xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/DependenceAnalysis.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/MemorySSA.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Transforms/Scalar/LoopPassManager.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/LoopUtils.h"
35 #include <optional>
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "loop-simplifycfg"
39 
40 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
41                                        cl::init(true));
42 
43 STATISTIC(NumTerminatorsFolded,
44           "Number of terminators folded to unconditional branches");
45 STATISTIC(NumLoopBlocksDeleted,
46           "Number of loop blocks deleted");
47 STATISTIC(NumLoopExitsDeleted,
48           "Number of loop exiting edges deleted");
49 
50 /// If \p BB is a switch or a conditional branch, but only one of its successors
51 /// can be reached from this block in runtime, return this successor. Otherwise,
52 /// return nullptr.
53 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
54   Instruction *TI = BB->getTerminator();
55   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
56     if (BI->isUnconditional())
57       return nullptr;
58     if (BI->getSuccessor(0) == BI->getSuccessor(1))
59       return BI->getSuccessor(0);
60     ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
61     if (!Cond)
62       return nullptr;
63     return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
64   }
65 
66   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
67     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
68     if (!CI)
69       return nullptr;
70     for (auto Case : SI->cases())
71       if (Case.getCaseValue() == CI)
72         return Case.getCaseSuccessor();
73     return SI->getDefaultDest();
74   }
75 
76   return nullptr;
77 }
78 
79 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
80 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
81                                  Loop *LastLoop = nullptr) {
82   assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
83          "First loop is supposed to be inside of last loop!");
84   assert(FirstLoop->contains(BB) && "Must be a loop block!");
85   for (Loop *Current = FirstLoop; Current != LastLoop;
86        Current = Current->getParentLoop())
87     Current->removeBlockFromLoop(BB);
88 }
89 
90 /// Find innermost loop that contains at least one block from \p BBs and
91 /// contains the header of loop \p L.
92 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
93                                  Loop &L, LoopInfo &LI) {
94   Loop *Innermost = nullptr;
95   for (BasicBlock *BB : BBs) {
96     Loop *BBL = LI.getLoopFor(BB);
97     while (BBL && !BBL->contains(L.getHeader()))
98       BBL = BBL->getParentLoop();
99     if (BBL == &L)
100       BBL = BBL->getParentLoop();
101     if (!BBL)
102       continue;
103     if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
104       Innermost = BBL;
105   }
106   return Innermost;
107 }
108 
109 namespace {
110 /// Helper class that can turn branches and switches with constant conditions
111 /// into unconditional branches.
112 class ConstantTerminatorFoldingImpl {
113 private:
114   Loop &L;
115   LoopInfo &LI;
116   DominatorTree &DT;
117   ScalarEvolution &SE;
118   MemorySSAUpdater *MSSAU;
119   LoopBlocksDFS DFS;
120   DomTreeUpdater DTU;
121   SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
122 
123   // Whether or not the current loop has irreducible CFG.
124   bool HasIrreducibleCFG = false;
125   // Whether or not the current loop will still exist after terminator constant
126   // folding will be done. In theory, there are two ways how it can happen:
127   // 1. Loop's latch(es) become unreachable from loop header;
128   // 2. Loop's header becomes unreachable from method entry.
129   // In practice, the second situation is impossible because we only modify the
130   // current loop and its preheader and do not affect preheader's reachibility
131   // from any other block. So this variable set to true means that loop's latch
132   // has become unreachable from loop header.
133   bool DeleteCurrentLoop = false;
134 
135   // The blocks of the original loop that will still be reachable from entry
136   // after the constant folding.
137   SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
138   // The blocks of the original loop that will become unreachable from entry
139   // after the constant folding.
140   SmallVector<BasicBlock *, 8> DeadLoopBlocks;
141   // The exits of the original loop that will still be reachable from entry
142   // after the constant folding.
143   SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
144   // The exits of the original loop that will become unreachable from entry
145   // after the constant folding.
146   SmallVector<BasicBlock *, 8> DeadExitBlocks;
147   // The blocks that will still be a part of the current loop after folding.
148   SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
149   // The blocks that have terminators with constant condition that can be
150   // folded. Note: fold candidates should be in L but not in any of its
151   // subloops to avoid complex LI updates.
