1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass turns chains of integer comparisons into memcmp (the memcmp is 10 // later typically inlined as a chain of efficient hardware comparisons). This 11 // typically benefits c++ member or nonmember operator==(). 12 // 13 // The basic idea is to replace a longer chain of integer comparisons loaded 14 // from contiguous memory locations into a shorter chain of larger integer 15 // comparisons. Benefits are double: 16 // - There are less jumps, and therefore less opportunities for mispredictions 17 // and I-cache misses. 18 // - Code size is smaller, both because jumps are removed and because the 19 // encoding of a 2*n byte compare is smaller than that of two n-byte 20 // compares. 21 // 22 // Example: 23 // 24 // struct S { 25 // int a; 26 // char b; 27 // char c; 28 // uint16_t d; 29 // bool operator==(const S& o) const { 30 // return a == o.a && b == o.b && c == o.c && d == o.d; 31 // } 32 // }; 33 // 34 // Is optimized as : 35 // 36 // bool S::operator==(const S& o) const { 37 // return memcmp(this, &o, 8) == 0; 38 // } 39 // 40 // Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/Transforms/Scalar/MergeICmps.h" 45 #include "llvm/Analysis/DomTreeUpdater.h" 46 #include "llvm/Analysis/GlobalsModRef.h" 47 #include "llvm/Analysis/Loads.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/Analysis/TargetTransformInfo.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/IRBuilder.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56 #include "llvm/Transforms/Utils/BuildLibCalls.h" 57 #include <algorithm> 58 #include <numeric> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 namespace { 65 66 #define DEBUG_TYPE "mergeicmps" 67 68 // Returns true if the instruction is a simple load or a simple store 69 static bool isSimpleLoadOrStore(const Instruction *I) { 70 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 71 return LI->isSimple(); 72 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 73 return SI->isSimple(); 74 return false; 75 } 76 77 // A BCE atom "Binary Compare Expression Atom" represents an integer load 78 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example 79 // at the top. 80 struct BCEAtom { 81 BCEAtom() = default; 82 BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset) 83 : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {} 84 85 BCEAtom(const BCEAtom &) = delete; 86 BCEAtom &operator=(const BCEAtom &) = delete; 87 88 BCEAtom(BCEAtom &&that) = default; 89 BCEAtom &operator=(BCEAtom &&that) { 90 if (this == &that) 91 return *this; 92 GEP = that.GEP; 93 LoadI = that.LoadI; 94 BaseId = that.BaseId; 95 Offset = std::move(that.Offset); 96 return *this; 97 } 98 99 // We want to order BCEAtoms by (Base, Offset). However we cannot use 100 // the pointer values for Base because these are non-deterministic. 101 // To make sure that the sort order is stable, we first assign to each atom 102 // base value an index based on its order of appearance in the chain of 103 // comparisons. We call this index `BaseOrdering`. For example, for: 104 // b[3] == c[2] && a[1] == d[1] && b[4] == c[3] 105 // | block 1 | | block 2 | | block 3 | 106 // b gets assigned index 0 and a index 1, because b appears as LHS in block 1, 107 // which is before block 2. 108 // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable. 109 bool operator<(const BCEAtom &O) const { 110 return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset); 111 } 112 113 GetElementPtrInst *GEP = nullptr; 114 LoadInst *LoadI = nullptr; 115 unsigned BaseId = 0; 116 APInt Offset; 117 }; 118 119 // A class that assigns increasing ids to values in the order in which they are 120 // seen. See comment in `BCEAtom::operator<()``. 121 class BaseIdentifier { 122 public: 123 // Returns the id for value `Base`, after assigning one if `Base` has not been 124 // seen before. 125 int getBaseId(const Value *Base) { 126 assert(Base && "invalid base"); 127 const auto Insertion = BaseToIndex.try_emplace(Base, Order); 128 if (Insertion.second) 129 ++Order; 130 return Insertion.first->second; 131 } 132 133 private: 134 unsigned Order = 1; 135 DenseMap<const Value*, int> BaseToIndex; 136 }; 137 138 // If this value is a load from a constant offset w.r.t. a base address, and 139 // there are no other users of the load or address, returns the base address and 140 // the offset. 