//===- StructurizeCFG.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/StructurizeCFG.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LegacyDivergenceAnalysis.h" #include "llvm/Analysis/RegionInfo.h" #include "llvm/Analysis/RegionIterator.h" #include "llvm/Analysis/RegionPass.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SSAUpdater.h" #include #include #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "structurizecfg" // The name for newly created blocks. const char FlowBlockName[] = "Flow"; namespace { static cl::opt ForceSkipUniformRegions( "structurizecfg-skip-uniform-regions", cl::Hidden, cl::desc("Force whether the StructurizeCFG pass skips uniform regions"), cl::init(false)); static cl::opt RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden, cl::desc("Allow relaxed uniform region checks"), cl::init(true)); // Definition of the complex types used in this pass. using BBValuePair = std::pair; using RNVector = SmallVector; using BBVector = SmallVector; using BranchVector = SmallVector; using BBValueVector = SmallVector; using BBSet = SmallPtrSet; using PhiMap = MapVector; using BB2BBVecMap = MapVector; using BBPhiMap = DenseMap; using BBPredicates = DenseMap; using PredMap = DenseMap; using BB2BBMap = DenseMap; using BranchDebugLocMap = DenseMap; // A traits type that is intended to be used in graph algorithms. The graph // traits starts at an entry node, and traverses the RegionNodes that are in // the Nodes set. struct SubGraphTraits { using NodeRef = std::pair *>; using BaseSuccIterator = GraphTraits::ChildIteratorType; // This wraps a set of Nodes into the iterator, so we know which edges to // filter out. class WrappedSuccIterator : public iterator_adaptor_base< WrappedSuccIterator, BaseSuccIterator, typename std::iterator_traits::iterator_category, NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> { SmallDenseSet *Nodes; public: WrappedSuccIterator(BaseSuccIterator It, SmallDenseSet *Nodes) : iterator_adaptor_base(It), Nodes(Nodes) {} NodeRef operator*() const { return {*I, Nodes}; } }; static bool filterAll(const NodeRef &N) { return true; } static bool filterSet(const NodeRef &N) { return N.second->count(N.first); } using ChildIteratorType = filter_iterator; static NodeRef getEntryNode(Region *R) { return {GraphTraits::getEntryNode(R), nullptr}; } static NodeRef getEntryNode(NodeRef N) { return N; } static iterator_range children(const NodeRef &N) { auto *filter = N.second ? &filterSet : &filterAll; return make_filter_range( make_range( {GraphTraits::child_begin(N.first), N.second}, {GraphTraits::child_end(N.first), N.second}), filter); } static ChildIteratorType child_begin(const NodeRef &N) { return children(N).begin(); } static ChildIteratorType child_end(const NodeRef &N) { return children(N).end(); } }; /// Finds the nearest common dominator of a set of BasicBlocks. /// /// For every BB you add to the set, you can specify whether we "remember" the /// block. When you get the common dominator, you can also ask whether it's one /// of the blocks we remembered. class NearestCommonDominator { DominatorTree *DT; BasicBlock *Result = nullptr; bool ResultIsRemembered = false; /// Add BB to the resulting dominator. void addBlock(BasicBlock *BB, bool Remember) { if (!Result) { Result = BB; ResultIsRemembered = Remember; return; } BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB); if (NewResult != Result) ResultIsRemembered = false; if (NewResult == BB) ResultIsRemembered |= Remember; Result = NewResult; } public: explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {} void addBlock(BasicBlock *BB) { addBlock(BB, /* Remember = */ false); } void addAndRememberBlock(BasicBlock *BB) { addBlock(BB, /* Remember = */ true); } /// Get the nearest common dominator of all the BBs added via addBlock() and /// addAndRememberBlock(). BasicBlock *result() { return Result; } /// Is the BB returned by getResult() one