xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp (revision 32a95656b51ebefcdf3e0b02c110825f59abd26f)
1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
10 // inserting a dummy basic block.  This pass may be "required" by passes that
11 // cannot deal with critical edges.  For this usage, the structure type is
12 // forward declared.  This pass obviously invalidates the CFG, but can update
13 // dominator trees.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/BreakCriticalEdges.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/BlockFrequencyInfo.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/PostDominators.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Transforms/Utils.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/ValueMapper.h"
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "break-crit-edges"
40 
41 STATISTIC(NumBroken, "Number of blocks inserted");
42 
43 namespace {
44   struct BreakCriticalEdges : public FunctionPass {
45     static char ID; // Pass identification, replacement for typeid
46     BreakCriticalEdges() : FunctionPass(ID) {
47       initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
48     }
49 
50     bool runOnFunction(Function &F) override {
51       auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
52       auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
53 
54       auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
55       auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
56 
57       auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
58       auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
59       unsigned N =
60           SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
61       NumBroken += N;
62       return N > 0;
63     }
64 
65     void getAnalysisUsage(AnalysisUsage &AU) const override {
66       AU.addPreserved<DominatorTreeWrapperPass>();
67       AU.addPreserved<LoopInfoWrapperPass>();
68 
69       // No loop canonicalization guarantees are broken by this pass.
70       AU.addPreservedID(LoopSimplifyID);
71     }
72   };
73 }
74 
75 char BreakCriticalEdges::ID = 0;
76 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
77                 "Break critical edges in CFG", false, false)
78 
79 // Publicly exposed interface to pass...
80 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
81 FunctionPass *llvm::createBreakCriticalEdgesPass() {
82   return new BreakCriticalEdges();
83 }
84 
85 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
86                                               FunctionAnalysisManager &AM) {
87   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
88   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
89   unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
90   NumBroken += N;
91   if (N == 0)
92     return PreservedAnalyses::all();
93   PreservedAnalyses PA;
94   PA.preserve<DominatorTreeAnalysis>();
95   PA.preserve<LoopAnalysis>();
96   return PA;
97 }
98 
99 //===----------------------------------------------------------------------===//
100 //    Implementation of the external critical edge manipulation functions
101 //===----------------------------------------------------------------------===//
102 
103 BasicBlock *llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
104                                     const CriticalEdgeSplittingOptions &Options,
105                                     const Twine &BBName) {
106   if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
107     return nullptr;
108 
109   return SplitKnownCriticalEdge(TI, SuccNum, Options, BBName);
110 }
111 
112 BasicBlock *
113 llvm::SplitKnownCriticalEdge(Instruction *TI, unsigned SuccNum,
114                              const CriticalEdgeSplittingOptions &Options,
115                              const Twine &BBName) {
116   assert(!isa<IndirectBrInst>(TI) &&
117          "Cannot split critical edge from IndirectBrInst");
118 
119   BasicBlock *TIBB = TI->getParent();
120   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
121 
122   // Splitting the critical edge to a pad block is non-trivial. Don't do
123   // it in this generic function.
124   if (DestBB->isEHPad()) return nullptr;
125 
126   if (Options.IgnoreUnreachableDests &&
127       isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
128     return nullptr;
129 
130   auto *LI = Options.LI;
131   SmallVector<BasicBlock *, 4> LoopPreds;
132   // Check if extra modifications will be required to preserve loop-simplify
133   // form after splitting. If it would require splitting blocks with IndirectBr
134   // or CallBr terminators, bail out if preserving loop-simplify form is
135   // requested.
136   if (LI) {
137     if (Loop *TIL = LI->getLoopFor(TIBB)) {
138 
139       // The only way that we can break LoopSimplify form by splitting a
140       // critical edge is if after the split there exists some edge from TIL to
141       // DestBB *and* the only edge into DestBB from outside of TIL is that of
142       // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
143       // is the new exit block and it has no non-loop predecessors. If the
144       // second isn't true, then DestBB was not in LoopSimplify form prior to
145       // the split as it had a non-loop predecessor. In both of these cases,
146       // the predecessor must be directly in TIL, not in a subloop, or again
147       // LoopSimplify doesn't hold.
