//===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass turns chains of integer comparisons into memcmp (the memcmp is // later typically inlined as a chain of efficient hardware comparisons). This // typically benefits c++ member or nonmember operator==(). // // The basic idea is to replace a longer chain of integer comparisons loaded // from contiguous memory locations into a shorter chain of larger integer // comparisons. Benefits are double: // - There are less jumps, and therefore less opportunities for mispredictions // and I-cache misses. // - Code size is smaller, both because jumps are removed and because the // encoding of a 2*n byte compare is smaller than that of two n-byte // compares. // // Example: // // struct S { // int a; // char b; // char c; // uint16_t d; // bool operator==(const S& o) const { // return a == o.a && b == o.b && c == o.c && d == o.d; // } // }; // // Is optimized as : // // bool S::operator==(const S& o) const { // return memcmp(this, &o, 8) == 0; // } // // Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/MergeICmps.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/Pass.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include #include #include #include using namespace llvm; namespace { #define DEBUG_TYPE "mergeicmps" // Returns true if the instruction is a simple load or a simple store static bool isSimpleLoadOrStore(const Instruction *I) { if (const LoadInst *LI = dyn_cast(I)) return LI->isSimple(); if (const StoreInst *SI = dyn_cast(I)) return SI->isSimple(); return false; } // A BCE atom "Binary Compare Expression Atom" represents an integer load // that is a constant offset from a base value, e.g. `a` or `o.c` in the example // at the top. struct BCEAtom { BCEAtom() = default; BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset) : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {} BCEAtom(const BCEAtom &) = delete; BCEAtom &operator=(const BCEAtom &) = delete; BCEAtom(BCEAtom &&that) = default; BCEAtom &operator=(BCEAtom &&that) { if (this == &that) return *this; GEP = that.GEP; LoadI = that.LoadI; BaseId = that.BaseId; Offset = std::move(that.Offset); return *this; } // We want to order BCEAtoms by (Base, Offset). However we cannot use // the pointer values for Base because these are non-deterministic. // To make sure that the sort order is stable, we first assign to each atom // base value an index based on its order of appearance in the chain of // comparisons. We call this index `BaseOrdering`. For example, for: // b[3] == c[2] && a[1] == d[1] && b[4] == c[3] // | block 1 | | block 2 | | block 3 | // b gets assigned index 0 and a index 1, because b appears as LHS in block 1, // which is before block 2. // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable. bool operator<(const BCEAtom &O) const { return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset); } GetElementPtrInst *GEP = nullptr; LoadInst *LoadI = nullptr; unsigned BaseId = 0; APInt Offset; }; // A class that assigns increasing ids to values in the order in which they are // seen. See comment in `BCEAtom::operator<()``. class BaseIdentifier { public: // Returns the id for value `Base`, after assigning one if `Base` has not been // seen before. int getBaseId(const Value *Base) { assert(Base && "invalid base"); const auto Insertion = BaseToIndex.try_emplace(Base, Order); if (Insertion.second) ++Order; return Insertion.first->second; } private: unsigned Order = 1; DenseMap BaseToIndex; }; // If this value is a load from a constant offset w.r.t. a base address, and // there are no other users of the load or address, returns the base address and // the offset. BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) { auto *const LoadI = dyn_cast(Val); if (!LoadI) return {}; LLVM_DEBUG(dbgs() << "load\n"); if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { LLVM_DEBUG(dbgs() << "used outside of block\n"); return {}; } // Do not optimize atomic loads to non-atomic memcmp if (!LoadI->isSimple()) { LLVM_DEBUG(dbgs() << "volatile or atomic\n"); return {}; } Value *const Addr = LoadI->getOperand(0); auto *const GEP = dyn_cast(Addr); if (!GEP) return {}; LLVM_DEBUG(dbgs() << "GEP\n"); if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) { LLVM_DEBUG(dbgs() << "used outside of block\n"); return {}; } const auto &DL = GEP->getModule()->getDataLayout(); if (!isDereferenceablePointer(GEP, LoadI->getType(), DL)) { LLVM_DEBUG(dbgs() << "not dereferenceable\n"); // We need to make sure that we can do comparison in any order, so we // require memory to be unconditionnally dereferencable. return {}; } APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0); if (!GEP->accumulateConstantOffset(DL, Offset)) return {}; return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()), Offset); } // A basic block with a comparison between two BCE atoms, e.g. `a == o.a` in the // example at the top. // The