backedge. // // Indirectbr instructions introduce several complications. If the loop // contains or is entered by an indirectbr instruction, it may not be possible // to transform the loop and make these guarantees. Client code should check // that these conditions are true before relying on them. // // Similar complications arise from callbr instructions, particularly in // asm-goto where blockaddress expressions are used. // // Note that the simplifycfg pass will clean up blocks which are split out but // end up being unnecessary, so usage of this pass should not pessimize // generated code. // // This pass obviously modifies the CFG, but updates loop information and // dominator information. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/LoopSimplify.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/DependenceAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" using namespace llvm; #define DEBUG_TYPE "loop-simplify" STATISTIC(NumNested , "Number of nested loops split out"); // If the block isn't already, move the new block to right after some 'outside // block' block. This prevents the preheader from being placed inside the loop // body, e.g. when the loop hasn't been rotated. static void placeSplitBlockCarefully(BasicBlock *NewBB, SmallVectorImpl &SplitPreds, Loop *L) { // Check to see if NewBB is already well placed. Function::iterator BBI = --NewBB->getIterator(); for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { if (&*BBI == SplitPreds[i]) return; } // If it isn't already after an outside block, move it after one. This is // always good as it makes the uncond branch from the outside block into a // fall-through. // Figure out *which* outside block to put this after. Prefer an outside // block that neighbors a BB actually in the loop. BasicBlock *FoundBB = nullptr; for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { Function::iterator BBI = SplitPreds[i]->getIterator(); if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { FoundBB = SplitPreds[i]; break; } } // If our heuristic for a *good* bb to place this after doesn't find // anything, just pick something. It's likely better than leaving it within // the loop. if (!FoundBB) FoundBB = SplitPreds[0]; NewBB->moveAfter(FoundBB); } /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a /// preheader, this method is called to insert one. This method has two phases: /// preheader insertion and analysis updating. /// BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { BasicBlock *Header = L->getHeader(); // Compute the set of predecessors of the loop that are not in the loop. SmallVector OutsideBlocks; for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); PI != PE; ++PI) { BasicBlock *P = *PI; if (!L->contains(P)) { // Coming in from outside the loop? // If the loop is branched to from an indirect terminator, we won't // be able to fully transform the loop, because it prohibits // edge splitting. if (P->getTerminator()->isIndirectTerminator()) return nullptr; // Keep track of it. OutsideBlocks.push_back(P); } } // Split out the loop pre-header. BasicBlock *PreheaderBB; PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, LI, MSSAU, PreserveLCSSA); if (!PreheaderBB) return nullptr; LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " << PreheaderBB->getName() << "\n"); // Make sure that NewBB is put someplace intelligent, which doesn't mess up // code layout too horribly. placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); return PreheaderBB; } /// Add the specified block, and all of its predecessors, to the specified set, /// if it's not already in there. Stop predecessor traversal when we reach /// StopBlock. static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, std::set &Blocks) { SmallVector Worklist; Worklist.push_back(InputBB); do { BasicBlock *BB = Worklist.pop_back_val(); if (Blocks.insert(BB).second && BB != StopBlock) // If BB is not already processed and it is not a stop block then // insert its predecessor in the work list for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { BasicBlock *WBB = *I; Worklist.push_back(WBB); } } while (!Worklist.empty()); } /// The first part of loop-nestification is to find a PHI node that tells /// us how to partition the loops. static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, AssumptionCache *AC) { const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); for (BasicBlock::iterator I = L->getHeader()->begin(); isa(I); ) { PHINode *PN = cast(I); ++I; if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { // This is a degenerate PHI already, don't modify it! PN->replaceAllUsesWith(V); PN->eraseFromParent(); continue; } // Scan this PHI node looking for a use of the PHI node by itself. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == PN && L->contains(PN->getIncomingBlock(i))) // We found something tasty to remove. return PN; } return nullptr; } /// If this loop has multiple backedges, try to pull one of them out into /// a nested loop. /// /// This is important for code that looks like /// this: /// /// Loop: /// ... /// br cond, Loop, Next /// ... /// br cond2, Loop, Out /// /// To identify this common case, we look at the PHI nodes in the header of the /// loop. PHI nodes with unchanging values on one backedge correspond to values /// that change in the "outer" loop, but not in the "inner" loop. /// /// If we are able to separate out a loop, return the new outer loop that was /// created. /// static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, bool PreserveLCSSA, AssumptionCache *AC, MemorySSAUpdater *MSSAU) { // Don't try to separate loops without a preheader. if (!Preheader) return nullptr; // The header is not a landing pad; preheader insertion should ensure this. BasicBlock *Header = L->getHeader(); assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); PHINode *PN = findPHIToPartitionLoops(L, DT, AC); if (!PN) return nullptr; // No known way to partition. // Pull out all predecessors that have varying values in the loop. This // handles the case when a PHI node has multiple instances of itself as // arguments. SmallVector OuterLoopPreds; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { if (PN->getIncomingValue(i) != PN || !L->contains(PN->getIncomingBlock(i))) { // We can't split indirect control flow edges. if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator()) return nullptr; OuterLoopPreds.push_back(PN->getIncomingBlock(i)); } } LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); // If ScalarEvolution is around and knows anything about values in // this loop, tell it to forget them, because we're about to // substantially change it. if (SE) SE->forgetLoop(L); BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", DT, LI, MSSAU, PreserveLCSSA); // Make sure that NewBB is put someplace intelligent, which doesn't mess up // code layout too horribly. placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); // Create the new outer loop. Loop *NewOuter = LI->AllocateLoop(); // Change the parent loop to use the outer loop as its child now. if (Loop *Parent = L->getParentLoop()) Parent->replaceChildLoopWith(L, NewOuter); else LI->changeTopLevelLoop(L, NewOuter); // L is now a subloop of our outer loop. NewOuter->addChildLoop(L); for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) NewOuter->addBlockEntry(*I); // Now reset the header in L, which had been moved by // SplitBlockPredecessors for the outer loop. L->moveToHeader(Header); // Determine which blocks should stay in L and which should be moved out to // the Outer loop now. std::set BlocksInL; for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { BasicBlock *P = *PI; if (DT->dominates(Header, P)) addBlockAndPredsToSet(P, Header, BlocksInL); } // Scan all of the loop children of L, moving them to OuterLoop if they are // not part of the inner loop. const std::vector &SubLoops = L->getSubLoops(); for (size_t I = 0; I != SubLoops.size(); ) if (BlocksInL.count(SubLoops[I]->getHeader())) ++I; // Loop remains in L else NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); SmallVector OuterLoopBlocks; OuterLoopBlocks.push_back(NewBB); // Now that we know which blocks are in L and which need to be moved to // OuterLoop, move any blocks that need it. for (unsigned i = 0; i != L->getBlocks().size(); ++i) { BasicBlock *BB = L->getBlocks()[i]; if (!BlocksInL.count(BB)) { // Move this block to the parent, updating the exit blocks sets L->removeBlockFromLoop(BB); if ((*LI)[BB] == L) { LI->changeLoopFor(BB, NewOuter); OuterLoopBlocks.push_back(BB); } --i; } } // Split edges to exit blocks from the inner loop, if they emerged in the // process of separating the outer one. formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA); if (PreserveLCSSA) { // Fix LCSSA form for L. Some values, which previously were only used inside // L, can now be used in NewOuter loop. We need to