1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumeBundleQueries.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/Analysis/MemorySSAUpdater.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DIBuilder.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfo.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Dominators.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalObject.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/IntrinsicsWebAssembly.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/ProfDataUtils.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/KnownBits.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <optional> 84 #include <utility> 85 86 using namespace llvm; 87 using namespace llvm::PatternMatch; 88 89 #define DEBUG_TYPE "local" 90 91 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 92 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 93 94 static cl::opt<bool> PHICSEDebugHash( 95 "phicse-debug-hash", 96 #ifdef EXPENSIVE_CHECKS 97 cl::init(true), 98 #else 99 cl::init(false), 100 #endif 101 cl::Hidden, 102 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 103 "function is well-behaved w.r.t. its isEqual predicate")); 104 105 static cl::opt<unsigned> PHICSENumPHISmallSize( 106 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 107 cl::desc( 108 "When the basic block contains not more than this number of PHI nodes, " 109 "perform a (faster!) exhaustive search instead of set-driven one.")); 110 111 // Max recursion depth for collectBitParts used when detecting bswap and 112 // bitreverse idioms. 113 static const unsigned BitPartRecursionMaxDepth = 48; 114 115 //===----------------------------------------------------------------------===// 116 // Local constant propagation. 117 // 118 119 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 120 /// constant value, convert it into an unconditional branch to the constant 121 /// destination. This is a nontrivial operation because the successors of this 122 /// basic block must have their PHI nodes updated. 123 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 124 /// conditions and indirectbr addresses this might make dead if 125 /// DeleteDeadConditions is true. 126 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 127 const TargetLibraryInfo *TLI, 128 DomTreeUpdater *DTU) { 129 Instruction *T = BB->getTerminator(); 130 IRBuilder<> Builder(T); 131 132 // Branch - See if we are conditional jumping on constant 133 if (auto *BI = dyn_cast<BranchInst>(T)) { 134 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 135 136 BasicBlock *Dest1 = BI->getSuccessor(0); 137 BasicBlock *Dest2 = BI->getSuccessor(1); 138 139 if (Dest2 == Dest1) { // Conditional branch to same location? 140 // This branch matches something like this: 141 // br bool %cond, label %Dest, label %Dest 142 // and changes it into: br label %Dest 143 144 // Let the basic block know that we are letting go of one copy of it. 145 assert(BI->getParent() && "Terminator not inserted in block!"); 146 Dest1->removePredecessor(BI->getParent()); 147 148 // Replace the conditional branch with an unconditional one. 149 BranchInst *NewBI = Builder.CreateBr(Dest1); 150 151 // Transfer the metadata to the new branch instruction. 152 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 153 LLVMContext::MD_annotation}); 154 155 Value *Cond = BI->getCondition(); 156 BI->eraseFromParent(); 157 if (DeleteDeadConditions) 158 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 159 return true; 160 } 161 162 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 163 // Are we branching on constant? 164 // YES. Change to unconditional branch... 165 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 166 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 167 168 // Let the basic block know that we are letting go of it. Based on this, 169 // it will adjust it's PHI nodes. 170 OldDest->removePredecessor(BB); 171 172 // Replace the conditional branch with an unconditional one. 173 BranchInst *NewBI = Builder.CreateBr(Destination); 174 175 // Transfer the metadata to the new branch instruction. 176 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 177 LLVMContext::MD_annotation}); 178 179 BI->eraseFromParent(); 180 if (DTU) 181 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 182 return true; 183 } 184 185 return false; 186 } 187 188 if (auto *SI = dyn_cast<SwitchInst>(T)) { 189 // If we are switching on a constant, we can convert the switch to an 190 // unconditional branch. 191 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 192 BasicBlock *DefaultDest = SI->getDefaultDest(); 193 BasicBlock *TheOnlyDest = DefaultDest; 194 195 // If the default is unreachable, ignore it when searching for TheOnlyDest. 196 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 197 SI->getNumCases() > 0) { 198 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 199 } 200 201 bool Changed = false; 202 203 // Figure out which case it goes to. 204 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 205 // Found case matching a constant operand? 206 if (i->getCaseValue() == CI) { 207 TheOnlyDest = i->getCaseSuccessor(); 208 break; 209 } 210 211 // Check to see if this branch is going to the same place as the default 212 // dest. If so, eliminate it as an explicit compare. 213 if (i->getCaseSuccessor() == DefaultDest) { 214 MDNode *MD = getValidBranchWeightMDNode(*SI); 215 unsigned NCases = SI->getNumCases(); 216 // Fold the case metadata into the default if there will be any branches 217 // left, unless the metadata doesn't match the switch. 218 if (NCases > 1 && MD) { 219 // Collect branch weights into a vector. 220 SmallVector<uint32_t, 8> Weights; 221 extractBranchWeights(MD, Weights); 222 223 // Merge weight of this case to the default weight. 224 unsigned idx = i->getCaseIndex(); 225 // TODO: Add overflow check. 226 Weights[0] += Weights[idx+1]; 227 // Remove weight for this case. 228 std::swap(Weights[idx+1], Weights.back()); 229 Weights.pop_back(); 230 SI->setMetadata(LLVMContext::MD_prof, 231 MDBuilder(BB->getContext()). 232 createBranchWeights(Weights)); 233 } 234 // Remove this entry. 235 BasicBlock *ParentBB = SI->getParent(); 236 DefaultDest->removePredecessor(ParentBB); 237 i = SI->removeCase(i); 238 e = SI->case_end(); 239 240 // Removing this case may have made the condition constant. In that 241 // case, update CI and restart iteration through the cases. 242 if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) { 243 CI = NewCI; 244 i = SI->case_begin(); 245 } 246 247 Changed = true; 248 continue; 249 } 250 251 // Otherwise, check to see if the switch only branches to one destination. 252 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 253 // destinations. 254 if (i->getCaseSuccessor() != TheOnlyDest) 255 TheOnlyDest = nullptr; 256 257 // Increment this iterator as we haven't removed the case. 258 ++i; 259 } 260 261 if (CI && !TheOnlyDest) { 262 // Branching on a constant, but not any of the cases, go to the default 263 // successor. 264 TheOnlyDest = SI->getDefaultDest(); 265 } 266 267 // If we found a single destination that we can fold the switch into, do so 268 // now. 269 if (TheOnlyDest) { 270 // Insert the new branch. 271 Builder.CreateBr(TheOnlyDest); 272 BasicBlock *BB = SI->getParent(); 273 274 SmallSet<BasicBlock *, 8> RemovedSuccessors; 275 276 // Remove entries from PHI nodes which we no longer branch to... 277 BasicBlock *SuccToKeep = TheOnlyDest; 278 for (BasicBlock *Succ : successors(SI)) { 279 if (DTU && Succ != TheOnlyDest) 280 RemovedSuccessors.insert(Succ); 281 // Found case matching a constant operand? 282 if (Succ == SuccToKeep) { 283 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 284 } else { 285 Succ->removePredecessor(BB); 286 } 287 } 288 289 // Delete the old switch. 290 Value *Cond = SI->getCondition(); 291 SI->eraseFromParent(); 292 if (DeleteDeadConditions) 293 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 294 if (DTU) { 295 std::vector<DominatorTree::UpdateType> Updates; 296 Updates.reserve(RemovedSuccessors.size()); 297 for (auto *RemovedSuccessor : RemovedSuccessors) 298 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 299 DTU->applyUpdates(Updates); 300 } 301 return true; 302 } 303 304 if (SI->getNumCases() == 1) { 305 // Otherwise, we can fold this switch into a conditional branch 306 // instruction if it has only one non-default destination. 307 auto FirstCase = *SI->case_begin(); 308 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 309 FirstCase.getCaseValue(), "cond"); 310 311 // Insert the new branch. 312 BranchInst *NewBr = Builder.CreateCondBr(Cond, 313 FirstCase.getCaseSuccessor(), 314 SI->getDefaultDest()); 315 SmallVector<uint32_t> Weights; 316 if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) { 317 uint32_t DefWeight = Weights[0]; 318 uint32_t CaseWeight = Weights[1]; 319 // The TrueWeight should be the weight for the single case of SI. 320 NewBr->setMetadata(LLVMContext::MD_prof, 321 MDBuilder(BB->getContext()) 322 .createBranchWeights(CaseWeight, DefWeight)); 323 } 324 325 // Update make.implicit metadata to the newly-created conditional branch. 326 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 327 if (MakeImplicitMD) 328 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 329 330 // Delete the old switch. 331 SI->eraseFromParent(); 332 return true; 333 } 334 return Changed; 335 } 336 337 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 338 // indirectbr blockaddress(@F, @BB) -> br label @BB 339 if (auto *BA = 340 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 341 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 342 SmallSet<BasicBlock *, 8> RemovedSuccessors; 343 344 // Insert the new branch. 345 Builder.CreateBr(TheOnlyDest); 346 347 BasicBlock *SuccToKeep = TheOnlyDest; 348 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 349 BasicBlock *DestBB = IBI->getDestination(i); 350 if (DTU && DestBB != TheOnlyDest) 351 RemovedSuccessors.insert(DestBB); 352 if (IBI->getDestination(i) == SuccToKeep) { 353 SuccToKeep = nullptr; 354 } else { 355 DestBB->removePredecessor(BB); 356 } 357 } 358 Value *Address = IBI->getAddress(); 359 IBI->eraseFromParent(); 360 if (DeleteDeadConditions) 361 // Delete pointer cast instructions. 362 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 363 364 // Also zap the blockaddress constant if there are no users remaining, 365 // otherwise the destination is still marked as having its address taken. 366 if (BA->use_empty()) 367 BA->destroyConstant(); 368 369 // If we didn't find our destination in the IBI successor list, then we 370 // have undefined behavior. Replace the unconditional branch with an 371 // 'unreachable' instruction. 372 if (SuccToKeep) { 373 BB->getTerminator()->eraseFromParent(); 374 new UnreachableInst(BB->getContext(), BB); 375 } 376 377 if (DTU) { 378 std::vector<DominatorTree::UpdateType> Updates; 379 Updates.reserve(RemovedSuccessors.size()); 380 for (auto *RemovedSuccessor : RemovedSuccessors) 381 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 382 DTU->applyUpdates(Updates); 383 } 384 return true; 385 } 386 } 387 388 return false; 389 } 390 391 //===----------------------------------------------------------------------===// 392 // Local dead code elimination. 393 // 394 395 /// isInstructionTriviallyDead - Return true if the result produced by the 396 /// instruction is not used, and the instruction has no side effects. 397 /// 398 bool llvm::isInstructionTriviallyDead(Instruction *I, 399 const TargetLibraryInfo *TLI) { 400 if (!I->use_empty()) 401 return false; 402 return wouldInstructionBeTriviallyDead(I, TLI); 403 } 404 405 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 406 Instruction *I, const TargetLibraryInfo *TLI) { 407 // Instructions that are "markers" and have implied meaning on code around 408 // them (without explicit uses), are not dead on unused paths. 409 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 410 if (II->getIntrinsicID() == Intrinsic::stacksave || 411 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 412 II->isLifetimeStartOrEnd()) 413 return false; 414 return wouldInstructionBeTriviallyDead(I, TLI); 415 } 416 417 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 418 const TargetLibraryInfo *TLI) { 419 if (I->isTerminator()) 420 return false; 421 422 // We don't want the landingpad-like instructions removed by anything this 423 // general. 424 if (I->isEHPad()) 425 return false; 426 427 // We don't want debug info removed by anything this general, unless 428 // debug info is empty. 429 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 430 if (DDI->getAddress()) 431 return false; 432 return true; 433 } 434 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 435 if (DVI->hasArgList() || DVI->getValue(0)) 436 return false; 437 return true; 438 } 439 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 440 if (DLI->getLabel()) 441 return false; 442 return true; 443 } 444 445 if (auto *CB = dyn_cast<CallBase>(I)) 446 if (isRemovableAlloc(CB, TLI)) 447 return true; 448 449 if (!I->willReturn()) { 450 auto *II = dyn_cast<IntrinsicInst>(I); 451 if (!II) 452 return false; 453 454 // TODO: These intrinsics are not safe to remove, because this may remove 455 // a well-defined trap. 456 switch (II->getIntrinsicID()) { 457 case Intrinsic::wasm_trunc_signed: 458 case Intrinsic::wasm_trunc_unsigned: 459 case Intrinsic::ptrauth_auth: 460 case Intrinsic::ptrauth_resign: 461 return true; 462 default: 463 return false; 464 } 465 } 466 467 if (!I->mayHaveSideEffects()) 468 return true; 469 470 // Special case intrinsics that "may have side effects" but can be deleted 471 // when dead. 472 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 473 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 474 if (II->getIntrinsicID() == Intrinsic::stacksave || 475 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 476 return true; 477 478 if (II->isLifetimeStartOrEnd()) { 479 auto *Arg = II->getArgOperand(1); 480 // Lifetime intrinsics are dead when their right-hand is undef. 481 if (isa<UndefValue>(Arg)) 482 return true; 483 // If the right-hand is an alloc, global, or argument and the only uses 484 // are lifetime intrinsics then the intrinsics are dead. 485 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 486 return llvm::all_of(Arg->uses(), [](Use &Use) { 487 if (IntrinsicInst *IntrinsicUse = 488 dyn_cast<IntrinsicInst>(Use.getUser())) 489 return IntrinsicUse->isLifetimeStartOrEnd(); 490 return false; 491 }); 492 return false; 493 } 494 495 // Assumptions are dead if their condition is trivially true. Guards on 496 // true are operationally no-ops. In the future we can consider more 497 // sophisticated tradeoffs for guards considering potential for check 498 // widening, but for now we keep things simple. 499 if ((II->getIntrinsicID() == Intrinsic::assume && 500 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 501 II->getIntrinsicID() == Intrinsic::experimental_guard) { 502 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 503 return !Cond->isZero(); 504 505 return false; 506 } 507 508 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 509 std::optional<fp::ExceptionBehavior> ExBehavior = 510 FPI->getExceptionBehavior(); 511 return *ExBehavior != fp::ebStrict; 512 } 513 } 514 515 if (auto *Call = dyn_cast<CallBase>(I)) { 516 if (Value *FreedOp = getFreedOperand(Call, TLI)) 517 if (Constant *C = dyn_cast<Constant>(FreedOp)) 518 return C->isNullValue() || isa<UndefValue>(C); 519 if (isMathLibCallNoop(Call, TLI)) 520 return true; 521 } 522 523 // Non-volatile atomic loads from constants can be removed. 