block might do extra work besides the atom comparison, in which case // doesOtherWork() returns true. Under some conditions, the block can be // split into the atom comparison part and the "other work" part // (see canSplit()). // Note: the terminology is misleading: the comparison is symmetric, so there // is no real {l/r}hs. What we want though is to have the same base on the // left (resp. right), so that we can detect consecutive loads. To ensure this // we put the smallest atom on the left. class BCECmpBlock { public: BCECmpBlock() {} BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits) : Lhs_(std::move(L)), Rhs_(std::move(R)), SizeBits_(SizeBits) { if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_); } bool IsValid() const { return Lhs_.BaseId != 0 && Rhs_.BaseId != 0; } // Assert the block is consistent: If valid, it should also have // non-null members besides Lhs_ and Rhs_. void AssertConsistent() const { if (IsValid()) { assert(BB); assert(CmpI); assert(BranchI); } } const BCEAtom &Lhs() const { return Lhs_; } const BCEAtom &Rhs() const { return Rhs_; } int SizeBits() const { return SizeBits_; } // Returns true if the block does other works besides comparison. bool doesOtherWork() const; // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp // instructions in the block. bool canSplit(AliasAnalysis &AA) const; // Return true if this all the relevant instructions in the BCE-cmp-block can // be sunk below this instruction. By doing this, we know we can separate the // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the // block. bool canSinkBCECmpInst(const Instruction *, DenseSet &, AliasAnalysis &AA) const; // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block // instructions. Split the old block and move all non-BCE-cmp-insts into the // new parent block. void split(BasicBlock *NewParent, AliasAnalysis &AA) const; // The basic block where this comparison happens. BasicBlock *BB = nullptr; // The ICMP for this comparison. ICmpInst *CmpI = nullptr; // The terminating branch. BranchInst *BranchI = nullptr; // The block requires splitting. bool RequireSplit = false; private: BCEAtom Lhs_; BCEAtom Rhs_; int SizeBits_ = 0; }; bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst, DenseSet &BlockInsts, AliasAnalysis &AA) const { // If this instruction has side effects and its in middle of the BCE cmp block // instructions, then bail for now. if (Inst->mayHaveSideEffects()) { // Bail if this is not a simple load or store if (!isSimpleLoadOrStore(Inst)) return false; // Disallow stores that might alias the BCE operands MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI); MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI); if (isModSet(AA.getModRefInfo(Inst, LLoc)) || isModSet(AA.getModRefInfo(Inst, RLoc))) return false; } // Make sure this instruction does not use any of the BCE cmp block // instructions as operand. for (auto BI : BlockInsts) { if (is_contained(Inst->operands(), BI)) return false; } return true; } void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const { DenseSet BlockInsts( {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); llvm::SmallVector OtherInsts; for (Instruction &Inst : *BB) { if (BlockInsts.count(&Inst)) continue; assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) && "Split unsplittable block"); // This is a non-BCE-cmp-block instruction. And it can be separated // from the BCE-cmp-block instruction. OtherInsts.push_back(&Inst); } // Do the actual spliting. for (Instruction *Inst : reverse(OtherInsts)) { Inst->moveBefore(&*NewParent->begin()); } } bool BCECmpBlock::canSplit(AliasAnalysis &AA) const { DenseSet BlockInsts( {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); for (Instruction &Inst : *BB) { if (!BlockInsts.count(&Inst)) { if (!canSinkBCECmpInst(&Inst, BlockInsts, AA)) return false; } } return true; } bool BCECmpBlock::doesOtherWork() const { AssertConsistent(); // All the instructions we care about in the BCE cmp block. DenseSet BlockInsts( {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); // TODO(courbet): Can we allow some other things ? This is very conservative. // We might be able to get away with anything does not have any side // effects outside of the basic block. // Note: The GEPs and/or loads are not necessarily in the same block. for (const Instruction &Inst : *BB) { if (!BlockInsts.count(&Inst)) return true; } return false; } // Visit the given comparison. If this is a comparison between two valid // BCE atoms, returns the comparison. BCECmpBlock visitICmp(const ICmpInst *const CmpI, const ICmpInst::Predicate ExpectedPredicate, BaseIdentifier &BaseId) { // The comparison can only be used once: // - For intermediate blocks, as a branch condition. // - For the final block, as an incoming value for the Phi. // If there are any other uses of the comparison, we cannot merge it with // other comparisons as