1 //===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Loop Distribution Pass. Its main focus is to 10 // distribute loops that cannot be vectorized due to dependence cycles. It 11 // tries to isolate the offending dependences into a new loop allowing 12 // vectorization of the remaining parts. 13 // 14 // For dependence analysis, the pass uses the LoopVectorizer's 15 // LoopAccessAnalysis. Because this analysis presumes no change in the order of 16 // memory operations, special care is taken to preserve the lexical order of 17 // these operations. 18 // 19 // Similarly to the Vectorizer, the pass also supports loop versioning to 20 // run-time disambiguate potentially overlapping arrays. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/Scalar/LoopDistribute.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/EquivalenceClasses.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/GlobalsModRef.h" 37 #include "llvm/Analysis/LoopAccessAnalysis.h" 38 #include "llvm/Analysis/LoopAnalysisManager.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/Analysis/TargetLibraryInfo.h" 43 #include "llvm/Analysis/TargetTransformInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DiagnosticInfo.h" 47 #include "llvm/IR/Dominators.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/PassManager.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/LoopUtils.h" 62 #include "llvm/Transforms/Utils/LoopVersioning.h" 63 #include "llvm/Transforms/Utils/ValueMapper.h" 64 #include <cassert> 65 #include <functional> 66 #include <list> 67 #include <tuple> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define LDIST_NAME "loop-distribute" 73 #define DEBUG_TYPE LDIST_NAME 74 75 /// @{ 76 /// Metadata attribute names 77 static const char *const LLVMLoopDistributeFollowupAll = 78 "llvm.loop.distribute.followup_all"; 79 static const char *const LLVMLoopDistributeFollowupCoincident = 80 "llvm.loop.distribute.followup_coincident"; 81 static const char *const LLVMLoopDistributeFollowupSequential = 82 "llvm.loop.distribute.followup_sequential"; 83 static const char *const LLVMLoopDistributeFollowupFallback = 84 "llvm.loop.distribute.followup_fallback"; 85 /// @} 86 87 static cl::opt<bool> 88 LDistVerify("loop-distribute-verify", cl::Hidden, 89 cl::desc("Turn on DominatorTree and LoopInfo verification " 90 "after Loop Distribution"), 91 cl::init(false)); 92 93 static cl::opt<bool> DistributeNonIfConvertible( 94 "loop-distribute-non-if-convertible", cl::Hidden, 95 cl::desc("Whether to distribute into a loop that may not be " 96 "if-convertible by the loop vectorizer"), 97 cl::init(false)); 98 99 static cl::opt<unsigned> DistributeSCEVCheckThreshold( 100 "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden, 101 cl::desc("The maximum number of SCEV checks allowed for Loop " 102 "Distribution")); 103 104 static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold( 105 "loop-distribute-scev-check-threshold-with-pragma", cl::init(128), 106 cl::Hidden, 107 cl::desc("The maximum number of SCEV checks allowed for Loop " 108 "Distribution for loop marked with #pragma clang loop " 109 "distribute(enable)")); 110 111 static cl::opt<bool> EnableLoopDistribute( 112 "enable-loop-distribute", cl::Hidden, 113 cl::desc("Enable the new, experimental LoopDistribution Pass"), 114 cl::init(false)); 115 116 STATISTIC(NumLoopsDistributed, "Number of loops distributed"); 117 118 namespace { 119 120 /// Maintains the set of instructions of the loop for a partition before 121 /// cloning. After cloning, it hosts the new loop. 122 class InstPartition { 123 using InstructionSet = SmallSetVector<Instruction *, 8>; 124 125 public: 126 InstPartition(Instruction *I, Loop *L, bool DepCycle = false) 127 : DepCycle(DepCycle), OrigLoop(L) { 128 Set.insert(I); 129 } 130 131 /// Returns whether this partition contains a dependence cycle. 