1 //===- StructurizeCFG.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/StructurizeCFG.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/MapVector.h" 12 #include "llvm/ADT/SCCIterator.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 19 #include "llvm/Analysis/RegionInfo.h" 20 #include "llvm/Analysis/RegionIterator.h" 21 #include "llvm/Analysis/RegionPass.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/PassManager.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Use.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Scalar.h" 44 #include "llvm/Transforms/Utils.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include "llvm/Transforms/Utils/SSAUpdater.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <utility> 50 51 using namespace llvm; 52 using namespace llvm::PatternMatch; 53 54 #define DEBUG_TYPE "structurizecfg" 55 56 // The name for newly created blocks. 57 const char FlowBlockName[] = "Flow"; 58 59 namespace { 60 61 static cl::opt<bool> ForceSkipUniformRegions( 62 "structurizecfg-skip-uniform-regions", 63 cl::Hidden, 64 cl::desc("Force whether the StructurizeCFG pass skips uniform regions"), 65 cl::init(false)); 66 67 static cl::opt<bool> 68 RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden, 69 cl::desc("Allow relaxed uniform region checks"), 70 cl::init(true)); 71 72 // Definition of the complex types used in this pass. 73 74 using BBValuePair = std::pair<BasicBlock *, Value *>; 75 76 using RNVector = SmallVector<RegionNode *, 8>; 77 using BBVector = SmallVector<BasicBlock *, 8>; 78 using BranchVector = SmallVector<BranchInst *, 8>; 79 using BBValueVector = SmallVector<BBValuePair, 2>; 80 81 using BBSet = SmallPtrSet<BasicBlock *, 8>; 82 83 using PhiMap = MapVector<PHINode *, BBValueVector>; 84 using BB2BBVecMap = MapVector<BasicBlock *, BBVector>; 85 86 using BBPhiMap = DenseMap<BasicBlock *, PhiMap>; 87 using BBPredicates = DenseMap<BasicBlock *, Value *>; 88 using PredMap = DenseMap<BasicBlock *, BBPredicates>; 89 using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>; 90 91 using BranchDebugLocMap = DenseMap<BasicBlock *, DebugLoc>; 92 93 // A traits type that is intended to be used in graph algorithms. The graph 94 // traits starts at an entry node, and traverses the RegionNodes that are in 95 // the Nodes set. 96 struct SubGraphTraits { 97 using NodeRef = std::pair<RegionNode *, SmallDenseSet<RegionNode *> *>; 98 using BaseSuccIterator = GraphTraits<RegionNode *>::ChildIteratorType; 99 100 // This wraps a set of Nodes into the iterator, so we know which edges to 101 // filter out. 102 class WrappedSuccIterator 103 : public iterator_adaptor_base< 104 WrappedSuccIterator, BaseSuccIterator, 105 typename std::iterator_traits<BaseSuccIterator>::iterator_category, 106 NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> { 107 SmallDenseSet<RegionNode *> *Nodes; 108 109 public: 110 WrappedSuccIterator(BaseSuccIterator It, SmallDenseSet<RegionNode *> *Nodes) 111 : iterator_adaptor_base(It), Nodes(Nodes) {} 112 113 NodeRef operator*() const { return {*I, Nodes}; } 114 }; 115 116 static bool filterAll(const NodeRef &N) { return true; } 117 static bool filterSet(const NodeRef &N) { return N.second->count(N.first); } 118 119 using ChildIteratorType = 120 filter_iterator<WrappedSuccIterator, bool (*)(const NodeRef &)>; 121 122 static NodeRef getEntryNode(Region *R) { 123 return {GraphTraits<Region *>::getEntryNode(R), nullptr}; 124 } 125 126 static NodeRef getEntryNode(NodeRef N) { return N; } 127 128 static iterator_range<ChildIteratorType> children(const NodeRef &N) { 129 auto *filter = N.second ? &filterSet : &filterAll; 130 return make_filter_range( 131 make_range<WrappedSuccIterator>( 132 {GraphTraits<RegionNode *>::child_begin(N.first), N.second}, 133 {GraphTraits<RegionNode *>::child_end(N.first), N.second}), 134 filter); 135 } 136 137 static ChildIteratorType child_begin(const NodeRef &N) { 138 return children(N).begin(); 139 } 140 141 static ChildIteratorType child_end(const NodeRef &N) { 142 return children(N).end(); 143 } 144 }; 145 146 /// Finds the nearest common dominator of a set of BasicBlocks. 147 /// 148 /// For every BB you add to the set, you can specify whether we "remember" the 149 /// block. When you get the common dominator, you can also ask whether it's one 150 /// of the blocks we remembered. 151 class NearestCommonDominator { 152 DominatorTree *DT; 153 BasicBlock *Result = nullptr; 154 bool ResultIsRemembered = false; 155 156 /// Add BB to the resulting dominator. 