xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/MergeICmps.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns chains of integer comparisons into memcmp (the memcmp is
10 // later typically inlined as a chain of efficient hardware comparisons). This
11 // typically benefits c++ member or nonmember operator==().
12 //
13 // The basic idea is to replace a longer chain of integer comparisons loaded
14 // from contiguous memory locations into a shorter chain of larger integer
15 // comparisons. Benefits are double:
16 //  - There are less jumps, and therefore less opportunities for mispredictions
17 //    and I-cache misses.
18 //  - Code size is smaller, both because jumps are removed and because the
19 //    encoding of a 2*n byte compare is smaller than that of two n-byte
20 //    compares.
21 //
22 // Example:
23 //
24 //  struct S {
25 //    int a;
26 //    char b;
27 //    char c;
28 //    uint16_t d;
29 //    bool operator==(const S& o) const {
30 //      return a == o.a && b == o.b && c == o.c && d == o.d;
31 //    }
32 //  };
33 //
34 //  Is optimized as :
35 //
36 //    bool S::operator==(const S& o) const {
37 //      return memcmp(this, &o, 8) == 0;
38 //    }
39 //
40 //  Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "llvm/Transforms/Scalar/MergeICmps.h"
45 #include "llvm/Analysis/DomTreeUpdater.h"
46 #include "llvm/Analysis/GlobalsModRef.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/TargetTransformInfo.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/IRBuilder.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/BuildLibCalls.h"
57 #include <algorithm>
58 #include <numeric>
59 #include <utility>
60 #include <vector>
61 
62 using namespace llvm;
63 
64 namespace {
65 
66 #define DEBUG_TYPE "mergeicmps"
67 
68 // Returns true if the instruction is a simple load or a simple store
69 static bool isSimpleLoadOrStore(const Instruction *I) {
70   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
71     return LI->isSimple();
72   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
73     return SI->isSimple();
74   return false;
75 }
76 
77 // A BCE atom "Binary Compare Expression Atom" represents an integer load
78 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example
79 // at the top.
80 struct BCEAtom {
81   BCEAtom() = default;
82   BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset)
83       : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {}
84 
85   BCEAtom(const BCEAtom &) = delete;
86   BCEAtom &operator=(const BCEAtom &) = delete;
87 
88   BCEAtom(BCEAtom &&that) = default;
89   BCEAtom &operator=(BCEAtom &&that) {
90     if (this == &that)
91       return *this;
92     GEP = that.GEP;
93     LoadI = that.LoadI;
94     BaseId = that.BaseId;
95     Offset = std::move(that.Offset);
96     return *this;
97   }
98 
99   // We want to order BCEAtoms by (Base, Offset). However we cannot use
100   // the pointer values for Base because these are non-deterministic.
101   // To make sure that the sort order is stable, we first assign to each atom
102   // base value an index based on its order of appearance in the chain of
103   // comparisons. We call this index `BaseOrdering`. For example, for:
104   //    b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
105   //    |  block 1 |    |  block 2 |    |  block 3 |
106   // b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
107   // which is before block 2.
108   // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
109   bool operator<(const BCEAtom &O) const {
110     return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset);
111   }
112 
113   GetElementPtrInst *GEP = nullptr;
114   LoadInst *LoadI = nullptr;
115   unsigned BaseId = 0;
116   APInt Offset;
117 };
118 
119 // A class that assigns increasing ids to values in the order in which they are
120 // seen. See comment in `BCEAtom::operator<()``.
121 class BaseIdentifier {
122 public:
123   // Returns the id for value `Base`, after assigning one if `Base` has not been
124   // seen before.
125   int getBaseId(const Value *Base) {
126     assert(Base && "invalid base");
127     const auto Insertion = BaseToIndex.try_emplace(Base, Order);
128     if (Insertion.second)
129       ++Order;
130     return Insertion.first->second;
131   }
132 
133 private:
134   unsigned Order = 1;
135   DenseMap<const Value*, int> BaseToIndex;
136 };
137 
138 // If this value is a load from a constant offset w.r.t. a base address, and
139 // there are no other users of the load or address, returns the base address and
140 // the offset.