141 BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) { 142 auto *const LoadI = dyn_cast<LoadInst>(Val); 143 if (!LoadI) 144 return {}; 145 LLVM_DEBUG(dbgs() << "load\n"); 146 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 147 LLVM_DEBUG(dbgs() << "used outside of block\n"); 148 return {}; 149 } 150 // Do not optimize atomic loads to non-atomic memcmp 151 if (!LoadI->isSimple()) { 152 LLVM_DEBUG(dbgs() << "volatile or atomic\n"); 153 return {}; 154 } 155 Value *const Addr = LoadI->getOperand(0); 156 auto *const GEP = dyn_cast<GetElementPtrInst>(Addr); 157 if (!GEP) 158 return {}; 159 LLVM_DEBUG(dbgs() << "GEP\n"); 160 if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) { 161 LLVM_DEBUG(dbgs() << "used outside of block\n"); 162 return {}; 163 } 164 const auto &DL = GEP->getModule()->getDataLayout(); 165 if (!isDereferenceablePointer(GEP, LoadI->getType(), DL)) { 166 LLVM_DEBUG(dbgs() << "not dereferenceable\n"); 167 // We need to make sure that we can do comparison in any order, so we 168 // require memory to be unconditionnally dereferencable. 169 return {}; 170 } 171 APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0); 172 if (!GEP->accumulateConstantOffset(DL, Offset)) 173 return {}; 174 return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()), 175 Offset); 176 } 177 178 // A basic block with a comparison between two BCE atoms, e.g. `a == o.a` in the 179 // example at the top. 180 // The block might do extra work besides the atom comparison, in which case 181 // doesOtherWork() returns true. Under some conditions, the block can be 182 // split into the atom comparison part and the "other work" part 183 // (see canSplit()). 184 // Note: the terminology is misleading: the comparison is symmetric, so there 185 // is no real {l/r}hs. What we want though is to have the same base on the 186 // left (resp. right), so that we can detect consecutive loads. To ensure this 187 // we put the smallest atom on the left. 188 class BCECmpBlock { 189 public: 190 BCECmpBlock() {} 191 192 BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits) 193 : Lhs_(std::move(L)), Rhs_(std::move(R)), SizeBits_(SizeBits) { 194 if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_); 195 } 196 197 bool IsValid() const { return Lhs_.BaseId != 0 && Rhs_.BaseId != 0; } 198 199 // Assert the block is consistent: If valid, it should also have 200 // non-null members besides Lhs_ and Rhs_. 201 void AssertConsistent() const { 202 if (IsValid()) { 203 assert(BB); 204 assert(CmpI); 205 assert(BranchI); 206 } 207 } 208 209 const BCEAtom &Lhs() const { return Lhs_; } 210 const BCEAtom &Rhs() const { return Rhs_; } 211 int SizeBits() const { return SizeBits_; } 212 213 // Returns true if the block does other works besides comparison. 214 bool doesOtherWork() const; 215 216 // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp 217 // instructions in the block. 218 bool canSplit(AliasAnalysis &AA) const; 219 220 // Return true if this all the relevant instructions in the BCE-cmp-block can 221 // be sunk below this instruction. By doing this, we know we can separate the 222 // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the 223 // block. 224 bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &, 225 AliasAnalysis &AA) const; 226 227 // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block 228 // instructions. Split the old block and move all non-BCE-cmp-insts into the 229 // new parent block. 230 void split(BasicBlock *NewParent, AliasAnalysis &AA) const; 231 232 // The basic block where this comparison happens. 233 BasicBlock *BB = nullptr; 234 // The ICMP for this comparison. 235 ICmpInst *CmpI = nullptr; 236 // The terminating branch. 237 BranchInst *BranchI = nullptr; 238 // The block requires splitting. 