132 bool hasDepCycle() const { return DepCycle; } 133 134 /// Adds an instruction to this partition. 135 void add(Instruction *I) { Set.insert(I); } 136 137 /// Collection accessors. 138 InstructionSet::iterator begin() { return Set.begin(); } 139 InstructionSet::iterator end() { return Set.end(); } 140 InstructionSet::const_iterator begin() const { return Set.begin(); } 141 InstructionSet::const_iterator end() const { return Set.end(); } 142 bool empty() const { return Set.empty(); } 143 144 /// Moves this partition into \p Other. This partition becomes empty 145 /// after this. 146 void moveTo(InstPartition &Other) { 147 Other.Set.insert(Set.begin(), Set.end()); 148 Set.clear(); 149 Other.DepCycle |= DepCycle; 150 } 151 152 /// Populates the partition with a transitive closure of all the 153 /// instructions that the seeded instructions dependent on. 154 void populateUsedSet() { 155 // FIXME: We currently don't use control-dependence but simply include all 156 // blocks (possibly empty at the end) and let simplifycfg mostly clean this 157 // up. 158 for (auto *B : OrigLoop->getBlocks()) 159 Set.insert(B->getTerminator()); 160 161 // Follow the use-def chains to form a transitive closure of all the 162 // instructions that the originally seeded instructions depend on. 163 SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end()); 164 while (!Worklist.empty()) { 165 Instruction *I = Worklist.pop_back_val(); 166 // Insert instructions from the loop that we depend on. 167 for (Value *V : I->operand_values()) { 168 auto *I = dyn_cast<Instruction>(V); 169 if (I && OrigLoop->contains(I->getParent()) && Set.insert(I)) 170 Worklist.push_back(I); 171 } 172 } 173 } 174 175 /// Clones the original loop. 176 /// 177 /// Updates LoopInfo and DominatorTree using the information that block \p 178 /// LoopDomBB dominates the loop. 179 Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB, 180 unsigned Index, LoopInfo *LI, 181 DominatorTree *DT) { 182 ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop, 183 VMap, Twine(".ldist") + Twine(Index), 184 LI, DT, ClonedLoopBlocks); 185 return ClonedLoop; 186 } 187 188 /// The cloned loop. If this partition is mapped to the original loop, 189 /// this is null. 190 const Loop *getClonedLoop() const { return ClonedLoop; } 191 192 /// Returns the loop where this partition ends up after distribution. 193 /// If this partition is mapped to the original loop then use the block from 194 /// the loop. 195 Loop *getDistributedLoop() const { 196 return ClonedLoop ? ClonedLoop : OrigLoop; 197 } 198 199 /// The VMap that is populated by cloning and then used in 200 /// remapinstruction to remap the cloned instructions. 201 ValueToValueMapTy &getVMap() { return VMap; } 202 203 /// Remaps the cloned instructions using VMap. 204 void remapInstructions() { 205 remapInstructionsInBlocks(ClonedLoopBlocks, VMap); 206 } 207 208 /// Based on the set of instructions selected for this partition, 209 /// removes the unnecessary ones. 210 void removeUnusedInsts() { 211 SmallVector<Instruction *, 8> Unused; 212 213 for (auto *Block : OrigLoop->getBlocks()) 214 for (auto &Inst : *Block) 215 if (!Set.count(&Inst)) { 216 Instruction *NewInst = &Inst; 217 if (!VMap.empty()) 218 NewInst = cast<Instruction>(VMap[NewInst]); 219 220 assert(!isa<BranchInst>(NewInst) && 221 "Branches are marked used early on"); 222 Unused.push_back(NewInst); 223 } 224 225 // Delete the instructions backwards, as it has a reduced likelihood of 226 // having to update as many def-use and use-def chains. 