524 if (auto *LI = dyn_cast<LoadInst>(I)) 525 if (auto *GV = dyn_cast<GlobalVariable>( 526 LI->getPointerOperand()->stripPointerCasts())) 527 if (!LI->isVolatile() && GV->isConstant()) 528 return true; 529 530 return false; 531 } 532 533 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 534 /// trivially dead instruction, delete it. If that makes any of its operands 535 /// trivially dead, delete them too, recursively. Return true if any 536 /// instructions were deleted. 537 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 538 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 539 std::function<void(Value *)> AboutToDeleteCallback) { 540 Instruction *I = dyn_cast<Instruction>(V); 541 if (!I || !isInstructionTriviallyDead(I, TLI)) 542 return false; 543 544 SmallVector<WeakTrackingVH, 16> DeadInsts; 545 DeadInsts.push_back(I); 546 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 547 AboutToDeleteCallback); 548 549 return true; 550 } 551 552 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 553 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 554 MemorySSAUpdater *MSSAU, 555 std::function<void(Value *)> AboutToDeleteCallback) { 556 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 557 for (; S != E; ++S) { 558 auto *I = dyn_cast<Instruction>(DeadInsts[S]); 559 if (!I || !isInstructionTriviallyDead(I)) { 560 DeadInsts[S] = nullptr; 561 ++Alive; 562 } 563 } 564 if (Alive == E) 565 return false; 566 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 567 AboutToDeleteCallback); 568 return true; 569 } 570 571 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 572 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 573 MemorySSAUpdater *MSSAU, 574 std::function<void(Value *)> AboutToDeleteCallback) { 575 // Process the dead instruction list until empty. 576 while (!DeadInsts.empty()) { 577 Value *V = DeadInsts.pop_back_val(); 578 Instruction *I = cast_or_null<Instruction>(V); 579 if (!I) 580 continue; 581 assert(isInstructionTriviallyDead(I, TLI) && 582 "Live instruction found in dead worklist!"); 583 assert(I->use_empty() && "Instructions with uses are not dead."); 584 585 // Don't lose the debug info while deleting the instructions. 586 salvageDebugInfo(*I); 587 588 if (AboutToDeleteCallback) 589 AboutToDeleteCallback(I); 590 591 // Null out all of the instruction's operands to see if any operand becomes 592 // dead as we go. 593 for (Use &OpU : I->operands()) { 594 Value *OpV = OpU.get(); 595 OpU.set(nullptr); 596 597 if (!OpV->use_empty()) 598 continue; 599 600 // If the operand is an instruction that became dead as we nulled out the 601 // operand, and if it is 'trivially' dead, delete it in a future loop 602 // iteration. 603 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 604 if (isInstructionTriviallyDead(OpI, TLI)) 605 DeadInsts.push_back(OpI); 606 } 607 if (MSSAU) 608 MSSAU->removeMemoryAccess(I); 609 610 I->eraseFromParent(); 611 } 612 } 613 614 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 615 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 616 findDbgUsers(DbgUsers, I); 617 for (auto *DII : DbgUsers) 618 DII->setKillLocation(); 619 return !DbgUsers.empty(); 620 } 621 622 /// areAllUsesEqual - Check whether the uses of a value are all the same. 623 /// This is similar to Instruction::hasOneUse() except this will also return 624 /// true when there are no uses or multiple uses that all refer to the same 625 /// value. 626 static bool areAllUsesEqual(Instruction *I) { 627 Value::user_iterator UI = I->user_begin(); 628 Value::user_iterator UE = I->user_end(); 629 if (UI == UE) 630 return true; 631 632 User *TheUse = *UI; 633 for (++UI; UI != UE; ++UI) { 634 if (*UI != TheUse) 635 return false; 636 } 637 return true; 638 } 639 640 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 641 /// dead PHI node, due to being a def-use chain of single-use nodes that 642 /// either forms a cycle or is terminated by a trivially dead instruction, 643 /// delete it. If that makes any of its operands trivially dead, delete them 644 /// too, recursively. Return true if a change was made. 645 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 646 const TargetLibraryInfo *TLI, 647 llvm::MemorySSAUpdater *MSSAU) { 648 SmallPtrSet<Instruction*, 4> Visited; 649 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 650 I = cast<Instruction>(*I->user_begin())) { 651 if (I->use_empty()) 652 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 653 654 // If we find an instruction more than once, we're on a cycle that 655 // won't prove fruitful. 656 if (!Visited.insert(I).second) { 657 // Break the cycle and delete the instruction and its operands. 658 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 659 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 660 return true; 661 } 662 } 663 return false; 664 } 665 666 static bool 667 simplifyAndDCEInstruction(Instruction *I, 668 SmallSetVector<Instruction *, 16> &WorkList, 669 const DataLayout &DL, 670 const TargetLibraryInfo *TLI) { 671 if (isInstructionTriviallyDead(I, TLI)) { 672 salvageDebugInfo(*I); 673 674 // Null out all of the instruction's operands to see if any operand becomes 675 // dead as we go. 676 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 677 Value *OpV = I->getOperand(i); 678 I->setOperand(i, nullptr); 679 680 if (!OpV->use_empty() || I == OpV) 681 continue; 682 683 // If the operand is an instruction that became dead as we nulled out the 684 // operand, and if it is 'trivially' dead, delete it in a future loop 685 // iteration. 686 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 687 if (isInstructionTriviallyDead(OpI, TLI)) 688 WorkList.insert(OpI); 689 } 690 691 I->eraseFromParent(); 692 693 return true; 694 } 695 696 if (Value *SimpleV = simplifyInstruction(I, DL)) { 697 // Add the users to the worklist. CAREFUL: an instruction can use itself, 698 // in the case of a phi node. 699 for (User *U : I->users()) { 700 if (U != I) { 701 WorkList.insert(cast<Instruction>(U)); 702 } 703 } 704 705 // Replace the instruction with its simplified value. 706 bool Changed = false; 707 if (!I->use_empty()) { 708 I->replaceAllUsesWith(SimpleV); 709 Changed = true; 710 } 711 if (isInstructionTriviallyDead(I, TLI)) { 712 I->eraseFromParent(); 713 Changed = true; 714 } 715 return Changed; 716 } 717 return false; 718 } 719 720 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 721 /// simplify any instructions in it and recursively delete dead instructions. 722 /// 723 /// This returns true if it changed the code, note that it can delete 724 /// instructions in other blocks as well in this block. 725 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 726 const TargetLibraryInfo *TLI) { 727 bool MadeChange = false; 728 const DataLayout &DL = BB->getModule()->getDataLayout(); 729 730 #ifndef NDEBUG 731 // In debug builds, ensure that the terminator of the block is never replaced 732 // or deleted by these simplifications. The idea of simplification is that it 733 // cannot introduce new instructions, and there is no way to replace the 734 // terminator of a block without introducing a new instruction. 735 AssertingVH<Instruction> TerminatorVH(&BB->back()); 736 #endif 737 738 SmallSetVector<Instruction *, 16> WorkList; 739 // Iterate over the original function, only adding insts to the worklist 740 // if they actually need to be revisited. This avoids having to pre-init 741 // the worklist with the entire function's worth of instructions. 742 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 743 BI != E;) { 744 assert(!BI->isTerminator()); 745 Instruction *I = &*BI; 746 ++BI; 747 748 // We're visiting this instruction now, so make sure it's not in the 749 // worklist from an earlier visit. 750 if (!WorkList.count(I)) 751 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 752 } 753 754 while (!WorkList.empty()) { 755 Instruction *I = WorkList.pop_back_val(); 756 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 757 } 758 return MadeChange; 759 } 760 761 //===----------------------------------------------------------------------===// 762 // Control Flow Graph Restructuring. 763 // 764 765 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 766 DomTreeUpdater *DTU) { 767 768 // If BB has single-entry PHI nodes, fold them. 769 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 770 Value *NewVal = PN->getIncomingValue(0); 771 // Replace self referencing PHI with poison, it must be dead. 772 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType()); 773 PN->replaceAllUsesWith(NewVal); 774 PN->eraseFromParent(); 775 } 776 777 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 778 assert(PredBB && "Block doesn't have a single predecessor!"); 779 780 bool ReplaceEntryBB = PredBB->isEntryBlock(); 781 782 // DTU updates: Collect all the edges that enter 783 // PredBB. These dominator edges will be redirected to DestBB. 784 SmallVector<DominatorTree::UpdateType, 32> Updates; 785 786 if (DTU) { 787 // To avoid processing the same predecessor more than once. 788 SmallPtrSet<BasicBlock *, 2> SeenPreds; 789 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 790 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 791 // This predecessor of PredBB may already have DestBB as a successor. 792 if (PredOfPredBB != PredBB) 793 if (SeenPreds.insert(PredOfPredBB).second) 794 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 795 SeenPreds.clear(); 796 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 797 if (SeenPreds.insert(PredOfPredBB).second) 798 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 799 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 800 } 801 802 // Zap anything that took the address of DestBB. Not doing this will give the 803 // address an invalid value. 804 if (DestBB->hasAddressTaken()) { 805 BlockAddress *BA = BlockAddress::get(DestBB); 806 Constant *Replacement = 807 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 808 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 809 BA->getType())); 810 BA->destroyConstant(); 811 } 812 813 // Anything that branched to PredBB now branches to DestBB. 814 PredBB->replaceAllUsesWith(DestBB); 815 816 // Splice all the instructions from PredBB to DestBB. 817 PredBB->getTerminator()->eraseFromParent(); 818 DestBB->splice(DestBB->begin(), PredBB); 819 new UnreachableInst(PredBB->getContext(), PredBB); 820 821 // If the PredBB is the entry block of the function, move DestBB up to 822 // become the entry block after we erase PredBB. 823 if (ReplaceEntryBB) 824 DestBB->moveAfter(PredBB); 825 826 if (DTU) { 827 assert(PredBB->size() == 1 && 828 isa<UnreachableInst>(PredBB->getTerminator()) && 829 "The successor list of PredBB isn't empty before " 830 "applying corresponding DTU updates."); 831 DTU->applyUpdatesPermissive(Updates); 832 DTU->deleteBB(PredBB); 833 // Recalculation of DomTree is needed when updating a forward DomTree and 834 // the Entry BB is replaced. 835 if (ReplaceEntryBB && DTU->hasDomTree()) { 836 // The entry block was removed and there is no external interface for 837 // the dominator tree to be notified of this change. In this corner-case 838 // we recalculate the entire tree. 839 DTU->recalculate(*(DestBB->getParent())); 840 } 841 } 842 843 else { 844 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 845 } 846 } 847 848 /// Return true if we can choose one of these values to use in place of the 849 /// other. Note that we will always choose the non-undef value to keep. 850 static bool CanMergeValues(Value *First, Value *Second) { 851 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 852 } 853 854 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 855 /// branch to Succ, into Succ. 856 /// 857 /// Assumption: Succ is the single successor for BB. 858 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 859 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 860 861 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 862 << Succ->getName() << "\n"); 863 // Shortcut, if there is only a single predecessor it must be BB and merging 864 // is always safe 865 if (Succ->getSinglePredecessor()) return true; 866 867 // Make a list of the predecessors of BB 868 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 869 870 // Look at all the phi nodes in Succ, to see if they present a conflict when 871 // merging these blocks 872 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 873 PHINode *PN = cast<PHINode>(I); 874 875 // If the incoming value from BB is again a PHINode in 876 // BB which has the same incoming value for *PI as PN does, we can 877 // merge the phi nodes and then the blocks can still be merged 878 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 879 if (BBPN && BBPN->getParent() == BB) { 880 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 881 BasicBlock *IBB = PN->getIncomingBlock(PI); 882 if (BBPreds.count(IBB) && 883 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 884 PN->getIncomingValue(PI))) { 885 LLVM_DEBUG(dbgs() 886 << "Can't fold, phi node " << PN->getName() << " in " 887 << Succ->getName() << " is conflicting with " 888 << BBPN->getName() << " with regard to common predecessor " 889 << IBB->getName() << "\n"); 890 return false; 891 } 892 } 893 } else { 894 Value* Val = PN->getIncomingValueForBlock(BB); 895 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 896 // See if the incoming value for the common predecessor is equal to the 897 // one for BB, in which case this phi node will not prevent the merging 898 // of the block. 899 BasicBlock *IBB = PN->getIncomingBlock(PI); 900 if (BBPreds.count(IBB) && 901 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 902 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 903 << " in " << Succ->getName() 904 << " is conflicting with regard to common " 905 << "predecessor " << IBB->getName() << "\n"); 906 return false; 907 } 908 } 909 } 910 } 911 912 return true; 913 } 914 915 using PredBlockVector = SmallVector<BasicBlock *, 16>; 916 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 917 918 /// Determines the value to use as the phi node input for a block. 919 /// 920 /// Select between \p OldVal any value that we know flows from \p BB 921 /// to a particular phi on the basis of which one (if either) is not 922 /// undef. Update IncomingValues based on the selected value. 923 /// 924 /// \param OldVal The value we are considering selecting. 925 /// \param BB The block that the value flows in from. 926 /// \param IncomingValues A map from block-to-value for other phi inputs 927 /// that we have examined. 928 /// 929 /// \returns the selected value. 930 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 931 IncomingValueMap &IncomingValues) { 932 if (!isa<UndefValue>(OldVal)) { 933 assert((!IncomingValues.count(BB) || 934 IncomingValues.find(BB)->second == OldVal) && 935 "Expected OldVal to match incoming value from BB!"); 936 937 IncomingValues.insert(std::make_pair(BB, OldVal)); 938 return OldVal; 939 } 940 941 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 942 if (It != IncomingValues.end()) return It->second; 943 944 return OldVal; 945 } 946 947 /// Create a map from block to value for the operands of a 948 /// given phi. 949 /// 950 /// Create a map from block to value for each non-undef value flowing 951 /// into \p PN. 952 /// 953 /// \param PN The phi we are collecting the map for. 954 /// \param IncomingValues [out] The map from block to value for this phi. 955 static void gatherIncomingValuesToPhi(PHINode *PN, 956 IncomingValueMap &IncomingValues) { 957 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 958 BasicBlock *BB = PN->getIncomingBlock(i); 959 Value *V = PN->getIncomingValue(i); 960 961 if (!isa<UndefValue>(V)) 962 IncomingValues.insert(std::make_pair(BB, V)); 963 } 964 } 965 966 /// Replace the incoming undef values to a phi with the values 967 /// from a block-to-value map. 968 /// 969 /// \param PN The phi we are replacing the undefs in. 970 /// \param IncomingValues A map from block to value. 