157 void addBlock(BasicBlock *BB, bool Remember) { 158 if (!Result) { 159 Result = BB; 160 ResultIsRemembered = Remember; 161 return; 162 } 163 164 BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB); 165 if (NewResult != Result) 166 ResultIsRemembered = false; 167 if (NewResult == BB) 168 ResultIsRemembered |= Remember; 169 Result = NewResult; 170 } 171 172 public: 173 explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {} 174 175 void addBlock(BasicBlock *BB) { 176 addBlock(BB, /* Remember = */ false); 177 } 178 179 void addAndRememberBlock(BasicBlock *BB) { 180 addBlock(BB, /* Remember = */ true); 181 } 182 183 /// Get the nearest common dominator of all the BBs added via addBlock() and 184 /// addAndRememberBlock(). 185 BasicBlock *result() { return Result; } 186 187 /// Is the BB returned by getResult() one of the blocks we added to the set 188 /// with addAndRememberBlock()? 189 bool resultIsRememberedBlock() { return ResultIsRemembered; } 190 }; 191 192 /// Transforms the control flow graph on one single entry/exit region 193 /// at a time. 194 /// 195 /// After the transform all "If"/"Then"/"Else" style control flow looks like 196 /// this: 197 /// 198 /// \verbatim 199 /// 1 200 /// || 201 /// | | 202 /// 2 | 203 /// | / 204 /// |/ 205 /// 3 206 /// || Where: 207 /// | | 1 = "If" block, calculates the condition 208 /// 4 | 2 = "Then" subregion, runs if the condition is true 209 /// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow 210 /// |/ 4 = "Else" optional subregion, runs if the condition is false 211 /// 5 5 = "End" block, also rejoins the control flow 212 /// \endverbatim 213 /// 214 /// Control flow is expressed as a branch where the true exit goes into the 215 /// "Then"/"Else" region, while the false exit skips the region 216 /// The condition for the optional "Else" region is expressed as a PHI node. 217 /// The incoming values of the PHI node are true for the "If" edge and false 218 /// for the "Then" edge. 219 /// 220 /// Additionally to that even complicated loops look like this: 221 /// 222 /// \verbatim 223 /// 1 224 /// || 225 /// | | 226 /// 2 ^ Where: 227 /// | / 1 = "Entry" block 228 /// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block 229 /// 3 3 = "Flow" block, with back edge to entry block 230 /// | 231 /// \endverbatim 232 /// 233 /// The back edge of the "Flow" block is always on the false side of the branch 234 /// while the true side continues the general flow. So the loop condition 235 /// consist of a network of PHI nodes where the true incoming values expresses 236 /// breaks and the false values expresses continue states. 237 238 class StructurizeCFG { 239 Type *Boolean; 240 ConstantInt *BoolTrue; 241 ConstantInt *BoolFalse; 242 UndefValue *BoolUndef; 243 244 Function *Func; 245 Region *ParentRegion; 246 247 LegacyDivergenceAnalysis *DA = nullptr; 248 DominatorTree *DT; 249 250 SmallVector<RegionNode *, 8> Order; 251 BBSet Visited; 252 BBSet FlowSet; 253 254 SmallVector<WeakVH, 8> AffectedPhis; 255 BBPhiMap DeletedPhis; 256 BB2BBVecMap AddedPhis; 257 258 PredMap Predicates; 259 BranchVector Conditions; 260 261 BB2BBMap Loops; 262 PredMap LoopPreds; 263 BranchVector LoopConds; 264 265 BranchDebugLocMap TermDL; 266 267 RegionNode *PrevNode; 268 269 void orderNodes(); 270 271 void analyzeLoops(RegionNode *N); 272 273 Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert); 274 275 void gatherPredicates(RegionNode *N); 276 277 void collectInfos(); 278 279 void insertConditions(bool Loops); 280 281 void simplifyConditions(); 282 283 void delPhiValues(BasicBlock *From, BasicBlock *To); 284 285 void addPhiValues(BasicBlock *From, BasicBlock *To); 286 287 void findUndefBlocks(BasicBlock *PHIBlock, 288 const SmallSet<BasicBlock *, 8> &Incomings, 289 SmallVector<BasicBlock *> &UndefBlks) const; 290 void setPhiValues(); 291 292 void simplifyAffectedPhis(); 293 294 void killTerminator(BasicBlock *BB); 295 296 void changeExit(RegionNode *Node, BasicBlock *NewExit, 297 bool IncludeDominator); 298 299 BasicBlock *getNextFlow(BasicBlock *Dominator); 300 301 BasicBlock *needPrefix(bool NeedEmpty); 302 303 BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed); 304 305 void setPrevNode(BasicBlock *BB); 306 307 bool dominatesPredicates(BasicBlock *BB, RegionNode *Node); 308 309 bool isPredictableTrue(RegionNode *Node); 310 311 void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd); 312 313 void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd); 314 315 void createFlow(); 316 317 void rebuildSSA(); 318 319 public: 320 void init(Region *R); 321 bool run(Region *R, DominatorTree *DT); 322 bool makeUniformRegion(Region *R, LegacyDivergenceAnalysis *DA); 323 }; 324 325 class StructurizeCFGLegacyPass : public RegionPass { 326 bool SkipUniformRegions; 327 328 public: 329 static char ID; 330 331 explicit StructurizeCFGLegacyPass(bool SkipUniformRegions_ = false) 332 : RegionPass(ID), SkipUniformRegions(SkipUniformRegions_) { 333 if (ForceSkipUniformRegions.getNumOccurrences()) 