239 bool RequireSplit = false; 240 241 private: 242 BCEAtom Lhs_; 243 BCEAtom Rhs_; 244 int SizeBits_ = 0; 245 }; 246 247 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst, 248 DenseSet<Instruction *> &BlockInsts, 249 AliasAnalysis &AA) const { 250 // If this instruction has side effects and its in middle of the BCE cmp block 251 // instructions, then bail for now. 252 if (Inst->mayHaveSideEffects()) { 253 // Bail if this is not a simple load or store 254 if (!isSimpleLoadOrStore(Inst)) 255 return false; 256 // Disallow stores that might alias the BCE operands 257 MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI); 258 MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI); 259 if (isModSet(AA.getModRefInfo(Inst, LLoc)) || 260 isModSet(AA.getModRefInfo(Inst, RLoc))) 261 return false; 262 } 263 // Make sure this instruction does not use any of the BCE cmp block 264 // instructions as operand. 265 for (auto BI : BlockInsts) { 266 if (is_contained(Inst->operands(), BI)) 267 return false; 268 } 269 return true; 270 } 271 272 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const { 273 DenseSet<Instruction *> BlockInsts( 274 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); 275 llvm::SmallVector<Instruction *, 4> OtherInsts; 276 for (Instruction &Inst : *BB) { 277 if (BlockInsts.count(&Inst)) 278 continue; 279 assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) && 280 "Split unsplittable block"); 281 // This is a non-BCE-cmp-block instruction. And it can be separated 282 // from the BCE-cmp-block instruction. 283 OtherInsts.push_back(&Inst); 284 } 285 286 // Do the actual spliting. 287 for (Instruction *Inst : reverse(OtherInsts)) { 288 Inst->moveBefore(&*NewParent->begin()); 289 } 290 } 291 292 bool BCECmpBlock::canSplit(AliasAnalysis &AA) const { 293 DenseSet<Instruction *> BlockInsts( 294 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); 295 for (Instruction &Inst : *BB) { 296 if (!BlockInsts.count(&Inst)) { 297 if (!canSinkBCECmpInst(&Inst, BlockInsts, AA)) 298 return false; 299 } 300 } 301 return true; 302 } 303 304 bool BCECmpBlock::doesOtherWork() const { 305 AssertConsistent(); 306 // All the instructions we care about in the BCE cmp block. 307 DenseSet<Instruction *> BlockInsts( 308 {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); 309 // TODO(courbet): Can we allow some other things ? This is very conservative. 310 // We might be able to get away with anything does not have any side 311 // effects outside of the basic block. 312 // Note: The GEPs and/or loads are not necessarily in the same block. 313 for (const Instruction &Inst : *BB) { 314 if (!BlockInsts.count(&Inst)) 315 return true; 316 } 317 return false; 318 } 319 320 // Visit the given comparison. If this is a comparison between two valid 321 // BCE atoms, returns the comparison. 322 BCECmpBlock visitICmp(const ICmpInst *const CmpI, 323 const ICmpInst::Predicate ExpectedPredicate, 324 BaseIdentifier &BaseId) { 325 // The comparison can only be used once: 326 // - For intermediate blocks, as a branch condition. 327 // - For the final block, as an incoming value for the Phi. 328 // If there are any other uses of the comparison, we cannot merge it with 329 // other comparisons as we would create an orphan use of the value. 330 if (!CmpI->hasOneUse()) { 331 LLVM_DEBUG(dbgs() << "cmp has several uses\n"); 332 return {}; 333 } 334 if (CmpI->getPredicate() != ExpectedPredicate) 335 return {}; 336 LLVM_DEBUG(dbgs() << "cmp " 337 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") 338 << "\n"); 339 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId); 340 if (!Lhs.BaseId) 341 return {}; 342 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId); 343 if (!Rhs.BaseId) 344 return {}; 345 const auto &DL = CmpI->getModule()->getDataLayout(); 346 return BCECmpBlock(std::move(Lhs), std::move(Rhs), 347 DL.getTypeSizeInBits(CmpI->getOperand(0)->getType())); 348 } 349 350 // Visit the given comparison block. If this is a comparison between two valid 351 // BCE atoms, returns the comparison. 352 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block, 353 const BasicBlock *const PhiBlock, 354 BaseIdentifier &BaseId) { 355 if (Block->empty()) return {}; 356 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); 357 if (!BranchI) return {}; 358 LLVM_DEBUG(dbgs() << "branch\n"); 359 if (BranchI->isUnconditional()) { 360 // In this case, we expect an incoming value which is the result of the 361 // comparison. This is the last link in the chain of comparisons (note 362 // that this does not mean that this is the last incoming value, blocks 363 // can be reordered). 