971 static void replaceUndefValuesInPhi(PHINode *PN, 972 const IncomingValueMap &IncomingValues) { 973 SmallVector<unsigned> TrueUndefOps; 974 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 975 Value *V = PN->getIncomingValue(i); 976 977 if (!isa<UndefValue>(V)) continue; 978 979 BasicBlock *BB = PN->getIncomingBlock(i); 980 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 981 982 // Keep track of undef/poison incoming values. Those must match, so we fix 983 // them up below if needed. 984 // Note: this is conservatively correct, but we could try harder and group 985 // the undef values per incoming basic block. 986 if (It == IncomingValues.end()) { 987 TrueUndefOps.push_back(i); 988 continue; 989 } 990 991 // There is a defined value for this incoming block, so map this undef 992 // incoming value to the defined value. 993 PN->setIncomingValue(i, It->second); 994 } 995 996 // If there are both undef and poison values incoming, then convert those 997 // values to undef. It is invalid to have different values for the same 998 // incoming block. 999 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 1000 return isa<PoisonValue>(PN->getIncomingValue(i)); 1001 }); 1002 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 1003 for (unsigned i : TrueUndefOps) 1004 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 1005 } 1006 } 1007 1008 /// Replace a value flowing from a block to a phi with 1009 /// potentially multiple instances of that value flowing from the 1010 /// block's predecessors to the phi. 1011 /// 1012 /// \param BB The block with the value flowing into the phi. 1013 /// \param BBPreds The predecessors of BB. 1014 /// \param PN The phi that we are updating. 1015 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 1016 const PredBlockVector &BBPreds, 1017 PHINode *PN) { 1018 Value *OldVal = PN->removeIncomingValue(BB, false); 1019 assert(OldVal && "No entry in PHI for Pred BB!"); 1020 1021 IncomingValueMap IncomingValues; 1022 1023 // We are merging two blocks - BB, and the block containing PN - and 1024 // as a result we need to redirect edges from the predecessors of BB 1025 // to go to the block containing PN, and update PN 1026 // accordingly. Since we allow merging blocks in the case where the 1027 // predecessor and successor blocks both share some predecessors, 1028 // and where some of those common predecessors might have undef 1029 // values flowing into PN, we want to rewrite those values to be 1030 // consistent with the non-undef values. 1031 1032 gatherIncomingValuesToPhi(PN, IncomingValues); 1033 1034 // If this incoming value is one of the PHI nodes in BB, the new entries 1035 // in the PHI node are the entries from the old PHI. 1036 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1037 PHINode *OldValPN = cast<PHINode>(OldVal); 1038 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1039 // Note that, since we are merging phi nodes and BB and Succ might 1040 // have common predecessors, we could end up with a phi node with 1041 // identical incoming branches. This will be cleaned up later (and 1042 // will trigger asserts if we try to clean it up now, without also 1043 // simplifying the corresponding conditional branch). 1044 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1045 Value *PredVal = OldValPN->getIncomingValue(i); 1046 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1047 IncomingValues); 1048 1049 // And add a new incoming value for this predecessor for the 1050 // newly retargeted branch. 1051 PN->addIncoming(Selected, PredBB); 1052 } 1053 } else { 1054 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1055 // Update existing incoming values in PN for this 1056 // predecessor of BB. 1057 BasicBlock *PredBB = BBPreds[i]; 1058 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1059 IncomingValues); 1060 1061 // And add a new incoming value for this predecessor for the 1062 // newly retargeted branch. 1063 PN->addIncoming(Selected, PredBB); 1064 } 1065 } 1066 1067 replaceUndefValuesInPhi(PN, IncomingValues); 1068 } 1069 1070 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1071 DomTreeUpdater *DTU) { 1072 assert(BB != &BB->getParent()->getEntryBlock() && 1073 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1074 1075 // We can't eliminate infinite loops. 1076 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1077 if (BB == Succ) return false; 1078 1079 // Check to see if merging these blocks would cause conflicts for any of the 1080 // phi nodes in BB or Succ. If not, we can safely merge. 1081 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1082 1083 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1084 // has uses which will not disappear when the PHI nodes are merged. It is 1085 // possible to handle such cases, but difficult: it requires checking whether 1086 // BB dominates Succ, which is non-trivial to calculate in the case where 1087 // Succ has multiple predecessors. Also, it requires checking whether 1088 // constructing the necessary self-referential PHI node doesn't introduce any 1089 // conflicts; this isn't too difficult, but the previous code for doing this 1090 // was incorrect. 1091 // 1092 // Note that if this check finds a live use, BB dominates Succ, so BB is 1093 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1094 // folding the branch isn't profitable in that case anyway. 1095 if (!Succ->getSinglePredecessor()) { 1096 BasicBlock::iterator BBI = BB->begin(); 1097 while (isa<PHINode>(*BBI)) { 1098 for (Use &U : BBI->uses()) { 1099 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1100 if (PN->getIncomingBlock(U) != BB) 1101 return false; 1102 } else { 1103 return false; 1104 } 1105 } 1106 ++BBI; 1107 } 1108 } 1109 1110 // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop 1111 // metadata. 1112 // 1113 // FIXME: This is a stop-gap solution to preserve inner-loop metadata given 1114 // current status (that loop metadata is implemented as metadata attached to 1115 // the branch instruction in the loop latch block). To quote from review 1116 // comments, "the current representation of loop metadata (using a loop latch 1117 // terminator attachment) is known to be fundamentally broken. Loop latches 1118 // are not uniquely associated with loops (both in that a latch can be part of 1119 // multiple loops and a loop may have multiple latches). Loop headers are. The 1120 // solution to this problem is also known: Add support for basic block 1121 // metadata, and attach loop metadata to the loop header." 1122 // 1123 // Why bail out: 1124 // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is 1125 // the latch for inner-loop (see reason below), so bail out to prerserve 1126 // inner-loop metadata rather than eliminating 'BB' and attaching its metadata 1127 // to this inner-loop. 1128 // - The reason we believe 'BB' and 'BB->Pred' have different inner-most 1129 // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L, 1130 // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of 1131 // one self-looping basic block, which is contradictory with the assumption. 1132 // 1133 // To illustrate how inner-loop metadata is dropped: 1134 // 1135 // CFG Before 1136 // 1137 // BB is while.cond.exit, attached with loop metdata md2. 1138 // BB->Pred is for.body, attached with loop metadata md1. 1139 // 1140 // entry 1141 // | 1142 // v 1143 // ---> while.cond -------------> while.end 1144 // | | 1145 // | v 1146 // | while.body 1147 // | | 1148 // | v 1149 // | for.body <---- (md1) 1150 // | | |______| 1151 // | v 1152 // | while.cond.exit (md2) 1153 // | | 1154 // |_______| 1155 // 1156 // CFG After 1157 // 1158 // while.cond1 is the merge of while.cond.exit and while.cond above. 1159 // for.body is attached with md2, and md1 is dropped. 1160 // If LoopSimplify runs later (as a part of loop pass), it could create 1161 // dedicated exits for inner-loop (essentially adding `while.cond.exit` 1162 // back), but won't it won't see 'md1' nor restore it for the inner-loop. 1163 // 1164 // entry 1165 // | 1166 // v 1167 // ---> while.cond1 -------------> while.end 1168 // | | 1169 // | v 1170 // | while.body 1171 // | | 1172 // | v 1173 // | for.body <---- (md2) 1174 // |_______| |______| 1175 if (Instruction *TI = BB->getTerminator()) 1176 if (TI->hasMetadata(LLVMContext::MD_loop)) 1177 for (BasicBlock *Pred : predecessors(BB)) 1178 if (Instruction *PredTI = Pred->getTerminator()) 1179 if (PredTI->hasMetadata(LLVMContext::MD_loop)) 1180 return false; 1181 1182 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1183 1184 SmallVector<DominatorTree::UpdateType, 32> Updates; 1185 if (DTU) { 1186 // To avoid processing the same predecessor more than once. 1187 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1188 // All predecessors of BB will be moved to Succ. 1189 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1190 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1191 for (auto *PredOfBB : predecessors(BB)) 1192 // This predecessor of BB may already have Succ as a successor. 1193 if (!PredsOfSucc.contains(PredOfBB)) 1194 if (SeenPreds.insert(PredOfBB).second) 1195 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1196 SeenPreds.clear(); 1197 for (auto *PredOfBB : predecessors(BB)) 1198 if (SeenPreds.insert(PredOfBB).second) 1199 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1200 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1201 } 1202 1203 if (isa<PHINode>(Succ->begin())) { 1204 // If there is more than one pred of succ, and there are PHI nodes in 1205 // the successor, then we need to add incoming edges for the PHI nodes 1206 // 1207 const PredBlockVector BBPreds(predecessors(BB)); 1208 1209 // Loop over all of the PHI nodes in the successor of BB. 1210 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1211 PHINode *PN = cast<PHINode>(I); 1212 1213 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1214 } 1215 } 1216 1217 if (Succ->getSinglePredecessor()) { 1218 // BB is the only predecessor of Succ, so Succ will end up with exactly 1219 // the same predecessors BB had. 1220 1221 // Copy over any phi, debug or lifetime instruction. 1222 BB->getTerminator()->eraseFromParent(); 1223 Succ->splice(Succ->getFirstNonPHI()->getIterator(), BB); 1224 } else { 1225 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1226 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1227 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1228 PN->eraseFromParent(); 1229 } 1230 } 1231 1232 // If the unconditional branch we replaced contains llvm.loop metadata, we 1233 // add the metadata to the branch instructions in the predecessors. 1234 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1235 Instruction *TI = BB->getTerminator(); 1236 if (TI) 1237 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1238 for (BasicBlock *Pred : predecessors(BB)) 1239 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1240 1241 // Everything that jumped to BB now goes to Succ. 1242 BB->replaceAllUsesWith(Succ); 1243 if (!Succ->hasName()) Succ->takeName(BB); 1244 1245 // Clear the successor list of BB to match updates applying to DTU later. 1246 if (BB->getTerminator()) 1247 BB->back().eraseFromParent(); 1248 new UnreachableInst(BB->getContext(), BB); 1249 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1250 "applying corresponding DTU updates."); 1251 1252 if (DTU) 1253 DTU->applyUpdates(Updates); 1254 1255 DeleteDeadBlock(BB, DTU); 1256 1257 return true; 1258 } 1259 1260 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1261 // This implementation doesn't currently consider undef operands 1262 // specially. Theoretically, two phis which are identical except for 1263 // one having an undef where the other doesn't could be collapsed. 1264 1265 bool Changed = false; 1266 1267 // Examine each PHI. 1268 // Note that increment of I must *NOT* be in the iteration_expression, since 1269 // we don't want to immediately advance when we restart from the beginning. 1270 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1271 ++I; 1272 // Is there an identical PHI node in this basic block? 1273 // Note that we only look in the upper square's triangle, 1274 // we already checked that the lower triangle PHI's aren't identical. 1275 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1276 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1277 continue; 1278 // A duplicate. Replace this PHI with the base PHI. 1279 ++NumPHICSEs; 1280 DuplicatePN->replaceAllUsesWith(PN); 1281 DuplicatePN->eraseFromParent(); 1282 Changed = true; 1283 1284 // The RAUW can change PHIs that we already visited. 1285 I = BB->begin(); 1286 break; // Start over from the beginning. 1287 } 1288 } 1289 return Changed; 1290 } 1291 1292 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1293 // This implementation doesn't currently consider undef operands 1294 // specially. Theoretically, two phis which are identical except for 1295 // one having an undef where the other doesn't could be collapsed. 1296 1297 struct PHIDenseMapInfo { 1298 static PHINode *getEmptyKey() { 1299 return DenseMapInfo<PHINode *>::getEmptyKey(); 1300 } 1301 1302 static PHINode *getTombstoneKey() { 1303 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1304 } 1305 1306 static bool isSentinel(PHINode *PN) { 1307 return PN == getEmptyKey() || PN == getTombstoneKey(); 1308 } 1309 1310 // WARNING: this logic must be kept in sync with 1311 // Instruction::isIdenticalToWhenDefined()! 1312 static unsigned getHashValueImpl(PHINode *PN) { 1313 // Compute a hash value on the operands. Instcombine will likely have 1314 // sorted them, which helps expose duplicates, but we have to check all 1315 // the operands to be safe in case instcombine hasn't run. 1316 return static_cast<unsigned>(hash_combine( 1317 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1318 hash_combine_range(PN->block_begin(), PN->block_end()))); 1319 } 1320 1321 static unsigned getHashValue(PHINode *PN) { 1322 #ifndef NDEBUG 1323 // If -phicse-debug-hash was specified, return a constant -- this 1324 // will force all hashing to collide, so we'll exhaustively search 1325 // the table for a match, and the assertion in isEqual will fire if 1326 // there's a bug causing equal keys to hash differently. 1327 if (PHICSEDebugHash) 1328 return 0; 1329 #endif 1330 return getHashValueImpl(PN); 1331 } 1332 1333 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1334 if (isSentinel(LHS) || isSentinel(RHS)) 1335 return LHS == RHS; 1336 return LHS->isIdenticalTo(RHS); 1337 } 1338 1339 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1340 // These comparisons are nontrivial, so assert that equality implies 1341 // hash equality (DenseMap demands this as an invariant). 1342 bool Result = isEqualImpl(LHS, RHS); 1343 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1344 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1345 return Result; 1346 } 1347 }; 1348 1349 // Set of unique PHINodes. 1350 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1351 PHISet.reserve(4 * PHICSENumPHISmallSize); 1352 1353 // Examine each PHI. 1354 bool Changed = false; 1355 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1356 auto Inserted = PHISet.insert(PN); 1357 if (!Inserted.second) { 1358 // A duplicate. Replace this PHI with its duplicate. 1359 ++NumPHICSEs; 1360 PN->replaceAllUsesWith(*Inserted.first); 1361 PN->eraseFromParent(); 1362 Changed = true; 1363 1364 // The RAUW can change PHIs that we already visited. Start over from the 1365 // beginning. 