of the blocks we added to the set /// with addAndRememberBlock()? bool resultIsRememberedBlock() { return ResultIsRemembered; } }; /// Transforms the control flow graph on one single entry/exit region /// at a time. /// /// After the transform all "If"/"Then"/"Else" style control flow looks like /// this: /// /// \verbatim /// 1 /// || /// | | /// 2 | /// | / /// |/ /// 3 /// || Where: /// | | 1 = "If" block, calculates the condition /// 4 | 2 = "Then" subregion, runs if the condition is true /// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow /// |/ 4 = "Else" optional subregion, runs if the condition is false /// 5 5 = "End" block, also rejoins the control flow /// \endverbatim /// /// Control flow is expressed as a branch where the true exit goes into the /// "Then"/"Else" region, while the false exit skips the region /// The condition for the optional "Else" region is expressed as a PHI node. /// The incoming values of the PHI node are true for the "If" edge and false /// for the "Then" edge. /// /// Additionally to that even complicated loops look like this: /// /// \verbatim /// 1 /// || /// | | /// 2 ^ Where: /// | / 1 = "Entry" block /// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block /// 3 3 = "Flow" block, with back edge to entry block /// | /// \endverbatim /// /// The back edge of the "Flow" block is always on the false side of the branch /// while the true side continues the general flow. So the loop condition /// consist of a network of PHI nodes where the true incoming values expresses /// breaks and the false values expresses continue states. class StructurizeCFG { Type *Boolean; ConstantInt *BoolTrue; ConstantInt *BoolFalse; UndefValue *BoolUndef; Function *Func; Region *ParentRegion; LegacyDivergenceAnalysis *DA = nullptr; DominatorTree *DT; SmallVector Order; BBSet Visited; BBSet FlowSet; SmallVector AffectedPhis; BBPhiMap DeletedPhis; BB2BBVecMap AddedPhis; PredMap Predicates; BranchVector Conditions; BB2BBMap Loops; PredMap LoopPreds; BranchVector LoopConds; BranchDebugLocMap TermDL; RegionNode *PrevNode; void orderNodes(); void analyzeLoops(RegionNode *N); Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert); void gatherPredicates(RegionNode *N); void collectInfos(); void insertConditions(bool Loops); void simplifyConditions(); void delPhiValues(BasicBlock *From, BasicBlock *To); void addPhiValues(BasicBlock *From, BasicBlock *To); void findUndefBlocks(BasicBlock *PHIBlock, const SmallSet &Incomings, SmallVector &UndefBlks) const; void setPhiValues(); void simplifyAffectedPhis(); void killTerminator(BasicBlock *BB); void changeExit(RegionNode *Node, BasicBlock *NewExit, bool IncludeDominator); BasicBlock *getNextFlow(BasicBlock *Dominator); BasicBlock *needPrefix(bool NeedEmpty); BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed); void setPrevNode(BasicBlock *BB); bool dominatesPredicates(BasicBlock *BB, RegionNode *Node); bool isPredictableTrue(RegionNode *Node); void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd); void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd); void createFlow(); void rebuildSSA(); public: void init(Region *R); bool run(Region *R, DominatorTree *DT); bool makeUniformRegion(Region *R, LegacyDivergenceAnalysis *DA); }; class StructurizeCFGLegacyPass : public RegionPass { bool SkipUniformRegions; public: static char ID; explicit StructurizeCFGLegacyPass(bool SkipUniformRegions_ = false) : RegionPass(ID), SkipUniformRegions(SkipUniformRegions_) { if (ForceSkipUniformRegions.getNumOccurrences()) SkipUniformRegions = ForceSkipUniformRegions.getValue(); initializeStructurizeCFGLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnRegion(Region *R, RGPassManager &RGM) override { StructurizeCFG SCFG; SCFG.init(R); if (SkipUniformRegions) { LegacyDivergenceAnalysis *DA = &getAnalysis(); if (SCFG.makeUniformRegion(R, DA)) return false; } DominatorTree *DT = &getAnalysis().getDomTree(); return SCFG.run(R, DT); } StringRef getPassName() const override { return "Structurize control flow"; } void getAnalysisUsage(AnalysisUsage &AU) const override { if (SkipUniformRegions) AU.addRequired(); AU.addRequiredID(LowerSwitchID); AU.addRequired(); AU.addPreserved(); RegionPass::getAnalysisUsage(AU); } }; } // end anonymous namespace char StructurizeCFGLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(StructurizeCFGLegacyPass, "structurizecfg", "Structurize the CFG", false, false) INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(RegionInfoPass) INITIALIZE_PASS_END(StructurizeCFGLegacyPass, "structurizecfg", "Structurize the CFG", false, false) /// Build up the general order of nodes, by performing a topological sort of the /// parent region's nodes, while ensuring that there is no outer cycle node /// between any two inner cycle nodes. void StructurizeCFG::orderNodes() { Order.resize(std::distance(GraphTraits::nodes_begin(ParentRegion), GraphTraits::nodes_end(ParentRegion))); if (Order.empty()) return; SmallDenseSet Nodes; auto EntryNode = SubGraphTraits::getEntryNode(ParentRegion); // A list of range indices of SCCs in Order, to be processed. SmallVector, 8> WorkList; unsigned I = 0, E = Order.size(); while (true) { // Run through all the SCCs in the subgraph starting with Entry. for (auto SCCI = scc_iterator::begin( EntryNode); !SCCI.isAtEnd(); ++SCCI) { auto &SCC = *SCCI; // An SCC up to the size of 2, can be reduced to an entry (the last node), // and a possible additional node. Therefore, it is already in order, and // there is no need to add it to the work-list. unsigned Size = SCC.size(); if (Size > 2) WorkList.emplace_back(I, I + Size); // Add the SCC nodes to the Order array. for (const auto &N : SCC) { assert(I < E && "SCC size mismatch!"); Order[I++] = N.first; } } assert(I == E && "SCC size mismatch!"); // If there are no more SCCs to order, then we are done. if (WorkList.empty()) break; std::tie(I, E) = WorkList.pop_back_val(); // Collect the set of nodes in the SCC's subgraph. These are only the // possible child nodes; we do not add the entry (last node) otherwise we // will have the same exact SCC all over again. Nodes.clear(); Nodes.insert(Order.begin() + I, Order.begin() + E - 1); // Update the entry node. EntryNode.first = Order[E - 1]; EntryNode.second = &Nodes; } } /// Determine the end of the loops void StructurizeCFG::analyzeLoops(RegionNode *N) { if (N->isSubRegion()) { // Test for exit as back edge BasicBlock *Exit = N->getNodeAs()->getExit(); if (Visited.count(Exit)) Loops[Exit] = N->getEntry(); } else { // Test for successors as back edge BasicBlock *BB = N->getNodeAs(); BranchInst *Term = cast(BB->getTerminator()); for (BasicBlock *Succ : Term->successors()) if (Visited.count(Succ)) Loops[Succ] = BB; } } /// Build the condition for one edge Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx, bool Invert) { Value *Cond = Invert ? BoolFalse : BoolTrue; if (Term->isConditional()) { Cond = Term->getCondition(); if (Idx != (unsigned)Invert) Cond = invertCondition(Cond); } return Cond; } /// Analyze the predecessors of each block and build up predicates void StructurizeCFG::gatherPredicates(RegionNode *N) { RegionInfo *RI = ParentRegion->getRegionInfo(); BasicBlock *BB = N->getEntry(); BBPredicates &Pred = Predicates[BB]; BBPredicates &LPred = LoopPreds[BB]; for (BasicBlock *P : predecessors(BB)) { // Ignore it if it's a branch from outside into our region entry if (!ParentRegion->contains(P)) continue; Region *R = RI->getRegionFor(P); if (R == ParentRegion) { // It's a top level block in our region BranchInst *Term = cast(P->getTerminator()); for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { BasicBlock *Succ = Term->getSuccessor(i); if (Succ != BB) continue; if (Visited.count(P)) { // Normal forward edge if (Term->isConditional()) { // Try to treat it like an ELSE block BasicBlock *Other = Term->getSuccessor(!i); if (Visited.count(Other) && !Loops.count(Other) && !Pred.count(Other) && !Pred.count(P)) { Pred[Other] = BoolFalse; Pred[P] = BoolTrue; continue; } } Pred[P] = buildCondition(Term, i, false); } else { // Back edge LPred[P] = buildCondition(Term, i, true); } } } else { // It's an exit from a sub region while (R->getParent() != ParentRegion) R = R->getParent(); // Edge from inside a subregion to its entry, ignore it if (*R == *N) continue; BasicBlock *Entry = R->getEntry(); if (Visited.count(Entry)) Pred[Entry] = BoolTrue; else LPred[Entry] = BoolFalse; } } } /// Collect various loop and predicate infos void StructurizeCFG::collectInfos() { // Reset predicate Predicates.clear(); // and loop infos Loops.clear(); LoopPreds.clear(); // Reset the visited nodes Visited.clear(); for (RegionNode *RN : reverse(Order)) { LLVM_DEBUG(dbgs() << "Visiting: " << (RN->isSubRegion() ? "SubRegion with entry: " : "") << RN->getEntry()->getName() << "\n"); // Analyze all the conditions leading to a node gatherPredicates(RN); // Remember that we've seen this node Visited.insert(RN->getEntry()); // Find the last back edges analyzeLoops(RN); } // Reset the collected term debug locations TermDL.clear(); for (BasicBlock &BB : *Func) { if (const DebugLoc &DL = BB.getTerminator()->getDebugLoc()) TermDL[&BB] = DL; } } /// Insert the missing branch conditions void StructurizeCFG::insertConditions(bool Loops) { BranchVector &Conds = Loops ? LoopConds : Conditions; Value *Default = Loops ? BoolTrue : BoolFalse; SSAUpdater PhiInserter; for (BranchInst *Term : Conds) { assert(Term->isConditional()); BasicBlock *Parent = Term->getParent(); BasicBlock *SuccTrue = Term->getSuccessor(0); BasicBlock *SuccFalse = Term->getSuccessor(1); PhiInserter.Initialize(Boolean, ""); PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default); PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default); BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue]; NearestCommonDominator Dominator(DT); Dominator.addBlock(Parent); Value *ParentValue = nullptr; for (std::pair BBAndPred : Preds) { BasicBlock *BB = BBAndPred.first; Value *Pred = BBAndPred.second; if (BB == Parent) { ParentValue = Pred; break; } PhiInserter.AddAvailableValue(BB, Pred); Dominator.addAndRememberBlock(BB); } if (ParentValue) { Term->setCondition(ParentValue); } else { if (!Dominator.resultIsRememberedBlock()) PhiInserter.AddAvailableValue(Dominator.result(), Default); Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent)); } } } /// Simplify any inverted conditions that were built by buildConditions. void StructurizeCFG::simplifyConditions() { SmallVector InstToErase; for (auto &I : concat(Predicates, LoopPreds)) { auto &Preds = I.second; for (auto &J : Preds) { auto &Cond = J.second; Instruction *Inverted; if (match(Cond, m_Not(m_OneUse(m_Instruction(Inverted)))) && !Cond->use_empty()) { if (auto *InvertedCmp = dyn_cast(Inverted)) { InvertedCmp->setPredicate(InvertedCmp->getInversePredicate()); Cond->replaceAllUsesWith(InvertedCmp); InstToErase.push_back(cast(Cond)); } } } } for (auto *I : InstToErase) I->eraseFromParent(); } /// Remove all PHI values coming from "From" into "To" and remember /// them in DeletedPhis void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) { PhiMap &Map = DeletedPhis[To]; for (PHINode &Phi : To->phis()) { bool Recorded = false; while (Phi.getBasicBlockIndex(From) != -1) { Value *Deleted = Phi.removeIncomingValue(From, false); Map[&Phi].push_back(std::make_pair(From, Deleted)); if (!Recorded) { AffectedPhis.push_back(&Phi); Recorded = true; } } } } /// Add a dummy PHI value as soon as we knew the new predecessor void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) { for (PHINode &Phi : To->phis()) { Value *Undef = UndefValue::get(Phi.getType()); Phi.addIncoming(Undef, From); } AddedPhis[To].push_back(From); } /// When we are reconstructing a PHI