364 auto *const CmpI = dyn_cast<ICmpInst>(Val); 365 if (!CmpI) return {}; 366 LLVM_DEBUG(dbgs() << "icmp\n"); 367 auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ, BaseId); 368 Result.CmpI = CmpI; 369 Result.BranchI = BranchI; 370 return Result; 371 } else { 372 // In this case, we expect a constant incoming value (the comparison is 373 // chained). 374 const auto *const Const = dyn_cast<ConstantInt>(Val); 375 LLVM_DEBUG(dbgs() << "const\n"); 376 if (!Const->isZero()) return {}; 377 LLVM_DEBUG(dbgs() << "false\n"); 378 auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition()); 379 if (!CmpI) return {}; 380 LLVM_DEBUG(dbgs() << "icmp\n"); 381 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); 382 BasicBlock *const FalseBlock = BranchI->getSuccessor(1); 383 auto Result = visitICmp( 384 CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 385 BaseId); 386 Result.CmpI = CmpI; 387 Result.BranchI = BranchI; 388 return Result; 389 } 390 return {}; 391 } 392 393 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons, 394 BCECmpBlock &&Comparison) { 395 LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName() 396 << "': Found cmp of " << Comparison.SizeBits() 397 << " bits between " << Comparison.Lhs().BaseId << " + " 398 << Comparison.Lhs().Offset << " and " 399 << Comparison.Rhs().BaseId << " + " 400 << Comparison.Rhs().Offset << "\n"); 401 LLVM_DEBUG(dbgs() << "\n"); 402 Comparisons.push_back(std::move(Comparison)); 403 } 404 405 // A chain of comparisons. 406 class BCECmpChain { 407 public: 408 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 409 AliasAnalysis &AA); 410 411 int size() const { return Comparisons_.size(); } 412 413 #ifdef MERGEICMPS_DOT_ON 414 void dump() const; 415 #endif // MERGEICMPS_DOT_ON 416 417 bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA, 418 DomTreeUpdater &DTU); 419 420 private: 421 static bool IsContiguous(const BCECmpBlock &First, 422 const BCECmpBlock &Second) { 423 return First.Lhs().BaseId == Second.Lhs().BaseId && 424 First.Rhs().BaseId == Second.Rhs().BaseId && 425 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && 426 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; 427 } 428 429 PHINode &Phi_; 430 std::vector<BCECmpBlock> Comparisons_; 431 // The original entry block (before sorting); 432 BasicBlock *EntryBlock_; 433 }; 434 435 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 436 AliasAnalysis &AA) 437 : Phi_(Phi) { 438 assert(!Blocks.empty() && "a chain should have at least one block"); 439 // Now look inside blocks to check for BCE comparisons. 440 std::vector<BCECmpBlock> Comparisons; 441 BaseIdentifier BaseId; 442 for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) { 443 BasicBlock *const Block = Blocks[BlockIdx]; 444 assert(Block && "invalid block"); 445 BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block), 446 Block, Phi.getParent(), BaseId); 447 Comparison.BB = Block; 448 if (!Comparison.IsValid()) { 449 LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n"); 450 return; 451 } 452 if (Comparison.doesOtherWork()) { 453 LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName() 454 << "' does extra work besides compare\n"); 455 if (Comparisons.empty()) { 456 // This is the initial block in the chain, in case this block does other 457 // work, we can try to split the block and move the irrelevant 458 // instructions to the predecessor. 459 // 460 // If this is not the initial block in the chain, splitting it wont 461 // work. 462 // 463 // As once split, there will still be instructions before the BCE cmp 464 // instructions that do other work in program order, i.e. within the 465 // chain before sorting. Unless we can abort the chain at this point 466 // and start anew. 467 // 468 // NOTE: we only handle blocks a with single predecessor for now. 469 if (Comparison.canSplit(AA)) { 470 LLVM_DEBUG(dbgs() 471 << "Split initial block '" << Comparison.BB->getName() 472 << "' that does extra work besides compare\n"); 473 Comparison.RequireSplit = true; 474 enqueueBlock(Comparisons, std::move(Comparison)); 475 } else { 476 LLVM_DEBUG(dbgs() 477 << "ignoring initial block '" << Comparison.BB->getName() 478 << "' that does extra work besides compare\n"); 479 } 480 continue; 481 } 482 // TODO(courbet): Right now we abort the whole chain. We could be 483 // merging only the blocks that don't do other work and resume the 484 // chain from there. For example: 485 // if (a[0] == b[0]) { // bb1 486 // if (a[1] == b[1]) { // bb2 487 // some_value = 3; //bb3 488 // if (a[2] == b[2]) { //bb3 489 // do a ton of stuff //bb4 490 // } 491 // } 492 // } 493 // 494 // This is: 495 // 496 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ 497 // \ \ \ \ 498 // ne ne ne \ 499 // \ \ \ v 500 // +------------+-----------+----------> bb_phi 501 // 502 // We can only merge the first two comparisons, because bb3* does 503 // "other work" (setting some_value to 3). 