334 SkipUniformRegions = ForceSkipUniformRegions.getValue(); 335 initializeStructurizeCFGLegacyPassPass(*PassRegistry::getPassRegistry()); 336 } 337 338 bool runOnRegion(Region *R, RGPassManager &RGM) override { 339 StructurizeCFG SCFG; 340 SCFG.init(R); 341 if (SkipUniformRegions) { 342 LegacyDivergenceAnalysis *DA = &getAnalysis<LegacyDivergenceAnalysis>(); 343 if (SCFG.makeUniformRegion(R, DA)) 344 return false; 345 } 346 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 347 return SCFG.run(R, DT); 348 } 349 350 StringRef getPassName() const override { return "Structurize control flow"; } 351 352 void getAnalysisUsage(AnalysisUsage &AU) const override { 353 if (SkipUniformRegions) 354 AU.addRequired<LegacyDivergenceAnalysis>(); 355 AU.addRequiredID(LowerSwitchID); 356 AU.addRequired<DominatorTreeWrapperPass>(); 357 358 AU.addPreserved<DominatorTreeWrapperPass>(); 359 RegionPass::getAnalysisUsage(AU); 360 } 361 }; 362 363 } // end anonymous namespace 364 365 char StructurizeCFGLegacyPass::ID = 0; 366 367 INITIALIZE_PASS_BEGIN(StructurizeCFGLegacyPass, "structurizecfg", 368 "Structurize the CFG", false, false) 369 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 370 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass) 371 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 372 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass) 373 INITIALIZE_PASS_END(StructurizeCFGLegacyPass, "structurizecfg", 374 "Structurize the CFG", false, false) 375 376 /// Build up the general order of nodes, by performing a topological sort of the 377 /// parent region's nodes, while ensuring that there is no outer cycle node 378 /// between any two inner cycle nodes. 379 void StructurizeCFG::orderNodes() { 380 Order.resize(std::distance(GraphTraits<Region *>::nodes_begin(ParentRegion), 381 GraphTraits<Region *>::nodes_end(ParentRegion))); 382 if (Order.empty()) 383 return; 384 385 SmallDenseSet<RegionNode *> Nodes; 386 auto EntryNode = SubGraphTraits::getEntryNode(ParentRegion); 387 388 // A list of range indices of SCCs in Order, to be processed. 389 SmallVector<std::pair<unsigned, unsigned>, 8> WorkList; 390 unsigned I = 0, E = Order.size(); 391 while (true) { 392 // Run through all the SCCs in the subgraph starting with Entry. 393 for (auto SCCI = 394 scc_iterator<SubGraphTraits::NodeRef, SubGraphTraits>::begin( 395 EntryNode); 396 !SCCI.isAtEnd(); ++SCCI) { 397 auto &SCC = *SCCI; 398 399 // An SCC up to the size of 2, can be reduced to an entry (the last node), 400 // and a possible additional node. Therefore, it is already in order, and 401 // there is no need to add it to the work-list. 402 unsigned Size = SCC.size(); 403 if (Size > 2) 404 WorkList.emplace_back(I, I + Size); 405 406 // Add the SCC nodes to the Order array. 407 for (const auto &N : SCC) { 408 assert(I < E && "SCC size mismatch!"); 409 Order[I++] = N.first; 410 } 411 } 412 assert(I == E && "SCC size mismatch!"); 413 414 // If there are no more SCCs to order, then we are done. 415 if (WorkList.empty()) 416 break; 417 418 std::tie(I, E) = WorkList.pop_back_val(); 419 420 // Collect the set of nodes in the SCC's subgraph. These are only the 421 // possible child nodes; we do not add the entry (last node) otherwise we 422 // will have the same exact SCC all over again. 423 Nodes.clear(); 424 Nodes.insert(Order.begin() + I, Order.begin() + E - 1); 425 426 // Update the entry node. 427 EntryNode.first = Order[E - 1]; 428 EntryNode.second = &Nodes; 429 } 430 } 431 432 /// Determine the end of the loops 433 void StructurizeCFG::analyzeLoops(RegionNode *N) { 434 if (N->isSubRegion()) { 435 // Test for exit as back edge 436 BasicBlock *Exit = N->getNodeAs<Region>()->getExit(); 437 if (Visited.count(Exit)) 438 Loops[Exit] = N->getEntry(); 439 440 } else { 441 // Test for successors as back edge 442 BasicBlock *BB = N->getNodeAs<BasicBlock>(); 443 BranchInst *Term = cast<BranchInst>(BB->getTerminator()); 444 445 for (BasicBlock *Succ : Term->successors()) 446 if (Visited.count(Succ)) 447 Loops[Succ] = BB; 448 } 449 } 450 451 /// Build the condition for one edge 452 Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx, 453 bool Invert) { 454 Value *Cond = Invert ? BoolFalse : BoolTrue; 455 if (Term->isConditional()) { 456 Cond = Term->getCondition(); 457 458 if (Idx != (unsigned)Invert) 459 Cond = invertCondition(Cond); 460 } 461 return Cond; 462 } 463 464 /// Analyze the predecessors of each block and build up predicates 465 void StructurizeCFG::gatherPredicates(RegionNode *N) { 466 RegionInfo *RI = ParentRegion->getRegionInfo(); 467 BasicBlock *BB = N->getEntry(); 468 BBPredicates &Pred = Predicates[BB]; 469 BBPredicates &LPred = LoopPreds[BB]; 470 471 for (BasicBlock *P : predecessors(BB)) { 472 // Ignore