1366 PHISet.clear(); 1367 I = BB->begin(); 1368 } 1369 } 1370 1371 return Changed; 1372 } 1373 1374 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1375 if ( 1376 #ifndef NDEBUG 1377 !PHICSEDebugHash && 1378 #endif 1379 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1380 return EliminateDuplicatePHINodesNaiveImpl(BB); 1381 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1382 } 1383 1384 /// If the specified pointer points to an object that we control, try to modify 1385 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1386 /// the value after the operation, which may be lower than PrefAlign. 1387 /// 1388 /// Increating value alignment isn't often possible though. If alignment is 1389 /// important, a more reliable approach is to simply align all global variables 1390 /// and allocation instructions to their preferred alignment from the beginning. 1391 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1392 const DataLayout &DL) { 1393 V = V->stripPointerCasts(); 1394 1395 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1396 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1397 // than the current alignment, as the known bits calculation should have 1398 // already taken it into account. However, this is not always the case, 1399 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1400 // doesn't. 1401 Align CurrentAlign = AI->getAlign(); 1402 if (PrefAlign <= CurrentAlign) 1403 return CurrentAlign; 1404 1405 // If the preferred alignment is greater than the natural stack alignment 1406 // then don't round up. This avoids dynamic stack realignment. 1407 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1408 return CurrentAlign; 1409 AI->setAlignment(PrefAlign); 1410 return PrefAlign; 1411 } 1412 1413 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1414 // TODO: as above, this shouldn't be necessary. 1415 Align CurrentAlign = GO->getPointerAlignment(DL); 1416 if (PrefAlign <= CurrentAlign) 1417 return CurrentAlign; 1418 1419 // If there is a large requested alignment and we can, bump up the alignment 1420 // of the global. If the memory we set aside for the global may not be the 1421 // memory used by the final program then it is impossible for us to reliably 1422 // enforce the preferred alignment. 1423 if (!GO->canIncreaseAlignment()) 1424 return CurrentAlign; 1425 1426 GO->setAlignment(PrefAlign); 1427 return PrefAlign; 1428 } 1429 1430 return Align(1); 1431 } 1432 1433 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1434 const DataLayout &DL, 1435 const Instruction *CxtI, 1436 AssumptionCache *AC, 1437 const DominatorTree *DT) { 1438 assert(V->getType()->isPointerTy() && 1439 "getOrEnforceKnownAlignment expects a pointer!"); 1440 1441 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1442 unsigned TrailZ = Known.countMinTrailingZeros(); 1443 1444 // Avoid trouble with ridiculously large TrailZ values, such as 1445 // those computed from a null pointer. 1446 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1447 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1448 1449 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1450 1451 if (PrefAlign && *PrefAlign > Alignment) 1452 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1453 1454 // We don't need to make any adjustment. 1455 return Alignment; 1456 } 1457 1458 ///===---------------------------------------------------------------------===// 1459 /// Dbg Intrinsic utilities 1460 /// 1461 1462 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1463 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1464 DIExpression *DIExpr, 1465 PHINode *APN) { 1466 // Since we can't guarantee that the original dbg.declare intrinsic 1467 // is removed by LowerDbgDeclare(), we need to make sure that we are 1468 // not inserting the same dbg.value intrinsic over and over. 1469 SmallVector<DbgValueInst *, 1> DbgValues; 1470 findDbgValues(DbgValues, APN); 1471 for (auto *DVI : DbgValues) { 1472 assert(is_contained(DVI->getValues(), APN)); 1473 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1474 return true; 1475 } 1476 return false; 1477 } 1478 1479 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1480 /// (or fragment of the variable) described by \p DII. 1481 /// 1482 /// This is primarily intended as a helper for the different 1483 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1484 /// converted describes an alloca'd variable, so we need to use the 1485 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1486 /// identified as covering an n-bit fragment, if the store size of i1 is at 1487 /// least n bits. 1488 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1489 const DataLayout &DL = DII->getModule()->getDataLayout(); 1490 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1491 if (std::optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1492 assert(!ValueSize.isScalable() && 1493 "Fragments don't work on scalable types."); 1494 return ValueSize.getFixedValue() >= *FragmentSize; 1495 } 1496 // We can't always calculate the size of the DI variable (e.g. if it is a 1497 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1498 // intead. 1499 if (DII->isAddressOfVariable()) { 1500 // DII should have exactly 1 location when it is an address. 1501 assert(DII->getNumVariableLocationOps() == 1 && 1502 "address of variable must have exactly 1 location operand."); 1503 if (auto *AI = 1504 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1505 if (std::optional<TypeSize> FragmentSize = 1506 AI->getAllocationSizeInBits(DL)) { 1507 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1508 } 1509 } 1510 } 1511 // Could not determine size of variable. Conservatively return false. 1512 return false; 1513 } 1514 1515 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1516 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1517 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1518 StoreInst *SI, DIBuilder &Builder) { 1519 assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII)); 1520 auto *DIVar = DII->getVariable(); 1521 assert(DIVar && "Missing variable"); 1522 auto *DIExpr = DII->getExpression(); 1523 Value *DV = SI->getValueOperand(); 1524 1525 DebugLoc NewLoc = getDebugValueLoc(DII); 1526 1527 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1528 // FIXME: If storing to a part of the variable described by the dbg.declare, 1529 // then we want to insert a dbg.value for the corresponding fragment. 1530 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1531 << *DII << '\n'); 1532 // For now, when there is a store to parts of the variable (but we do not 1533 // know which part) we insert an dbg.value intrinsic to indicate that we 1534 // know nothing about the variable's content. 1535 DV = UndefValue::get(DV->getType()); 1536 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1537 return; 1538 } 1539 1540 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1541 } 1542 1543 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1544 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1545 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1546 LoadInst *LI, DIBuilder &Builder) { 1547 auto *DIVar = DII->getVariable(); 1548 auto *DIExpr = DII->getExpression(); 1549 assert(DIVar && "Missing variable"); 1550 1551 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1552 // FIXME: If only referring to a part of the variable described by the 1553 // dbg.declare, then we want to insert a dbg.value for the corresponding 1554 // fragment. 1555 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1556 << *DII << '\n'); 1557 return; 1558 } 1559 1560 DebugLoc NewLoc = getDebugValueLoc(DII); 1561 1562 // We are now tracking the loaded value instead of the address. In the 1563 // future if multi-location support is added to the IR, it might be 1564 // preferable to keep tracking both the loaded value and the original 1565 // address in case the alloca can not be elided. 1566 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1567 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1568 DbgValue->insertAfter(LI); 1569 } 1570 1571 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1572 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1573 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1574 PHINode *APN, DIBuilder &Builder) { 1575 auto *DIVar = DII->getVariable(); 1576 auto *DIExpr = DII->getExpression(); 1577 assert(DIVar && "Missing variable"); 1578 1579 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1580 return; 1581 1582 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1583 // FIXME: If only referring to a part of the variable described by the 1584 // dbg.declare, then we want to insert a dbg.value for the corresponding 1585 // fragment. 1586 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1587 << *DII << '\n'); 1588 return; 1589 } 1590 1591 BasicBlock *BB = APN->getParent(); 1592 auto InsertionPt = BB->getFirstInsertionPt(); 1593 1594 DebugLoc NewLoc = getDebugValueLoc(DII); 1595 1596 // The block may be a catchswitch block, which does not have a valid 1597 // insertion point. 1598 // FIXME: Insert dbg.value markers in the successors when appropriate. 1599 if (InsertionPt != BB->end()) 1600 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1601 } 1602 1603 /// Determine whether this alloca is either a VLA or an array. 1604 static bool isArray(AllocaInst *AI) { 1605 return AI->isArrayAllocation() || 1606 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1607 } 1608 1609 /// Determine whether this alloca is a structure. 1610 static bool isStructure(AllocaInst *AI) { 1611 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1612 } 1613 1614 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1615 /// of llvm.dbg.value intrinsics. 1616 bool llvm::LowerDbgDeclare(Function &F) { 1617 bool Changed = false; 1618 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1619 SmallVector<DbgDeclareInst *, 4> Dbgs; 1620 for (auto &FI : F) 1621 for (Instruction &BI : FI) 1622 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1623 Dbgs.push_back(DDI); 1624 1625 if (Dbgs.empty()) 1626 return Changed; 1627 1628 for (auto &I : Dbgs) { 1629 DbgDeclareInst *DDI = I; 1630 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1631 // If this is an alloca for a scalar variable, insert a dbg.value 1632 // at each load and store to the alloca and erase the dbg.declare. 1633 // The dbg.values allow tracking a variable even if it is not 1634 // stored on the stack, while the dbg.declare can only describe 1635 // the stack slot (and at a lexical-scope granularity). Later 1636 // passes will attempt to elide the stack slot. 1637 if (!AI || isArray(AI) || isStructure(AI)) 1638 continue; 1639 1640 // A volatile load/store means that the alloca can't be elided anyway. 1641 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1642 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1643 return LI->isVolatile(); 1644 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1645 return SI->isVolatile(); 1646 return false; 1647 })) 1648 continue; 1649 1650 SmallVector<const Value *, 8> WorkList; 1651 WorkList.push_back(AI); 1652 while (!WorkList.empty()) { 1653 const Value *V = WorkList.pop_back_val(); 1654 for (const auto &AIUse : V->uses()) { 1655 User *U = AIUse.getUser(); 1656 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1657 if (AIUse.getOperandNo() == 1) 1658 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1659 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1660 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1661 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1662 // This is a call by-value or some other instruction that takes a 1663 // pointer to the variable. Insert a *value* intrinsic that describes 1664 // the variable by dereferencing the alloca. 1665 if (!CI->isLifetimeStartOrEnd()) { 1666 DebugLoc NewLoc = getDebugValueLoc(DDI); 1667 auto *DerefExpr = 1668 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1669 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1670 NewLoc, CI); 1671 } 1672 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1673 if (BI->getType()->isPointerTy()) 1674 WorkList.push_back(BI); 1675 } 1676 } 1677 } 1678 DDI->eraseFromParent(); 1679 Changed = true; 1680 } 1681 1682 if (Changed) 1683 for (BasicBlock &BB : F) 1684 RemoveRedundantDbgInstrs(&BB); 1685 1686 return Changed; 1687 } 1688 1689 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1690 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1691 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1692 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1693 if (InsertedPHIs.size() == 0) 1694 return; 1695 1696 // Map existing PHI nodes to their dbg.values. 1697 ValueToValueMapTy DbgValueMap; 1698 for (auto &I : *BB) { 1699 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1700 for (Value *V : DbgII->location_ops()) 1701 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1702 DbgValueMap.insert({Loc, DbgII}); 1703 } 1704 } 1705 if (DbgValueMap.size() == 0) 1706 return; 1707 1708 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1709 // so that if a dbg.value is being rewritten to use more than one of the 1710 // inserted PHIs in the same destination BB, we can update the same dbg.value 1711 // with all the new PHIs instead of creating one copy for each. 1712 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1713 DbgVariableIntrinsic *> 1714 NewDbgValueMap; 1715 // Then iterate through the new PHIs and look to see if they use one of the 1716 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1717 // propagate the info through the new PHI. If we use more than one new PHI in 1718 // a single destination BB with the same old dbg.value, merge the updates so 1719 // that we get a single new dbg.value with all the new PHIs. 1720 for (auto *PHI : InsertedPHIs) { 1721 BasicBlock *Parent = PHI->getParent(); 1722 // Avoid inserting an intrinsic into an EH block. 1723 if (Parent->getFirstNonPHI()->isEHPad()) 1724 continue; 1725 for (auto *VI : PHI->operand_values()) { 1726 auto V = DbgValueMap.find(VI); 1727 if (V != DbgValueMap.end()) { 1728 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1729 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1730 if (NewDI == NewDbgValueMap.end()) { 1731 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1732 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1733 } 1734 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1735 // If PHI contains VI as an operand more than once, we may 1736 // replaced it in NewDbgII; confirm that it is present. 1737 if (is_contained(NewDbgII->location_ops(), VI)) 1738 NewDbgII->replaceVariableLocationOp(VI, PHI); 1739 } 1740 } 1741 } 1742 // Insert thew new dbg.values into their destination blocks. 1743 for (auto DI : NewDbgValueMap) { 1744 BasicBlock *Parent = DI.first.first; 1745 auto *NewDbgII = DI.second; 1746 auto InsertionPt = Parent->getFirstInsertionPt(); 1747 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1748 NewDbgII->insertBefore(&*InsertionPt); 1749 } 1750 } 1751 1752 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1753 DIBuilder &Builder, uint8_t DIExprFlags, 1754 int Offset) { 1755 auto DbgAddrs = FindDbgAddrUses(Address); 1756 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1757 const DebugLoc &Loc = DII->getDebugLoc(); 1758 auto *DIVar = DII->getVariable(); 1759 auto *DIExpr = DII->getExpression(); 1760 assert(DIVar && "Missing variable"); 1761 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1762 // Insert llvm.dbg.declare immediately before DII, and remove old 1763 // llvm.dbg.declare. 