504 // We could still merge bb1 and bb2 though. 505 return; 506 } 507 enqueueBlock(Comparisons, std::move(Comparison)); 508 } 509 510 // It is possible we have no suitable comparison to merge. 511 if (Comparisons.empty()) { 512 LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n"); 513 return; 514 } 515 EntryBlock_ = Comparisons[0].BB; 516 Comparisons_ = std::move(Comparisons); 517 #ifdef MERGEICMPS_DOT_ON 518 errs() << "BEFORE REORDERING:\n\n"; 519 dump(); 520 #endif // MERGEICMPS_DOT_ON 521 // Reorder blocks by LHS. We can do that without changing the 522 // semantics because we are only accessing dereferencable memory. 523 llvm::sort(Comparisons_, 524 [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) { 525 return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) < 526 std::tie(RhsBlock.Lhs(), RhsBlock.Rhs()); 527 }); 528 #ifdef MERGEICMPS_DOT_ON 529 errs() << "AFTER REORDERING:\n\n"; 530 dump(); 531 #endif // MERGEICMPS_DOT_ON 532 } 533 534 #ifdef MERGEICMPS_DOT_ON 535 void BCECmpChain::dump() const { 536 errs() << "digraph dag {\n"; 537 errs() << " graph [bgcolor=transparent];\n"; 538 errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n"; 539 errs() << " edge [color=black];\n"; 540 for (size_t I = 0; I < Comparisons_.size(); ++I) { 541 const auto &Comparison = Comparisons_[I]; 542 errs() << " \"" << I << "\" [label=\"%" 543 << Comparison.Lhs().Base()->getName() << " + " 544 << Comparison.Lhs().Offset << " == %" 545 << Comparison.Rhs().Base()->getName() << " + " 546 << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8) 547 << " bytes)\"];\n"; 548 const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB); 549 if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n"; 550 errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n"; 551 } 552 errs() << " \"Phi\" [label=\"Phi\"];\n"; 553 errs() << "}\n\n"; 554 } 555 #endif // MERGEICMPS_DOT_ON 556 557 namespace { 558 559 // A class to compute the name of a set of merged basic blocks. 560 // This is optimized for the common case of no block names. 561 class MergedBlockName { 562 // Storage for the uncommon case of several named blocks. 563 SmallString<16> Scratch; 564 565 public: 566 explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons) 567 : Name(makeName(Comparisons)) {} 568 const StringRef Name; 569 570 private: 571 StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) { 572 assert(!Comparisons.empty() && "no basic block"); 573 // Fast path: only one block, or no names at all. 574 if (Comparisons.size() == 1) 575 return Comparisons[0].BB->getName(); 576 const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0, 577 [](int i, const BCECmpBlock &Cmp) { 578 return i + Cmp.BB->getName().size(); 579 }); 580 if (size == 0) 581 return StringRef("", 0); 582 583 // Slow path: at least two blocks, at least one block with a name. 584 Scratch.clear(); 585 // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for 586 // separators. 587 Scratch.reserve(size + Comparisons.size() - 1); 588 const auto append = [this](StringRef str) { 589 Scratch.append(str.begin(), str.end()); 590 }; 591 append(Comparisons[0].BB->getName()); 592 for (int I = 1, E = Comparisons.size(); I < E; ++I) { 593 const BasicBlock *const BB = Comparisons[I].BB; 594 if (!BB->getName().empty()) { 595 append("+"); 596 append(BB->getName()); 597 } 598 } 599 return StringRef(Scratch); 600 } 601 }; 602 } // namespace 603 604 // Merges the given contiguous comparison blocks into one memcmp block. 605 static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 606 BasicBlock *const InsertBefore, 607 BasicBlock *const NextCmpBlock, 608 PHINode &Phi, const TargetLibraryInfo &TLI, 609 AliasAnalysis &AA, DomTreeUpdater &DTU) { 610 assert(!Comparisons.empty() && "merging zero comparisons"); 611 LLVMContext &Context = NextCmpBlock->getContext(); 612 const BCECmpBlock &FirstCmp = Comparisons[0]; 613 614 // Create a new cmp block before next cmp block. 