insert phi-nodes for them // in corresponding exit blocks. // We don't need to form LCSSA recursively, because there cannot be uses // inside a newly created loop of defs from inner loops as those would // already be a use of an LCSSA phi node. formLCSSA(*L, *DT, LI, SE); assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && "LCSSA is broken after separating nested loops!"); } return NewOuter; } /// This method is called when the specified loop has more than one /// backedge in it. /// /// If this occurs, revector all of these backedges to target a new basic block /// and have that block branch to the loop header. This ensures that loops /// have exactly one backedge. static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU) { assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); // Get information about the loop BasicBlock *Header = L->getHeader(); Function *F = Header->getParent(); // Unique backedge insertion currently depends on having a preheader. if (!Preheader) return nullptr; // The header is not an EH pad; preheader insertion should ensure this. assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); // Figure out which basic blocks contain back-edges to the loop header. std::vector BackedgeBlocks; for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ BasicBlock *P = *I; // Indirect edges cannot be split, so we must fail if we find one. if (P->getTerminator()->isIndirectTerminator()) return nullptr; if (P != Preheader) BackedgeBlocks.push_back(P); } // Create and insert the new backedge block... BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), Header->getName() + ".backedge", F); BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " << BEBlock->getName() << "\n"); // Move the new backedge block to right after the last backedge block. Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); // Now that the block has been inserted into the function, create PHI nodes in // the backedge block which correspond to any PHI nodes in the header block. for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { PHINode *PN = cast(I); PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), PN->getName()+".be", BETerminator); // Loop over the PHI node, moving all entries except the one for the // preheader over to the new PHI node. unsigned PreheaderIdx = ~0U; bool HasUniqueIncomingValue = true; Value *UniqueValue = nullptr; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *IBB = PN->getIncomingBlock(i); Value *IV = PN->getIncomingValue(i); if (IBB == Preheader) { PreheaderIdx = i; } else { NewPN->addIncoming(IV, IBB); if (HasUniqueIncomingValue) { if (!UniqueValue) UniqueValue = IV; else if (UniqueValue != IV) HasUniqueIncomingValue = false; } } } // Delete all of the incoming values from the old PN except the preheader's assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); if (PreheaderIdx != 0) { PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); } // Nuke all entries except the zero'th. for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) PN->removeIncomingValue(e-i, false); // Finally, add the newly constructed PHI node as the entry for the BEBlock. PN->addIncoming(NewPN, BEBlock); // As an optimization, if all incoming values in the new PhiNode (which is a // subset of the incoming values of the old PHI node) have the same value, // eliminate the PHI Node. if (HasUniqueIncomingValue) { NewPN->replaceAllUsesWith(UniqueValue); BEBlock->getInstList().erase(NewPN); } } // Now that all of the PHI nodes have been inserted and adjusted, modify the // backedge blocks to jump to the BEBlock instead of the header. // If one of the backedges has llvm.loop metadata attached, we remove // it from the backedge and add it to BEBlock. unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop"); MDNode *LoopMD = nullptr; for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { Instruction *TI = BackedgeBlocks[i]->getTerminator(); if (!LoopMD) LoopMD = TI->getMetadata(LoopMDKind); TI->setMetadata(LoopMDKind, nullptr); TI->replaceSuccessorWith(Header, BEBlock); } BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD); //===--- Update all analyses which we must preserve now -----------------===// // Update Loop Information - we know that this block is now in the current // loop and all parent loops. L->addBasicBlockToLoop(BEBlock, *LI); // Update dominator information DT->splitBlock(BEBlock); if (MSSAU) MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader, BEBlock); return