it if it's a branch from outside into our region entry 473 if (!ParentRegion->contains(P)) 474 continue; 475 476 Region *R = RI->getRegionFor(P); 477 if (R == ParentRegion) { 478 // It's a top level block in our region 479 BranchInst *Term = cast<BranchInst>(P->getTerminator()); 480 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 481 BasicBlock *Succ = Term->getSuccessor(i); 482 if (Succ != BB) 483 continue; 484 485 if (Visited.count(P)) { 486 // Normal forward edge 487 if (Term->isConditional()) { 488 // Try to treat it like an ELSE block 489 BasicBlock *Other = Term->getSuccessor(!i); 490 if (Visited.count(Other) && !Loops.count(Other) && 491 !Pred.count(Other) && !Pred.count(P)) { 492 493 Pred[Other] = BoolFalse; 494 Pred[P] = BoolTrue; 495 continue; 496 } 497 } 498 Pred[P] = buildCondition(Term, i, false); 499 } else { 500 // Back edge 501 LPred[P] = buildCondition(Term, i, true); 502 } 503 } 504 } else { 505 // It's an exit from a sub region 506 while (R->getParent() != ParentRegion) 507 R = R->getParent(); 508 509 // Edge from inside a subregion to its entry, ignore it 510 if (*R == *N) 511 continue; 512 513 BasicBlock *Entry = R->getEntry(); 514 if (Visited.count(Entry)) 515 Pred[Entry] = BoolTrue; 516 else 517 LPred[Entry] = BoolFalse; 518 } 519 } 520 } 521 522 /// Collect various loop and predicate infos 523 void StructurizeCFG::collectInfos() { 524 // Reset predicate 525 Predicates.clear(); 526 527 // and loop infos 528 Loops.clear(); 529 LoopPreds.clear(); 530 531 // Reset the visited nodes 532 Visited.clear(); 533 534 for (RegionNode *RN : reverse(Order)) { 535 LLVM_DEBUG(dbgs() << "Visiting: " 536 << (RN->isSubRegion() ? "SubRegion with entry: " : "") 537 << RN->getEntry()->getName() << "\n"); 538 539 // Analyze all the conditions leading to a node 540 gatherPredicates(RN); 541 542 // Remember that we've seen this node 543 Visited.insert(RN->getEntry()); 544 545 // Find the last back edges 546 analyzeLoops(RN); 547 } 548 549 // Reset the collected term debug locations 550 TermDL.clear(); 551 552 for (BasicBlock &BB : *Func) { 553 if (const DebugLoc &DL = BB.getTerminator()->getDebugLoc()) 554 TermDL[&BB] = DL; 555 } 556 } 557 558 /// Insert the missing branch conditions 559 void StructurizeCFG::insertConditions(bool Loops) { 560 BranchVector &Conds = Loops ? LoopConds : Conditions; 561 Value *Default = Loops ? BoolTrue : BoolFalse; 562 SSAUpdater PhiInserter; 563 564 for (BranchInst *Term : Conds) { 565 assert(Term->isConditional()); 566 567 BasicBlock *Parent = Term->getParent(); 568 BasicBlock *SuccTrue = Term->getSuccessor(0); 569 BasicBlock *SuccFalse = Term->getSuccessor(1); 570 571 PhiInserter.Initialize(Boolean, ""); 572 PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default); 573 PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default); 574 575 BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue]; 576 577 NearestCommonDominator Dominator(DT); 578 Dominator.addBlock(Parent); 579 580 Value *ParentValue = nullptr; 581 for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) { 582 BasicBlock *BB = BBAndPred.first; 583 Value *Pred = BBAndPred.second; 584 585 if (BB == Parent) { 586 ParentValue = Pred; 587 break; 588 } 589 PhiInserter.AddAvailableValue(BB, Pred); 590 Dominator.addAndRememberBlock(BB); 591 } 592 593 if (ParentValue) { 594 Term->setCondition(ParentValue); 595 } else { 596 if (!Dominator.resultIsRememberedBlock()) 597 PhiInserter.AddAvailableValue(Dominator.result(), Default); 598 599 Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent)); 600 } 601 } 602 } 603 604 /// Simplify any inverted conditions that were built by buildConditions. 605 void StructurizeCFG::simplifyConditions() { 606 SmallVector<Instruction *> InstToErase; 607 for (auto &I : concat<PredMap::value_type>(Predicates, LoopPreds)) { 608 auto &Preds = I.second; 609 for (auto &J : Preds) { 610 auto &Cond = J.second; 611 Instruction *Inverted; 612 if (match(Cond, m_Not(m_OneUse(m_Instruction(Inverted)))) && 613 !Cond->use_empty()) { 614 if (auto *InvertedCmp = dyn_cast<CmpInst>(Inverted)) { 615 InvertedCmp->setPredicate(InvertedCmp->getInversePredicate()); 616 Cond->replaceAllUsesWith(InvertedCmp); 617 InstToErase.push_back(cast<Instruction>(Cond)); 618 } 619 } 620 } 621 } 622 for (auto *I : InstToErase) 623 I->eraseFromParent(); 624 } 625 626 /// Remove all PHI values coming from "From" into "To" and remember 627 /// them in DeletedPhis 628 void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) { 629 PhiMap &Map = DeletedPhis[To]; 630 for (PHINode &Phi : To->phis()) { 631 bool Recorded = false; 632 while (Phi.getBasicBlockIndex(From) != -1) { 633 Value *Deleted = Phi.removeIncomingValue(From, false); 634 Map[&Phi].push_back(std::make_pair(From, Deleted)); 635 if (!Recorded) { 636 AffectedPhis.push_back(&Phi); 637 Recorded = true; 638 } 639 } 640 } 641 } 642 643 /// Add a dummy PHI value as soon as we knew the new predecessor 644 void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) { 645 for (PHINode &Phi : To->phis()) { 646 Value *Undef = UndefValue::get(Phi.getType()); 647 Phi.addIncoming(Undef, From); 648 } 649 AddedPhis[To].push_back(From); 650 } 651 652 /// When we are reconstructing a PHI inside \p PHIBlock with incoming values 653 /// from predecessors \p Incomings, we have a chance to mark the available value 654 /// from some blocks as undefined. The function will find out all such blocks 655 /// and return in \p UndefBlks. 