141 BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) {
142   auto *const LoadI = dyn_cast<LoadInst>(Val);
143   if (!LoadI)
144     return {};
145   LLVM_DEBUG(dbgs() << "load\n");
146   if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
147     LLVM_DEBUG(dbgs() << "used outside of block\n");
148     return {};
149   }
150   // Do not optimize atomic loads to non-atomic memcmp
151   if (!LoadI->isSimple()) {
152     LLVM_DEBUG(dbgs() << "volatile or atomic\n");
153     return {};
154   }
155   Value *const Addr = LoadI->getOperand(0);
156   auto *const GEP = dyn_cast<GetElementPtrInst>(Addr);
157   if (!GEP)
158     return {};
159   LLVM_DEBUG(dbgs() << "GEP\n");
160   if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
161     LLVM_DEBUG(dbgs() << "used outside of block\n");
162     return {};
163   }
164   const auto &DL = GEP->getModule()->getDataLayout();
165   if (!isDereferenceablePointer(GEP, LoadI->getType(), DL)) {
166     LLVM_DEBUG(dbgs() << "not dereferenceable\n");
167     // We need to make sure that we can do comparison in any order, so we
168     // require memory to be unconditionnally dereferencable.
169     return {};
170   }
171   APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
172   if (!GEP->accumulateConstantOffset(DL, Offset))
173     return {};
174   return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()),
175                  Offset);
176 }
177 
178 // A basic block with a comparison between two BCE atoms, e.g. `a == o.a` in the
179 // example at the top.
180 // The block might do extra work besides the atom comparison, in which case
181 // doesOtherWork() returns true. Under some conditions, the block can be
182 // split into the atom comparison part and the "other work" part
183 // (see canSplit()).
184 // Note: the terminology is misleading: the comparison is symmetric, so there
185 // is no real {l/r}hs. What we want though is to have the same base on the
186 // left (resp. right), so that we can detect consecutive loads. To ensure this
187 // we put the smallest atom on the left.
188 class BCECmpBlock {
189  public:
190   BCECmpBlock() {}
191 
192   BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
193       : Lhs_(std::move(L)), Rhs_(std::move(R)), SizeBits_(SizeBits) {
194     if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_);
195   }
196 
197   bool IsValid() const { return Lhs_.BaseId != 0 && Rhs_.BaseId != 0; }
198 
199   // Assert the block is consistent: If valid, it should also have
200   // non-null members besides Lhs_ and Rhs_.
201   void AssertConsistent() const {
202     if (IsValid()) {
203       assert(BB);
204       assert(CmpI);
205       assert(BranchI);
206     }
207   }
208 
209   const BCEAtom &Lhs() const { return Lhs_; }
210   const BCEAtom &Rhs() const { return Rhs_; }
211   int SizeBits() const { return SizeBits_; }
212 
213   // Returns true if the block does other works besides comparison.
214   bool doesOtherWork() const;
215 
216   // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
217   // instructions in the block.
218   bool canSplit(AliasAnalysis &AA) const;
219 
220   // Return true if this all the relevant instructions in the BCE-cmp-block can
221   // be sunk below this instruction. By doing this, we know we can separate the
222   // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
223   // block.
224   bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &,
225                          AliasAnalysis &AA) const;
226 
227   // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
228   // instructions. Split the old block and move all non-BCE-cmp-insts into the
229   // new parent block.
230   void split(BasicBlock *NewParent, AliasAnalysis &AA) const;
231 
232   // The basic block where this comparison happens.
233   BasicBlock *BB = nullptr;
234   // The ICMP for this comparison.
235   ICmpInst *CmpI = nullptr;
236   // The terminating branch.
237   BranchInst *BranchI = nullptr;
238   // The block requires splitting.
239   bool RequireSplit = false;
240 
241 private:
242   BCEAtom Lhs_;
243   BCEAtom Rhs_;
244   int SizeBits_ = 0;
245 };
246 
247 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
248                                     DenseSet<Instruction *> &BlockInsts,
249                                     AliasAnalysis &AA) const {
250   // If this instruction has side effects and its in middle of the BCE cmp block
251   // instructions, then bail for now.