615 BasicBlock *const BB = 616 BasicBlock::Create(Context, MergedBlockName(Comparisons).Name, 617 NextCmpBlock->getParent(), InsertBefore); 618 IRBuilder<> Builder(BB); 619 // Add the GEPs from the first BCECmpBlock. 620 Value *const Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone()); 621 Value *const Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone()); 622 623 Value *IsEqual = nullptr; 624 LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> " 625 << BB->getName() << "\n"); 626 if (Comparisons.size() == 1) { 627 LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n"); 628 Value *const LhsLoad = 629 Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs); 630 Value *const RhsLoad = 631 Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs); 632 // There are no blocks to merge, just do the comparison. 633 IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad); 634 } else { 635 // If there is one block that requires splitting, we do it now, i.e. 636 // just before we know we will collapse the chain. The instructions 637 // can be executed before any of the instructions in the chain. 638 const auto ToSplit = 639 std::find_if(Comparisons.begin(), Comparisons.end(), 640 [](const BCECmpBlock &B) { return B.RequireSplit; }); 641 if (ToSplit != Comparisons.end()) { 642 LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n"); 643 ToSplit->split(BB, AA); 644 } 645 646 const unsigned TotalSizeBits = std::accumulate( 647 Comparisons.begin(), Comparisons.end(), 0u, 648 [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); }); 649 650 // Create memcmp() == 0. 651 const auto &DL = Phi.getModule()->getDataLayout(); 652 Value *const MemCmpCall = emitMemCmp( 653 Lhs, Rhs, 654 ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder, 655 DL, &TLI); 656 IsEqual = Builder.CreateICmpEQ( 657 MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0)); 658 } 659 660 BasicBlock *const PhiBB = Phi.getParent(); 661 // Add a branch to the next basic block in the chain. 662 if (NextCmpBlock == PhiBB) { 663 // Continue to phi, passing it the comparison result. 664 Builder.CreateBr(PhiBB); 665 Phi.addIncoming(IsEqual, BB); 666 DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}}); 667 } else { 668 // Continue to next block if equal, exit to phi else. 669 Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB); 670 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 671 DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock}, 672 {DominatorTree::Insert, BB, PhiBB}}); 673 } 674 return BB; 675 } 676 677 bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA, 678 DomTreeUpdater &DTU) { 679 assert(Comparisons_.size() >= 2 && "simplifying trivial BCECmpChain"); 680 // First pass to check if there is at least one merge. If not, we don't do 681 // anything and we keep analysis passes intact. 682 const auto AtLeastOneMerged = [this]() { 683 for (size_t I = 1; I < Comparisons_.size(); ++I) { 684 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) 685 return true; 686 } 687 return false; 688 }; 689 if (!AtLeastOneMerged()) 690 return false; 691 692 LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block " 693 << EntryBlock_->getName() << "\n"); 694 695 // Effectively merge blocks. We go in the reverse direction from the phi block 696 // so that the next block is always available to branch to. 697 const auto mergeRange = [this, &TLI, &AA, &DTU](int I, int Num, 698 BasicBlock *InsertBefore, 699 BasicBlock *Next) { 700 return mergeComparisons(makeArrayRef(Comparisons_).slice(I, Num), 701 InsertBefore, Next, Phi_, TLI, AA, DTU); 702 }; 703 int NumMerged = 1; 704 BasicBlock *NextCmpBlock = Phi_.getParent(); 705 for (int I = static_cast<int>(Comparisons_.size()) - 2; I >= 0; --I) { 706 if (IsContiguous(Comparisons_[I], Comparisons_[I + 1])) { 707 LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_[I].BB->getName() 708 << " into " << Comparisons_[I + 1].BB->getName() 709 << "\n"); 710 ++NumMerged; 711 } else { 712 NextCmpBlock = mergeRange(I + 1, NumMerged, NextCmpBlock, NextCmpBlock); 713 NumMerged = 1; 714 } 715 } 716 // Insert the entry block for the new chain before the old entry block. 