//===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Loop SimplifyCFG Pass. This pass is responsible for // basic loop CFG cleanup, primarily to assist other loop passes. If you // encounter a noncanonical CFG construct that causes another loop pass to // perform suboptimally, this is the place to fix it up. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/DependenceAnalysis.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/LoopPassManager.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include using namespace llvm; #define DEBUG_TYPE "loop-simplifycfg" static cl::opt EnableTermFolding("enable-loop-simplifycfg-term-folding", cl::init(true)); STATISTIC(NumTerminatorsFolded, "Number of terminators folded to unconditional branches"); STATISTIC(NumLoopBlocksDeleted, "Number of loop blocks deleted"); STATISTIC(NumLoopExitsDeleted, "Number of loop exiting edges deleted"); /// If \p BB is a switch or a conditional branch, but only one of its successors /// can be reached from this block in runtime, return this successor. Otherwise, /// return nullptr. static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { Instruction *TI = BB->getTerminator(); if (BranchInst *BI = dyn_cast(TI)) { if (BI->isUnconditional()) return nullptr; if (BI->getSuccessor(0) == BI->getSuccessor(1)) return BI->getSuccessor(0); ConstantInt *Cond = dyn_cast(BI->getCondition()); if (!Cond) return nullptr; return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); } if (SwitchInst *SI = dyn_cast(TI)) { auto *CI = dyn_cast(SI->getCondition()); if (!CI) return nullptr; for (auto Case : SI->cases()) if (Case.getCaseValue() == CI) return Case.getCaseSuccessor(); return SI->getDefaultDest(); } return nullptr; } /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain. static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop, Loop *LastLoop = nullptr) { assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) && "First loop is supposed to be inside of last loop!"); assert(FirstLoop->contains(BB) && "Must be a loop block!"); for (Loop *Current = FirstLoop; Current != LastLoop; Current = Current->getParentLoop()) Current->removeBlockFromLoop(BB); } /// Find innermost loop that contains at least one block from \p BBs and /// contains the header of loop \p L. static Loop *getInnermostLoopFor(SmallPtrSetImpl &BBs, Loop &L, LoopInfo &LI) { Loop *Innermost = nullptr; for (BasicBlock *BB : BBs) { Loop *BBL = LI.getLoopFor(BB); while (BBL && !BBL->contains(L.getHeader())) BBL = BBL->getParentLoop(); if (BBL == &L) BBL = BBL->getParentLoop(); if (!BBL) continue; if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth()) Innermost = BBL; } return Innermost; } namespace { /// Helper class that can turn branches and switches with constant conditions /// into unconditional branches. class ConstantTerminatorFoldingImpl { private: Loop &L; LoopInfo &LI; DominatorTree &DT; ScalarEvolution &SE; MemorySSAUpdater *MSSAU; LoopBlocksDFS DFS; DomTreeUpdater DTU; SmallVector DTUpdates; // Whether or not the current loop has irreducible CFG. bool HasIrreducibleCFG = false; // Whether or not the current loop will still exist after terminator constant // folding will be done. In theory, there are two ways how it can happen: // 1. Loop's latch(es) become unreachable from loop header; // 2. Loop's header becomes unreachable from method entry. // In practice, the second situation is impossible because we only modify the // current loop and its preheader and do not affect preheader's reachibility // from any other block. So this variable set to true means that loop's latch // has become unreachable from loop header. bool DeleteCurrentLoop = false; // The blocks of the original loop that will still be reachable from entry // after the constant folding. SmallPtrSet LiveLoopBlocks; // The blocks of the original loop that will become unreachable from entry // after the constant folding. SmallVector DeadLoopBlocks; // The exits of the original loop that will still be reachable from entry // after the constant folding. SmallPtrSet LiveExitBlocks; // The exits of the original loop that will become unreachable from entry // after the constant folding. SmallVector DeadExitBlocks; // The blocks that will still be a part of the current loop after folding. SmallPtrSet BlocksInLoopAfterFolding; // The blocks that have terminators with constant condition that can be // folded. Note: fold candidates should be in L but not in any of its // subloops to avoid complex LI updates. SmallVector FoldCandidates; void dump() const { dbgs() << "Constant terminator folding for loop " << L << "\n"; dbgs() << "After terminator constant-folding, the loop will"; if (!DeleteCurrentLoop) dbgs() << " not"; dbgs() << " be