227 for (auto *Inst : reverse(Unused)) { 228 if (!Inst->use_empty()) 229 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType())); 230 Inst->eraseFromParent(); 231 } 232 } 233 234 void print(raw_ostream &OS) const { 235 OS << (DepCycle ? " (cycle)\n" : "\n"); 236 for (auto *I : Set) 237 // Prefix with the block name. 238 OS << " " << I->getParent()->getName() << ":" << *I << "\n"; 239 } 240 241 void printBlocks(raw_ostream &OS) const { 242 for (auto *BB : getDistributedLoop()->getBlocks()) 243 OS << *BB; 244 } 245 246 private: 247 /// Instructions from OrigLoop selected for this partition. 248 InstructionSet Set; 249 250 /// Whether this partition contains a dependence cycle. 251 bool DepCycle; 252 253 /// The original loop. 254 Loop *OrigLoop; 255 256 /// The cloned loop. If this partition is mapped to the original loop, 257 /// this is null. 258 Loop *ClonedLoop = nullptr; 259 260 /// The blocks of ClonedLoop including the preheader. If this 261 /// partition is mapped to the original loop, this is empty. 262 SmallVector<BasicBlock *, 8> ClonedLoopBlocks; 263 264 /// These gets populated once the set of instructions have been 265 /// finalized. If this partition is mapped to the original loop, these are not 266 /// set. 267 ValueToValueMapTy VMap; 268 }; 269 270 /// Holds the set of Partitions. It populates them, merges them and then 271 /// clones the loops. 272 class InstPartitionContainer { 273 using InstToPartitionIdT = DenseMap<Instruction *, int>; 274 275 public: 276 InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT) 277 : L(L), LI(LI), DT(DT) {} 278 279 /// Returns the number of partitions. 280 unsigned getSize() const { return PartitionContainer.size(); } 281 282 /// Adds \p Inst into the current partition if that is marked to 283 /// contain cycles. Otherwise start a new partition for it. 284 void addToCyclicPartition(Instruction *Inst) { 285 // If the current partition is non-cyclic. Start a new one. 286 if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle()) 287 PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true); 288 else 289 PartitionContainer.back().add(Inst); 290 } 291 292 /// Adds \p Inst into a partition that is not marked to contain 293 /// dependence cycles. 294 /// 295 // Initially we isolate memory instructions into as many partitions as 296 // possible, then later we may merge them back together. 297 void addToNewNonCyclicPartition(Instruction *Inst) { 298 PartitionContainer.emplace_back(Inst, L); 299 } 300 301 /// Merges adjacent non-cyclic partitions. 302 /// 303 /// The idea is that we currently only want to isolate the non-vectorizable 304 /// partition. We could later allow more distribution among these partition 305 /// too. 306 void mergeAdjacentNonCyclic() { 307 mergeAdjacentPartitionsIf( 308 [](const InstPartition *P) { return !P->hasDepCycle(); }); 309 } 310 311 /// If a partition contains only conditional stores, we won't vectorize 312 /// it. Try to merge it with a previous cyclic partition. 313 void mergeNonIfConvertible() { 314 mergeAdjacentPartitionsIf([&](const InstPartition *Partition) { 315 if (Partition->hasDepCycle()) 316 return true; 317 318 // Now, check if all stores are conditional in this partition. 319 bool seenStore = false; 320 321 for (auto *Inst : *Partition) 322 if (isa<StoreInst>(Inst)) { 323 seenStore = true; 324 if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT)) 325 return false; 326 } 327 return seenStore; 328 }); 329 } 330 331 /// Merges the partitions according to various heuristics. 332 void mergeBeforePopulating() { 333 mergeAdjacentNonCyclic(); 334 if (!DistributeNonIfConvertible) 335 mergeNonIfConvertible(); 336 } 337 338 /// Merges partitions in order to ensure that no loads are duplicated. 339 /// 340 /// We can't duplicate loads because that could potentially reorder them. 341 /// LoopAccessAnalysis provides dependency information with the context that 342 /// the order of memory operation is preserved. 