252   if (Inst->mayHaveSideEffects()) {
253     // Bail if this is not a simple load or store
254     if (!isSimpleLoadOrStore(Inst))
255       return false;
256     // Disallow stores that might alias the BCE operands
257     MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI);
258     MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI);
259     if (isModSet(AA.getModRefInfo(Inst, LLoc)) ||
260         isModSet(AA.getModRefInfo(Inst, RLoc)))
261       return false;
262   }
263   // Make sure this instruction does not use any of the BCE cmp block
264   // instructions as operand.
265   for (auto BI : BlockInsts) {
266     if (is_contained(Inst->operands(), BI))
267       return false;
268   }
269   return true;
270 }
271 
272 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const {
273   DenseSet<Instruction *> BlockInsts(
274       {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
275   llvm::SmallVector<Instruction *, 4> OtherInsts;
276   for (Instruction &Inst : *BB) {
277     if (BlockInsts.count(&Inst))
278       continue;
279       assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) &&
280              "Split unsplittable block");
281     // This is a non-BCE-cmp-block instruction. And it can be separated
282     // from the BCE-cmp-block instruction.
283     OtherInsts.push_back(&Inst);
284   }
285 
286   // Do the actual spliting.
287   for (Instruction *Inst : reverse(OtherInsts)) {
288     Inst->moveBefore(&*NewParent->begin());
289   }
290 }
291 
292 bool BCECmpBlock::canSplit(AliasAnalysis &AA) const {
293   DenseSet<Instruction *> BlockInsts(
294       {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
295   for (Instruction &Inst : *BB) {
296     if (!BlockInsts.count(&Inst)) {
297       if (!canSinkBCECmpInst(&Inst, BlockInsts, AA))
298         return false;
299     }
300   }
301   return true;
302 }
303 
304 bool BCECmpBlock::doesOtherWork() const {
305   AssertConsistent();
306   // All the instructions we care about in the BCE cmp block.
307   DenseSet<Instruction *> BlockInsts(
308       {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
309   // TODO(courbet): Can we allow some other things ? This is very conservative.
310   // We might be able to get away with anything does not have any side
311   // effects outside of the basic block.
312   // Note: The GEPs and/or loads are not necessarily in the same block.
313   for (const Instruction &Inst : *BB) {
314     if (!BlockInsts.count(&Inst))
315       return true;
316   }
317   return false;
318 }
319 
320 // Visit the given comparison. If this is a comparison between two valid
321 // BCE atoms, returns the comparison.
322 BCECmpBlock visitICmp(const ICmpInst *const CmpI,
323                       const ICmpInst::Predicate ExpectedPredicate,
324                       BaseIdentifier &BaseId) {
325   // The comparison can only be used once:
326   //  - For intermediate blocks, as a branch condition.
327   //  - For the final block, as an incoming value for the Phi.
328   // If there are any other uses of the comparison, we cannot merge it with
329   // other comparisons as we would create an orphan use of the value.
330   if (!CmpI->hasOneUse()) {
331     LLVM_DEBUG(dbgs() << "cmp has several uses\n");
332     return {};
333   }
334   if (CmpI->getPredicate() != ExpectedPredicate)
335     return {};
336   LLVM_DEBUG(dbgs() << "cmp "
337                     << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
338                     << "\n");
339   auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId);
340   if (!Lhs.BaseId)
341     return {};
342   auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId);
343   if (!Rhs.BaseId)
344     return {};
345   const auto &DL = CmpI->getModule()->getDataLayout();
346   return BCECmpBlock(std::move(Lhs), std::move(Rhs),
347                      DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()));
348 }
349 
350 // Visit the given comparison block. If this is a comparison between two valid
351 // BCE atoms, returns the comparison.
352 BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
353                           const BasicBlock *const PhiBlock,
354                           BaseIdentifier &BaseId) {
355   if (Block->empty()) return {};
356   auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
357   if (!BranchI) return {};
358   LLVM_DEBUG(dbgs() << "branch\n");
359   if (BranchI->isUnconditional()) {
360     // In this case, we expect an incoming value which is the result of the
361     // comparison. This is the last link in the chain of comparisons (note
362     // that this does not mean that this is the last incoming value, blocks
363     // can be reordered).