656 void StructurizeCFG::findUndefBlocks( 657 BasicBlock *PHIBlock, const SmallSet<BasicBlock *, 8> &Incomings, 658 SmallVector<BasicBlock *> &UndefBlks) const { 659 // We may get a post-structured CFG like below: 660 // 661 // | P1 662 // |/ 663 // F1 664 // |\ 665 // | N 666 // |/ 667 // F2 668 // |\ 669 // | P2 670 // |/ 671 // F3 672 // |\ 673 // B 674 // 675 // B is the block that has a PHI being reconstructed. P1/P2 are predecessors 676 // of B before structurization. F1/F2/F3 are flow blocks inserted during 677 // structurization process. Block N is not a predecessor of B before 678 // structurization, but are placed between the predecessors(P1/P2) of B after 679 // structurization. This usually means that threads went to N never take the 680 // path N->F2->F3->B. For example, the threads take the branch F1->N may 681 // always take the branch F2->P2. So, when we are reconstructing a PHI 682 // originally in B, we can safely say the incoming value from N is undefined. 683 SmallSet<BasicBlock *, 8> VisitedBlock; 684 SmallVector<BasicBlock *, 8> Stack; 685 if (PHIBlock == ParentRegion->getExit()) { 686 for (auto P : predecessors(PHIBlock)) { 687 if (ParentRegion->contains(P)) 688 Stack.push_back(P); 689 } 690 } else { 691 append_range(Stack, predecessors(PHIBlock)); 692 } 693 694 // Do a backward traversal over the CFG, and stop further searching if 695 // the block is not a Flow. If a block is neither flow block nor the 696 // incoming predecessor, then the incoming value from the block is 697 // undefined value for the PHI being reconstructed. 698 while (!Stack.empty()) { 699 BasicBlock *Current = Stack.pop_back_val(); 700 if (VisitedBlock.contains(Current)) 701 continue; 702 703 VisitedBlock.insert(Current); 704 if (FlowSet.contains(Current)) { 705 for (auto P : predecessors(Current)) 706 Stack.push_back(P); 707 } else if (!Incomings.contains(Current)) { 708 UndefBlks.push_back(Current); 709 } 710 } 711 } 712 713 /// Add the real PHI value as soon as everything is set up 714 void StructurizeCFG::setPhiValues() { 715 SmallVector<PHINode *, 8> InsertedPhis; 716 SSAUpdater Updater(&InsertedPhis); 717 for (const auto &AddedPhi : AddedPhis) { 718 BasicBlock *To = AddedPhi.first; 719 const BBVector &From = AddedPhi.second; 720 721 if (!DeletedPhis.count(To)) 722 continue; 723 724 SmallVector<BasicBlock *> UndefBlks; 725 bool CachedUndefs = false; 726 PhiMap &Map = DeletedPhis[To]; 727 for (const auto &PI : Map) { 728 PHINode *Phi = PI.first; 729 Value *Undef = UndefValue::get(Phi->getType()); 730 Updater.Initialize(Phi->getType(), ""); 731 Updater.AddAvailableValue(&Func->getEntryBlock(), Undef); 732 Updater.AddAvailableValue(To, Undef); 733 734 SmallSet<BasicBlock *, 8> Incomings; 735 SmallVector<BasicBlock *> ConstantPreds; 736 for (const auto &VI : PI.second) { 737 Incomings.insert(VI.first); 738 Updater.AddAvailableValue(VI.first, VI.second); 739 if (isa<Constant>(VI.second)) 740 ConstantPreds.push_back(VI.first); 741 } 742 743 if (!CachedUndefs) { 744 findUndefBlocks(To, Incomings, UndefBlks); 745 CachedUndefs = true; 746 } 747 748 for (auto UB : UndefBlks) { 749 // If this undef block is dominated by any predecessor(before 750 // structurization) of reconstructed PHI with constant incoming value, 751 // don't mark the available value as undefined. Setting undef to such 752 // block will stop us from getting optimal phi insertion. 753 if (any_of(ConstantPreds, 754 [&](BasicBlock *CP) { return DT->dominates(CP, UB); })) 755 continue; 756 Updater.AddAvailableValue(UB, Undef); 757 } 758 759 for (BasicBlock *FI : From) 760 Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI)); 761 AffectedPhis.push_back(Phi); 762 } 763 764 DeletedPhis.erase(To); 765 } 766 assert(DeletedPhis.empty()); 767 768 AffectedPhis.append(InsertedPhis.begin(), InsertedPhis.end()); 769 } 770 771 void StructurizeCFG::simplifyAffectedPhis() { 772 bool Changed; 773 do { 774 Changed = false; 775 SimplifyQuery Q(Func->getParent()->getDataLayout()); 776 Q.DT = DT; 777 // Setting CanUseUndef to true might extend value liveness, set it to false 778 // to achieve better register pressure. 