1764 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1765 DII->eraseFromParent(); 1766 } 1767 return !DbgAddrs.empty(); 1768 } 1769 1770 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1771 DIBuilder &Builder, int Offset) { 1772 const DebugLoc &Loc = DVI->getDebugLoc(); 1773 auto *DIVar = DVI->getVariable(); 1774 auto *DIExpr = DVI->getExpression(); 1775 assert(DIVar && "Missing variable"); 1776 1777 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1778 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1779 // it and give up. 1780 if (!DIExpr || DIExpr->getNumElements() < 1 || 1781 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1782 return; 1783 1784 // Insert the offset before the first deref. 1785 // We could just change the offset argument of dbg.value, but it's unsigned... 1786 if (Offset) 1787 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1788 1789 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1790 DVI->eraseFromParent(); 1791 } 1792 1793 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1794 DIBuilder &Builder, int Offset) { 1795 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1796 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1797 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1798 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1799 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1800 } 1801 1802 /// Where possible to salvage debug information for \p I do so. 1803 /// If not possible mark undef. 1804 void llvm::salvageDebugInfo(Instruction &I) { 1805 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1806 findDbgUsers(DbgUsers, &I); 1807 salvageDebugInfoForDbgValues(I, DbgUsers); 1808 } 1809 1810 /// Salvage the address component of \p DAI. 1811 static void salvageDbgAssignAddress(DbgAssignIntrinsic *DAI) { 1812 Instruction *I = dyn_cast<Instruction>(DAI->getAddress()); 1813 // Only instructions can be salvaged at the moment. 1814 if (!I) 1815 return; 1816 1817 assert(!DAI->getAddressExpression()->getFragmentInfo().has_value() && 1818 "address-expression shouldn't have fragment info"); 1819 1820 // The address component of a dbg.assign cannot be variadic. 1821 uint64_t CurrentLocOps = 0; 1822 SmallVector<Value *, 4> AdditionalValues; 1823 SmallVector<uint64_t, 16> Ops; 1824 Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues); 1825 1826 // Check if the salvage failed. 1827 if (!NewV) 1828 return; 1829 1830 DIExpression *SalvagedExpr = DIExpression::appendOpsToArg( 1831 DAI->getAddressExpression(), Ops, 0, /*StackValue=*/false); 1832 assert(!SalvagedExpr->getFragmentInfo().has_value() && 1833 "address-expression shouldn't have fragment info"); 1834 1835 // Salvage succeeds if no additional values are required. 1836 if (AdditionalValues.empty()) { 1837 DAI->setAddress(NewV); 1838 DAI->setAddressExpression(SalvagedExpr); 1839 } else { 1840 DAI->setKillAddress(); 1841 } 1842 } 1843 1844 void llvm::salvageDebugInfoForDbgValues( 1845 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1846 // These are arbitrary chosen limits on the maximum number of values and the 1847 // maximum size of a debug expression we can salvage up to, used for 1848 // performance reasons. 1849 const unsigned MaxDebugArgs = 16; 1850 const unsigned MaxExpressionSize = 128; 1851 bool Salvaged = false; 1852 1853 for (auto *DII : DbgUsers) { 1854 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) { 1855 if (DAI->getAddress() == &I) { 1856 salvageDbgAssignAddress(DAI); 1857 Salvaged = true; 1858 } 1859 if (DAI->getValue() != &I) 1860 continue; 1861 } 1862 1863 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1864 // are implicitly pointing out the value as a DWARF memory location 1865 // description. 1866 bool StackValue = isa<DbgValueInst>(DII); 1867 auto DIILocation = DII->location_ops(); 1868 assert( 1869 is_contained(DIILocation, &I) && 1870 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1871 SmallVector<Value *, 4> AdditionalValues; 1872 // `I` may appear more than once in DII's location ops, and each use of `I` 1873 // must be updated in the DIExpression and potentially have additional 1874 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 1875 // DIILocation. 1876 Value *Op0 = nullptr; 1877 DIExpression *SalvagedExpr = DII->getExpression(); 1878 auto LocItr = find(DIILocation, &I); 1879 while (SalvagedExpr && LocItr != DIILocation.end()) { 1880 SmallVector<uint64_t, 16> Ops; 1881 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 1882 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 1883 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 1884 if (!Op0) 1885 break; 1886 SalvagedExpr = 1887 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 1888 LocItr = std::find(++LocItr, DIILocation.end(), &I); 1889 } 1890 // salvageDebugInfoImpl should fail on examining the first element of 1891 // DbgUsers, or none of them. 1892 if (!Op0) 1893 break; 1894 1895 DII->replaceVariableLocationOp(&I, Op0); 1896 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 1897 if (AdditionalValues.empty() && IsValidSalvageExpr) { 1898 DII->setExpression(SalvagedExpr); 1899 } else if (isa<DbgValueInst>(DII) && !isa<DbgAssignIntrinsic>(DII) && 1900 IsValidSalvageExpr && 1901 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 1902 MaxDebugArgs) { 1903 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 1904 } else { 1905 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 1906 // not currently supported in those instructions. Do not salvage using 1907 // DIArgList for dbg.assign yet. FIXME: support this. 1908 // Also do not salvage if the resulting DIArgList would contain an 1909 // unreasonably large number of values. 1910 DII->setKillLocation(); 1911 } 1912 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1913 Salvaged = true; 1914 } 1915 1916 if (Salvaged) 1917 return; 1918 1919 for (auto *DII : DbgUsers) 1920 DII->setKillLocation(); 1921 } 1922 1923 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1924 uint64_t CurrentLocOps, 1925 SmallVectorImpl<uint64_t> &Opcodes, 1926 SmallVectorImpl<Value *> &AdditionalValues) { 1927 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1928 // Rewrite a GEP into a DIExpression. 1929 MapVector<Value *, APInt> VariableOffsets; 1930 APInt ConstantOffset(BitWidth, 0); 1931 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 1932 return nullptr; 1933 if (!VariableOffsets.empty() && !CurrentLocOps) { 1934 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 1935 CurrentLocOps = 1; 1936 } 1937 for (auto Offset : VariableOffsets) { 1938 AdditionalValues.push_back(Offset.first); 1939 assert(Offset.second.isStrictlyPositive() && 1940 "Expected strictly positive multiplier for offset."); 1941 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 1942 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 1943 dwarf::DW_OP_plus}); 1944 } 1945 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1946 return GEP->getOperand(0); 1947 } 1948 1949 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1950 switch (Opcode) { 1951 case Instruction::Add: 1952 return dwarf::DW_OP_plus; 1953 case Instruction::Sub: 1954 return dwarf::DW_OP_minus; 1955 case Instruction::Mul: 1956 return dwarf::DW_OP_mul; 1957 case Instruction::SDiv: 1958 return dwarf::DW_OP_div; 1959 case Instruction::SRem: 1960 return dwarf::DW_OP_mod; 1961 case Instruction::Or: 1962 return dwarf::DW_OP_or; 1963 case Instruction::And: 1964 return dwarf::DW_OP_and; 1965 case Instruction::Xor: 1966 return dwarf::DW_OP_xor; 1967 case Instruction::Shl: 1968 return dwarf::DW_OP_shl; 1969 case Instruction::LShr: 1970 return dwarf::DW_OP_shr; 1971 case Instruction::AShr: 1972 return dwarf::DW_OP_shra; 1973 default: 1974 // TODO: Salvage from each kind of binop we know about. 1975 return 0; 1976 } 1977 } 1978 1979 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 1980 SmallVectorImpl<uint64_t> &Opcodes, 1981 SmallVectorImpl<Value *> &AdditionalValues) { 1982 // Handle binary operations with constant integer operands as a special case. 1983 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1984 // Values wider than 64 bits cannot be represented within a DIExpression. 1985 if (ConstInt && ConstInt->getBitWidth() > 64) 1986 return nullptr; 1987 1988 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1989 // Push any Constant Int operand onto the expression stack. 1990 if (ConstInt) { 1991 uint64_t Val = ConstInt->getSExtValue(); 1992 // Add or Sub Instructions with a constant operand can potentially be 1993 // simplified. 1994 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1995 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1996 DIExpression::appendOffset(Opcodes, Offset); 1997 return BI->getOperand(0); 1998 } 1999 Opcodes.append({dwarf::DW_OP_constu, Val}); 2000 } else { 2001 if (!CurrentLocOps) { 2002 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 2003 CurrentLocOps = 1; 2004 } 2005 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 2006 AdditionalValues.push_back(BI->getOperand(1)); 2007 } 2008 2009 // Add salvaged binary operator to expression stack, if it has a valid 2010 // representation in a DIExpression. 2011 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 2012 if (!DwarfBinOp) 2013 return nullptr; 2014 Opcodes.push_back(DwarfBinOp); 2015 return BI->getOperand(0); 2016 } 2017 2018 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 2019 SmallVectorImpl<uint64_t> &Ops, 2020 SmallVectorImpl<Value *> &AdditionalValues) { 2021 auto &M = *I.getModule(); 2022 auto &DL = M.getDataLayout(); 2023 2024 if (auto *CI = dyn_cast<CastInst>(&I)) { 2025 Value *FromValue = CI->getOperand(0); 2026 // No-op casts are irrelevant for debug info. 2027 if (CI->isNoopCast(DL)) { 2028 return FromValue; 2029 } 2030 2031 Type *Type = CI->getType(); 2032 if (Type->isPointerTy()) 2033 Type = DL.getIntPtrType(Type); 2034 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 2035 if (Type->isVectorTy() || 2036 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 2037 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 2038 return nullptr; 2039 2040 llvm::Type *FromType = FromValue->getType(); 2041 if (FromType->isPointerTy()) 2042 FromType = DL.getIntPtrType(FromType); 2043 2044 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 2045 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 2046 2047 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 2048 isa<SExtInst>(&I)); 2049 Ops.append(ExtOps.begin(), ExtOps.end()); 2050 return FromValue; 2051 } 2052 2053 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 2054 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 2055 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 2056 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 2057 2058 // *Not* to do: we should not attempt to salvage load instructions, 2059 // because the validity and lifetime of a dbg.value containing 2060 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 2061 return nullptr; 2062 } 2063 2064 /// A replacement for a dbg.value expression. 2065 using DbgValReplacement = std::optional<DIExpression *>; 2066 2067 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 2068 /// possibly moving/undefing users to prevent use-before-def. Returns true if 2069 /// changes are made. 2070 static bool rewriteDebugUsers( 2071 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 2072 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 2073 // Find debug users of From. 2074 SmallVector<DbgVariableIntrinsic *, 1> Users; 2075 findDbgUsers(Users, &From); 2076 if (Users.empty()) 2077 return false; 2078 2079 // Prevent use-before-def of To. 2080 bool Changed = false; 2081 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 2082 if (isa<Instruction>(&To)) { 2083 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 2084 2085 for (auto *DII : Users) { 2086 // It's common to see a debug user between From and DomPoint. Move it 2087 // after DomPoint to preserve the variable update without any reordering. 2088 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 2089 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 2090 DII->moveAfter(&DomPoint); 2091 Changed = true; 2092 2093 // Users which otherwise aren't dominated by the replacement value must 2094 // be salvaged or deleted. 2095 } else if (!DT.dominates(&DomPoint, DII)) { 2096 UndefOrSalvage.insert(DII); 2097 } 2098 } 2099 } 2100 2101 // Update debug users without use-before-def risk. 2102 for (auto *DII : Users) { 2103 if (UndefOrSalvage.count(DII)) 2104 continue; 2105 2106 DbgValReplacement DVR = RewriteExpr(*DII); 2107 if (!DVR) 2108 continue; 2109 2110 DII->replaceVariableLocationOp(&From, &To); 2111 DII->setExpression(*DVR); 2112 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2113 Changed = true; 2114 } 2115 2116 if (!UndefOrSalvage.empty()) { 2117 // Try to salvage the remaining debug users. 2118 salvageDebugInfo(From); 2119 Changed = true; 2120 } 2121 2122 return Changed; 2123 } 2124 2125 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2126 /// losslessly preserve the bits and semantics of the value. This predicate is 2127 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2128 /// 2129 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2130 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2131 /// and also does not allow lossless pointer <-> integer conversions. 2132 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2133 Type *ToTy) { 2134 // Trivially compatible types. 2135 if (FromTy == ToTy) 2136 return true; 2137 2138 // Handle compatible pointer <-> integer conversions. 2139 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2140 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2141 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2142 !DL.isNonIntegralPointerType(ToTy); 2143 return SameSize && LosslessConversion; 2144 } 2145 2146 // TODO: This is not exhaustive. 2147 return false; 2148 } 2149 2150 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2151 Instruction &DomPoint, DominatorTree &DT) { 2152 // Exit early if From has no debug users. 2153 if (!From.isUsedByMetadata()) 2154 return false; 2155 2156 assert(&From != &To && "Can't replace something with itself"); 2157 2158 Type *FromTy = From.getType(); 2159 Type *ToTy = To.getType(); 2160 2161 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2162 return DII.getExpression(); 2163 }; 2164 2165 // Handle no-op conversions. 2166 Module &M = *From.getModule(); 2167 const DataLayout &DL = M.getDataLayout(); 2168 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2169 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2170 2171 // Handle integer-to-integer widening and narrowing. 2172 // FIXME: Use DW_OP_convert when it's available everywhere. 2173 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2174 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2175 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2176 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2177 2178 // When the width of the result grows, assume that a debugger will only 2179 // access the low `FromBits` bits when inspecting the source variable. 2180 if (FromBits < ToBits) 2181 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2182 2183 // The width of the result has shrunk. Use sign/zero extension to describe 2184 // the source variable's high bits. 2185 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2186 DILocalVariable *Var = DII.getVariable(); 2187 2188 // Without knowing signedness, sign/zero extension isn't possible. 2189 auto Signedness = Var->getSignedness(); 2190 if (!Signedness) 2191 return std::nullopt; 2192 2193 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2194 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2195 Signed); 2196 }; 2197 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2198 } 2199 2200 // TODO: Floating-point conversions, vectors. 2201 return false; 2202 } 2203 2204 std::pair<unsigned, unsigned> 2205 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2206 unsigned NumDeadInst = 0; 2207 unsigned NumDeadDbgInst = 0; 2208 // Delete the instructions backwards, as it has a reduced likelihood of 2209 // having to update as many def-use and use-def chains. 