364     auto *const CmpI = dyn_cast<ICmpInst>(Val);
365     if (!CmpI) return {};
366     LLVM_DEBUG(dbgs() << "icmp\n");
367     auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ, BaseId);
368     Result.CmpI = CmpI;
369     Result.BranchI = BranchI;
370     return Result;
371   } else {
372     // In this case, we expect a constant incoming value (the comparison is
373     // chained).
374     const auto *const Const = dyn_cast<ConstantInt>(Val);
375     LLVM_DEBUG(dbgs() << "const\n");
376     if (!Const->isZero()) return {};
377     LLVM_DEBUG(dbgs() << "false\n");
378     auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
379     if (!CmpI) return {};
380     LLVM_DEBUG(dbgs() << "icmp\n");
381     assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
382     BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
383     auto Result = visitICmp(
384         CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
385         BaseId);
386     Result.CmpI = CmpI;
387     Result.BranchI = BranchI;
388     return Result;
389   }
390   return {};
391 }
392 
393 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
394                                 BCECmpBlock &&Comparison) {
395   LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
396                     << "': Found cmp of " << Comparison.SizeBits()
397                     << " bits between " << Comparison.Lhs().BaseId << " + "
398                     << Comparison.Lhs().Offset << " and "
399                     << Comparison.Rhs().BaseId << " + "
400                     << Comparison.Rhs().Offset << "\n");
401   LLVM_DEBUG(dbgs() << "\n");
402   Comparisons.push_back(std::move(Comparison));
403 }
404 
405 // A chain of comparisons.
406 class BCECmpChain {
407  public:
408    BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
409                AliasAnalysis &AA);
410 
411    int size() const { return Comparisons_.size(); }
412 
413 #ifdef MERGEICMPS_DOT_ON
414   void dump() const;
415 #endif  // MERGEICMPS_DOT_ON
416 
417   bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
418                 DomTreeUpdater &DTU);
419 
420 private:
421   static bool IsContiguous(const BCECmpBlock &First,
422                            const BCECmpBlock &Second) {
423     return First.Lhs().BaseId == Second.Lhs().BaseId &&
424            First.Rhs().BaseId == Second.Rhs().BaseId &&
425            First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
426            First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
427   }
428 
429   PHINode &Phi_;
430   std::vector<BCECmpBlock> Comparisons_;
431   // The original entry block (before sorting);
432   BasicBlock *EntryBlock_;
433 };
434 
435 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
436                          AliasAnalysis &AA)
437     : Phi_(Phi) {
438   assert(!Blocks.empty() && "a chain should have at least one block");
439   // Now look inside blocks to check for BCE comparisons.
440   std::vector<BCECmpBlock> Comparisons;
441   BaseIdentifier BaseId;
442   for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) {
443     BasicBlock *const Block = Blocks[BlockIdx];
444     assert(Block && "invalid block");
445     BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
446                                            Block, Phi.getParent(), BaseId);
447     Comparison.BB = Block;
448     if (!Comparison.IsValid()) {
449       LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
450       return;
451     }
452     if (Comparison.doesOtherWork()) {
453       LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName()
454                         << "' does extra work besides compare\n");
455       if (Comparisons.empty()) {
456         // This is the initial block in the chain, in case this block does other
457         // work, we can try to split the block and move the irrelevant
458         // instructions to the predecessor.
459         //
460         // If this is not the initial block in the chain, splitting it wont
461         // work.
462         //
463         // As once split, there will still be instructions before the BCE cmp
464         // instructions that do other work in program order, i.e. within the
465         // chain before sorting. Unless we can abort the chain at this point
466         // and start anew.
467         //
468         // NOTE: we only handle blocks a with single predecessor for now.