779 Q.CanUseUndef = false; 780 for (WeakVH VH : AffectedPhis) { 781 if (auto Phi = dyn_cast_or_null<PHINode>(VH)) { 782 if (auto NewValue = simplifyInstruction(Phi, Q)) { 783 Phi->replaceAllUsesWith(NewValue); 784 Phi->eraseFromParent(); 785 Changed = true; 786 } 787 } 788 } 789 } while (Changed); 790 } 791 792 /// Remove phi values from all successors and then remove the terminator. 793 void StructurizeCFG::killTerminator(BasicBlock *BB) { 794 Instruction *Term = BB->getTerminator(); 795 if (!Term) 796 return; 797 798 for (BasicBlock *Succ : successors(BB)) 799 delPhiValues(BB, Succ); 800 801 if (DA) 802 DA->removeValue(Term); 803 Term->eraseFromParent(); 804 } 805 806 /// Let node exit(s) point to NewExit 807 void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit, 808 bool IncludeDominator) { 809 if (Node->isSubRegion()) { 810 Region *SubRegion = Node->getNodeAs<Region>(); 811 BasicBlock *OldExit = SubRegion->getExit(); 812 BasicBlock *Dominator = nullptr; 813 814 // Find all the edges from the sub region to the exit. 815 // We use make_early_inc_range here because we modify BB's terminator. 816 for (BasicBlock *BB : llvm::make_early_inc_range(predecessors(OldExit))) { 817 if (!SubRegion->contains(BB)) 818 continue; 819 820 // Modify the edges to point to the new exit 821 delPhiValues(BB, OldExit); 822 BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit); 823 addPhiValues(BB, NewExit); 824 825 // Find the new dominator (if requested) 826 if (IncludeDominator) { 827 if (!Dominator) 828 Dominator = BB; 829 else 830 Dominator = DT->findNearestCommonDominator(Dominator, BB); 831 } 832 } 833 834 // Change the dominator (if requested) 835 if (Dominator) 836 DT->changeImmediateDominator(NewExit, Dominator); 837 838 // Update the region info 839 SubRegion->replaceExit(NewExit); 840 } else { 841 BasicBlock *BB = Node->getNodeAs<BasicBlock>(); 842 killTerminator(BB); 843 BranchInst *Br = BranchInst::Create(NewExit, BB); 844 Br->setDebugLoc(TermDL[BB]); 845 addPhiValues(BB, NewExit); 846 if (IncludeDominator) 847 DT->changeImmediateDominator(NewExit, BB); 848 } 849 } 850 851 /// Create a new flow node and update dominator tree and region info 852 BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) { 853 LLVMContext &Context = Func->getContext(); 854 BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() : 855 Order.back()->getEntry(); 856 BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName, 857 Func, Insert); 858 FlowSet.insert(Flow); 859 860 // use a temporary variable to avoid a use-after-free if the map's storage is 861 // reallocated 862 DebugLoc DL = TermDL[Dominator]; 863 TermDL[Flow] = std::move(DL); 864 865 DT->addNewBlock(Flow, Dominator); 866 ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion); 867 return Flow; 868 } 869 870 /// Create a new or reuse the previous node as flow node 871 BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) { 872 BasicBlock *Entry = PrevNode->getEntry(); 873 874 if (!PrevNode->isSubRegion()) { 875 killTerminator(Entry); 876 if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end()) 877 return Entry; 878 } 879 880 // create a new flow node 881 BasicBlock *Flow = getNextFlow(Entry); 882 883 // and wire it up 884 changeExit(PrevNode, Flow, true); 885 PrevNode = ParentRegion->getBBNode(Flow); 886 return Flow; 887 } 888 889 /// Returns the region exit if possible, otherwise just a new flow node 890 BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow, 891 bool ExitUseAllowed) { 892 if (!Order.empty() || !ExitUseAllowed) 893 return getNextFlow(Flow); 894 895 BasicBlock *Exit = ParentRegion->getExit(); 896 DT->changeImmediateDominator(Exit, Flow); 897 addPhiValues(Flow, Exit); 898 return Exit; 899 } 900 901 /// Set the previous node 902 void StructurizeCFG::setPrevNode(BasicBlock *BB) { 903 PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB) 904 : nullptr; 905 } 906 907 /// Does BB dominate all the predicates of Node? 908 bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) { 909 BBPredicates &Preds = Predicates[Node->getEntry()]; 910 return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) { 911 return DT->dominates(BB, Pred.first); 912 }); 913 } 914 915 /// Can we predict that this node will always be called? 