152   SmallVector<BasicBlock *, 8> FoldCandidates;
153 
154   void dump() const {
155     dbgs() << "Constant terminator folding for loop " << L << "\n";
156     dbgs() << "After terminator constant-folding, the loop will";
157     if (!DeleteCurrentLoop)
158       dbgs() << " not";
159     dbgs() << " be destroyed\n";
160     auto PrintOutVector = [&](const char *Message,
161                            const SmallVectorImpl<BasicBlock *> &S) {
162       dbgs() << Message << "\n";
163       for (const BasicBlock *BB : S)
164         dbgs() << "\t" << BB->getName() << "\n";
165     };
166     auto PrintOutSet = [&](const char *Message,
167                            const SmallPtrSetImpl<BasicBlock *> &S) {
168       dbgs() << Message << "\n";
169       for (const BasicBlock *BB : S)
170         dbgs() << "\t" << BB->getName() << "\n";
171     };
172     PrintOutVector("Blocks in which we can constant-fold terminator:",
173                    FoldCandidates);
174     PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
175     PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
176     PrintOutSet("Live exit blocks:", LiveExitBlocks);
177     PrintOutVector("Dead exit blocks:", DeadExitBlocks);
178     if (!DeleteCurrentLoop)
179       PrintOutSet("The following blocks will still be part of the loop:",
180                   BlocksInLoopAfterFolding);
181   }
182 
183   /// Whether or not the current loop has irreducible CFG.
184   bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
185     assert(DFS.isComplete() && "DFS is expected to be finished");
186     // Index of a basic block in RPO traversal.
187     DenseMap<const BasicBlock *, unsigned> RPO;
188     unsigned Current = 0;
189     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
190       RPO[*I] = Current++;
191 
192     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
193       BasicBlock *BB = *I;
194       for (auto *Succ : successors(BB))
195         if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
196           // If an edge goes from a block with greater order number into a block
197           // with lesses number, and it is not a loop backedge, then it can only
198           // be a part of irreducible non-loop cycle.
199           return true;
200     }
201     return false;
202   }
203 
204   /// Fill all information about status of blocks and exits of the current loop
205   /// if constant folding of all branches will be done.
206   void analyze() {
207     DFS.perform(&LI);
208     assert(DFS.isComplete() && "DFS is expected to be finished");
209 
210     // TODO: The algorithm below relies on both RPO and Postorder traversals.
211     // When the loop has only reducible CFG inside, then the invariant "all
212     // predecessors of X are processed before X in RPO" is preserved. However
213     // an irreducible loop can break this invariant (e.g. latch does not have to
214     // be the last block in the traversal in this case, and the algorithm relies
215     // on this). We can later decide to support such cases by altering the
216     // algorithms, but so far we just give up analyzing them.
217     if (hasIrreducibleCFG(DFS)) {
218       HasIrreducibleCFG = true;
219       return;
220     }
221 
222     // Collect live and dead loop blocks and exits.
223     LiveLoopBlocks.insert(L.getHeader());
224     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
225       BasicBlock *BB = *I;
226 
227       // If a loop block wasn't marked as live so far, then it's dead.
228       if (!LiveLoopBlocks.count(BB)) {
229         DeadLoopBlocks.push_back(BB);
230         continue;
231       }
232 
233       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
234 
235       // If a block has only one live successor, it's a candidate on constant
236       // folding. Only handle blocks from current loop: branches in child loops
237       // are skipped because if they can be folded, they should be folded during
238       // the processing of child loops.
239       bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
240       if (TakeFoldCandidate)
241         FoldCandidates.push_back(BB);
242 
243       // Handle successors.
244       for (BasicBlock *Succ : successors(BB))
245         if (!TakeFoldCandidate || TheOnlySucc == Succ) {
246           if (L.contains(Succ))
247             LiveLoopBlocks.insert(Succ);
248           else
249             LiveExitBlocks.insert(Succ);
250         }
251     }
252 
253     // Amount of dead and live loop blocks should match the total number of
254     // blocks in loop.
255     assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
256            "Malformed block sets?");
257 
258     // Now, all exit blocks that are not marked as live are dead, if all their
259     // predecessors are in the loop. This may not be the case, as the input loop
260     // may not by in loop-simplify/canonical form.
261     SmallVector<BasicBlock *, 8> ExitBlocks;
262     L.getExitBlocks(ExitBlocks);
263     SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
264     for (auto *ExitBlock : ExitBlocks)
265       if (!LiveExitBlocks.count(ExitBlock) &&
266           UniqueDeadExits.insert(ExitBlock).second &&
267           all_of(predecessors(ExitBlock),
268                  [this](BasicBlock *Pred) { return L.contains(Pred); }))
269         DeadExitBlocks.push_back(ExitBlock);
270 
271     // Whether or not the edge From->To will still be present in graph after the
272     // folding.