469         if (Comparison.canSplit(AA)) {
470           LLVM_DEBUG(dbgs()
471                      << "Split initial block '" << Comparison.BB->getName()
472                      << "' that does extra work besides compare\n");
473           Comparison.RequireSplit = true;
474           enqueueBlock(Comparisons, std::move(Comparison));
475         } else {
476           LLVM_DEBUG(dbgs()
477                      << "ignoring initial block '" << Comparison.BB->getName()
478                      << "' that does extra work besides compare\n");
479         }
480         continue;
481       }
482       // TODO(courbet): Right now we abort the whole chain. We could be
483       // merging only the blocks that don't do other work and resume the
484       // chain from there. For example:
485       //  if (a[0] == b[0]) {  // bb1
486       //    if (a[1] == b[1]) {  // bb2
487       //      some_value = 3; //bb3
488       //      if (a[2] == b[2]) { //bb3
489       //        do a ton of stuff  //bb4
490       //      }
491       //    }
492       //  }
493       //
494       // This is:
495       //
496       // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
497       //  \            \           \               \
498       //   ne           ne          ne              \
499       //    \            \           \               v
500       //     +------------+-----------+----------> bb_phi
501       //
502       // We can only merge the first two comparisons, because bb3* does
503       // "other work" (setting some_value to 3).
504       // We could still merge bb1 and bb2 though.
505       return;
506     }
507     enqueueBlock(Comparisons, std::move(Comparison));
508   }
509 
510   // It is possible we have no suitable comparison to merge.
511   if (Comparisons.empty()) {
512     LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
513     return;
514   }
515   EntryBlock_ = Comparisons[0].BB;
516   Comparisons_ = std::move(Comparisons);
517 #ifdef MERGEICMPS_DOT_ON
518   errs() << "BEFORE REORDERING:\n\n";
519   dump();
520 #endif  // MERGEICMPS_DOT_ON
521   // Reorder blocks by LHS. We can do that without changing the
522   // semantics because we are only accessing dereferencable memory.
523   llvm::sort(Comparisons_,
524              [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) {
525                return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) <
526                       std::tie(RhsBlock.Lhs(), RhsBlock.Rhs());
527              });
528 #ifdef MERGEICMPS_DOT_ON
529   errs() << "AFTER REORDERING:\n\n";
530   dump();
531 #endif  // MERGEICMPS_DOT_ON
532 }
533 
534 #ifdef MERGEICMPS_DOT_ON
535 void BCECmpChain::dump() const {
536   errs() << "digraph dag {\n";
537   errs() << " graph [bgcolor=transparent];\n";
538   errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
539   errs() << " edge [color=black];\n";
540   for (size_t I = 0; I < Comparisons_.size(); ++I) {
541     const auto &Comparison = Comparisons_[I];
542     errs() << " \"" << I << "\" [label=\"%"
543            << Comparison.Lhs().Base()->getName() << " + "
544            << Comparison.Lhs().Offset << " == %"
545            << Comparison.Rhs().Base()->getName() << " + "
546            << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
547            << " bytes)\"];\n";
548     const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
549     if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
550     errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
551   }
552   errs() << " \"Phi\" [label=\"Phi\"];\n";
553   errs() << "}\n\n";
554 }
555 #endif  // MERGEICMPS_DOT_ON
556 
557 namespace {
558 
559 // A class to compute the name of a set of merged basic blocks.
560 // This is optimized for the common case of no block names.
561 class MergedBlockName {
562   // Storage for the uncommon case of several named blocks.
563   SmallString<16> Scratch;
564 
565 public:
566   explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons)
567       : Name(makeName(Comparisons)) {}
568   const StringRef Name;
569 
570 private:
571   StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) {
572     assert(!Comparisons.empty() && "no basic block");
573     // Fast path: only one block, or no names at all.
574     if (Comparisons.size() == 1)
575       return Comparisons[0].BB->getName();
576     const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
577                                      [](int i, const BCECmpBlock &Cmp) {
578                                        return i + Cmp.BB->getName().size();
579                                      });
580     if (size == 0)
581       return StringRef("", 0);
582 
583     // Slow path: at least two blocks, at least one block with a name.
584     Scratch.clear();
585     // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
586     // separators.
587     Scratch.reserve(size + Comparisons.size() - 1);
588     const auto append = [this](StringRef str) {
589       Scratch.append(str.begin(), str.end());
590     };
591     append(Comparisons[0].BB->getName());
592     for (int I = 1, E = Comparisons.size(); I < E; ++I) {
593       const BasicBlock *const BB = Comparisons[I].BB;
594       if (!BB->getName().empty()) {
595         append("+");
596         append(BB->getName());
597       }
598     }
599     return StringRef(Scratch);
600   }
601 };
602 } // namespace
603 
604 // Merges the given contiguous comparison blocks into one memcmp block.