we would create an orphan use of the value. if (!CmpI->hasOneUse()) { LLVM_DEBUG(dbgs() << "cmp has several uses\n"); return {}; } if (CmpI->getPredicate() != ExpectedPredicate) return {}; LLVM_DEBUG(dbgs() << "cmp " << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") << "\n"); auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId); if (!Lhs.BaseId) return {}; auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId); if (!Rhs.BaseId) return {}; const auto &DL = CmpI->getModule()->getDataLayout(); return BCECmpBlock(std::move(Lhs), std::move(Rhs), DL.getTypeSizeInBits(CmpI->getOperand(0)->getType())); } // Visit the given comparison block. If this is a comparison between two valid // BCE atoms, returns the comparison. BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block, const BasicBlock *const PhiBlock, BaseIdentifier &BaseId) { if (Block->empty()) return {}; auto *const BranchI = dyn_cast(Block->getTerminator()); if (!BranchI) return {}; LLVM_DEBUG(dbgs() << "branch\n"); if (BranchI->isUnconditional()) { // In this case, we expect an incoming value which is the result of the // comparison. This is the last link in the chain of comparisons (note // that this does not mean that this is the last incoming value, blocks // can be reordered). auto *const CmpI = dyn_cast(Val); if (!CmpI) return {}; LLVM_DEBUG(dbgs() << "icmp\n"); auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ, BaseId); Result.CmpI = CmpI; Result.BranchI = BranchI; return Result; } else { // In this case, we expect a constant incoming value (the comparison is // chained). const auto *const Const = dyn_cast(Val); LLVM_DEBUG(dbgs() << "const\n"); if (!Const->isZero()) return {}; LLVM_DEBUG(dbgs() << "false\n"); auto *const CmpI = dyn_cast(BranchI->getCondition()); if (!CmpI) return {}; LLVM_DEBUG(dbgs() << "icmp\n"); assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); BasicBlock *const FalseBlock = BranchI->getSuccessor(1); auto Result = visitICmp( CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, BaseId); Result.CmpI = CmpI; Result.BranchI = BranchI; return Result; } return {}; } static inline void enqueueBlock(std::vector &Comparisons, BCECmpBlock &&Comparison) { LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName() << "': Found cmp of " << Comparison.SizeBits() << " bits between " << Comparison.Lhs().BaseId << " + " << Comparison.Lhs().Offset << " and " << Comparison.Rhs().BaseId << " + " << Comparison.Rhs().Offset << "\n"); LLVM_DEBUG(dbgs() << "\n"); Comparisons.push_back(std::move(Comparison)); } // A chain of comparisons. class BCECmpChain { public: BCECmpChain(const std::vector &Blocks, PHINode &Phi, AliasAnalysis &AA); int size() const { return Comparisons_.size(); } #ifdef MERGEICMPS_DOT_ON void dump() const; #endif // MERGEICMPS_DOT_ON bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA, DomTreeUpdater &DTU); private: static bool IsContiguous(const BCECmpBlock &First, const BCECmpBlock &Second) { return First.Lhs().BaseId == Second.Lhs().BaseId && First.Rhs().BaseId == Second.Rhs().BaseId && First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; } PHINode &Phi_; std::vector Comparisons_; // The original entry block (before sorting); BasicBlock *EntryBlock_; }; BCECmpChain::BCECmpChain(const std::vector &Blocks, PHINode &Phi, AliasAnalysis &AA) : Phi_(Phi) { assert(!Blocks.empty() && "a chain should have at least one block"); // Now look inside blocks to check for BCE comparisons. std::vector Comparisons; BaseIdentifier BaseId; for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) { BasicBlock *const Block = Blocks[BlockIdx]; assert(Block && "invalid block"); BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block), Block, Phi.getParent(), BaseId); Comparison.BB = Block; if (!Comparison.IsValid()) { LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n"); return; } if (Comparison.doesOtherWork()) { LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName() << "' does extra work besides compare\n"); if (Comparisons.empty()) { // This is the initial block in the chain, in case this block does other // work, we can try to split the block and move the irrelevant // instructions to the predecessor. // // If this is not the initial block in the chain, splitting it wont // work. // // As once split, there will still be instructions before the BCE cmp // instructions that do other work in program order, i.e. within the // chain before sorting. Unless we can abort the chain at this point // and start anew. // // NOTE: we only handle blocks a with single predecessor for now. if (Comparison.canSplit(AA)) { LLVM_DEBUG(dbgs() << "Split initial block '" << Comparison.BB->getName() << "' that does extra work besides compare\n"); Comparison.RequireSplit = true; enqueueBlock(Comparisons, std::move(Comparison)); } else { LLVM_DEBUG(dbgs() << "ignoring initial block '" << Comparison.BB->getName() << "' that