2210 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2211 while (EndInst != &BB->front()) { 2212 // Delete the next to last instruction. 2213 Instruction *Inst = &*--EndInst->getIterator(); 2214 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2215 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType())); 2216 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2217 EndInst = Inst; 2218 continue; 2219 } 2220 if (isa<DbgInfoIntrinsic>(Inst)) 2221 ++NumDeadDbgInst; 2222 else 2223 ++NumDeadInst; 2224 Inst->eraseFromParent(); 2225 } 2226 return {NumDeadInst, NumDeadDbgInst}; 2227 } 2228 2229 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2230 DomTreeUpdater *DTU, 2231 MemorySSAUpdater *MSSAU) { 2232 BasicBlock *BB = I->getParent(); 2233 2234 if (MSSAU) 2235 MSSAU->changeToUnreachable(I); 2236 2237 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2238 2239 // Loop over all of the successors, removing BB's entry from any PHI 2240 // nodes. 2241 for (BasicBlock *Successor : successors(BB)) { 2242 Successor->removePredecessor(BB, PreserveLCSSA); 2243 if (DTU) 2244 UniqueSuccessors.insert(Successor); 2245 } 2246 auto *UI = new UnreachableInst(I->getContext(), I); 2247 UI->setDebugLoc(I->getDebugLoc()); 2248 2249 // All instructions after this are dead. 2250 unsigned NumInstrsRemoved = 0; 2251 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2252 while (BBI != BBE) { 2253 if (!BBI->use_empty()) 2254 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 2255 BBI++->eraseFromParent(); 2256 ++NumInstrsRemoved; 2257 } 2258 if (DTU) { 2259 SmallVector<DominatorTree::UpdateType, 8> Updates; 2260 Updates.reserve(UniqueSuccessors.size()); 2261 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2262 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2263 DTU->applyUpdates(Updates); 2264 } 2265 return NumInstrsRemoved; 2266 } 2267 2268 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2269 SmallVector<Value *, 8> Args(II->args()); 2270 SmallVector<OperandBundleDef, 1> OpBundles; 2271 II->getOperandBundlesAsDefs(OpBundles); 2272 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2273 II->getCalledOperand(), Args, OpBundles); 2274 NewCall->setCallingConv(II->getCallingConv()); 2275 NewCall->setAttributes(II->getAttributes()); 2276 NewCall->setDebugLoc(II->getDebugLoc()); 2277 NewCall->copyMetadata(*II); 2278 2279 // If the invoke had profile metadata, try converting them for CallInst. 2280 uint64_t TotalWeight; 2281 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2282 // Set the total weight if it fits into i32, otherwise reset. 2283 MDBuilder MDB(NewCall->getContext()); 2284 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2285 ? nullptr 2286 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2287 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2288 } 2289 2290 return NewCall; 2291 } 2292 2293 // changeToCall - Convert the specified invoke into a normal call. 2294 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2295 CallInst *NewCall = createCallMatchingInvoke(II); 2296 NewCall->takeName(II); 2297 NewCall->insertBefore(II); 2298 II->replaceAllUsesWith(NewCall); 2299 2300 // Follow the call by a branch to the normal destination. 2301 BasicBlock *NormalDestBB = II->getNormalDest(); 2302 BranchInst::Create(NormalDestBB, II); 2303 2304 // Update PHI nodes in the unwind destination 2305 BasicBlock *BB = II->getParent(); 2306 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2307 UnwindDestBB->removePredecessor(BB); 2308 II->eraseFromParent(); 2309 if (DTU) 2310 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2311 return NewCall; 2312 } 2313 2314 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2315 BasicBlock *UnwindEdge, 2316 DomTreeUpdater *DTU) { 2317 BasicBlock *BB = CI->getParent(); 2318 2319 // Convert this function call into an invoke instruction. First, split the 2320 // basic block. 2321 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2322 CI->getName() + ".noexc"); 2323 2324 // Delete the unconditional branch inserted by SplitBlock 2325 BB->back().eraseFromParent(); 2326 2327 // Create the new invoke instruction. 2328 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2329 SmallVector<OperandBundleDef, 1> OpBundles; 2330 2331 CI->getOperandBundlesAsDefs(OpBundles); 2332 2333 // Note: we're round tripping operand bundles through memory here, and that 2334 // can potentially be avoided with a cleverer API design that we do not have 2335 // as of this time. 2336 2337 InvokeInst *II = 2338 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2339 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2340 II->setDebugLoc(CI->getDebugLoc()); 2341 II->setCallingConv(CI->getCallingConv()); 2342 II->setAttributes(CI->getAttributes()); 2343 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof)); 2344 2345 if (DTU) 2346 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2347 2348 // Make sure that anything using the call now uses the invoke! This also 2349 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2350 CI->replaceAllUsesWith(II); 2351 2352 // Delete the original call 2353 Split->front().eraseFromParent(); 2354 return Split; 2355 } 2356 2357 static bool markAliveBlocks(Function &F, 2358 SmallPtrSetImpl<BasicBlock *> &Reachable, 2359 DomTreeUpdater *DTU = nullptr) { 2360 SmallVector<BasicBlock*, 128> Worklist; 2361 BasicBlock *BB = &F.front(); 2362 Worklist.push_back(BB); 2363 Reachable.insert(BB); 2364 bool Changed = false; 2365 do { 2366 BB = Worklist.pop_back_val(); 2367 2368 // Do a quick scan of the basic block, turning any obviously unreachable 2369 // instructions into LLVM unreachable insts. The instruction combining pass 2370 // canonicalizes unreachable insts into stores to null or undef. 2371 for (Instruction &I : *BB) { 2372 if (auto *CI = dyn_cast<CallInst>(&I)) { 2373 Value *Callee = CI->getCalledOperand(); 2374 // Handle intrinsic calls. 2375 if (Function *F = dyn_cast<Function>(Callee)) { 2376 auto IntrinsicID = F->getIntrinsicID(); 2377 // Assumptions that are known to be false are equivalent to 2378 // unreachable. Also, if the condition is undefined, then we make the 2379 // choice most beneficial to the optimizer, and choose that to also be 2380 // unreachable. 2381 if (IntrinsicID == Intrinsic::assume) { 2382 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2383 // Don't insert a call to llvm.trap right before the unreachable. 2384 changeToUnreachable(CI, false, DTU); 2385 Changed = true; 2386 break; 2387 } 2388 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2389 // A call to the guard intrinsic bails out of the current 2390 // compilation unit if the predicate passed to it is false. If the 2391 // predicate is a constant false, then we know the guard will bail 2392 // out of the current compile unconditionally, so all code following 2393 // it is dead. 2394 // 2395 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2396 // guards to treat `undef` as `false` since a guard on `undef` can 2397 // still be useful for widening. 2398 if (match(CI->getArgOperand(0), m_Zero())) 2399 if (!isa<UnreachableInst>(CI->getNextNode())) { 2400 changeToUnreachable(CI->getNextNode(), false, DTU); 2401 Changed = true; 2402 break; 2403 } 2404 } 2405 } else if ((isa<ConstantPointerNull>(Callee) && 2406 !NullPointerIsDefined(CI->getFunction(), 2407 cast<PointerType>(Callee->getType()) 2408 ->getAddressSpace())) || 2409 isa<UndefValue>(Callee)) { 2410 changeToUnreachable(CI, false, DTU); 2411 Changed = true; 2412 break; 2413 } 2414 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2415 // If we found a call to a no-return function, insert an unreachable 2416 // instruction after it. Make sure there isn't *already* one there 2417 // though. 2418 if (!isa<UnreachableInst>(CI->getNextNode())) { 2419 // Don't insert a call to llvm.trap right before the unreachable. 2420 changeToUnreachable(CI->getNextNode(), false, DTU); 2421 Changed = true; 2422 } 2423 break; 2424 } 2425 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2426 // Store to undef and store to null are undefined and used to signal 2427 // that they should be changed to unreachable by passes that can't 2428 // modify the CFG. 2429 2430 // Don't touch volatile stores. 2431 if (SI->isVolatile()) continue; 2432 2433 Value *Ptr = SI->getOperand(1); 2434 2435 if (isa<UndefValue>(Ptr) || 2436 (isa<ConstantPointerNull>(Ptr) && 2437 !NullPointerIsDefined(SI->getFunction(), 2438 SI->getPointerAddressSpace()))) { 2439 changeToUnreachable(SI, false, DTU); 2440 Changed = true; 2441 break; 2442 } 2443 } 2444 } 2445 2446 Instruction *Terminator = BB->getTerminator(); 2447 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2448 // Turn invokes that call 'nounwind' functions into ordinary calls. 2449 Value *Callee = II->getCalledOperand(); 2450 if ((isa<ConstantPointerNull>(Callee) && 2451 !NullPointerIsDefined(BB->getParent())) || 2452 isa<UndefValue>(Callee)) { 2453 changeToUnreachable(II, false, DTU); 2454 Changed = true; 2455 } else { 2456 if (II->doesNotReturn() && 2457 !isa<UnreachableInst>(II->getNormalDest()->front())) { 2458 // If we found an invoke of a no-return function, 2459 // create a new empty basic block with an `unreachable` terminator, 2460 // and set it as the normal destination for the invoke, 2461 // unless that is already the case. 2462 // Note that the original normal destination could have other uses. 2463 BasicBlock *OrigNormalDest = II->getNormalDest(); 2464 OrigNormalDest->removePredecessor(II->getParent()); 2465 LLVMContext &Ctx = II->getContext(); 2466 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 2467 Ctx, OrigNormalDest->getName() + ".unreachable", 2468 II->getFunction(), OrigNormalDest); 2469 new UnreachableInst(Ctx, UnreachableNormalDest); 2470 II->setNormalDest(UnreachableNormalDest); 2471 if (DTU) 2472 DTU->applyUpdates( 2473 {{DominatorTree::Delete, BB, OrigNormalDest}, 2474 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 2475 Changed = true; 2476 } 2477 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2478 if (II->use_empty() && !II->mayHaveSideEffects()) { 2479 // jump to the normal destination branch. 2480 BasicBlock *NormalDestBB = II->getNormalDest(); 2481 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2482 BranchInst::Create(NormalDestBB, II); 2483 UnwindDestBB->removePredecessor(II->getParent()); 2484 II->eraseFromParent(); 2485 if (DTU) 2486 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2487 } else 2488 changeToCall(II, DTU); 2489 Changed = true; 2490 } 2491 } 2492 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2493 // Remove catchpads which cannot be reached. 2494 struct CatchPadDenseMapInfo { 2495 static CatchPadInst *getEmptyKey() { 2496 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2497 } 2498 2499 static CatchPadInst *getTombstoneKey() { 2500 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2501 } 2502 2503 static unsigned getHashValue(CatchPadInst *CatchPad) { 2504 return static_cast<unsigned>(hash_combine_range( 2505 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2506 } 2507 2508 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2509 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2510 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2511 return LHS == RHS; 2512 return LHS->isIdenticalTo(RHS); 2513 } 2514 }; 2515 2516 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2517 // Set of unique CatchPads. 2518 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2519 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2520 HandlerSet; 2521 detail::DenseSetEmpty Empty; 2522 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2523 E = CatchSwitch->handler_end(); 2524 I != E; ++I) { 2525 BasicBlock *HandlerBB = *I; 2526 if (DTU) 2527 ++NumPerSuccessorCases[HandlerBB]; 2528 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2529 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2530 if (DTU) 2531 --NumPerSuccessorCases[HandlerBB]; 2532 CatchSwitch->removeHandler(I); 2533 --I; 2534 --E; 2535 Changed = true; 2536 } 2537 } 2538 if (DTU) { 2539 std::vector<DominatorTree::UpdateType> Updates; 2540 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2541 if (I.second == 0) 2542 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2543 DTU->applyUpdates(Updates); 2544 } 2545 } 2546 2547 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2548 for (BasicBlock *Successor : successors(BB)) 2549 if (Reachable.insert(Successor).second) 2550 Worklist.push_back(Successor); 2551 } while (!Worklist.empty()); 2552 return Changed; 2553 } 2554 2555 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2556 Instruction *TI = BB->getTerminator(); 2557 2558 if (auto *II = dyn_cast<InvokeInst>(TI)) 2559 return changeToCall(II, DTU); 2560 2561 Instruction *NewTI; 2562 BasicBlock *UnwindDest; 2563 2564 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2565 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2566 UnwindDest = CRI->getUnwindDest(); 2567 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2568 auto *NewCatchSwitch = CatchSwitchInst::Create( 2569 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2570 CatchSwitch->getName(), CatchSwitch); 2571 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2572 NewCatchSwitch->addHandler(PadBB); 2573 2574 NewTI = NewCatchSwitch; 2575 UnwindDest = CatchSwitch->getUnwindDest(); 2576 } else { 2577 llvm_unreachable("Could not find unwind successor"); 2578 } 2579 2580 NewTI->takeName(TI); 2581 NewTI->setDebugLoc(TI->getDebugLoc()); 2582 UnwindDest->removePredecessor(BB); 2583 TI->replaceAllUsesWith(NewTI); 2584 TI->eraseFromParent(); 2585 if (DTU) 2586 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2587 return NewTI; 2588 } 2589 2590 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2591 /// if they are in a dead cycle. Return true if a change was made, false 2592 /// otherwise. 2593 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2594 MemorySSAUpdater *MSSAU) { 2595 SmallPtrSet<BasicBlock *, 16> Reachable; 2596 bool Changed = markAliveBlocks(F, Reachable, DTU); 2597 2598 // If there are unreachable blocks in the CFG... 2599 if (Reachable.size() == F.size()) 2600 return Changed; 2601 2602 assert(Reachable.size() < F.size()); 2603 2604 // Are there any blocks left to actually delete? 2605 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2606 for (BasicBlock &BB : F) { 2607 // Skip reachable basic blocks 2608 if (Reachable.count(&BB)) 2609 continue; 2610 // Skip already-deleted blocks 2611 if (DTU && DTU->isBBPendingDeletion(&BB)) 2612 continue; 2613 BlocksToRemove.insert(&BB); 2614 } 2615 2616 if (BlocksToRemove.empty()) 2617 return Changed; 2618 2619 Changed = true; 2620 NumRemoved += BlocksToRemove.size(); 2621 2622 if (MSSAU) 2623 MSSAU->removeBlocks(BlocksToRemove); 2624 2625 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 2626 2627 return Changed; 2628 } 2629 2630 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2631 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2632 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2633 K->dropUnknownNonDebugMetadata(KnownIDs); 2634 K->getAllMetadataOtherThanDebugLoc(Metadata); 2635 for (const auto &MD : Metadata) { 2636 unsigned Kind = MD.first; 2637 MDNode *JMD = J->getMetadata(Kind); 2638 MDNode *KMD = MD.second; 2639 2640 switch (Kind) { 2641 default: 2642 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2643 break; 2644 case LLVMContext::MD_dbg: 2645 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2646 case LLVMContext::MD_DIAssignID: 2647 K->mergeDIAssignID(J); 2648 break; 2649 case LLVMContext::MD_tbaa: 2650 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2651 break; 2652 case LLVMContext::MD_alias_scope: 2653 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2654 break; 2655 case LLVMContext::MD_noalias: 2656 case LLVMContext::MD_mem_parallel_loop_access: 2657 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2658 break; 2659 case LLVMContext::MD_access_group: 2660 K->setMetadata(LLVMContext::MD_access_group, 2661 intersectAccessGroups(K, J)); 2662 break; 2663 case LLVMContext::MD_range: 2664 2665 // If K does move, use most generic range. Otherwise keep the range of 2666 // K. 2667 if (DoesKMove) 2668 // FIXME: If K does move, we should drop the range info and nonnull. 