343 /// 344 /// Return if any partitions were merged. 345 bool mergeToAvoidDuplicatedLoads() { 346 using LoadToPartitionT = DenseMap<Instruction *, InstPartition *>; 347 using ToBeMergedT = EquivalenceClasses<InstPartition *>; 348 349 LoadToPartitionT LoadToPartition; 350 ToBeMergedT ToBeMerged; 351 352 // Step through the partitions and create equivalence between partitions 353 // that contain the same load. Also put partitions in between them in the 354 // same equivalence class to avoid reordering of memory operations. 355 for (PartitionContainerT::iterator I = PartitionContainer.begin(), 356 E = PartitionContainer.end(); 357 I != E; ++I) { 358 auto *PartI = &*I; 359 360 // If a load occurs in two partitions PartI and PartJ, merge all 361 // partitions (PartI, PartJ] into PartI. 362 for (Instruction *Inst : *PartI) 363 if (isa<LoadInst>(Inst)) { 364 bool NewElt; 365 LoadToPartitionT::iterator LoadToPart; 366 367 std::tie(LoadToPart, NewElt) = 368 LoadToPartition.insert(std::make_pair(Inst, PartI)); 369 if (!NewElt) { 370 LLVM_DEBUG( 371 dbgs() 372 << "LDist: Merging partitions due to this load in multiple " 373 << "partitions: " << PartI << ", " << LoadToPart->second << "\n" 374 << *Inst << "\n"); 375 376 auto PartJ = I; 377 do { 378 --PartJ; 379 ToBeMerged.unionSets(PartI, &*PartJ); 380 } while (&*PartJ != LoadToPart->second); 381 } 382 } 383 } 384 if (ToBeMerged.empty()) 385 return false; 386 387 // Merge the member of an equivalence class into its class leader. This 388 // makes the members empty. 389 for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end(); 390 I != E; ++I) { 391 if (!I->isLeader()) 392 continue; 393 394 auto PartI = I->getData(); 395 for (auto *PartJ : make_range(std::next(ToBeMerged.member_begin(I)), 396 ToBeMerged.member_end())) { 397 PartJ->moveTo(*PartI); 398 } 399 } 400 401 // Remove the empty partitions. 402 PartitionContainer.remove_if( 403 [](const InstPartition &P) { return P.empty(); }); 404 405 return true; 406 } 407 408 /// Sets up the mapping between instructions to partitions. If the 409 /// instruction is duplicated across multiple partitions, set the entry to -1. 410 void setupPartitionIdOnInstructions() { 411 int PartitionID = 0; 412 for (const auto &Partition : PartitionContainer) { 413 for (Instruction *Inst : Partition) { 414 bool NewElt; 415 InstToPartitionIdT::iterator Iter; 416 417 std::tie(Iter, NewElt) = 418 InstToPartitionId.insert(std::make_pair(Inst, PartitionID)); 419 if (!NewElt) 420 Iter->second = -1; 421 } 422 ++PartitionID; 423 } 424 } 425 426 /// Populates the partition with everything that the seeding 427 /// instructions require. 428 void populateUsedSet() { 429 for (auto &P : PartitionContainer) 430 P.populateUsedSet(); 431 } 432 433 /// This performs the main chunk of the work of cloning the loops for 434 /// the partitions. 435 void cloneLoops() { 436 BasicBlock *OrigPH = L->getLoopPreheader(); 437 // At this point the predecessor of the preheader is either the memcheck 438 // block or the top part of the original preheader. 439 BasicBlock *Pred = OrigPH->getSinglePredecessor(); 440 assert(Pred && "Preheader does not have a single predecessor"); 441 BasicBlock *ExitBlock = L->getExitBlock(); 442 assert(ExitBlock && "No single exit block"); 443 Loop *NewLoop; 444 445 assert(!PartitionContainer.empty() && "at least two partitions expected"); 446 // We're cloning the preheader along with the loop so we already made sure 447 // it was empty. 448 assert(&*OrigPH->begin() == OrigPH->getTerminator() && 449 "preheader not empty"); 450 451 // Preserve the original loop ID for use after the transformation. 