does extra work besides compare\n"); } continue; } // TODO(courbet): Right now we abort the whole chain. We could be // merging only the blocks that don't do other work and resume the // chain from there. For example: // if (a[0] == b[0]) { // bb1 // if (a[1] == b[1]) { // bb2 // some_value = 3; //bb3 // if (a[2] == b[2]) { //bb3 // do a ton of stuff //bb4 // } // } // } // // This is: // // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ // \ \ \ \ // ne ne ne \ // \ \ \ v // +------------+-----------+----------> bb_phi // // We can only merge the first two comparisons, because bb3* does // "other work" (setting some_value to 3). // We could still merge bb1 and bb2 though. return; } enqueueBlock(Comparisons, std::move(Comparison)); } // It is possible we have no suitable comparison to merge. if (Comparisons.empty()) { LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n"); return; } EntryBlock_ = Comparisons[0].BB; Comparisons_ = std::move(Comparisons); #ifdef MERGEICMPS_DOT_ON errs() << "BEFORE REORDERING:\n\n"; dump(); #endif // MERGEICMPS_DOT_ON // Reorder blocks by LHS. We can do that without changing the // semantics because we are only accessing dereferencable memory. llvm::sort(Comparisons_, [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) { return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) < std::tie(RhsBlock.Lhs(), RhsBlock.Rhs()); }); #ifdef MERGEICMPS_DOT_ON errs() << "AFTER REORDERING:\n\n"; dump(); #endif // MERGEICMPS_DOT_ON } #ifdef MERGEICMPS_DOT_ON void BCECmpChain::dump() const { errs() << "digraph dag {\n"; errs() << " graph [bgcolor=transparent];\n"; errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n"; errs() << " edge [color=black];\n"; for (size_t I = 0; I < Comparisons_.size(); ++I) { const auto &Comparison = Comparisons_[I]; errs() << " \"" << I << "\" [label=\"%" << Comparison.Lhs().Base()->getName() << " + " << Comparison.Lhs().Offset << " == %" << Comparison.Rhs().Base()->getName() << " + " << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8) << " bytes)\"];\n"; const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB); if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n"; errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n"; } errs() << " \"Phi\" [label=\"Phi\"];\n"; errs() << "}\n\n"; } #endif // MERGEICMPS_DOT_ON namespace { // A class to compute the name of a set of merged basic blocks. // This is optimized for the common case of no block names. class MergedBlockName { // Storage for the uncommon case of several named blocks. SmallString<16> Scratch; public: explicit MergedBlockName(ArrayRef Comparisons) : Name(makeName(Comparisons)) {} const StringRef Name; private: StringRef makeName(ArrayRef Comparisons) { assert(!Comparisons.empty() && "no basic block"); // Fast path: only one block, or no names at all. if (Comparisons.size() == 1) return Comparisons[0].BB->getName(); const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0, [](int i, const BCECmpBlock &Cmp) { return i + Cmp.BB->getName().size(); }); if (size == 0) return StringRef("", 0); // Slow path: at least two blocks, at least one block with a name. Scratch.clear(); // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for // separators. Scratch.reserve(size + Comparisons.size() - 1); const auto append = [this](StringRef str) { Scratch.append(str.begin(), str.end()); }; append(Comparisons[0].BB->getName()); for (int I = 1, E = Comparisons.size(); I < E; ++I) { const BasicBlock *const BB = Comparisons[I].BB; if (!BB->getName().empty()) { append("+"); append(BB->getName()); } } return StringRef(Scratch); } }; } // namespace // Merges the given contiguous comparison blocks into one memcmp block. static BasicBlock *mergeComparisons(ArrayRef Comparisons, BasicBlock *const InsertBefore, BasicBlock *const NextCmpBlock, PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA, DomTreeUpdater &DTU) { assert(!Comparisons.empty() && "merging zero comparisons"); LLVMContext &Context = NextCmpBlock->getContext(); const BCECmpBlock &FirstCmp = Comparisons[0]; // Create a new cmp block before next cmp block. BasicBlock *const BB = BasicBlock::Create(Context, MergedBlockName(Comparisons).Name, NextCmpBlock->getParent(), InsertBefore); IRBuilder<> Builder(BB); // Add the GEPs from the first BCECmpBlock. Value *const Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone()); Value *const Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone()); Value *IsEqual = nullptr; LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> " << BB->getName() << "\n"); if (Comparisons.size() == 1) { LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n"); Value *const LhsLoad = Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs); Value *const RhsLoad = Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs); // There are no blocks to merge, just do the comparison. IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad); } else { // If there is one block that requires splitting, we do it now, i.e. // just before we know we will collapse the chain. The instructions // can be executed before any of the instructions in the chain. const auto ToSplit = std::find_if(Comparisons.begin(), Comparisons.end(), [](const BCECmpBlock &B) { return B.RequireSplit; }); if (ToSplit != Comparisons.end()) { LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n"); ToSplit->split(BB, AA); } const unsigned TotalSizeBits = std::accumulate( Comparisons.begin(), Comparisons.end(), 0u, [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); }); // Create memcmp() == 0. const auto &DL = Phi.getModule()->getDataLayout(); Value *const MemCmpCall = emitMemCmp( Lhs, Rhs, ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder, DL, &TLI); IsEqual = Builder.CreateICmpEQ( MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0)); } BasicBlock *const PhiBB = Phi.getParent(); // Add a branch to the next basic block in the chain. if (NextCmpBlock == PhiBB) { // Continue to phi, passing it the comparison result. Builder.CreateBr(PhiBB); Phi.addIncoming(IsEqual, BB); DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}}); } else { // Continue to next block if equal, exit to phi else. Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB); Phi.addIncoming(ConstantInt::getFalse(Context), BB); DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock}, {DominatorTree::Insert, BB, PhiBB}}); } return BB; } bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA, DomTreeUpdater &DTU) { assert(Comparisons_.size() >= 2 && "simplifying trivial BCECmpChain"); // First pass to check if there is at least one merge. If not, we don't do // anything and we keep analysis passes intact. const auto AtLeastOneMerged = [this]() { for (size_t I = 1; I < Comparisons_.size(); ++I) { if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) return true; } return false; }; if (!AtLeastOneMerged()) return false; LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block " << EntryBlock_->getName() << "\n"); // Effectively merge blocks. We go in the reverse direction from the phi block // so that the next block is always available to branch to. const auto mergeRange = [this, &TLI, &AA, &DTU](int I, int Num, BasicBlock *InsertBefore, BasicBlock *Next) { return mergeComparisons(makeArrayRef(Comparisons_).slice(I, Num), InsertBefore, Next, Phi_, TLI, AA, DTU); }; int NumMerged = 1; BasicBlock *NextCmpBlock = Phi_.getParent(); for (int I = static_cast(Comparisons_.size()) - 2; I >= 0; --I) { if (IsContiguous(Comparisons_[I], Comparisons_[I + 1])) { LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_[I].BB->getName() << " into " << Comparisons_[I + 1].BB->getName() << "\n"); ++NumMerged; } else { NextCmpBlock = mergeRange(I + 1, NumMerged, NextCmpBlock, NextCmpBlock); NumMerged = 1; } } // Insert the entry block for the new chain before the old entry block. // If the old entry block was the function entry, this ensures that the new // entry can become the function entry. NextCmpBlock = mergeRange(0, NumMerged, EntryBlock_, NextCmpBlock); // Replace the original cmp chain with the new cmp chain by pointing all // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp // blocks in the old chain unreachable. while (!pred_empty(EntryBlock_)) { BasicBlock* const Pred = *pred_begin(EntryBlock_); LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName() << "\n"); Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock); DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_}, {DominatorTree::Insert, Pred, NextCmpBlock}}); } // If the old cmp chain was the function entry, we need to update the function // entry. const bool ChainEntryIsFnEntry = (EntryBlock_ == &EntryBlock_->getParent()->getEntryBlock()); if (ChainEntryIsFnEntry && DTU.hasDomTree()) { LLVM_DEBUG(dbgs() << "Changing function entry from " << EntryBlock_->getName() << " to " << NextCmpBlock->getName() << "\n"); DTU.getDomTree().setNewRoot(NextCmpBlock); DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}}); } EntryBlock_ = nullptr; // Delete merged blocks. This also removes incoming values in phi. SmallVector DeadBlocks; for (auto &Cmp : Comparisons_) { LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp.BB->getName() << "\n"); DeadBlocks.push_back(Cmp.BB); } DeleteDeadBlocks(DeadBlocks, &DTU); Comparisons_.clear(); return true; } std::vector getOrderedBlocks(PHINode &Phi, BasicBlock *const LastBlock, int NumBlocks) { // Walk up from the last block to find other blocks. std::vector Blocks(NumBlocks); assert(LastBlock && "invalid last block"); BasicBlock *CurBlock = LastBlock; for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { if (CurBlock->hasAddressTaken()) { // Somebody is jumping to the block through an address, all bets are // off. LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex << " has its address