2669 // Currently this function is used with DoesKMove in passes 2670 // doing hoisting/sinking and the current behavior of using the 2671 // most generic range is correct in those cases. 2672 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2673 break; 2674 case LLVMContext::MD_fpmath: 2675 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2676 break; 2677 case LLVMContext::MD_invariant_load: 2678 // Only set the !invariant.load if it is present in both instructions. 2679 K->setMetadata(Kind, JMD); 2680 break; 2681 case LLVMContext::MD_nonnull: 2682 // If K does move, keep nonull if it is present in both instructions. 2683 if (DoesKMove) 2684 K->setMetadata(Kind, JMD); 2685 break; 2686 case LLVMContext::MD_invariant_group: 2687 // Preserve !invariant.group in K. 2688 break; 2689 case LLVMContext::MD_align: 2690 K->setMetadata(Kind, 2691 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2692 break; 2693 case LLVMContext::MD_dereferenceable: 2694 case LLVMContext::MD_dereferenceable_or_null: 2695 K->setMetadata(Kind, 2696 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2697 break; 2698 case LLVMContext::MD_preserve_access_index: 2699 // Preserve !preserve.access.index in K. 2700 break; 2701 } 2702 } 2703 // Set !invariant.group from J if J has it. If both instructions have it 2704 // then we will just pick it from J - even when they are different. 2705 // Also make sure that K is load or store - f.e. combining bitcast with load 2706 // could produce bitcast with invariant.group metadata, which is invalid. 2707 // FIXME: we should try to preserve both invariant.group md if they are 2708 // different, but right now instruction can only have one invariant.group. 2709 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2710 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2711 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2712 } 2713 2714 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2715 bool KDominatesJ) { 2716 unsigned KnownIDs[] = { 2717 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2718 LLVMContext::MD_noalias, LLVMContext::MD_range, 2719 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2720 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2721 LLVMContext::MD_dereferenceable, 2722 LLVMContext::MD_dereferenceable_or_null, 2723 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2724 combineMetadata(K, J, KnownIDs, KDominatesJ); 2725 } 2726 2727 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2728 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2729 Source.getAllMetadata(MD); 2730 MDBuilder MDB(Dest.getContext()); 2731 Type *NewType = Dest.getType(); 2732 const DataLayout &DL = Source.getModule()->getDataLayout(); 2733 for (const auto &MDPair : MD) { 2734 unsigned ID = MDPair.first; 2735 MDNode *N = MDPair.second; 2736 // Note, essentially every kind of metadata should be preserved here! This 2737 // routine is supposed to clone a load instruction changing *only its type*. 2738 // The only metadata it makes sense to drop is metadata which is invalidated 2739 // when the pointer type changes. This should essentially never be the case 2740 // in LLVM, but we explicitly switch over only known metadata to be 2741 // conservatively correct. If you are adding metadata to LLVM which pertains 2742 // to loads, you almost certainly want to add it here. 2743 switch (ID) { 2744 case LLVMContext::MD_dbg: 2745 case LLVMContext::MD_tbaa: 2746 case LLVMContext::MD_prof: 2747 case LLVMContext::MD_fpmath: 2748 case LLVMContext::MD_tbaa_struct: 2749 case LLVMContext::MD_invariant_load: 2750 case LLVMContext::MD_alias_scope: 2751 case LLVMContext::MD_noalias: 2752 case LLVMContext::MD_nontemporal: 2753 case LLVMContext::MD_mem_parallel_loop_access: 2754 case LLVMContext::MD_access_group: 2755 case LLVMContext::MD_noundef: 2756 // All of these directly apply. 2757 Dest.setMetadata(ID, N); 2758 break; 2759 2760 case LLVMContext::MD_nonnull: 2761 copyNonnullMetadata(Source, N, Dest); 2762 break; 2763 2764 case LLVMContext::MD_align: 2765 case LLVMContext::MD_dereferenceable: 2766 case LLVMContext::MD_dereferenceable_or_null: 2767 // These only directly apply if the new type is also a pointer. 2768 if (NewType->isPointerTy()) 2769 Dest.setMetadata(ID, N); 2770 break; 2771 2772 case LLVMContext::MD_range: 2773 copyRangeMetadata(DL, Source, N, Dest); 2774 break; 2775 } 2776 } 2777 } 2778 2779 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2780 auto *ReplInst = dyn_cast<Instruction>(Repl); 2781 if (!ReplInst) 2782 return; 2783 2784 // Patch the replacement so that it is not more restrictive than the value 2785 // being replaced. 2786 // Note that if 'I' is a load being replaced by some operation, 2787 // for example, by an arithmetic operation, then andIRFlags() 2788 // would just erase all math flags from the original arithmetic 2789 // operation, which is clearly not wanted and not needed. 2790 if (!isa<LoadInst>(I)) 2791 ReplInst->andIRFlags(I); 2792 2793 // FIXME: If both the original and replacement value are part of the 2794 // same control-flow region (meaning that the execution of one 2795 // guarantees the execution of the other), then we can combine the 2796 // noalias scopes here and do better than the general conservative 2797 // answer used in combineMetadata(). 2798 2799 // In general, GVN unifies expressions over different control-flow 2800 // regions, and so we need a conservative combination of the noalias 2801 // scopes. 2802 static const unsigned KnownIDs[] = { 2803 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2804 LLVMContext::MD_noalias, LLVMContext::MD_range, 2805 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2806 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2807 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2808 combineMetadata(ReplInst, I, KnownIDs, false); 2809 } 2810 2811 template <typename RootType, typename DominatesFn> 2812 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2813 const RootType &Root, 2814 const DominatesFn &Dominates) { 2815 assert(From->getType() == To->getType()); 2816 2817 unsigned Count = 0; 2818 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2819 if (!Dominates(Root, U)) 2820 continue; 2821 U.set(To); 2822 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2823 << "' as " << *To << " in " << *U << "\n"); 2824 ++Count; 2825 } 2826 return Count; 2827 } 2828 2829 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2830 assert(From->getType() == To->getType()); 2831 auto *BB = From->getParent(); 2832 unsigned Count = 0; 2833 2834 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2835 auto *I = cast<Instruction>(U.getUser()); 2836 if (I->getParent() == BB) 2837 continue; 2838 U.set(To); 2839 ++Count; 2840 } 2841 return Count; 2842 } 2843 2844 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2845 DominatorTree &DT, 2846 const BasicBlockEdge &Root) { 2847 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2848 return DT.dominates(Root, U); 2849 }; 2850 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2851 } 2852 2853 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2854 DominatorTree &DT, 2855 const BasicBlock *BB) { 2856 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2857 return DT.dominates(BB, U); 2858 }; 2859 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2860 } 2861 2862 bool llvm::callsGCLeafFunction(const CallBase *Call, 2863 const TargetLibraryInfo &TLI) { 2864 // Check if the function is specifically marked as a gc leaf function. 2865 if (Call->hasFnAttr("gc-leaf-function")) 2866 return true; 2867 if (const Function *F = Call->getCalledFunction()) { 2868 if (F->hasFnAttribute("gc-leaf-function")) 2869 return true; 2870 2871 if (auto IID = F->getIntrinsicID()) { 2872 // Most LLVM intrinsics do not take safepoints. 2873 return IID != Intrinsic::experimental_gc_statepoint && 2874 IID != Intrinsic::experimental_deoptimize && 2875 IID != Intrinsic::memcpy_element_unordered_atomic && 2876 IID != Intrinsic::memmove_element_unordered_atomic; 2877 } 2878 } 2879 2880 // Lib calls can be materialized by some passes, and won't be 2881 // marked as 'gc-leaf-function.' All available Libcalls are 2882 // GC-leaf. 2883 LibFunc LF; 2884 if (TLI.getLibFunc(*Call, LF)) { 2885 return TLI.has(LF); 2886 } 2887 2888 return false; 2889 } 2890 2891 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2892 LoadInst &NewLI) { 2893 auto *NewTy = NewLI.getType(); 2894 2895 // This only directly applies if the new type is also a pointer. 2896 if (NewTy->isPointerTy()) { 2897 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2898 return; 2899 } 2900 2901 // The only other translation we can do is to integral loads with !range 2902 // metadata. 2903 if (!NewTy->isIntegerTy()) 2904 return; 2905 2906 MDBuilder MDB(NewLI.getContext()); 2907 const Value *Ptr = OldLI.getPointerOperand(); 2908 auto *ITy = cast<IntegerType>(NewTy); 2909 auto *NullInt = ConstantExpr::getPtrToInt( 2910 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2911 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2912 NewLI.setMetadata(LLVMContext::MD_range, 2913 MDB.createRange(NonNullInt, NullInt)); 2914 } 2915 2916 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2917 MDNode *N, LoadInst &NewLI) { 2918 auto *NewTy = NewLI.getType(); 2919 // Simply copy the metadata if the type did not change. 2920 if (NewTy == OldLI.getType()) { 2921 NewLI.setMetadata(LLVMContext::MD_range, N); 2922 return; 2923 } 2924 2925 // Give up unless it is converted to a pointer where there is a single very 2926 // valuable mapping we can do reliably. 2927 // FIXME: It would be nice to propagate this in more ways, but the type 2928 // conversions make it hard. 2929 if (!NewTy->isPointerTy()) 2930 return; 2931 2932 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2933 if (BitWidth == OldLI.getType()->getScalarSizeInBits() && 2934 !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2935 MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt); 2936 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2937 } 2938 } 2939 2940 void llvm::dropDebugUsers(Instruction &I) { 2941 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2942 findDbgUsers(DbgUsers, &I); 2943 for (auto *DII : DbgUsers) 2944 DII->eraseFromParent(); 2945 } 2946 2947 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2948 BasicBlock *BB) { 2949 // Since we are moving the instructions out of its basic block, we do not 2950 // retain their original debug locations (DILocations) and debug intrinsic 2951 // instructions. 2952 // 2953 // Doing so would degrade the debugging experience and adversely affect the 2954 // accuracy of profiling information. 2955 // 2956 // Currently, when hoisting the instructions, we take the following actions: 2957 // - Remove their debug intrinsic instructions. 2958 // - Set their debug locations to the values from the insertion point. 2959 // 2960 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2961 // need to be deleted, is because there will not be any instructions with a 2962 // DILocation in either branch left after performing the transformation. We 2963 // can only insert a dbg.value after the two branches are joined again. 2964 // 2965 // See PR38762, PR39243 for more details. 2966 // 2967 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2968 // encode predicated DIExpressions that yield different results on different 2969 // code paths. 2970 2971 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2972 Instruction *I = &*II; 2973 I->dropUndefImplyingAttrsAndUnknownMetadata(); 2974 if (I->isUsedByMetadata()) 2975 dropDebugUsers(*I); 2976 if (I->isDebugOrPseudoInst()) { 2977 // Remove DbgInfo and pseudo probe Intrinsics. 2978 II = I->eraseFromParent(); 2979 continue; 2980 } 2981 I->setDebugLoc(InsertPt->getDebugLoc()); 2982 ++II; 2983 } 2984 DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(), 2985 BB->getTerminator()->getIterator()); 2986 } 2987 2988 namespace { 2989 2990 /// A potential constituent of a bitreverse or bswap expression. See 2991 /// collectBitParts for a fuller explanation. 2992 struct BitPart { 2993 BitPart(Value *P, unsigned BW) : Provider(P) { 2994 Provenance.resize(BW); 2995 } 2996 2997 /// The Value that this is a bitreverse/bswap of. 2998 Value *Provider; 2999 3000 /// The "provenance" of each bit. Provenance[A] = B means that bit A 3001 /// in Provider becomes bit B in the result of this expression. 3002 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 3003 3004 enum { Unset = -1 }; 3005 }; 3006 3007 } // end anonymous namespace 3008 3009 /// Analyze the specified subexpression and see if it is capable of providing 3010 /// pieces of a bswap or bitreverse. The subexpression provides a potential 3011 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 3012 /// the output of the expression came from a corresponding bit in some other 3013 /// value. This function is recursive, and the end result is a mapping of 3014 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 3015 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 3016 /// 3017 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 3018 /// that the expression deposits the low byte of %X into the high byte of the 3019 /// result and that all other bits are zero. This expression is accepted and a 3020 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 3021 /// [0-7]. 3022 /// 3023 /// For vector types, all analysis is performed at the per-element level. No 3024 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 3025 /// constant masks must be splatted across all elements. 3026 /// 3027 /// To avoid revisiting values, the BitPart results are memoized into the 3028 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 3029 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 3030 /// store BitParts objects, not pointers. As we need the concept of a nullptr 3031 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 3032 /// type instead to provide the same functionality. 3033 /// 3034 /// Because we pass around references into \c BPS, we must use a container that 3035 /// does not invalidate internal references (std::map instead of DenseMap). 3036 static const std::optional<BitPart> & 3037 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 3038 std::map<Value *, std::optional<BitPart>> &BPS, int Depth, 3039 bool &FoundRoot) { 3040 auto I = BPS.find(V); 3041 if (I != BPS.end()) 3042 return I->second; 3043 3044 auto &Result = BPS[V] = std::nullopt; 3045 auto BitWidth = V->getType()->getScalarSizeInBits(); 3046 3047 // Can't do integer/elements > 128 bits. 3048 if (BitWidth > 128) 3049 return Result; 3050 3051 // Prevent stack overflow by limiting the recursion depth 3052 if (Depth == BitPartRecursionMaxDepth) { 3053 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 3054 return Result; 3055 } 3056 3057 if (auto *I = dyn_cast<Instruction>(V)) { 3058 Value *X, *Y; 3059 const APInt *C; 3060 3061 // If this is an or instruction, it may be an inner node of the bswap. 3062 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 3063 // Check we have both sources and they are from the same provider. 