148       for (BasicBlock *P : predecessors(DestBB)) {
149         if (P == TIBB)
150           continue; // The new block is known.
151         if (LI->getLoopFor(P) != TIL) {
152           // No need to re-simplify, it wasn't to start with.
153           LoopPreds.clear();
154           break;
155         }
156         LoopPreds.push_back(P);
157       }
158       // Loop-simplify form can be preserved, if we can split all in-loop
159       // predecessors.
160       if (any_of(LoopPreds, [](BasicBlock *Pred) {
161             const Instruction *T = Pred->getTerminator();
162             if (const auto *CBR = dyn_cast<CallBrInst>(T))
163               return CBR->getDefaultDest() != Pred;
164             return isa<IndirectBrInst>(T);
165           })) {
166         if (Options.PreserveLoopSimplify)
167           return nullptr;
168         LoopPreds.clear();
169       }
170     }
171   }
172 
173   // Create a new basic block, linking it into the CFG.
174   BasicBlock *NewBB = nullptr;
175   if (BBName.str() != "")
176     NewBB = BasicBlock::Create(TI->getContext(), BBName);
177   else
178     NewBB = BasicBlock::Create(TI->getContext(), TIBB->getName() + "." +
179                                                      DestBB->getName() +
180                                                      "_crit_edge");
181   // Create our unconditional branch.
182   BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
183   NewBI->setDebugLoc(TI->getDebugLoc());
184 
185   // Insert the block into the function... right after the block TI lives in.
186   Function &F = *TIBB->getParent();
187   Function::iterator FBBI = TIBB->getIterator();
188   F.getBasicBlockList().insert(++FBBI, NewBB);
189 
190   // Branch to the new block, breaking the edge.
191   TI->setSuccessor(SuccNum, NewBB);
192 
193   // If there are any PHI nodes in DestBB, we need to update them so that they
194   // merge incoming values from NewBB instead of from TIBB.
195   {
196     unsigned BBIdx = 0;
197     for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
198       // We no longer enter through TIBB, now we come in through NewBB.
199       // Revector exactly one entry in the PHI node that used to come from
200       // TIBB to come from NewBB.
201       PHINode *PN = cast<PHINode>(I);
202 
203       // Reuse the previous value of BBIdx if it lines up.  In cases where we
204       // have multiple phi nodes with *lots* of predecessors, this is a speed
205       // win because we don't have to scan the PHI looking for TIBB.  This
206       // happens because the BB list of PHI nodes are usually in the same
207       // order.
208       if (PN->getIncomingBlock(BBIdx) != TIBB)
209         BBIdx = PN->getBasicBlockIndex(TIBB);
210       PN->setIncomingBlock(BBIdx, NewBB);
211     }
212   }
213 
214   // If there are any other edges from TIBB to DestBB, update those to go
215   // through the split block, making those edges non-critical as well (and
216   // reducing the number of phi entries in the DestBB if relevant).
217   if (Options.MergeIdenticalEdges) {
218     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
219       if (TI->getSuccessor(i) != DestBB) continue;
220 
221       // Remove an entry for TIBB from DestBB phi nodes.
222       DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
223 
224       // We found another edge to DestBB, go to NewBB instead.
225       TI->setSuccessor(i, NewBB);
226     }
227   }
228 
229   // If we have nothing to update, just return.
230   auto *DT = Options.DT;
231   auto *PDT = Options.PDT;
232   auto *MSSAU = Options.MSSAU;
233   if (MSSAU)
234     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
235         DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
236 
237   if (!DT && !PDT && !LI)
238     return NewBB;
239 
240   if (DT || PDT) {
241     // Update the DominatorTree.