destroyed\n"; auto PrintOutVector = [&](const char *Message, const SmallVectorImpl &S) { dbgs() << Message << "\n"; for (const BasicBlock *BB : S) dbgs() << "\t" << BB->getName() << "\n"; }; auto PrintOutSet = [&](const char *Message, const SmallPtrSetImpl &S) { dbgs() << Message << "\n"; for (const BasicBlock *BB : S) dbgs() << "\t" << BB->getName() << "\n"; }; PrintOutVector("Blocks in which we can constant-fold terminator:", FoldCandidates); PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); PrintOutSet("Live exit blocks:", LiveExitBlocks); PrintOutVector("Dead exit blocks:", DeadExitBlocks); if (!DeleteCurrentLoop) PrintOutSet("The following blocks will still be part of the loop:", BlocksInLoopAfterFolding); } /// Whether or not the current loop has irreducible CFG. bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { assert(DFS.isComplete() && "DFS is expected to be finished"); // Index of a basic block in RPO traversal. DenseMap RPO; unsigned Current = 0; for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) RPO[*I] = Current++; for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { BasicBlock *BB = *I; for (auto *Succ : successors(BB)) if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) // If an edge goes from a block with greater order number into a block // with lesses number, and it is not a loop backedge, then it can only // be a part of irreducible non-loop cycle. return true; } return false; } /// Fill all information about status of blocks and exits of the current loop /// if constant folding of all branches will be done. void analyze() { DFS.perform(&LI); assert(DFS.isComplete() && "DFS is expected to be finished"); // TODO: The algorithm below relies on both RPO and Postorder traversals. // When the loop has only reducible CFG inside, then the invariant "all // predecessors of X are processed before X in RPO" is preserved. However // an irreducible loop can break this invariant (e.g. latch does not have to // be the last block in the traversal in this case, and the algorithm relies // on this). We can later decide to support such cases by altering the // algorithms, but so far we just give up analyzing them. if (hasIrreducibleCFG(DFS)) { HasIrreducibleCFG = true; return; } // Collect live and dead loop blocks and exits. LiveLoopBlocks.insert(L.getHeader()); for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { BasicBlock *BB = *I; // If a loop block wasn't marked as live so far, then it's dead. if (!LiveLoopBlocks.count(BB)) { DeadLoopBlocks.push_back(BB); continue; } BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); // If a block has only one live successor, it's a candidate on constant // folding. Only handle blocks from current loop: branches in child loops // are skipped because if they can be folded, they should be folded during // the processing of child loops. bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L; if (TakeFoldCandidate) FoldCandidates.push_back(BB); // Handle successors. for (BasicBlock *Succ : successors(BB)) if (!TakeFoldCandidate || TheOnlySucc == Succ) { if (L.contains(Succ)) LiveLoopBlocks.insert(Succ); else LiveExitBlocks.insert(Succ); } } // Amount of dead and live loop blocks should match the total number of // blocks in loop. assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && "Malformed block sets?"); // Now, all exit blocks that are not marked as live are dead, if all their // predecessors are in the loop. This may not be the case, as the input loop // may not by in loop-simplify/canonical form. SmallVector ExitBlocks; L.getExitBlocks(ExitBlocks); SmallPtrSet UniqueDeadExits; for (auto *ExitBlock : ExitBlocks) if (!LiveExitBlocks.count(ExitBlock) && UniqueDeadExits.insert(ExitBlock).second && all_of(predecessors(ExitBlock), [this](BasicBlock *Pred) { return L.contains(Pred); })) DeadExitBlocks.push_back(ExitBlock); // Whether or not the edge From->To will still be present in graph after the // folding. auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { if (!LiveLoopBlocks.count(From)) return false; BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L; }; // The loop will not be destroyed if its latch is live. DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); // If we are going to delete the current loop completely, no extra analysis // is needed. if (DeleteCurrentLoop) return; // Otherwise, we should check which blocks will still be a part of the // current loop after the transform. BlocksInLoopAfterFolding.insert(L.getLoopLatch()); // If the loop is live, then we should compute what blocks are still in // loop after all branch folding has been done. A block is in loop if // it has a live edge to another block that is in the loop; by definition, // latch