BEBlock; } /// Simplify one loop and queue further loops for simplification. static bool simplifyOneLoop(Loop *L, SmallVectorImpl &Worklist, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { bool Changed = false; if (MSSAU && VerifyMemorySSA) MSSAU->getMemorySSA()->verifyMemorySSA(); ReprocessLoop: // Check to see that no blocks (other than the header) in this loop have // predecessors that are not in the loop. This is not valid for natural // loops, but can occur if the blocks are unreachable. Since they are // unreachable we can just shamelessly delete those CFG edges! for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); BB != E; ++BB) { if (*BB == L->getHeader()) continue; SmallPtrSet BadPreds; for (pred_iterator PI = pred_begin(*BB), PE = pred_end(*BB); PI != PE; ++PI) { BasicBlock *P = *PI; if (!L->contains(P)) BadPreds.insert(P); } // Delete each unique out-of-loop (and thus dead) predecessor. for (BasicBlock *P : BadPreds) { LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " << P->getName() << "\n"); // Zap the dead pred's terminator and replace it with unreachable. Instruction *TI = P->getTerminator(); changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA, /*DTU=*/nullptr, MSSAU); Changed = true; } } if (MSSAU && VerifyMemorySSA) MSSAU->getMemorySSA()->verifyMemorySSA(); // If there are exiting blocks with branches on undef, resolve the undef in // the direction which will exit the loop. This will help simplify loop // trip count computations. SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); for (BasicBlock *ExitingBlock : ExitingBlocks) if (BranchInst *BI = dyn_cast(ExitingBlock->getTerminator())) if (BI->isConditional()) { if (UndefValue *Cond = dyn_cast(BI->getCondition())) { LLVM_DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " << ExitingBlock->getName() << "\n"); BI->setCondition(ConstantInt::get(Cond->getType(), !L->contains(BI->getSuccessor(0)))); Changed = true; } } // Does the loop already have a preheader? If so, don't insert one. BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) { Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA); if (Preheader) Changed = true; } // Next, check to make sure that all exit nodes of the loop only have // predecessors that are inside of the loop. This check guarantees that the // loop preheader/header will dominate the exit blocks. If the exit block has // predecessors from outside of the loop, split the edge now. if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA)) Changed = true; if (MSSAU && VerifyMemorySSA) MSSAU->getMemorySSA()->verifyMemorySSA(); // If the header has more than two predecessors at this point (from the // preheader and from multiple backedges), we must adjust the loop. BasicBlock *LoopLatch = L->getLoopLatch(); if (!LoopLatch) { // If this is really a nested loop, rip it out into a child loop. Don't do // this for loops with a giant number of backedges, just factor them into a // common backedge instead. if (L->getNumBackEdges() < 8) { if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC, MSSAU)) { ++NumNested; // Enqueue the outer loop as it should be processed next in our // depth-first nest walk. Worklist.push_back(OuterL); // This is a big restructuring change, reprocess the whole loop. Changed = true; // GCC doesn't tail recursion eliminate this. // FIXME: It isn't clear we can't rely on LLVM to TRE this. goto ReprocessLoop; } } // If we either couldn't, or didn't want to, identify nesting of the loops, // insert a new block that all backedges target, then make it jump to the // loop header. LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU); if (LoopLatch) Changed = true; } if (MSSAU && VerifyMemorySSA) MSSAU->getMemorySSA()->verifyMemorySSA(); const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); // Scan over the PHI nodes in the loop header. Since they now have only two // incoming values (the loop is canonicalized), we may have simplified the PHI // down to 'X = phi [X, Y]', which should be replaced with 'Y'. PHINode *PN; for (BasicBlock::iterator I = L->getHeader()->begin(); (PN = dyn_cast(I++)); ) if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { if (SE) SE->forgetValue(PN); if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { PN->replaceAllUsesWith(V); PN->eraseFromParent(); } } // If this loop has multiple exits and the exits all go to the same // block, attempt to merge the