242     //       ---> NewBB -----\
243     //      /                 V
244     //  TIBB -------\\------> DestBB
245     //
246     // First, inform the DT about the new path from TIBB to DestBB via NewBB,
247     // then delete the old edge from TIBB to DestBB. By doing this in that order
248     // DestBB stays reachable in the DT the whole time and its subtree doesn't
249     // get disconnected.
250     SmallVector<DominatorTree::UpdateType, 3> Updates;
251     Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
252     Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
253     if (!llvm::is_contained(successors(TIBB), DestBB))
254       Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
255 
256     if (DT)
257       DT->applyUpdates(Updates);
258     if (PDT)
259       PDT->applyUpdates(Updates);
260   }
261 
262   // Update LoopInfo if it is around.
263   if (LI) {
264     if (Loop *TIL = LI->getLoopFor(TIBB)) {
265       // If one or the other blocks were not in a loop, the new block is not
266       // either, and thus LI doesn't need to be updated.
267       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
268         if (TIL == DestLoop) {
269           // Both in the same loop, the NewBB joins loop.
270           DestLoop->addBasicBlockToLoop(NewBB, *LI);
271         } else if (TIL->contains(DestLoop)) {
272           // Edge from an outer loop to an inner loop.  Add to the outer loop.
273           TIL->addBasicBlockToLoop(NewBB, *LI);
274         } else if (DestLoop->contains(TIL)) {
275           // Edge from an inner loop to an outer loop.  Add to the outer loop.
276           DestLoop->addBasicBlockToLoop(NewBB, *LI);
277         } else {
278           // Edge from two loops with no containment relation.  Because these
279           // are natural loops, we know that the destination block must be the
280           // header of its loop (adding a branch into a loop elsewhere would
281           // create an irreducible loop).
282           assert(DestLoop->getHeader() == DestBB &&
283                  "Should not create irreducible loops!");
284           if (Loop *P = DestLoop->getParentLoop())
285             P->addBasicBlockToLoop(NewBB, *LI);
286         }
287       }
288 
289       // If TIBB is in a loop and DestBB is outside of that loop, we may need
290       // to update LoopSimplify form and LCSSA form.
291       if (!TIL->contains(DestBB)) {
292         assert(!TIL->contains(NewBB) &&
293                "Split point for loop exit is contained in loop!");
294 
295         // Update LCSSA form in the newly created exit block.
296         if (Options.PreserveLCSSA) {
297           createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
298         }
299 
300         if (!LoopPreds.empty()) {
301           assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
302           BasicBlock *NewExitBB = SplitBlockPredecessors(
303               DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
304           if (Options.PreserveLCSSA)
305             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
306         }
307       }
308     }
309   }
310 
311   return NewBB;
312 }
313 
314 // Return the unique indirectbr predecessor of a block. This may return null
315 // even if such a predecessor exists, if it's not useful for splitting.
316 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
317 // predecessors of BB.
318 static BasicBlock *
319 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
320   // If the block doesn't have any PHIs, we don't care about it, since there's
321   // no point in splitting it.
322   PHINode *PN = dyn_cast<PHINode>(BB->begin());
323   if (!PN)
324     return nullptr;
325 
326   // Verify we have exactly one IBR predecessor.
327   // Conservatively bail out if one of the other predecessors is not a "regular"
328   // terminator (that is, not a switch or a br).
329   BasicBlock *IBB = nullptr;
330   for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
331     BasicBlock *PredBB = PN->getIncomingBlock(Pred);
332     Instruction *PredTerm = PredBB->getTerminator();
333     switch (PredTerm->getOpcode()) {
334     case Instruction::IndirectBr:
335       if (IBB)
336         return nullptr;
337       IBB = PredBB;
338       break;
339     case Instruction::Br:
340     case Instruction::Switch:
341       OtherPreds.push_back(PredBB);
342       continue;
343     default:
344       return nullptr;
345     }
346   }
347 
348   return IBB;
349 }
350 
351 bool llvm::SplitIndirectBrCriticalEdges(Function &F,
352                                         BranchProbabilityInfo *BPI,
353                                         BlockFrequencyInfo *BFI) {
354   // Check whether the function has any indirectbrs, and collect which blocks
355   // they may jump to. Since most functions don't have indirect branches,
356   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
357   SmallSetVector<BasicBlock *, 16> Targets;
358   for (auto &BB : F) {
359     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
360     if (!IBI)
361       continue;
362 
363     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
364       Targets.insert(IBI->getSuccessor(Succ));
365   }
366 
367   if (Targets.empty())
368     return false;
369 
370   bool ShouldUpdateAnalysis = BPI && BFI;
371   bool Changed = false;
372   for (BasicBlock *Target : Targets) {
373     SmallVector<BasicBlock *, 16> OtherPreds;
374     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
375     // If we did not found an indirectbr, or the indirectbr is the only
376     // incoming edge, this isn't the kind of edge we're looking for.