273     auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
274       if (!LiveLoopBlocks.count(From))
275         return false;
276       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
277       return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
278     };
279 
280     // The loop will not be destroyed if its latch is live.
281     DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
282 
283     // If we are going to delete the current loop completely, no extra analysis
284     // is needed.
285     if (DeleteCurrentLoop)
286       return;
287 
288     // Otherwise, we should check which blocks will still be a part of the
289     // current loop after the transform.
290     BlocksInLoopAfterFolding.insert(L.getLoopLatch());
291     // If the loop is live, then we should compute what blocks are still in
292     // loop after all branch folding has been done. A block is in loop if
293     // it has a live edge to another block that is in the loop; by definition,
294     // latch is in the loop.
295     auto BlockIsInLoop = [&](BasicBlock *BB) {
296       return any_of(successors(BB), [&](BasicBlock *Succ) {
297         return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
298       });
299     };
300     for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
301       BasicBlock *BB = *I;
302       if (BlockIsInLoop(BB))
303         BlocksInLoopAfterFolding.insert(BB);
304     }
305 
306     assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
307            "Header not in loop?");
308     assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
309            "All blocks that stay in loop should be live!");
310   }
311 
312   /// We need to preserve static reachibility of all loop exit blocks (this is)
313   /// required by loop pass manager. In order to do it, we make the following
314   /// trick:
315   ///
316   ///  preheader:
317   ///    <preheader code>
318   ///    br label %loop_header
319   ///
320   ///  loop_header:
321   ///    ...
322   ///    br i1 false, label %dead_exit, label %loop_block
323   ///    ...
324   ///
325   /// We cannot simply remove edge from the loop to dead exit because in this
326   /// case dead_exit (and its successors) may become unreachable. To avoid that,
327   /// we insert the following fictive preheader:
328   ///
329   ///  preheader:
330   ///    <preheader code>
331   ///    switch i32 0, label %preheader-split,
332   ///                  [i32 1, label %dead_exit_1],
333   ///                  [i32 2, label %dead_exit_2],
334   ///                  ...
335   ///                  [i32 N, label %dead_exit_N],
336   ///
337   ///  preheader-split:
338   ///    br label %loop_header
339   ///
340   ///  loop_header:
341   ///    ...
342   ///    br i1 false, label %dead_exit_N, label %loop_block
343   ///    ...
344   ///
345   /// Doing so, we preserve static reachibility of all dead exits and can later
346   /// remove edges from the loop to these blocks.
347   void handleDeadExits() {
348     // If no dead exits, nothing to do.
349     if (DeadExitBlocks.empty())
350       return;
351 
352     // Construct split preheader and the dummy switch to thread edges from it to
353     // dead exits.
354     BasicBlock *Preheader = L.getLoopPreheader();
355     BasicBlock *NewPreheader = llvm::SplitBlock(
356         Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
357 
358     IRBuilder<> Builder(Preheader->getTerminator());
359     SwitchInst *DummySwitch =
360         Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
361     Preheader->getTerminator()->eraseFromParent();
362 
363     unsigned DummyIdx = 1;
364     for (BasicBlock *BB : DeadExitBlocks) {
365       // Eliminate all Phis and LandingPads from dead exits.
366       // TODO: Consider removing all instructions in this dead block.
367       SmallVector<Instruction *, 4> DeadInstructions;
368       for (auto &PN : BB->phis())
369         DeadInstructions.push_back(&PN);
370 
371       if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
372         DeadInstructions.emplace_back(LandingPad);
373 
374       for (Instruction *I : DeadInstructions) {
375         SE.forgetBlockAndLoopDispositions(I);
376         I->replaceAllUsesWith(PoisonValue::get(I->getType()));
377         I->eraseFromParent();
378       }
379 
380       assert(DummyIdx != 0 && "Too many dead exits!");
381       DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
382       DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
383       ++NumLoopExitsDeleted;
384     }
385 
386     assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
387     if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
388       // When we break dead edges, the outer loop may become unreachable from
389       // the current loop. We need to fix loop info accordingly. For this, we
390       // find the most nested loop that still contains L and remove L from all
391       // loops that are inside of it.