exits. This helps several passes, such // as LoopRotation, which do not support loops with multiple exits. // SimplifyCFG also does this (and this code uses the same utility // function), however this code is loop-aware, where SimplifyCFG is // not. That gives it the advantage of being able to hoist // loop-invariant instructions out of the way to open up more // opportunities, and the disadvantage of having the responsibility // to preserve dominator information. auto HasUniqueExitBlock = [&]() { BasicBlock *UniqueExit = nullptr; for (auto *ExitingBB : ExitingBlocks) for (auto *SuccBB : successors(ExitingBB)) { if (L->contains(SuccBB)) continue; if (!UniqueExit) UniqueExit = SuccBB; else if (UniqueExit != SuccBB) return false; } return true; }; if (HasUniqueExitBlock()) { for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { BasicBlock *ExitingBlock = ExitingBlocks[i]; if (!ExitingBlock->getSinglePredecessor()) continue; BranchInst *BI = dyn_cast(ExitingBlock->getTerminator()); if (!BI || !BI->isConditional()) continue; CmpInst *CI = dyn_cast(BI->getCondition()); if (!CI || CI->getParent() != ExitingBlock) continue; // Attempt to hoist out all instructions except for the // comparison and the branch. bool AllInvariant = true; bool AnyInvariant = false; for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { Instruction *Inst = &*I++; if (Inst == CI) continue; if (!L->makeLoopInvariant( Inst, AnyInvariant, Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) { AllInvariant = false; break; } } if (AnyInvariant) { Changed = true; // The loop disposition of all SCEV expressions that depend on any // hoisted values have also changed. if (SE) SE->forgetLoopDispositions(L); } if (!AllInvariant) continue; // The block has now been cleared of all instructions except for // a comparison and a conditional branch. SimplifyCFG may be able // to fold it now. if (!FoldBranchToCommonDest(BI, MSSAU)) continue; // Success. The block is now dead, so remove it from the loop, // update the dominator tree and delete it. LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " << ExitingBlock->getName() << "\n"); assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); Changed = true; LI->removeBlock(ExitingBlock); DomTreeNode *Node = DT->getNode(ExitingBlock); const std::vector *> &Children = Node->getChildren(); while (!Children.empty()) { DomTreeNode *Child = Children.front(); DT->changeImmediateDominator(Child, Node->getIDom()); } DT->eraseNode(ExitingBlock); if (MSSAU) { SmallSetVector ExitBlockSet; ExitBlockSet.insert(ExitingBlock); MSSAU->removeBlocks(ExitBlockSet); } BI->getSuccessor(0)->removePredecessor( ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); BI->getSuccessor(1)->removePredecessor( ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); ExitingBlock->eraseFromParent(); } } // Changing exit conditions for blocks may affect exit counts of this loop and // any of its paretns, so we must invalidate the entire subtree if we've made // any changes. if (Changed && SE) SE->forgetTopmostLoop(L); if (MSSAU && VerifyMemorySSA) MSSAU->getMemorySSA()->verifyMemorySSA(); return Changed; } bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { bool Changed = false; #ifndef NDEBUG // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA // form. if (PreserveLCSSA) { assert(DT && "DT not available."); assert(LI && "LI not available."); assert(L->isRecursivelyLCSSAForm(*DT, *LI) && "Requested to preserve LCSSA, but it's already broken."); } #endif // Worklist maintains our depth-first queue of loops in this nest to process. SmallVector Worklist; Worklist.push_back(L); // Walk the worklist from front to back, pushing newly found sub loops onto // the back. This will let us process loops from back to front in depth-first // order. We can use this simple process because loops form a tree. for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { Loop *L2 = Worklist[Idx]; Worklist.append(L2->begin(), L2->end()); } while (!Worklist.empty()) Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, AC, MSSAU, PreserveLCSSA); return Changed; } namespace { struct LoopSimplify : public FunctionPass { static char ID; // Pass identification, replacement for typeid LoopSimplify() : FunctionPass(ID) { initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); // We need loop information to identify the loops... AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreservedID(LCSSAID); AU.addPreserved(); AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. AU.addPreserved(); if (EnableMSSALoopDependency) AU.addPreserved(); } /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. void verifyAnalysis() const override; }; } char LoopSimplify::ID = 0; INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", "Canonicalize natural loops", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", "Canonicalize natural loops", false, false) // Publicly exposed interface to pass... char &llvm::LoopSimplifyID = LoopSimplify::ID; Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } /// runOnFunction - Run down all loops in the CFG (recursively, but we could do /// it in any convenient order) inserting preheaders... /// bool LoopSimplify::runOnFunction(Function &F) { bool Changed = false; LoopInfo *LI = &getAnalysis().getLoopInfo(); DominatorTree *DT = &getAnalysis().getDomTree(); auto *SEWP = getAnalysisIfAvailable(); ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; AssumptionCache *AC = &getAnalysis().getAssumptionCache(F); MemorySSA *MSSA = nullptr; std::unique_ptr MSSAU; if (EnableMSSALoopDependency) { auto *MSSAAnalysis = getAnalysisIfAvailable(); if (MSSAAnalysis) { MSSA = &MSSAAnalysis->getMSSA(); MSSAU = std::make_unique(MSSA); } } bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); // Simplify each loop nest in the function. for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA); #ifndef NDEBUG if (PreserveLCSSA) { bool InLCSSA = all_of( *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); assert(InLCSSA && "LCSSA is broken after loop-simplify."); } #endif return Changed; } PreservedAnalyses LoopSimplifyPass::run(Function &F, FunctionAnalysisManager &AM) { bool Changed = false; LoopInfo *LI = &AM.getResult(F); DominatorTree *DT = &AM.getResult(F); ScalarEvolution *SE = AM.getCachedResult(F); AssumptionCache *AC = &AM.getResult(F); auto *MSSAAnalysis = AM.getCachedResult(F); std::unique_ptr MSSAU; if (MSSAAnalysis) { auto *MSSA = &MSSAAnalysis->getMSSA(); MSSAU = std::make_unique(MSSA); } // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA // after simplifying the loops. MemorySSA is preserved if it exists. for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); PA.preserve(); PA.preserve(); PA.preserve(); PA.preserve(); PA.preserve(); if (MSSAAnalysis) PA.preserve(); // BPI maps conditional terminators to probabilities, LoopSimplify can insert // blocks, but it does so only by splitting existing blocks and edges. This // results in the interesting property that all new terminators inserted are // unconditional branches which do not appear in BPI. All deletions are // handled via ValueHandle callbacks w/in BPI. PA.preserve(); return PA; } // FIXME: Restore this code when we re-enable verification in verifyAnalysis // below. #if 0 static void verifyLoop(Loop *L) { // Verify subloops. for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) verifyLoop(*I); // It used to be possible to just assert L->isLoopSimplifyForm(), however // with the introduction of indirectbr, there are now cases where it's // not possible to transform a loop as necessary. We can at least check // that there is an indirectbr near any time there's trouble. // Indirectbr can interfere with preheader and unique backedge insertion. if (!L->getLoopPreheader() || !L->getLoopLatch()) { bool HasIndBrPred = false; for (pred_iterator PI = pred_begin(L->getHeader()), PE = pred_end(L->getHeader()); PI != PE; ++PI) if (isa((*PI)->getTerminator())) { HasIndBrPred = true; break; } assert(HasIndBrPred && "LoopSimplify has no excuse for missing loop header info!"); (void)HasIndBrPred; } // Indirectbr can interfere with exit block canonicalization. if (!L->hasDedicatedExits()) { bool HasIndBrExiting = false; SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { if (isa((ExitingBlocks[i])->getTerminator())) { HasIndBrExiting = true; break; } } assert(HasIndBrExiting && "LoopSimplify has no excuse for missing exit block info!"); (void)HasIndBrExiting; } } #endif void LoopSimplify::verifyAnalysis() const { // FIXME: This routine is being called mid-way through the loop pass manager // as loop passes destroy this analysis. That's actually fine, but we have no // way of expressing that here. Once all of the passes that destroy this are // hoisted out of the loop pass manager we can add back verification here. #if 0 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) verifyLoop(*I); #endif }