is in the loop. auto BlockIsInLoop = [&](BasicBlock *BB) { return any_of(successors(BB), [&](BasicBlock *Succ) { return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); }); }; for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { BasicBlock *BB = *I; if (BlockIsInLoop(BB)) BlocksInLoopAfterFolding.insert(BB); } assert(BlocksInLoopAfterFolding.count(L.getHeader()) && "Header not in loop?"); assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && "All blocks that stay in loop should be live!"); } /// We need to preserve static reachibility of all loop exit blocks (this is) /// required by loop pass manager. In order to do it, we make the following /// trick: /// /// preheader: /// /// br label %loop_header /// /// loop_header: /// ... /// br i1 false, label %dead_exit, label %loop_block /// ... /// /// We cannot simply remove edge from the loop to dead exit because in this /// case dead_exit (and its successors) may become unreachable. To avoid that, /// we insert the following fictive preheader: /// /// preheader: /// /// switch i32 0, label %preheader-split, /// [i32 1, label %dead_exit_1], /// [i32 2, label %dead_exit_2], /// ... /// [i32 N, label %dead_exit_N], /// /// preheader-split: /// br label %loop_header /// /// loop_header: /// ... /// br i1 false, label %dead_exit_N, label %loop_block /// ... /// /// Doing so, we preserve static reachibility of all dead exits and can later /// remove edges from the loop to these blocks. void handleDeadExits() { // If no dead exits, nothing to do. if (DeadExitBlocks.empty()) return; // Construct split preheader and the dummy switch to thread edges from it to // dead exits. BasicBlock *Preheader = L.getLoopPreheader(); BasicBlock *NewPreheader = llvm::SplitBlock( Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU); IRBuilder<> Builder(Preheader->getTerminator()); SwitchInst *DummySwitch = Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); Preheader->getTerminator()->eraseFromParent(); unsigned DummyIdx = 1; for (BasicBlock *BB : DeadExitBlocks) { // Eliminate all Phis and LandingPads from dead exits. // TODO: Consider removing all instructions in this dead block. SmallVector DeadInstructions; for (auto &PN : BB->phis()) DeadInstructions.push_back(&PN); if (auto *LandingPad = dyn_cast(BB->getFirstNonPHI())) DeadInstructions.emplace_back(LandingPad); for (Instruction *I : DeadInstructions) { SE.forgetBlockAndLoopDispositions(I); I->replaceAllUsesWith(PoisonValue::get(I->getType())); I->eraseFromParent(); } assert(DummyIdx != 0 && "Too many dead exits!"); DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); DTUpdates.push_back({DominatorTree::Insert, Preheader, BB}); ++NumLoopExitsDeleted; } assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { // When we break dead edges, the outer loop may become unreachable from // the current loop. We need to fix loop info accordingly. For this, we // find the most nested loop that still contains L and remove L from all // loops that are inside of it. Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI); // Okay, our loop is no longer in the outer loop (and maybe not in some of // its parents as well). Make the fixup. if (StillReachable != OuterLoop) { LI.changeLoopFor(NewPreheader, StillReachable); removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable); for (auto *BB : L.blocks()) removeBlockFromLoops(BB, OuterLoop, StillReachable); OuterLoop->removeChildLoop(&L); if (StillReachable) StillReachable->addChildLoop(&L); else LI.addTopLevelLoop(&L); // Some values from loops in [OuterLoop, StillReachable) could be used // in the current loop. Now it is not their child anymore, so such uses // require LCSSA Phis. Loop *FixLCSSALoop = OuterLoop; while (FixLCSSALoop->getParentLoop() != StillReachable) FixLCSSALoop = FixLCSSALoop->getParentLoop(); assert(FixLCSSALoop && "Should be a loop!"); // We need all DT updates to be done before forming LCSSA. if (MSSAU) MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); else DTU.applyUpdates(DTUpdates); DTUpdates.clear(); formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE); SE.forgetBlockAndLoopDispositions(); } } if (MSSAU) { // Clear all updates now. Facilitates deletes that follow. MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); DTUpdates.clear(); if (VerifyMemorySSA) MSSAU->getMemorySSA()->verifyMemorySSA(); } } /// Delete loop blocks that have become unreachable after folding. Make all /// relevant updates to DT and LI. void deleteDeadLoopBlocks() { if (MSSAU) { SmallSetVector DeadLoopBlocksSet(DeadLoopBlocks.begin(), DeadLoopBlocks.end()); MSSAU->removeBlocks(DeadLoopBlocksSet); } // The function LI.erase has some invariants that need to be preserved when // it tries