717 // If the old entry block was the function entry, this ensures that the new 718 // entry can become the function entry. 719 NextCmpBlock = mergeRange(0, NumMerged, EntryBlock_, NextCmpBlock); 720 721 // Replace the original cmp chain with the new cmp chain by pointing all 722 // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp 723 // blocks in the old chain unreachable. 724 while (!pred_empty(EntryBlock_)) { 725 BasicBlock* const Pred = *pred_begin(EntryBlock_); 726 LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName() 727 << "\n"); 728 Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock); 729 DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_}, 730 {DominatorTree::Insert, Pred, NextCmpBlock}}); 731 } 732 733 // If the old cmp chain was the function entry, we need to update the function 734 // entry. 735 const bool ChainEntryIsFnEntry = 736 (EntryBlock_ == &EntryBlock_->getParent()->getEntryBlock()); 737 if (ChainEntryIsFnEntry && DTU.hasDomTree()) { 738 LLVM_DEBUG(dbgs() << "Changing function entry from " 739 << EntryBlock_->getName() << " to " 740 << NextCmpBlock->getName() << "\n"); 741 DTU.getDomTree().setNewRoot(NextCmpBlock); 742 DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}}); 743 } 744 EntryBlock_ = nullptr; 745 746 // Delete merged blocks. This also removes incoming values in phi. 747 SmallVector<BasicBlock *, 16> DeadBlocks; 748 for (auto &Cmp : Comparisons_) { 749 LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp.BB->getName() << "\n"); 750 DeadBlocks.push_back(Cmp.BB); 751 } 752 DeleteDeadBlocks(DeadBlocks, &DTU); 753 754 Comparisons_.clear(); 755 return true; 756 } 757 758 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, 759 BasicBlock *const LastBlock, 760 int NumBlocks) { 761 // Walk up from the last block to find other blocks. 762 std::vector<BasicBlock *> Blocks(NumBlocks); 763 assert(LastBlock && "invalid last block"); 764 BasicBlock *CurBlock = LastBlock; 765 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { 766 if (CurBlock->hasAddressTaken()) { 767 // Somebody is jumping to the block through an address, all bets are 768 // off. 769 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 770 << " has its address taken\n"); 771 return {}; 772 } 773 Blocks[BlockIndex] = CurBlock; 774 auto *SinglePredecessor = CurBlock->getSinglePredecessor(); 775 if (!SinglePredecessor) { 776 // The block has two or more predecessors. 777 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 778 << " has two or more predecessors\n"); 779 return {}; 780 } 781 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { 782 // The block does not link back to the phi. 783 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 784 << " does not link back to the phi\n"); 785 return {}; 786 } 787 CurBlock = SinglePredecessor; 788 } 789 Blocks[0] = CurBlock; 790 return Blocks; 791 } 792 793 bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA, 794 DomTreeUpdater &DTU) { 795 LLVM_DEBUG(dbgs() << "processPhi()\n"); 796 if (Phi.getNumIncomingValues() <= 1) { 797 LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n"); 798 return false; 799 } 800 // We are looking for something that has the following structure: 801 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ 802 // \ \ \ \ 803 // ne ne ne \ 804 // \ \ \ v 805 // +------------+-----------+----------> bb_phi 806 // 807 // - The last basic block (bb4 here) must branch unconditionally to bb_phi. 808 // It's the only block that contributes a non-constant value to the Phi. 809 // - All other blocks (b1, b2, b3) must have exactly two successors, one of 810 // them being the phi block. 811 // - All intermediate blocks (bb2, bb3) must have only one predecessor. 812 // - Blocks cannot do other work besides the comparison, see doesOtherWork() 813 814 // The blocks are not necessarily ordered in the phi, so we start from the 815 // last block and reconstruct the order. 816 BasicBlock *LastBlock = nullptr; 817 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { 818 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; 819 if (LastBlock) { 820 // There are several non-constant values. 