3064 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3065 Depth + 1, FoundRoot); 3066 if (!A || !A->Provider) 3067 return Result; 3068 3069 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3070 Depth + 1, FoundRoot); 3071 if (!B || A->Provider != B->Provider) 3072 return Result; 3073 3074 // Try and merge the two together. 3075 Result = BitPart(A->Provider, BitWidth); 3076 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 3077 if (A->Provenance[BitIdx] != BitPart::Unset && 3078 B->Provenance[BitIdx] != BitPart::Unset && 3079 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 3080 return Result = std::nullopt; 3081 3082 if (A->Provenance[BitIdx] == BitPart::Unset) 3083 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 3084 else 3085 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 3086 } 3087 3088 return Result; 3089 } 3090 3091 // If this is a logical shift by a constant, recurse then shift the result. 3092 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 3093 const APInt &BitShift = *C; 3094 3095 // Ensure the shift amount is defined. 3096 if (BitShift.uge(BitWidth)) 3097 return Result; 3098 3099 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3100 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 3101 return Result; 3102 3103 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3104 Depth + 1, FoundRoot); 3105 if (!Res) 3106 return Result; 3107 Result = Res; 3108 3109 // Perform the "shift" on BitProvenance. 3110 auto &P = Result->Provenance; 3111 if (I->getOpcode() == Instruction::Shl) { 3112 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 3113 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 3114 } else { 3115 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3116 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3117 } 3118 3119 return Result; 3120 } 3121 3122 // If this is a logical 'and' with a mask that clears bits, recurse then 3123 // unset the appropriate bits. 3124 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3125 const APInt &AndMask = *C; 3126 3127 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3128 // early exit. 3129 unsigned NumMaskedBits = AndMask.countPopulation(); 3130 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3131 return Result; 3132 3133 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3134 Depth + 1, FoundRoot); 3135 if (!Res) 3136 return Result; 3137 Result = Res; 3138 3139 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3140 // If the AndMask is zero for this bit, clear the bit. 3141 if (AndMask[BitIdx] == 0) 3142 Result->Provenance[BitIdx] = BitPart::Unset; 3143 return Result; 3144 } 3145 3146 // If this is a zext instruction zero extend the result. 3147 if (match(V, m_ZExt(m_Value(X)))) { 3148 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3149 Depth + 1, FoundRoot); 3150 if (!Res) 3151 return Result; 3152 3153 Result = BitPart(Res->Provider, BitWidth); 3154 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3155 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3156 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3157 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3158 Result->Provenance[BitIdx] = BitPart::Unset; 3159 return Result; 3160 } 3161 3162 // If this is a truncate instruction, extract the lower bits. 3163 if (match(V, m_Trunc(m_Value(X)))) { 3164 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3165 Depth + 1, FoundRoot); 3166 if (!Res) 3167 return Result; 3168 3169 Result = BitPart(Res->Provider, BitWidth); 3170 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3171 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3172 return Result; 3173 } 3174 3175 // BITREVERSE - most likely due to us previous matching a partial 3176 // bitreverse. 3177 if (match(V, m_BitReverse(m_Value(X)))) { 3178 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3179 Depth + 1, FoundRoot); 3180 if (!Res) 3181 return Result; 3182 3183 Result = BitPart(Res->Provider, BitWidth); 3184 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3185 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3186 return Result; 3187 } 3188 3189 // BSWAP - most likely due to us previous matching a partial bswap. 3190 if (match(V, m_BSwap(m_Value(X)))) { 3191 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3192 Depth + 1, FoundRoot); 3193 if (!Res) 3194 return Result; 3195 3196 unsigned ByteWidth = BitWidth / 8; 3197 Result = BitPart(Res->Provider, BitWidth); 3198 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3199 unsigned ByteBitOfs = ByteIdx * 8; 3200 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3201 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3202 Res->Provenance[ByteBitOfs + BitIdx]; 3203 } 3204 return Result; 3205 } 3206 3207 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3208 // amount (modulo). 3209 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3210 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3211 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3212 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3213 // We can treat fshr as a fshl by flipping the modulo amount. 3214 unsigned ModAmt = C->urem(BitWidth); 3215 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3216 ModAmt = BitWidth - ModAmt; 3217 3218 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3219 if (!MatchBitReversals && (ModAmt % 8) != 0) 3220 return Result; 3221 3222 // Check we have both sources and they are from the same provider. 3223 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3224 Depth + 1, FoundRoot); 3225 if (!LHS || !LHS->Provider) 3226 return Result; 3227 3228 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3229 Depth + 1, FoundRoot); 3230 if (!RHS || LHS->Provider != RHS->Provider) 3231 return Result; 3232 3233 unsigned StartBitRHS = BitWidth - ModAmt; 3234 Result = BitPart(LHS->Provider, BitWidth); 3235 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3236 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3237 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3238 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3239 return Result; 3240 } 3241 } 3242 3243 // If we've already found a root input value then we're never going to merge 3244 // these back together. 3245 if (FoundRoot) 3246 return Result; 3247 3248 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 3249 // be the root input value to the bswap/bitreverse. 3250 FoundRoot = true; 3251 Result = BitPart(V, BitWidth); 3252 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3253 Result->Provenance[BitIdx] = BitIdx; 3254 return Result; 3255 } 3256 3257 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3258 unsigned BitWidth) { 3259 if (From % 8 != To % 8) 3260 return false; 3261 // Convert from bit indices to byte indices and check for a byte reversal. 3262 From >>= 3; 3263 To >>= 3; 3264 BitWidth >>= 3; 3265 return From == BitWidth - To - 1; 3266 } 3267 3268 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3269 unsigned BitWidth) { 3270 return From == BitWidth - To - 1; 3271 } 3272 3273 bool llvm::recognizeBSwapOrBitReverseIdiom( 3274 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3275 SmallVectorImpl<Instruction *> &InsertedInsts) { 3276 if (!match(I, m_Or(m_Value(), m_Value())) && 3277 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 3278 !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) 3279 return false; 3280 if (!MatchBSwaps && !MatchBitReversals) 3281 return false; 3282 Type *ITy = I->getType(); 3283 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3284 return false; // Can't do integer/elements > 128 bits. 3285 3286 // Try to find all the pieces corresponding to the bswap. 3287 bool FoundRoot = false; 3288 std::map<Value *, std::optional<BitPart>> BPS; 3289 const auto &Res = 3290 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 3291 if (!Res) 3292 return false; 3293 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3294 assert(all_of(BitProvenance, 3295 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3296 "Illegal bit provenance index"); 3297 3298 // If the upper bits are zero, then attempt to perform as a truncated op. 3299 Type *DemandedTy = ITy; 3300 if (BitProvenance.back() == BitPart::Unset) { 3301 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3302 BitProvenance = BitProvenance.drop_back(); 3303 if (BitProvenance.empty()) 3304 return false; // TODO - handle null value? 3305 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3306 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3307 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3308 } 3309 3310 // Check BitProvenance hasn't found a source larger than the result type. 3311 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3312 if (DemandedBW > ITy->getScalarSizeInBits()) 3313 return false; 3314 3315 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3316 // only byteswap values with an even number of bytes. 3317 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 3318 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3319 bool OKForBitReverse = MatchBitReversals; 3320 for (unsigned BitIdx = 0; 3321 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3322 if (BitProvenance[BitIdx] == BitPart::Unset) { 3323 DemandedMask.clearBit(BitIdx); 3324 continue; 3325 } 3326 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3327 DemandedBW); 3328 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3329 BitIdx, DemandedBW); 3330 } 3331 3332 Intrinsic::ID Intrin; 3333 if (OKForBSwap) 3334 Intrin = Intrinsic::bswap; 3335 else if (OKForBitReverse) 3336 Intrin = Intrinsic::bitreverse; 3337 else 3338 return false; 3339 3340 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3341 Value *Provider = Res->Provider; 3342 3343 // We may need to truncate the provider. 3344 if (DemandedTy != Provider->getType()) { 3345 auto *Trunc = 3346 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3347 InsertedInsts.push_back(Trunc); 3348 Provider = Trunc; 3349 } 3350 3351 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3352 InsertedInsts.push_back(Result); 3353 3354 if (!DemandedMask.isAllOnes()) { 3355 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3356 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3357 InsertedInsts.push_back(Result); 3358 } 3359 3360 // We may need to zeroextend back to the result type. 3361 if (ITy != Result->getType()) { 3362 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3363 InsertedInsts.push_back(ExtInst); 3364 } 3365 3366 return true; 3367 } 3368 3369 // CodeGen has special handling for some string functions that may replace 3370 // them with target-specific intrinsics. Since that'd skip our interceptors 3371 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3372 // we mark affected calls as NoBuiltin, which will disable optimization 3373 // in CodeGen. 3374 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3375 CallInst *CI, const TargetLibraryInfo *TLI) { 3376 Function *F = CI->getCalledFunction(); 3377 LibFunc Func; 3378 if (F && !F->hasLocalLinkage() && F->hasName() && 3379 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3380 !F->doesNotAccessMemory()) 3381 CI->addFnAttr(Attribute::NoBuiltin); 3382 } 3383 3384 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3385 // We can't have a PHI with a metadata type. 3386 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3387 return false; 3388 3389 // Early exit. 3390 if (!isa<Constant>(I->getOperand(OpIdx))) 3391 return true; 3392 3393 switch (I->getOpcode()) { 3394 default: 3395 return true; 3396 case Instruction::Call: 3397 case Instruction::Invoke: { 3398 const auto &CB = cast<CallBase>(*I); 3399 3400 // Can't handle inline asm. Skip it. 3401 if (CB.isInlineAsm()) 3402 return false; 3403 3404 // Constant bundle operands may need to retain their constant-ness for 3405 // correctness. 3406 if (CB.isBundleOperand(OpIdx)) 3407 return false; 3408 3409 if (OpIdx < CB.arg_size()) { 3410 // Some variadic intrinsics require constants in the variadic arguments, 3411 // which currently aren't markable as immarg. 3412 if (isa<IntrinsicInst>(CB) && 3413 OpIdx >= CB.getFunctionType()->getNumParams()) { 3414 // This is known to be OK for stackmap. 3415 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3416 } 3417 3418 // gcroot is a special case, since it requires a constant argument which 3419 // isn't also required to be a simple ConstantInt. 3420 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3421 return false; 3422 3423 // Some intrinsic operands are required to be immediates. 3424 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3425 } 3426 3427 // It is never allowed to replace the call argument to an intrinsic, but it 3428 // may be possible for a call. 3429 return !isa<IntrinsicInst>(CB); 3430 } 3431 case Instruction::ShuffleVector: 3432 // Shufflevector masks are constant. 3433 return OpIdx != 2; 3434 case Instruction::Switch: 3435 case Instruction::ExtractValue: 3436 // All operands apart from the first are constant. 3437 return OpIdx == 0; 3438 case Instruction::InsertValue: 3439 // All operands apart from the first and the second are constant. 3440 return OpIdx < 2; 3441 case Instruction::Alloca: 3442 // Static allocas (constant size in the entry block) are handled by 3443 // prologue/epilogue insertion so they're free anyway. We definitely don't 3444 // want to make them non-constant. 3445 return !cast<AllocaInst>(I)->isStaticAlloca(); 3446 case Instruction::GetElementPtr: 3447 if (OpIdx == 0) 3448 return true; 3449 gep_type_iterator It = gep_type_begin(I); 3450 for (auto E = std::next(It, OpIdx); It != E; ++It) 3451 if (It.isStruct()) 3452 return false; 3453 return true; 3454 } 3455 } 3456 3457 Value *llvm::invertCondition(Value *Condition) { 3458 // First: Check if it's a constant 3459 if (Constant *C = dyn_cast<Constant>(Condition)) 3460 return ConstantExpr::getNot(C); 3461 3462 // Second: If the condition is already inverted, return the original value 3463 Value *NotCondition; 3464 if (match(Condition, m_Not(m_Value(NotCondition)))) 3465 return NotCondition; 3466 3467 BasicBlock *Parent = nullptr; 3468 Instruction *Inst = dyn_cast<Instruction>(Condition); 3469 if (Inst) 3470 Parent = Inst->getParent(); 3471 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3472 Parent = &Arg->getParent()->getEntryBlock(); 3473 assert(Parent && "Unsupported condition to invert"); 3474 3475 // Third: Check all the users for an invert 3476 for (User *U : Condition->users()) 3477 if (Instruction *I = dyn_cast<Instruction>(U)) 3478 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3479 return I; 3480 3481 // Last option: Create a new instruction 3482 auto *Inverted = 3483 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3484 if (Inst && !isa<PHINode>(Inst)) 3485 Inverted->insertAfter(Inst); 3486 else 3487 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3488 return Inverted; 3489 } 3490 3491 bool llvm::inferAttributesFromOthers(Function &F) { 3492 // Note: We explicitly check for attributes rather than using cover functions 3493 // because some of the cover functions include the logic being implemented. 3494 3495 bool Changed = false; 3496 // readnone + not convergent implies nosync 3497 if (!F.hasFnAttribute(Attribute::NoSync) && 3498 F.doesNotAccessMemory() && !F.isConvergent()) { 3499 F.setNoSync(); 3500 Changed = true; 3501 } 3502 3503 // readonly implies nofree 3504 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3505 F.setDoesNotFreeMemory(); 3506 Changed = true; 3507 } 3508 3509 // willreturn implies mustprogress 3510 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3511 F.setMustProgress(); 3512 Changed = true; 3513 } 3514 3515 // TODO: There are a bunch of cases of restrictive memory effects we 3516 // can infer by inspecting arguments of argmemonly-ish functions. 3517 3518 return Changed; 3519 } 3520