to remove a loop which is not the top-level loop. In particular, // it requires loop's preheader to be strictly in loop's parent. We cannot // just remove blocks one by one, because after removal of preheader we may // break this invariant for the dead loop. So we detatch and erase all dead // loops beforehand. for (auto *BB : DeadLoopBlocks) if (LI.isLoopHeader(BB)) { assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); Loop *DL = LI.getLoopFor(BB); if (!DL->isOutermost()) { for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop()) for (auto *BB : DL->getBlocks()) PL->removeBlockFromLoop(BB); DL->getParentLoop()->removeChildLoop(DL); LI.addTopLevelLoop(DL); } LI.erase(DL); } for (auto *BB : DeadLoopBlocks) { assert(BB != L.getHeader() && "Header of the current loop cannot be dead!"); LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() << "\n"); LI.removeBlock(BB); } detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true); DTU.applyUpdates(DTUpdates); DTUpdates.clear(); for (auto *BB : DeadLoopBlocks) DTU.deleteBB(BB); NumLoopBlocksDeleted += DeadLoopBlocks.size(); } /// Constant-fold terminators of blocks accumulated in FoldCandidates into the /// unconditional branches. void foldTerminators() { for (BasicBlock *BB : FoldCandidates) { assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); assert(TheOnlySucc && "Should have one live successor!"); LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() << " with an unconditional branch to the block " << TheOnlySucc->getName() << "\n"); SmallPtrSet DeadSuccessors; // Remove all BB's successors except for the live one. unsigned TheOnlySuccDuplicates = 0; for (auto *Succ : successors(BB)) if (Succ != TheOnlySucc) { DeadSuccessors.insert(Succ); // If our successor lies in a different loop, we don't want to remove // the one-input Phi because it is a LCSSA Phi. bool PreserveLCSSAPhi = !L.contains(Succ); Succ->removePredecessor(BB, PreserveLCSSAPhi); if (MSSAU) MSSAU->removeEdge(BB, Succ); } else ++TheOnlySuccDuplicates; assert(TheOnlySuccDuplicates > 0 && "Should be!"); // If TheOnlySucc was BB's successor more than once, after transform it // will be its successor only once. Remove redundant inputs from // TheOnlySucc's Phis. bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); if (MSSAU && TheOnlySuccDuplicates > 1) MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); IRBuilder<> Builder(BB->getContext()); Instruction *Term = BB->getTerminator(); Builder.SetInsertPoint(Term); Builder.CreateBr(TheOnlySucc); Term->eraseFromParent(); for (auto *DeadSucc : DeadSuccessors) DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc}); ++NumTerminatorsFolded; } } public: ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, ScalarEvolution &SE, MemorySSAUpdater *MSSAU) : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L), DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {} bool run() { assert(L.getLoopLatch() && "Should be single latch!"); // Collect all available information about status of blocks after constant // folding. analyze(); BasicBlock *Header = L.getHeader(); (void)Header; LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName() << ": "); if (HasIrreducibleCFG) { LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); return false; } // Nothing to constant-fold. if (FoldCandidates.empty()) { LLVM_DEBUG( dbgs() << "No constant terminator folding candidates found in loop " << Header->getName() << "\n"); return false; } // TODO: Support deletion of the current loop. if (DeleteCurrentLoop) { LLVM_DEBUG( dbgs() << "Give up constant terminator folding in loop " << Header->getName() << ": we don't currently support deletion of the current loop.\n"); return false; } // TODO: Support blocks that are not dead, but also not in loop after the // folding. if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != L.getNumBlocks()) { LLVM_DEBUG( dbgs() << "Give up constant terminator folding in loop " << Header->getName() << ": we don't currently" " support blocks that are not dead, but will stop " "being a part of the loop after constant-folding.\n"); return false; } // TODO: Tokens may breach LCSSA form by default. However, the transform for // dead exit blocks requires LCSSA form to be maintained for all values, // tokens included, otherwise it may break use-def dominance (see PR56243). if (!DeadExitBlocks.empty() && !L.isLCSSAForm(DT, /*IgnoreTokens*/ false)) { assert(L.isLCSSAForm(DT, /*IgnoreTokens*/ true) && "LCSSA broken not by tokens?"); LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop " << Header->getName() << ": tokens uses potentially break LCSSA form.