821 LLVM_DEBUG(dbgs() << "skip: several non-constant values\n"); 822 return false; 823 } 824 if (!isa<ICmpInst>(Phi.getIncomingValue(I)) || 825 cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() != 826 Phi.getIncomingBlock(I)) { 827 // Non-constant incoming value is not from a cmp instruction or not 828 // produced by the last block. We could end up processing the value 829 // producing block more than once. 830 // 831 // This is an uncommon case, so we bail. 832 LLVM_DEBUG( 833 dbgs() 834 << "skip: non-constant value not from cmp or not from last block.\n"); 835 return false; 836 } 837 LastBlock = Phi.getIncomingBlock(I); 838 } 839 if (!LastBlock) { 840 // There is no non-constant block. 841 LLVM_DEBUG(dbgs() << "skip: no non-constant block\n"); 842 return false; 843 } 844 if (LastBlock->getSingleSuccessor() != Phi.getParent()) { 845 LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n"); 846 return false; 847 } 848 849 const auto Blocks = 850 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); 851 if (Blocks.empty()) return false; 852 BCECmpChain CmpChain(Blocks, Phi, AA); 853 854 if (CmpChain.size() < 2) { 855 LLVM_DEBUG(dbgs() << "skip: only one compare block\n"); 856 return false; 857 } 858 859 return CmpChain.simplify(TLI, AA, DTU); 860 } 861 862 static bool runImpl(Function &F, const TargetLibraryInfo &TLI, 863 const TargetTransformInfo &TTI, AliasAnalysis &AA, 864 DominatorTree *DT) { 865 LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n"); 866 867 // We only try merging comparisons if the target wants to expand memcmp later. 868 // The rationale is to avoid turning small chains into memcmp calls. 869 if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true)) 870 return false; 871 872 // If we don't have memcmp avaiable we can't emit calls to it. 873 if (!TLI.has(LibFunc_memcmp)) 874 return false; 875 876 DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr, 877 DomTreeUpdater::UpdateStrategy::Eager); 878 879 bool MadeChange = false; 880 881 for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) { 882 // A Phi operation is always first in a basic block. 883 if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin())) 884 MadeChange |= processPhi(*Phi, TLI, AA, DTU); 885 } 886 887 return MadeChange; 888 } 889 890 class MergeICmpsLegacyPass : public FunctionPass { 891 public: 892 static char ID; 893 894 MergeICmpsLegacyPass() : FunctionPass(ID) { 895 initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry()); 896 } 897 898 bool runOnFunction(Function &F) override { 899 if (skipFunction(F)) return false; 900 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 901 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 902 // MergeICmps does not need the DominatorTree, but we update it if it's 903 // already available. 904 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 905 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 906 return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr); 907 } 908 909 private: 910 void getAnalysisUsage(AnalysisUsage &AU) const override { 911 AU.addRequired<TargetLibraryInfoWrapperPass>(); 912 AU.addRequired<TargetTransformInfoWrapperPass>(); 913 AU.addRequired<AAResultsWrapperPass>(); 914 AU.addPreserved<GlobalsAAWrapperPass>(); 915 AU.addPreserved<DominatorTreeWrapperPass>(); 916 } 917 }; 918 919 } // namespace 920 921 char MergeICmpsLegacyPass::ID = 0; 922 INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps", 923 "Merge contiguous icmps into a memcmp", false, false) 924 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 925 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 926 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 927 INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps", 928 "Merge contiguous icmps into a memcmp", false, false) 929 930 Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); } 931 932 PreservedAnalyses MergeICmpsPass::run(Function &F, 933 FunctionAnalysisManager &AM) { 934 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 935 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 936 auto &AA = AM.getResult<AAManager>(F); 937 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 938 const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT); 939 if (!MadeChanges) 940 return PreservedAnalyses::all(); 941 PreservedAnalyses PA; 942 PA.preserve<GlobalsAA>(); 943 PA.preserve<DominatorTreeAnalysis>(); 944 return PA; 945 } 946