452 MDNode *OrigLoopID = L->getLoopID(); 453 454 // Create a loop for each partition except the last. Clone the original 455 // loop before PH along with adding a preheader for the cloned loop. Then 456 // update PH to point to the newly added preheader. 457 BasicBlock *TopPH = OrigPH; 458 unsigned Index = getSize() - 1; 459 for (auto &Part : llvm::drop_begin(llvm::reverse(PartitionContainer))) { 460 NewLoop = Part.cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT); 461 462 Part.getVMap()[ExitBlock] = TopPH; 463 Part.remapInstructions(); 464 setNewLoopID(OrigLoopID, &Part); 465 --Index; 466 TopPH = NewLoop->getLoopPreheader(); 467 } 468 Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH); 469 470 // Also set a new loop ID for the last loop. 471 setNewLoopID(OrigLoopID, &PartitionContainer.back()); 472 473 // Now go in forward order and update the immediate dominator for the 474 // preheaders with the exiting block of the previous loop. Dominance 475 // within the loop is updated in cloneLoopWithPreheader. 476 for (auto Curr = PartitionContainer.cbegin(), 477 Next = std::next(PartitionContainer.cbegin()), 478 E = PartitionContainer.cend(); 479 Next != E; ++Curr, ++Next) 480 DT->changeImmediateDominator( 481 Next->getDistributedLoop()->getLoopPreheader(), 482 Curr->getDistributedLoop()->getExitingBlock()); 483 } 484 485 /// Removes the dead instructions from the cloned loops. 486 void removeUnusedInsts() { 487 for (auto &Partition : PartitionContainer) 488 Partition.removeUnusedInsts(); 489 } 490 491 /// For each memory pointer, it computes the partitionId the pointer is 492 /// used in. 493 /// 494 /// This returns an array of int where the I-th entry corresponds to I-th 495 /// entry in LAI.getRuntimePointerCheck(). If the pointer is used in multiple 496 /// partitions its entry is set to -1. 497 SmallVector<int, 8> 498 computePartitionSetForPointers(const LoopAccessInfo &LAI) { 499 const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking(); 500 501 unsigned N = RtPtrCheck->Pointers.size(); 502 SmallVector<int, 8> PtrToPartitions(N); 503 for (unsigned I = 0; I < N; ++I) { 504 Value *Ptr = RtPtrCheck->Pointers[I].PointerValue; 505 auto Instructions = 506 LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr); 507 508 int &Partition = PtrToPartitions[I]; 509 // First set it to uninitialized. 510 Partition = -2; 511 for (Instruction *Inst : Instructions) { 512 // Note that this could be -1 if Inst is duplicated across multiple 513 // partitions. 514 int ThisPartition = this->InstToPartitionId[Inst]; 515 if (Partition == -2) 516 Partition = ThisPartition; 517 // -1 means belonging to multiple partitions. 518 else if (Partition == -1) 519 break; 520 else if (Partition != (int)ThisPartition) 521 Partition = -1; 522 } 523 assert(Partition != -2 && "Pointer not belonging to any partition"); 524 } 525 526 return PtrToPartitions; 527 } 528 529 void print(raw_ostream &OS) const { 530 unsigned Index = 0; 531 for (const auto &P : PartitionContainer) { 532 OS << "LDist: Partition " << Index++ << ":"; 533 P.print(OS); 534 } 535 } 536 537 void dump() const { print(dbgs()); } 538 539 #ifndef NDEBUG 540 friend raw_ostream &operator<<(raw_ostream &OS, 541 const InstPartitionContainer &Partitions) { 542 Partitions.print(OS); 543 return OS; 544 } 545 #endif 546 547 void printBlocks(raw_ostream &OS) const { 548 unsigned Index = 0; 549 for (const auto &P : PartitionContainer) { 550 OS << "LDist: Partition " << Index++ << ":"; 551 P.printBlocks(OS); 552 } 553 } 554 555 private: 556 using PartitionContainerT = std::list<InstPartition>; 557 558 /// List of partitions. 559 PartitionContainerT PartitionContainer; 560 561 /// Mapping from Instruction to partition Id. If the instruction 562 /// belongs to multiple partitions the entry contains -1. 