916 bool StructurizeCFG::isPredictableTrue(RegionNode *Node) { 917 BBPredicates &Preds = Predicates[Node->getEntry()]; 918 bool Dominated = false; 919 920 // Regionentry is always true 921 if (!PrevNode) 922 return true; 923 924 for (std::pair<BasicBlock*, Value*> Pred : Preds) { 925 BasicBlock *BB = Pred.first; 926 Value *V = Pred.second; 927 928 if (V != BoolTrue) 929 return false; 930 931 if (!Dominated && DT->dominates(BB, PrevNode->getEntry())) 932 Dominated = true; 933 } 934 935 // TODO: The dominator check is too strict 936 return Dominated; 937 } 938 939 /// Take one node from the order vector and wire it up 940 void StructurizeCFG::wireFlow(bool ExitUseAllowed, 941 BasicBlock *LoopEnd) { 942 RegionNode *Node = Order.pop_back_val(); 943 Visited.insert(Node->getEntry()); 944 945 if (isPredictableTrue(Node)) { 946 // Just a linear flow 947 if (PrevNode) { 948 changeExit(PrevNode, Node->getEntry(), true); 949 } 950 PrevNode = Node; 951 } else { 952 // Insert extra prefix node (or reuse last one) 953 BasicBlock *Flow = needPrefix(false); 954 955 // Insert extra postfix node (or use exit instead) 956 BasicBlock *Entry = Node->getEntry(); 957 BasicBlock *Next = needPostfix(Flow, ExitUseAllowed); 958 959 // let it point to entry and next block 960 BranchInst *Br = BranchInst::Create(Entry, Next, BoolUndef, Flow); 961 Br->setDebugLoc(TermDL[Flow]); 962 Conditions.push_back(Br); 963 addPhiValues(Flow, Entry); 964 DT->changeImmediateDominator(Entry, Flow); 965 966 PrevNode = Node; 967 while (!Order.empty() && !Visited.count(LoopEnd) && 968 dominatesPredicates(Entry, Order.back())) { 969 handleLoops(false, LoopEnd); 970 } 971 972 changeExit(PrevNode, Next, false); 973 setPrevNode(Next); 974 } 975 } 976 977 void StructurizeCFG::handleLoops(bool ExitUseAllowed, 978 BasicBlock *LoopEnd) { 979 RegionNode *Node = Order.back(); 980 BasicBlock *LoopStart = Node->getEntry(); 981 982 if (!Loops.count(LoopStart)) { 983 wireFlow(ExitUseAllowed, LoopEnd); 984 return; 985 } 986 987 if (!isPredictableTrue(Node)) 988 LoopStart = needPrefix(true); 989 990 LoopEnd = Loops[Node->getEntry()]; 991 wireFlow(false, LoopEnd); 992 while (!Visited.count(LoopEnd)) { 993 handleLoops(false, LoopEnd); 994 } 995 996 assert(LoopStart != &LoopStart->getParent()->getEntryBlock()); 997 998 // Create an extra loop end node 999 LoopEnd = needPrefix(false); 1000 BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed); 1001 BranchInst *Br = BranchInst::Create(Next, LoopStart, BoolUndef, LoopEnd); 1002 Br->setDebugLoc(TermDL[LoopEnd]); 1003 LoopConds.push_back(Br); 1004 addPhiValues(LoopEnd, LoopStart); 1005 setPrevNode(Next); 1006 } 1007 1008 /// After this function control flow looks like it should be, but 1009 /// branches and PHI nodes only have undefined conditions. 1010 void StructurizeCFG::createFlow() { 1011 BasicBlock *Exit = ParentRegion->getExit(); 1012 bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit); 1013 1014 AffectedPhis.clear(); 1015 DeletedPhis.clear(); 1016 AddedPhis.clear(); 1017 Conditions.clear(); 1018 LoopConds.clear(); 1019 1020 PrevNode = nullptr; 1021 Visited.clear(); 1022 1023 while (!Order.empty()) { 1024 handleLoops(EntryDominatesExit, nullptr); 1025 } 1026 1027 if (PrevNode) 1028 changeExit(PrevNode, Exit, EntryDominatesExit); 1029 else 1030 assert(EntryDominatesExit); 1031 } 1032 1033 /// Handle a rare case where the disintegrated nodes instructions 1034 /// no longer dominate all their uses. Not sure if this is really necessary 1035 void StructurizeCFG::rebuildSSA() { 1036 SSAUpdater Updater; 1037 for (BasicBlock *BB : ParentRegion->blocks()) 1038 for (Instruction &I : *BB) { 1039 bool Initialized = false; 1040 // We may modify the use list as we iterate over it, so we use 1041 // make_early_inc_range. 1042 for (Use &U : llvm::make_early_inc_range(I.uses())) { 1043 Instruction *User = cast<Instruction>(U.getUser()); 1044 if (User->getParent() == BB) { 1045 continue; 1046 } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1047 if (UserPN->getIncomingBlock(U) == BB) 1048 continue; 1049 } 1050 1051 if (DT->dominates(&I, User)) 1052 continue; 1053 1054 if (!Initialized) { 1055 Value *Undef = UndefValue::get(I.getType()); 1056 Updater.Initialize(I.getType(), ""); 1057 Updater.AddAvailableValue(&Func->getEntryBlock(), Undef); 1058 Updater.AddAvailableValue(BB, &I); 1059 Initialized = true; 1060 } 1061 Updater.RewriteUseAfterInsertions(U); 1062 } 1063 } 1064 } 1065 1066 static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID, 1067 const LegacyDivergenceAnalysis &DA) { 1068 // Bool for if all sub-regions are uniform. 1069 bool SubRegionsAreUniform = true; 1070 // Count of how many direct children are conditional. 1071 unsigned ConditionalDirectChildren = 0; 1072 1073 for (auto *E : R->elements()) { 1074 if (!E->isSubRegion()) { 1075 auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator()); 1076 if (!Br || !Br->isConditional()) 1077 continue; 1078 1079 if (!DA.isUniform(Br)) 1080 return false; 1081 1082 // One of our direct children is conditional. 