inside \p PHIBlock with incoming values /// from predecessors \p Incomings, we have a chance to mark the available value /// from some blocks as undefined. The function will find out all such blocks /// and return in \p UndefBlks. void StructurizeCFG::findUndefBlocks( BasicBlock *PHIBlock, const SmallSet &Incomings, SmallVector &UndefBlks) const { // We may get a post-structured CFG like below: // // | P1 // |/ // F1 // |\ // | N // |/ // F2 // |\ // | P2 // |/ // F3 // |\ // B // // B is the block that has a PHI being reconstructed. P1/P2 are predecessors // of B before structurization. F1/F2/F3 are flow blocks inserted during // structurization process. Block N is not a predecessor of B before // structurization, but are placed between the predecessors(P1/P2) of B after // structurization. This usually means that threads went to N never take the // path N->F2->F3->B. For example, the threads take the branch F1->N may // always take the branch F2->P2. So, when we are reconstructing a PHI // originally in B, we can safely say the incoming value from N is undefined. SmallSet VisitedBlock; SmallVector Stack; if (PHIBlock == ParentRegion->getExit()) { for (auto P : predecessors(PHIBlock)) { if (ParentRegion->contains(P)) Stack.push_back(P); } } else { append_range(Stack, predecessors(PHIBlock)); } // Do a backward traversal over the CFG, and stop further searching if // the block is not a Flow. If a block is neither flow block nor the // incoming predecessor, then the incoming value from the block is // undefined value for the PHI being reconstructed. while (!Stack.empty()) { BasicBlock *Current = Stack.pop_back_val(); if (VisitedBlock.contains(Current)) continue; VisitedBlock.insert(Current); if (FlowSet.contains(Current)) { for (auto P : predecessors(Current)) Stack.push_back(P); } else if (!Incomings.contains(Current)) { UndefBlks.push_back(Current); } } } /// Add the real PHI value as soon as everything is set up void StructurizeCFG::setPhiValues() { SmallVector InsertedPhis; SSAUpdater Updater(&InsertedPhis); for (const auto &AddedPhi : AddedPhis) { BasicBlock *To = AddedPhi.first; const BBVector &From = AddedPhi.second; if (!DeletedPhis.count(To)) continue; SmallVector UndefBlks; bool CachedUndefs = false; PhiMap &Map = DeletedPhis[To]; for (const auto &PI : Map) { PHINode *Phi = PI.first; Value *Undef = UndefValue::get(Phi->getType()); Updater.Initialize(Phi->getType(), ""); Updater.AddAvailableValue(&Func->getEntryBlock(), Undef); Updater.AddAvailableValue(To, Undef); SmallSet Incomings; SmallVector ConstantPreds; for (const auto &VI : PI.second) { Incomings.insert(VI.first); Updater.AddAvailableValue(VI.first, VI.second); if (isa(VI.second)) ConstantPreds.push_back(VI.first); } if (!CachedUndefs) { findUndefBlocks(To, Incomings, UndefBlks); CachedUndefs = true; } for (auto UB : UndefBlks) { // If this undef block is dominated by any predecessor(before // structurization) of reconstructed PHI with constant incoming value, // don't mark the available value as undefined. Setting undef to such // block will stop us from getting optimal phi insertion. if (any_of(ConstantPreds, [&](BasicBlock *CP) { return DT->dominates(CP, UB); })) continue; Updater.AddAvailableValue(UB, Undef); } for (BasicBlock *FI : From) Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI)); AffectedPhis.push_back(Phi); } DeletedPhis.erase(To); } assert(DeletedPhis.empty()); AffectedPhis.append(InsertedPhis.begin(), InsertedPhis.end()); } void StructurizeCFG::simplifyAffectedPhis() { bool Changed; do { Changed = false; SimplifyQuery Q(Func->getParent()->getDataLayout()); Q.DT = DT; // Setting CanUseUndef to true might extend value liveness, set it to false // to achieve better register pressure. Q.CanUseUndef = false; for (WeakVH VH : AffectedPhis) { if (auto Phi = dyn_cast_or_null(VH)) { if (auto NewValue = simplifyInstruction(Phi, Q)) { Phi->replaceAllUsesWith(NewValue); Phi->eraseFromParent(); Changed = true; } } } } while (Changed); } /// Remove phi values from all successors and then remove the terminator. void StructurizeCFG::killTerminator(BasicBlock *BB) { Instruction *Term = BB->getTerminator(); if (!Term) return; for (BasicBlock *Succ : successors(BB)) delPhiValues(BB, Succ); if (DA) DA->removeValue(Term); Term->eraseFromParent(); } /// Let node exit(s) point to NewExit void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit, bool IncludeDominator) { if (Node->isSubRegion()) { Region *SubRegion = Node->getNodeAs(); BasicBlock *OldExit = SubRegion->getExit(); BasicBlock *Dominator = nullptr; // Find all the edges from the sub region to the exit. // We use make_early_inc_range here because we modify BB's terminator. for (BasicBlock *BB : llvm::make_early_inc_range(predecessors(OldExit))) { if (!SubRegion->contains(BB)) continue; // Modify the edges to point to the new exit delPhiValues(BB, OldExit); BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit); addPhiValues(BB, NewExit); // Find the new dominator (if requested) if (IncludeDominator) { if (!Dominator) Dominator = BB; else Dominator = DT->findNearestCommonDominator(Dominator, BB); } } // Change the dominator (if requested) if (Dominator) DT->changeImmediateDominator(NewExit, Dominator); // Update the region info SubRegion->replaceExit(NewExit); } else { BasicBlock *BB = Node->getNodeAs(); killTerminator(BB); BranchInst *Br = BranchInst::Create(NewExit, BB); Br->setDebugLoc(TermDL[BB]); addPhiValues(BB, NewExit); if (IncludeDominator) DT->changeImmediateDominator(NewExit, BB); } } /// Create a new flow node and update dominator tree and region info BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) { LLVMContext &Context = Func->getContext(); BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() : Order.back()->getEntry(); BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName, Func, Insert); FlowSet.insert(Flow); // use a temporary variable to avoid a use-after-free if the map's storage is // reallocated DebugLoc DL = TermDL[Dominator]; TermDL[Flow] = std::move(DL); DT->addNewBlock(Flow, Dominator); ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion); return Flow; } /// Create a new or reuse the previous node as flow node BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) { BasicBlock *Entry = PrevNode->getEntry(); if (!PrevNode->isSubRegion()) { killTerminator(Entry); if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end()) return Entry; } // create a new flow node BasicBlock *Flow = getNextFlow(Entry); // and wire it up changeExit(PrevNode, Flow, true); PrevNode = ParentRegion->getBBNode(Flow); return Flow; } /// Returns the region exit if possible, otherwise just a new flow node BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow, bool ExitUseAllowed) { if (!Order.empty() || !ExitUseAllowed) return getNextFlow(Flow); BasicBlock *Exit = ParentRegion->getExit(); DT->changeImmediateDominator(Exit, Flow); addPhiValues(Flow, Exit); return Exit; } /// Set the previous node void StructurizeCFG::setPrevNode(BasicBlock *BB) { PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB) : nullptr; } /// Does BB dominate all the predicates of Node? bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) { BBPredicates &Preds = Predicates[Node->getEntry()]; return llvm::all_of(Preds, [&](std::pair Pred) { return DT->dominates(BB, Pred.first); }); } /// Can we predict that this node will always be called? bool StructurizeCFG::isPredictableTrue(RegionNode *Node) { BBPredicates &Preds = Predicates[Node->getEntry()]; bool Dominated = false; // Regionentry is always true if (!PrevNode) return true; for (std::pair Pred : Preds) { BasicBlock *BB = Pred.first; Value *V = Pred.second; if (V != BoolTrue) return false; if (!Dominated && DT->dominates(BB, PrevNode->getEntry())) Dominated = true; } // TODO: The dominator check is too strict