taken\n"); return {}; } Blocks[BlockIndex] = CurBlock; auto *SinglePredecessor = CurBlock->getSinglePredecessor(); if (!SinglePredecessor) { // The block has two or more predecessors. LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex << " has two or more predecessors\n"); return {}; } if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { // The block does not link back to the phi. LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex << " does not link back to the phi\n"); return {}; } CurBlock = SinglePredecessor; } Blocks[0] = CurBlock; return Blocks; } bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA, DomTreeUpdater &DTU) { LLVM_DEBUG(dbgs() << "processPhi()\n"); if (Phi.getNumIncomingValues() <= 1) { LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n"); return false; } // We are looking for something that has the following structure: // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ // \ \ \ \ // ne ne ne \ // \ \ \ v // +------------+-----------+----------> bb_phi // // - The last basic block (bb4 here) must branch unconditionally to bb_phi. // It's the only block that contributes a non-constant value to the Phi. // - All other blocks (b1, b2, b3) must have exactly two successors, one of // them being the phi block. // - All intermediate blocks (bb2, bb3) must have only one predecessor. // - Blocks cannot do other work besides the comparison, see doesOtherWork() // The blocks are not necessarily ordered in the phi, so we start from the // last block and reconstruct the order. BasicBlock *LastBlock = nullptr; for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { if (isa(Phi.getIncomingValue(I))) continue; if (LastBlock) { // There are several non-constant values. LLVM_DEBUG(dbgs() << "skip: several non-constant values\n"); return false; } if (!isa(Phi.getIncomingValue(I)) || cast(Phi.getIncomingValue(I))->getParent() != Phi.getIncomingBlock(I)) { // Non-constant incoming value is not from a cmp instruction or not // produced by the last block. We could end up processing the value // producing block more than once. // // This is an uncommon case, so we bail. LLVM_DEBUG( dbgs() << "skip: non-constant value not from cmp or not from last block.\n"); return false; } LastBlock = Phi.getIncomingBlock(I); } if (!LastBlock) { // There is no non-constant block. LLVM_DEBUG(dbgs() << "skip: no non-constant block\n"); return false; } if (LastBlock->getSingleSuccessor() != Phi.getParent()) { LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n"); return false; } const auto Blocks = getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); if (Blocks.empty()) return false; BCECmpChain CmpChain(Blocks, Phi, AA); if (CmpChain.size() < 2) { LLVM_DEBUG(dbgs() << "skip: only one compare block\n"); return false; } return CmpChain.simplify(TLI, AA, DTU); } static bool runImpl(Function &F, const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI, AliasAnalysis &AA, DominatorTree *DT) { LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n"); // We only try merging comparisons if the target wants to expand memcmp later. // The rationale is to avoid turning small chains into memcmp calls. if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true)) return false; // If we don't have memcmp avaiable we can't emit calls to it. if (!TLI.has(LibFunc_memcmp)) return false; DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr, DomTreeUpdater::UpdateStrategy::Eager); bool MadeChange = false; for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) { // A Phi operation is always first in a basic block. if (auto *const Phi = dyn_cast(&*BBIt->begin())) MadeChange |= processPhi(*Phi, TLI, AA, DTU); } return MadeChange; } class MergeICmpsLegacyPass : public FunctionPass { public: static char ID; MergeICmpsLegacyPass() : FunctionPass(ID) { initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; const auto &TLI = getAnalysis().getTLI(); const auto &TTI = getAnalysis().getTTI(F); // MergeICmps does not need the DominatorTree, but we update it if it's // already available. auto *DTWP = getAnalysisIfAvailable(); auto &AA = getAnalysis().getAAResults(); return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr); } private: void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } }; } // namespace char MergeICmpsLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps", "Merge contiguous icmps into a memcmp", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps", "Merge contiguous icmps into a memcmp", false, false) Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); } PreservedAnalyses MergeICmpsPass::run(Function &F, FunctionAnalysisManager &AM) { auto &TLI = AM.getResult(F); auto &TTI = AM.getResult(F); auto &AA = AM.getResult(F); auto *DT = AM.getCachedResult(F); const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT); if (!MadeChanges) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); return PA; }