1083 ConditionalDirectChildren++; 1084 1085 LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName() 1086 << " has uniform terminator\n"); 1087 } else { 1088 // Explicitly refuse to treat regions as uniform if they have non-uniform 1089 // subregions. We cannot rely on DivergenceAnalysis for branches in 1090 // subregions because those branches may have been removed and re-created, 1091 // so we look for our metadata instead. 1092 // 1093 // Warning: It would be nice to treat regions as uniform based only on 1094 // their direct child basic blocks' terminators, regardless of whether 1095 // subregions are uniform or not. However, this requires a very careful 1096 // look at SIAnnotateControlFlow to make sure nothing breaks there. 1097 for (auto *BB : E->getNodeAs<Region>()->blocks()) { 1098 auto Br = dyn_cast<BranchInst>(BB->getTerminator()); 1099 if (!Br || !Br->isConditional()) 1100 continue; 1101 1102 if (!Br->getMetadata(UniformMDKindID)) { 1103 // Early exit if we cannot have relaxed uniform regions. 1104 if (!RelaxedUniformRegions) 1105 return false; 1106 1107 SubRegionsAreUniform = false; 1108 break; 1109 } 1110 } 1111 } 1112 } 1113 1114 // Our region is uniform if: 1115 // 1. All conditional branches that are direct children are uniform (checked 1116 // above). 1117 // 2. And either: 1118 // a. All sub-regions are uniform. 1119 // b. There is one or less conditional branches among the direct children. 1120 return SubRegionsAreUniform || (ConditionalDirectChildren <= 1); 1121 } 1122 1123 void StructurizeCFG::init(Region *R) { 1124 LLVMContext &Context = R->getEntry()->getContext(); 1125 1126 Boolean = Type::getInt1Ty(Context); 1127 BoolTrue = ConstantInt::getTrue(Context); 1128 BoolFalse = ConstantInt::getFalse(Context); 1129 BoolUndef = UndefValue::get(Boolean); 1130 1131 this->DA = nullptr; 1132 } 1133 1134 bool StructurizeCFG::makeUniformRegion(Region *R, 1135 LegacyDivergenceAnalysis *DA) { 1136 if (R->isTopLevelRegion()) 1137 return false; 1138 1139 this->DA = DA; 1140 // TODO: We could probably be smarter here with how we handle sub-regions. 1141 // We currently rely on the fact that metadata is set by earlier invocations 1142 // of the pass on sub-regions, and that this metadata doesn't get lost -- 1143 // but we shouldn't rely on metadata for correctness! 1144 unsigned UniformMDKindID = 1145 R->getEntry()->getContext().getMDKindID("structurizecfg.uniform"); 1146 1147 if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) { 1148 LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R 1149 << '\n'); 1150 1151 // Mark all direct child block terminators as having been treated as 1152 // uniform. To account for a possible future in which non-uniform 1153 // sub-regions are treated more cleverly, indirect children are not 1154 // marked as uniform. 1155 MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {}); 1156 for (RegionNode *E : R->elements()) { 1157 if (E->isSubRegion()) 1158 continue; 1159 1160 if (Instruction *Term = E->getEntry()->getTerminator()) 1161 Term->setMetadata(UniformMDKindID, MD); 1162 } 1163 1164 return true; 1165 } 1166 return false; 1167 } 1168 1169 /// Run the transformation for each region found 1170 bool StructurizeCFG::run(Region *R, DominatorTree *DT) { 1171 if (R->isTopLevelRegion()) 1172 return false; 1173 1174 this->DT = DT; 1175 1176 Func = R->getEntry()->getParent(); 1177 ParentRegion = R; 1178 1179 orderNodes(); 1180 collectInfos(); 1181 createFlow(); 1182 insertConditions(false); 1183 insertConditions(true); 1184 setPhiValues(); 1185 simplifyConditions(); 1186 simplifyAffectedPhis(); 1187 rebuildSSA(); 1188 1189 // Cleanup 1190 Order.clear(); 1191 Visited.clear(); 1192 DeletedPhis.clear(); 1193 AddedPhis.clear(); 1194 Predicates.clear(); 1195 Conditions.clear(); 1196 Loops.clear(); 1197 LoopPreds.clear(); 1198 LoopConds.clear(); 1199 FlowSet.clear(); 1200 TermDL.clear(); 1201 1202 return true; 1203 } 1204 1205 Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) { 1206 return new StructurizeCFGLegacyPass(SkipUniformRegions); 1207 } 1208 1209 static void addRegionIntoQueue(Region &R, std::vector<Region *> &Regions) { 1210 Regions.push_back(&R); 1211 for (const auto &E : R) 1212 addRegionIntoQueue(*E, Regions); 1213 } 1214 1215 PreservedAnalyses StructurizeCFGPass::run(Function &F, 1216 FunctionAnalysisManager &AM) { 1217 1218 bool Changed = false; 1219 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1220 auto &RI = AM.getResult<RegionInfoAnalysis>(F); 1221 std::vector<Region *> Regions; 1222 addRegionIntoQueue(*RI.getTopLevelRegion(), Regions); 1223 while (!Regions.empty()) { 1224 Region *R = Regions.back(); 1225 StructurizeCFG SCFG; 1226 SCFG.init(R); 1227 Changed |= SCFG.run(R, DT); 1228 Regions.pop_back(); 1229 } 1230 if (!Changed) 1231 return PreservedAnalyses::all(); 1232 PreservedAnalyses PA; 1233 PA.preserve<DominatorTreeAnalysis>(); 1234 return PA; 1235 } 1236