605 static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
606                                     BasicBlock *const InsertBefore,
607                                     BasicBlock *const NextCmpBlock,
608                                     PHINode &Phi, const TargetLibraryInfo &TLI,
609                                     AliasAnalysis &AA, DomTreeUpdater &DTU) {
610   assert(!Comparisons.empty() && "merging zero comparisons");
611   LLVMContext &Context = NextCmpBlock->getContext();
612   const BCECmpBlock &FirstCmp = Comparisons[0];
613 
614   // Create a new cmp block before next cmp block.
615   BasicBlock *const BB =
616       BasicBlock::Create(Context, MergedBlockName(Comparisons).Name,
617                          NextCmpBlock->getParent(), InsertBefore);
618   IRBuilder<> Builder(BB);
619   // Add the GEPs from the first BCECmpBlock.
620   Value *const Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone());
621   Value *const Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone());
622 
623   Value *IsEqual = nullptr;
624   LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> "
625                     << BB->getName() << "\n");
626   if (Comparisons.size() == 1) {
627     LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
628     Value *const LhsLoad =
629         Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs);
630     Value *const RhsLoad =
631         Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs);
632     // There are no blocks to merge, just do the comparison.
633     IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
634   } else {
635     // If there is one block that requires splitting, we do it now, i.e.
636     // just before we know we will collapse the chain. The instructions
637     // can be executed before any of the instructions in the chain.
638     const auto ToSplit =
639         std::find_if(Comparisons.begin(), Comparisons.end(),
640                      [](const BCECmpBlock &B) { return B.RequireSplit; });
641     if (ToSplit != Comparisons.end()) {
642       LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
643       ToSplit->split(BB, AA);
644     }
645 
646     const unsigned TotalSizeBits = std::accumulate(
647         Comparisons.begin(), Comparisons.end(), 0u,
648         [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); });
649 
650     // Create memcmp() == 0.
651     const auto &DL = Phi.getModule()->getDataLayout();
652     Value *const MemCmpCall = emitMemCmp(
653         Lhs, Rhs,
654         ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder,
655         DL, &TLI);
656     IsEqual = Builder.CreateICmpEQ(
657         MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
658   }
659 
660   BasicBlock *const PhiBB = Phi.getParent();
661   // Add a branch to the next basic block in the chain.
662   if (NextCmpBlock == PhiBB) {
663     // Continue to phi, passing it the comparison result.
664     Builder.CreateBr(PhiBB);
665     Phi.addIncoming(IsEqual, BB);
666     DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}});
667   } else {
668     // Continue to next block if equal, exit to phi else.
669     Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB);
670     Phi.addIncoming(ConstantInt::getFalse(Context), BB);
671     DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock},
672                       {DominatorTree::Insert, BB, PhiBB}});
673   }
674   return BB;
675 }
676 
677 bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
678                            DomTreeUpdater &DTU) {
679   assert(Comparisons_.size() >= 2 && "simplifying trivial BCECmpChain");
680   // First pass to check if there is at least one merge. If not, we don't do
681   // anything and we keep analysis passes intact.
682   const auto AtLeastOneMerged = [this]() {
683     for (size_t I = 1; I < Comparisons_.size(); ++I) {
684       if (IsContiguous(Comparisons_[I - 1], Comparisons_[I]))
685         return true;
686     }
687     return false;
688   };
689   if (!AtLeastOneMerged())
690     return false;
691 
692   LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
693                     << EntryBlock_->getName() << "\n");
694 
695   // Effectively merge blocks. We go in the reverse direction from the phi block
696   // so that the next block is always available to branch to.