392       Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
393 
394       // Okay, our loop is no longer in the outer loop (and maybe not in some of
395       // its parents as well). Make the fixup.
396       if (StillReachable != OuterLoop) {
397         LI.changeLoopFor(NewPreheader, StillReachable);
398         removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
399         for (auto *BB : L.blocks())
400           removeBlockFromLoops(BB, OuterLoop, StillReachable);
401         OuterLoop->removeChildLoop(&L);
402         if (StillReachable)
403           StillReachable->addChildLoop(&L);
404         else
405           LI.addTopLevelLoop(&L);
406 
407         // Some values from loops in [OuterLoop, StillReachable) could be used
408         // in the current loop. Now it is not their child anymore, so such uses
409         // require LCSSA Phis.
410         Loop *FixLCSSALoop = OuterLoop;
411         while (FixLCSSALoop->getParentLoop() != StillReachable)
412           FixLCSSALoop = FixLCSSALoop->getParentLoop();
413         assert(FixLCSSALoop && "Should be a loop!");
414         // We need all DT updates to be done before forming LCSSA.
415         if (MSSAU)
416           MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
417         else
418           DTU.applyUpdates(DTUpdates);
419         DTUpdates.clear();
420         formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
421         SE.forgetBlockAndLoopDispositions();
422       }
423     }
424 
425     if (MSSAU) {
426       // Clear all updates now. Facilitates deletes that follow.
427       MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
428       DTUpdates.clear();
429       if (VerifyMemorySSA)
430         MSSAU->getMemorySSA()->verifyMemorySSA();
431     }
432   }
433 
434   /// Delete loop blocks that have become unreachable after folding. Make all
435   /// relevant updates to DT and LI.
436   void deleteDeadLoopBlocks() {
437     if (MSSAU) {
438       SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
439                                                         DeadLoopBlocks.end());
440       MSSAU->removeBlocks(DeadLoopBlocksSet);
441     }
442 
443     // The function LI.erase has some invariants that need to be preserved when
444     // it tries to remove a loop which is not the top-level loop. In particular,
445     // it requires loop's preheader to be strictly in loop's parent. We cannot
446     // just remove blocks one by one, because after removal of preheader we may
447     // break this invariant for the dead loop. So we detatch and erase all dead
448     // loops beforehand.
449     for (auto *BB : DeadLoopBlocks)
450       if (LI.isLoopHeader(BB)) {
451         assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
452         Loop *DL = LI.getLoopFor(BB);
453         if (!DL->isOutermost()) {
454           for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
455             for (auto *BB : DL->getBlocks())
456               PL->removeBlockFromLoop(BB);
457           DL->getParentLoop()->removeChildLoop(DL);
458           LI.addTopLevelLoop(DL);
459         }
460         LI.erase(DL);
461       }
462 
463     for (auto *BB : DeadLoopBlocks) {
464       assert(BB != L.getHeader() &&
465              "Header of the current loop cannot be dead!");
466       LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
467                         << "\n");
468       LI.removeBlock(BB);
469     }
470 
471     detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
472     DTU.applyUpdates(DTUpdates);
473     DTUpdates.clear();
474     for (auto *BB : DeadLoopBlocks)
475       DTU.deleteBB(BB);
476 
477     NumLoopBlocksDeleted += DeadLoopBlocks.size();
478   }
479 
480   /// Constant-fold terminators of blocks accumulated in FoldCandidates into the
481   /// unconditional branches.
482   void foldTerminators() {
483     for (BasicBlock *BB : FoldCandidates) {
484       assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
485       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
486       assert(TheOnlySucc && "Should have one live successor!");
487 
488       LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
489                         << " with an unconditional branch to the block "
490                         << TheOnlySucc->getName() << "\n");
491 
492       SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
493       // Remove all BB's successors except for the live one.
494       unsigned TheOnlySuccDuplicates = 0;
495       for (auto *Succ : successors(BB))
496         if (Succ != TheOnlySucc) {
497           DeadSuccessors.insert(Succ);
498           // If our successor lies in a different loop, we don't want to remove
499           // the one-input Phi because it is a LCSSA Phi.
500           bool PreserveLCSSAPhi = !L.contains(Succ);
501           Succ->removePredecessor(BB, PreserveLCSSAPhi);
502           if (MSSAU)
503             MSSAU->removeEdge(BB, Succ);
504         } else
505           ++TheOnlySuccDuplicates;
506 
507       assert(TheOnlySuccDuplicates > 0 && "Should be!");
508       // If TheOnlySucc was BB's successor more than once, after transform it
509       // will be its successor only once. Remove redundant inputs from
510       // TheOnlySucc's Phis.