return Dominated; } /// Take one node from the order vector and wire it up void StructurizeCFG::wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd) { RegionNode *Node = Order.pop_back_val(); Visited.insert(Node->getEntry()); if (isPredictableTrue(Node)) { // Just a linear flow if (PrevNode) { changeExit(PrevNode, Node->getEntry(), true); } PrevNode = Node; } else { // Insert extra prefix node (or reuse last one) BasicBlock *Flow = needPrefix(false); // Insert extra postfix node (or use exit instead) BasicBlock *Entry = Node->getEntry(); BasicBlock *Next = needPostfix(Flow, ExitUseAllowed); // let it point to entry and next block BranchInst *Br = BranchInst::Create(Entry, Next, BoolUndef, Flow); Br->setDebugLoc(TermDL[Flow]); Conditions.push_back(Br); addPhiValues(Flow, Entry); DT->changeImmediateDominator(Entry, Flow); PrevNode = Node; while (!Order.empty() && !Visited.count(LoopEnd) && dominatesPredicates(Entry, Order.back())) { handleLoops(false, LoopEnd); } changeExit(PrevNode, Next, false); setPrevNode(Next); } } void StructurizeCFG::handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd) { RegionNode *Node = Order.back(); BasicBlock *LoopStart = Node->getEntry(); if (!Loops.count(LoopStart)) { wireFlow(ExitUseAllowed, LoopEnd); return; } if (!isPredictableTrue(Node)) LoopStart = needPrefix(true); LoopEnd = Loops[Node->getEntry()]; wireFlow(false, LoopEnd); while (!Visited.count(LoopEnd)) { handleLoops(false, LoopEnd); } assert(LoopStart != &LoopStart->getParent()->getEntryBlock()); // Create an extra loop end node LoopEnd = needPrefix(false); BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed); BranchInst *Br = BranchInst::Create(Next, LoopStart, BoolUndef, LoopEnd); Br->setDebugLoc(TermDL[LoopEnd]); LoopConds.push_back(Br); addPhiValues(LoopEnd, LoopStart); setPrevNode(Next); } /// After this function control flow looks like it should be, but /// branches and PHI nodes only have undefined conditions. void StructurizeCFG::createFlow() { BasicBlock *Exit = ParentRegion->getExit(); bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit); AffectedPhis.clear(); DeletedPhis.clear(); AddedPhis.clear(); Conditions.clear(); LoopConds.clear(); PrevNode = nullptr; Visited.clear(); while (!Order.empty()) { handleLoops(EntryDominatesExit, nullptr); } if (PrevNode) changeExit(PrevNode, Exit, EntryDominatesExit); else assert(EntryDominatesExit); } /// Handle a rare case where the disintegrated nodes instructions /// no longer dominate all their uses. Not sure if this is really necessary void StructurizeCFG::rebuildSSA() { SSAUpdater Updater; for (BasicBlock *BB : ParentRegion->blocks()) for (Instruction &I : *BB) { bool Initialized = false; // We may modify the use list as we iterate over it, so we use // make_early_inc_range. for (Use &U : llvm::make_early_inc_range(I.uses())) { Instruction *User = cast(U.getUser()); if (User->getParent() == BB) { continue; } else if (PHINode *UserPN = dyn_cast(User)) { if (UserPN->getIncomingBlock(U) == BB) continue; } if (DT->dominates(&I, User)) continue; if (!Initialized) { Value *Undef = UndefValue::get(I.getType()); Updater.Initialize(I.getType(), ""); Updater.AddAvailableValue(&Func->getEntryBlock(), Undef); Updater.AddAvailableValue(BB, &I); Initialized = true; } Updater.RewriteUseAfterInsertions(U); } } } static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID, const LegacyDivergenceAnalysis &DA) { // Bool for if all sub-regions are uniform. bool SubRegionsAreUniform = true; // Count of how many direct children are conditional. unsigned ConditionalDirectChildren = 0; for (auto *E : R->elements()) { if (!E->isSubRegion()) { auto Br = dyn_cast(E->getEntry()->getTerminator()); if (!Br || !Br->isConditional()) continue; if (!DA.isUniform(Br)) return false; // One of our direct children is conditional. ConditionalDirectChildren++; LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName() << " has