\n"); return false; } SE.forgetTopmostLoop(&L); // Dump analysis results. LLVM_DEBUG(dump()); LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() << " terminators in loop " << Header->getName() << "\n"); if (!DeadLoopBlocks.empty()) SE.forgetBlockAndLoopDispositions(); // Make the actual transforms. handleDeadExits(); foldTerminators(); if (!DeadLoopBlocks.empty()) { LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() << " dead blocks in loop " << Header->getName() << "\n"); deleteDeadLoopBlocks(); } else { // If we didn't do updates inside deleteDeadLoopBlocks, do them here. DTU.applyUpdates(DTUpdates); DTUpdates.clear(); } if (MSSAU && VerifyMemorySSA) MSSAU->getMemorySSA()->verifyMemorySSA(); #ifndef NDEBUG // Make sure that we have preserved all data structures after the transform. #if defined(EXPENSIVE_CHECKS) assert(DT.verify(DominatorTree::VerificationLevel::Full) && "DT broken after transform!"); #else assert(DT.verify(DominatorTree::VerificationLevel::Fast) && "DT broken after transform!"); #endif assert(DT.isReachableFromEntry(Header)); LI.verify(DT); #endif return true; } bool foldingBreaksCurrentLoop() const { return DeleteCurrentLoop; } }; } // namespace /// Turn branches and switches with known constant conditions into unconditional /// branches. static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE, MemorySSAUpdater *MSSAU, bool &IsLoopDeleted) { if (!EnableTermFolding) return false; // To keep things simple, only process loops with single latch. We // canonicalize most loops to this form. We can support multi-latch if needed. if (!L.getLoopLatch()) return false; ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); bool Changed = BranchFolder.run(); IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop(); return Changed; } static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution &SE) { bool Changed = false; DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); // Copy blocks into a temporary array to avoid iterator invalidation issues // as we remove them. SmallVector Blocks(L.blocks()); for (auto &Block : Blocks) { // Attempt to merge blocks in the trivial case. Don't modify blocks which // belong to other loops. BasicBlock *Succ = cast_or_null(Block); if (!Succ) continue; BasicBlock *Pred = Succ->getSinglePredecessor(); if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) continue; // Merge Succ into Pred and delete it. MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); if (MSSAU && VerifyMemorySSA) MSSAU->getMemorySSA()->verifyMemorySSA(); Changed = true; } if (Changed) SE.forgetBlockAndLoopDispositions(); return Changed; } static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE, MemorySSAUpdater *MSSAU, bool &IsLoopDeleted) { bool Changed = false; // Constant-fold terminators with known constant conditions. Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted); if (IsLoopDeleted) return true; // Eliminate unconditional branches by merging blocks into their predecessors. Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU, SE); if (Changed) SE.forgetTopmostLoop(&L); return Changed; } PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &LPMU) { std::optional MSSAU; if (AR.MSSA) MSSAU = MemorySSAUpdater(AR.MSSA); bool DeleteCurrentLoop = false; if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, MSSAU ? &*MSSAU : nullptr, DeleteCurrentLoop)) return PreservedAnalyses::all(); if (DeleteCurrentLoop) LPMU.markLoopAsDeleted(L, "loop-simplifycfg"); auto PA = getLoopPassPreservedAnalyses(); if (AR.MSSA) PA.preserve(); return PA; } namespace { class LoopSimplifyCFGLegacyPass : public LoopPass { public: static char ID; // Pass ID, replacement for typeid LoopSimplifyCFGLegacyPass() : LoopPass(ID) { initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnLoop(Loop *L, LPPassManager &LPM) override { if (skipLoop(L)) return false; DominatorTree &DT = getAnalysis().getDomTree(); LoopInfo &LI = getAnalysis().getLoopInfo(); ScalarEvolution &SE = getAnalysis().getSE(); auto *MSSAA = getAnalysisIfAvailable(); std::optional MSSAU; if (MSSAA) MSSAU = MemorySSAUpdater(&MSSAA->getMSSA()); if (MSSAA && VerifyMemorySSA) MSSAU->getMemorySSA()->verifyMemorySSA(); bool DeleteCurrentLoop = false; bool Changed = simplifyLoopCFG(*L, DT, LI, SE, MSSAU ? &*MSSAU : nullptr, DeleteCurrentLoop); if (DeleteCurrentLoop) LPM.markLoopAsDeleted(*L); return Changed; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved(); AU.addPreserved(); getLoopAnalysisUsage(AU); } }; } // end namespace char LoopSimplifyCFGLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", "Simplify loop CFG", false, false) INITIALIZE_PASS_DEPENDENCY(LoopPass) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", "Simplify loop CFG", false, false) Pass *llvm::createLoopSimplifyCFGPass() { return new LoopSimplifyCFGLegacyPass(); }