697   const auto mergeRange = [this, &TLI, &AA, &DTU](int I, int Num,
698                                                   BasicBlock *InsertBefore,
699                                                   BasicBlock *Next) {
700     return mergeComparisons(makeArrayRef(Comparisons_).slice(I, Num),
701                             InsertBefore, Next, Phi_, TLI, AA, DTU);
702   };
703   int NumMerged = 1;
704   BasicBlock *NextCmpBlock = Phi_.getParent();
705   for (int I = static_cast<int>(Comparisons_.size()) - 2; I >= 0; --I) {
706     if (IsContiguous(Comparisons_[I], Comparisons_[I + 1])) {
707       LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_[I].BB->getName()
708                         << " into " << Comparisons_[I + 1].BB->getName()
709                         << "\n");
710       ++NumMerged;
711     } else {
712       NextCmpBlock = mergeRange(I + 1, NumMerged, NextCmpBlock, NextCmpBlock);
713       NumMerged = 1;
714     }
715   }
716   // Insert the entry block for the new chain before the old entry block.
717   // If the old entry block was the function entry, this ensures that the new
718   // entry can become the function entry.
719   NextCmpBlock = mergeRange(0, NumMerged, EntryBlock_, NextCmpBlock);
720 
721   // Replace the original cmp chain with the new cmp chain by pointing all
722   // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
723   // blocks in the old chain unreachable.
724   while (!pred_empty(EntryBlock_)) {
725     BasicBlock* const Pred = *pred_begin(EntryBlock_);
726     LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName()
727                       << "\n");
728     Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock);
729     DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_},
730                       {DominatorTree::Insert, Pred, NextCmpBlock}});
731   }
732 
733   // If the old cmp chain was the function entry, we need to update the function
734   // entry.
735   const bool ChainEntryIsFnEntry =
736       (EntryBlock_ == &EntryBlock_->getParent()->getEntryBlock());
737   if (ChainEntryIsFnEntry && DTU.hasDomTree()) {
738     LLVM_DEBUG(dbgs() << "Changing function entry from "
739                       << EntryBlock_->getName() << " to "
740                       << NextCmpBlock->getName() << "\n");
741     DTU.getDomTree().setNewRoot(NextCmpBlock);
742     DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}});
743   }
744   EntryBlock_ = nullptr;
745 
746   // Delete merged blocks. This also removes incoming values in phi.
747   SmallVector<BasicBlock *, 16> DeadBlocks;
748   for (auto &Cmp : Comparisons_) {
749     LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp.BB->getName() << "\n");
750     DeadBlocks.push_back(Cmp.BB);
751   }
752   DeleteDeadBlocks(DeadBlocks, &DTU);
753 
754   Comparisons_.clear();
755   return true;
756 }
757 
758 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
759                                            BasicBlock *const LastBlock,
760                                            int NumBlocks) {
761   // Walk up from the last block to find other blocks.
762   std::vector<BasicBlock *> Blocks(NumBlocks);
763   assert(LastBlock && "invalid last block");
764   BasicBlock *CurBlock = LastBlock;
765   for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
766     if (CurBlock->hasAddressTaken()) {
767       // Somebody is jumping to the block through an address, all bets are
768       // off.
769       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
770                         << " has its address taken\n");
771       return {};
772     }
773     Blocks[BlockIndex] = CurBlock;
774     auto *SinglePredecessor = CurBlock->getSinglePredecessor();
775     if (!SinglePredecessor) {
776       // The block has two or more predecessors.
777       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
778                         << " has two or more predecessors\n");
779       return {};
780     }
781     if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
782       // The block does not link back to the phi.
783       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
784                         << " does not link back to the phi\n");
785       return {};
786     }
787     CurBlock = SinglePredecessor;
788   }
789   Blocks[0] = CurBlock;
790   return Blocks;
791 }
792 
793 bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA,
794                 DomTreeUpdater &DTU) {
795   LLVM_DEBUG(dbgs() << "processPhi()\n");
796   if (Phi.getNumIncomingValues() <= 1) {
797     LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
798     return false;
799   }
800   // We are looking for something that has the following structure:
801   //   bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
802   //     \            \           \               \
803   //      ne           ne          ne              \
804   //       \            \           \               v
805   //        +------------+-----------+----------> bb_phi
806   //
807   //  - The last basic block (bb4 here) must branch unconditionally to bb_phi.
808   //    It's the only block that contributes a non-constant value to the Phi.