uniform terminator\n"); } else { // Explicitly refuse to treat regions as uniform if they have non-uniform // subregions. We cannot rely on DivergenceAnalysis for branches in // subregions because those branches may have been removed and re-created, // so we look for our metadata instead. // // Warning: It would be nice to treat regions as uniform based only on // their direct child basic blocks' terminators, regardless of whether // subregions are uniform or not. However, this requires a very careful // look at SIAnnotateControlFlow to make sure nothing breaks there. for (auto *BB : E->getNodeAs()->blocks()) { auto Br = dyn_cast(BB->getTerminator()); if (!Br || !Br->isConditional()) continue; if (!Br->getMetadata(UniformMDKindID)) { // Early exit if we cannot have relaxed uniform regions. if (!RelaxedUniformRegions) return false; SubRegionsAreUniform = false; break; } } } } // Our region is uniform if: // 1. All conditional branches that are direct children are uniform (checked // above). // 2. And either: // a. All sub-regions are uniform. // b. There is one or less conditional branches among the direct children. return SubRegionsAreUniform || (ConditionalDirectChildren <= 1); } void StructurizeCFG::init(Region *R) { LLVMContext &Context = R->getEntry()->getContext(); Boolean = Type::getInt1Ty(Context); BoolTrue = ConstantInt::getTrue(Context); BoolFalse = ConstantInt::getFalse(Context); BoolUndef = UndefValue::get(Boolean); this->DA = nullptr; } bool StructurizeCFG::makeUniformRegion(Region *R, LegacyDivergenceAnalysis *DA) { if (R->isTopLevelRegion()) return false; this->DA = DA; // TODO: We could probably be smarter here with how we handle sub-regions. // We currently rely on the fact that metadata is set by earlier invocations // of the pass on sub-regions, and that this metadata doesn't get lost -- // but we shouldn't rely on metadata for correctness! unsigned UniformMDKindID = R->getEntry()->getContext().getMDKindID("structurizecfg.uniform"); if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) { LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R << '\n'); // Mark all direct child block terminators as having been treated as // uniform. To account for a possible future in which non-uniform // sub-regions are treated more cleverly, indirect children are not // marked as uniform. MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {}); for (RegionNode *E : R->elements()) { if (E->isSubRegion()) continue; if (Instruction *Term = E->getEntry()->getTerminator()) Term->setMetadata(UniformMDKindID, MD); } return true; } return false; } /// Run the transformation for each region found bool StructurizeCFG::run(Region *R, DominatorTree *DT) { if (R->isTopLevelRegion()) return false; this->DT = DT; Func = R->getEntry()->getParent(); ParentRegion = R; orderNodes(); collectInfos(); createFlow(); insertConditions(false); insertConditions(true); setPhiValues(); simplifyConditions(); simplifyAffectedPhis(); rebuildSSA(); // Cleanup Order.clear(); Visited.clear(); DeletedPhis.clear(); AddedPhis.clear(); Predicates.clear(); Conditions.clear(); Loops.clear(); LoopPreds.clear(); LoopConds.clear(); FlowSet.clear(); TermDL.clear(); return true; } Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) { return new StructurizeCFGLegacyPass(SkipUniformRegions); } static void addRegionIntoQueue(Region &R, std::vector &Regions) { Regions.push_back(&R); for (const auto &E : R) addRegionIntoQueue(*E, Regions); } PreservedAnalyses StructurizeCFGPass::run(Function &F, FunctionAnalysisManager &AM) { bool Changed = false; DominatorTree *DT = &AM.getResult(F); auto &RI = AM.getResult(F); std::vector Regions; addRegionIntoQueue(*RI.getTopLevelRegion(), Regions); while (!Regions.empty()) { Region *R = Regions.back(); StructurizeCFG SCFG; SCFG.init(R); Changed |= SCFG.run(R, DT); Regions.pop_back(); } if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); return PA; }