511       bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
512       for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
513         TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
514       if (MSSAU && TheOnlySuccDuplicates > 1)
515         MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
516 
517       IRBuilder<> Builder(BB->getContext());
518       Instruction *Term = BB->getTerminator();
519       Builder.SetInsertPoint(Term);
520       Builder.CreateBr(TheOnlySucc);
521       Term->eraseFromParent();
522 
523       for (auto *DeadSucc : DeadSuccessors)
524         DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
525 
526       ++NumTerminatorsFolded;
527     }
528   }
529 
530 public:
531   ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
532                                 ScalarEvolution &SE,
533                                 MemorySSAUpdater *MSSAU)
534       : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
535         DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
536   bool run() {
537     assert(L.getLoopLatch() && "Should be single latch!");
538 
539     // Collect all available information about status of blocks after constant
540     // folding.
541     analyze();
542     BasicBlock *Header = L.getHeader();
543     (void)Header;
544 
545     LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
546                       << ": ");
547 
548     if (HasIrreducibleCFG) {
549       LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
550       return false;
551     }
552 
553     // Nothing to constant-fold.
554     if (FoldCandidates.empty()) {
555       LLVM_DEBUG(
556           dbgs() << "No constant terminator folding candidates found in loop "
557                  << Header->getName() << "\n");
558       return false;
559     }
560 
561     // TODO: Support deletion of the current loop.
562     if (DeleteCurrentLoop) {
563       LLVM_DEBUG(
564           dbgs()
565           << "Give up constant terminator folding in loop " << Header->getName()
566           << ": we don't currently support deletion of the current loop.\n");
567       return false;
568     }
569 
570     // TODO: Support blocks that are not dead, but also not in loop after the
571     // folding.
572     if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
573         L.getNumBlocks()) {
574       LLVM_DEBUG(
575           dbgs() << "Give up constant terminator folding in loop "
576                  << Header->getName() << ": we don't currently"
577                     " support blocks that are not dead, but will stop "
578                     "being a part of the loop after constant-folding.\n");
579       return false;
580     }
581 
582     // TODO: Tokens may breach LCSSA form by default. However, the transform for
583     // dead exit blocks requires LCSSA form to be maintained for all values,
584     // tokens included, otherwise it may break use-def dominance (see PR56243).
585     if (!DeadExitBlocks.empty() && !L.isLCSSAForm(DT, /*IgnoreTokens*/ false)) {
586       assert(L.isLCSSAForm(DT, /*IgnoreTokens*/ true) &&
587              "LCSSA broken not by tokens?");
588       LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop "
589                         << Header->getName()
590                         << ": tokens uses potentially break LCSSA form.\n");
591       return false;
592     }
593 
594     SE.forgetTopmostLoop(&L);
595     // Dump analysis results.
596     LLVM_DEBUG(dump());
597 
598     LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
599                       << " terminators in loop " << Header->getName() << "\n");
600 
601     if (!DeadLoopBlocks.empty())
602       SE.forgetBlockAndLoopDispositions();
603 
604     // Make the actual transforms.
605     handleDeadExits();
606     foldTerminators();
607 
608     if (!DeadLoopBlocks.empty()) {
609       LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
610                     << " dead blocks in loop " << Header->getName() << "\n");
611       deleteDeadLoopBlocks();
612     } else {
613       // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
614       DTU.applyUpdates(DTUpdates);
615       DTUpdates.clear();
616     }
617 
618     if (MSSAU && VerifyMemorySSA)
619       MSSAU->getMemorySSA()->verifyMemorySSA();
620 
621 #ifndef NDEBUG
622     // Make sure that we have preserved all data structures after the transform.
623 #if defined(EXPENSIVE_CHECKS)
624     assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
625            "DT broken after transform!");
626 #else
627     assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
628            "DT broken after transform!");
629 #endif
630     assert(DT.isReachableFromEntry(Header));
631     LI.verify(DT);
632 #endif
633 
634     return true;
635   }
636 
637   bool foldingBreaksCurrentLoop() const {
638     return DeleteCurrentLoop;
639   }
640 };
641 } // namespace
642 
643 /// Turn branches and switches with known constant conditions into unconditional
644 /// branches.