809   //  - All other blocks (b1, b2, b3) must have exactly two successors, one of
810   //    them being the phi block.
811   //  - All intermediate blocks (bb2, bb3) must have only one predecessor.
812   //  - Blocks cannot do other work besides the comparison, see doesOtherWork()
813 
814   // The blocks are not necessarily ordered in the phi, so we start from the
815   // last block and reconstruct the order.
816   BasicBlock *LastBlock = nullptr;
817   for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
818     if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
819     if (LastBlock) {
820       // There are several non-constant values.
821       LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
822       return false;
823     }
824     if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
825         cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
826             Phi.getIncomingBlock(I)) {
827       // Non-constant incoming value is not from a cmp instruction or not
828       // produced by the last block. We could end up processing the value
829       // producing block more than once.
830       //
831       // This is an uncommon case, so we bail.
832       LLVM_DEBUG(
833           dbgs()
834           << "skip: non-constant value not from cmp or not from last block.\n");
835       return false;
836     }
837     LastBlock = Phi.getIncomingBlock(I);
838   }
839   if (!LastBlock) {
840     // There is no non-constant block.
841     LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
842     return false;
843   }
844   if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
845     LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
846     return false;
847   }
848 
849   const auto Blocks =
850       getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
851   if (Blocks.empty()) return false;
852   BCECmpChain CmpChain(Blocks, Phi, AA);
853 
854   if (CmpChain.size() < 2) {
855     LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
856     return false;
857   }
858 
859   return CmpChain.simplify(TLI, AA, DTU);
860 }
861 
862 static bool runImpl(Function &F, const TargetLibraryInfo &TLI,
863                     const TargetTransformInfo &TTI, AliasAnalysis &AA,
864                     DominatorTree *DT) {
865   LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n");
866 
867   // We only try merging comparisons if the target wants to expand memcmp later.
868   // The rationale is to avoid turning small chains into memcmp calls.
869   if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true))
870     return false;
871 
872   // If we don't have memcmp avaiable we can't emit calls to it.
873   if (!TLI.has(LibFunc_memcmp))
874     return false;
875 
876   DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr,
877                      DomTreeUpdater::UpdateStrategy::Eager);
878 
879   bool MadeChange = false;
880 
881   for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
882     // A Phi operation is always first in a basic block.
883     if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
884       MadeChange |= processPhi(*Phi, TLI, AA, DTU);
885   }
886 
887   return MadeChange;
888 }
889 
890 class MergeICmpsLegacyPass : public FunctionPass {
891 public:
892   static char ID;
893 
894   MergeICmpsLegacyPass() : FunctionPass(ID) {
895     initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
896   }
897 
898   bool runOnFunction(Function &F) override {
899     if (skipFunction(F)) return false;
900     const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
901     const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
902     // MergeICmps does not need the DominatorTree, but we update it if it's
903     // already available.
904     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
905     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
906     return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr);
907   }
908 
909  private:
910   void getAnalysisUsage(AnalysisUsage &AU) const override {
911     AU.addRequired<TargetLibraryInfoWrapperPass>();
912     AU.addRequired<TargetTransformInfoWrapperPass>();
913     AU.addRequired<AAResultsWrapperPass>();
914     AU.addPreserved<GlobalsAAWrapperPass>();
915     AU.addPreserved<DominatorTreeWrapperPass>();
916   }
917 };
918 
919 } // namespace
920 
921 char MergeICmpsLegacyPass::ID = 0;
922 INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps",
923                       "Merge contiguous icmps into a memcmp", false, false)
924 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
925 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
926 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
927 INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps",
928                     "Merge contiguous icmps into a memcmp", false, false)
929 
930 Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }
931 
932 PreservedAnalyses MergeICmpsPass::run(Function &F,
933                                       FunctionAnalysisManager &AM) {
934   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
935   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
936   auto &AA = AM.getResult<AAManager>(F);
937   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
938   const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT);
939   if (!MadeChanges)
940     return PreservedAnalyses::all();
941   PreservedAnalyses PA;
942   PA.preserve<GlobalsAA>();
943   PA.preserve<DominatorTreeAnalysis>();
944   return PA;
945 }
946