377     if (!IBRPred || OtherPreds.empty())
378       continue;
379 
380     // Don't even think about ehpads/landingpads.
381     Instruction *FirstNonPHI = Target->getFirstNonPHI();
382     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
383       continue;
384 
385     // Remember edge probabilities if needed.
386     SmallVector<BranchProbability, 4> EdgeProbabilities;
387     if (ShouldUpdateAnalysis) {
388       EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors());
389       for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors();
390            I < E; ++I)
391         EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I));
392       BPI->eraseBlock(Target);
393     }
394 
395     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
396     if (ShouldUpdateAnalysis) {
397       // Copy the BFI/BPI from Target to BodyBlock.
398       BPI->setEdgeProbability(BodyBlock, EdgeProbabilities);
399       BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
400     }
401     // It's possible Target was its own successor through an indirectbr.
402     // In this case, the indirectbr now comes from BodyBlock.
403     if (IBRPred == Target)
404       IBRPred = BodyBlock;
405 
406     // At this point Target only has PHIs, and BodyBlock has the rest of the
407     // block's body. Create a copy of Target that will be used by the "direct"
408     // preds.
409     ValueToValueMapTy VMap;
410     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
411 
412     BlockFrequency BlockFreqForDirectSucc;
413     for (BasicBlock *Pred : OtherPreds) {
414       // If the target is a loop to itself, then the terminator of the split
415       // block (BodyBlock) needs to be updated.
416       BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
417       Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
418       if (ShouldUpdateAnalysis)
419         BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
420             BPI->getEdgeProbability(Src, DirectSucc);
421     }
422     if (ShouldUpdateAnalysis) {
423       BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
424       BlockFrequency NewBlockFreqForTarget =
425           BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
426       BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
427     }
428 
429     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
430     // they are clones, so the number of PHIs are the same.
431     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
432     // (b) Leave that as the only edge in the "Indirect" PHI.
433     // (c) Merge the two in the body block.
434     BasicBlock::iterator Indirect = Target->begin(),
435                          End = Target->getFirstNonPHI()->getIterator();
436     BasicBlock::iterator Direct = DirectSucc->begin();
437     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
438 
439     assert(&*End == Target->getTerminator() &&
440            "Block was expected to only contain PHIs");
441 
442     while (Indirect != End) {
443       PHINode *DirPHI = cast<PHINode>(Direct);
444       PHINode *IndPHI = cast<PHINode>(Indirect);
445 
446       // Now, clean up - the direct block shouldn't get the indirect value,
447       // and vice versa.
448       DirPHI->removeIncomingValue(IBRPred);
449       Direct++;
450 
451       // Advance the pointer here, to avoid invalidation issues when the old
452       // PHI is erased.
453       Indirect++;
454 
455       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
456       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
457                              IBRPred);
458 
459       // Create a PHI in the body block, to merge the direct and indirect
460       // predecessors.
461       PHINode *MergePHI =
462           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
463       MergePHI->addIncoming(NewIndPHI, Target);
464       MergePHI->addIncoming(DirPHI, DirectSucc);
465 
466       IndPHI->replaceAllUsesWith(MergePHI);
467       IndPHI->eraseFromParent();
468     }
469 
470     Changed = true;
471   }
472 
473   return Changed;
474 }
475