645 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
646                                     ScalarEvolution &SE,
647                                     MemorySSAUpdater *MSSAU,
648                                     bool &IsLoopDeleted) {
649   if (!EnableTermFolding)
650     return false;
651 
652   // To keep things simple, only process loops with single latch. We
653   // canonicalize most loops to this form. We can support multi-latch if needed.
654   if (!L.getLoopLatch())
655     return false;
656 
657   ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
658   bool Changed = BranchFolder.run();
659   IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
660   return Changed;
661 }
662 
663 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
664                                         LoopInfo &LI, MemorySSAUpdater *MSSAU,
665                                         ScalarEvolution &SE) {
666   bool Changed = false;
667   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
668   // Copy blocks into a temporary array to avoid iterator invalidation issues
669   // as we remove them.
670   SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
671 
672   for (auto &Block : Blocks) {
673     // Attempt to merge blocks in the trivial case. Don't modify blocks which
674     // belong to other loops.
675     BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
676     if (!Succ)
677       continue;
678 
679     BasicBlock *Pred = Succ->getSinglePredecessor();
680     if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
681       continue;
682 
683     // Merge Succ into Pred and delete it.
684     MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
685 
686     if (MSSAU && VerifyMemorySSA)
687       MSSAU->getMemorySSA()->verifyMemorySSA();
688 
689     Changed = true;
690   }
691 
692   if (Changed)
693     SE.forgetBlockAndLoopDispositions();
694 
695   return Changed;
696 }
697 
698 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
699                             ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
700                             bool &IsLoopDeleted) {
701   bool Changed = false;
702 
703   // Constant-fold terminators with known constant conditions.
704   Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted);
705 
706   if (IsLoopDeleted)
707     return true;
708 
709   // Eliminate unconditional branches by merging blocks into their predecessors.
710   Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU, SE);
711 
712   if (Changed)
713     SE.forgetTopmostLoop(&L);
714 
715   return Changed;
716 }
717 
718 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
719                                            LoopStandardAnalysisResults &AR,
720                                            LPMUpdater &LPMU) {
721   std::optional<MemorySSAUpdater> MSSAU;
722   if (AR.MSSA)
723     MSSAU = MemorySSAUpdater(AR.MSSA);
724   bool DeleteCurrentLoop = false;
725   if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, MSSAU ? &*MSSAU : nullptr,
726                        DeleteCurrentLoop))
727     return PreservedAnalyses::all();
728 
729   if (DeleteCurrentLoop)
730     LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
731 
732   auto PA = getLoopPassPreservedAnalyses();
733   if (AR.MSSA)
734     PA.preserve<MemorySSAAnalysis>();
735   return PA;
736 }
737 
738 namespace {
739 class LoopSimplifyCFGLegacyPass : public LoopPass {
740 public:
741   static char ID; // Pass ID, replacement for typeid
742   LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
743     initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
744   }
745 
746   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
747     if (skipLoop(L))
748       return false;
749 
750     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
751     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
752     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
753     auto *MSSAA = getAnalysisIfAvailable<MemorySSAWrapperPass>();
754     std::optional<MemorySSAUpdater> MSSAU;
755     if (MSSAA)
756       MSSAU = MemorySSAUpdater(&MSSAA->getMSSA());
757     if (MSSAA && VerifyMemorySSA)
758       MSSAU->getMemorySSA()->verifyMemorySSA();
759     bool DeleteCurrentLoop = false;
760     bool Changed = simplifyLoopCFG(*L, DT, LI, SE, MSSAU ? &*MSSAU : nullptr,
761                                    DeleteCurrentLoop);
762     if (DeleteCurrentLoop)
763       LPM.markLoopAsDeleted(*L);
764     return Changed;
765   }
766 
767   void getAnalysisUsage(AnalysisUsage &AU) const override {
768     AU.addPreserved<MemorySSAWrapperPass>();
769     AU.addPreserved<DependenceAnalysisWrapperPass>();
770     getLoopAnalysisUsage(AU);
771   }
772 };
773 } // end namespace
774 
775 char LoopSimplifyCFGLegacyPass::ID = 0;
776 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
777                       "Simplify loop CFG", false, false)
778 INITIALIZE_PASS_DEPENDENCY(LoopPass)
779 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
780 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
781                     "Simplify loop CFG", false, false)
782 
783 Pass *llvm::createLoopSimplifyCFGPass() {
784   return new LoopSimplifyCFGLegacyPass();
785 }
786