563 InstToPartitionIdT InstToPartitionId; 564 565 Loop *L; 566 LoopInfo *LI; 567 DominatorTree *DT; 568 569 /// The control structure to merge adjacent partitions if both satisfy 570 /// the \p Predicate. 571 template <class UnaryPredicate> 572 void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) { 573 InstPartition *PrevMatch = nullptr; 574 for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) { 575 auto DoesMatch = Predicate(&*I); 576 if (PrevMatch == nullptr && DoesMatch) { 577 PrevMatch = &*I; 578 ++I; 579 } else if (PrevMatch != nullptr && DoesMatch) { 580 I->moveTo(*PrevMatch); 581 I = PartitionContainer.erase(I); 582 } else { 583 PrevMatch = nullptr; 584 ++I; 585 } 586 } 587 } 588 589 /// Assign new LoopIDs for the partition's cloned loop. 590 void setNewLoopID(MDNode *OrigLoopID, InstPartition *Part) { 591 std::optional<MDNode *> PartitionID = makeFollowupLoopID( 592 OrigLoopID, 593 {LLVMLoopDistributeFollowupAll, 594 Part->hasDepCycle() ? LLVMLoopDistributeFollowupSequential 595 : LLVMLoopDistributeFollowupCoincident}); 596 if (PartitionID) { 597 Loop *NewLoop = Part->getDistributedLoop(); 598 NewLoop->setLoopID(*PartitionID); 599 } 600 } 601 }; 602 603 /// For each memory instruction, this class maintains difference of the 604 /// number of unsafe dependences that start out from this instruction minus 605 /// those that end here. 606 /// 607 /// By traversing the memory instructions in program order and accumulating this 608 /// number, we know whether any unsafe dependence crosses over a program point. 609 class MemoryInstructionDependences { 610 using Dependence = MemoryDepChecker::Dependence; 611 612 public: 613 struct Entry { 614 Instruction *Inst; 615 unsigned NumUnsafeDependencesStartOrEnd = 0; 616 617 Entry(Instruction *Inst) : Inst(Inst) {} 618 }; 619 620 using AccessesType = SmallVector<Entry, 8>; 621 622 AccessesType::const_iterator begin() const { return Accesses.begin(); } 623 AccessesType::const_iterator end() const { return Accesses.end(); } 624 625 MemoryInstructionDependences( 626 const SmallVectorImpl<Instruction *> &Instructions, 627 const SmallVectorImpl<Dependence> &Dependences) { 628 Accesses.append(Instructions.begin(), Instructions.end()); 629 630 LLVM_DEBUG(dbgs() << "LDist: Backward dependences:\n"); 631 for (const auto &Dep : Dependences) 632 if (Dep.isPossiblyBackward()) { 633 // Note that the designations source and destination follow the program 634 // order, i.e. source is always first. (The direction is given by the 635 // DepType.) 636 ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd; 637 --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd; 638 639 LLVM_DEBUG(Dep.print(dbgs(), 2, Instructions)); 640 } 641 } 642 643 private: 644 AccessesType Accesses; 645 }; 646 647 /// The actual class performing the per-loop work. 648 class LoopDistributeForLoop { 649 public: 650 LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT, 651 ScalarEvolution *SE, LoopAccessInfoManager &LAIs, 652 OptimizationRemarkEmitter *ORE) 653 : L(L), F(F), LI(LI), DT(DT), SE(SE), LAIs(LAIs), ORE(ORE) { 654 setForced(); 655 } 656 657 /// Try to distribute an inner-most loop. 658 bool processLoop() { 659 assert(L->isInnermost() && "Only process inner loops."); 660 661 LLVM_DEBUG(dbgs() << "\nLDist: Checking a loop in '" 662 << L->getHeader()->getParent()->getName() << "' from " 663 << L->getLocStr() << "\n"); 664 665 // Having a single exit block implies there's also one exiting block. 666 if (!L->getExitBlock()) 667 return fail("MultipleExitBlocks", "multiple exit blocks"); 668 if (!L->isLoopSimplifyForm()) 669 return fail("NotLoopSimplifyForm", 670 "loop is not in loop-simplify form"); 671 if (!L->isRotatedForm()) 672 return fail("NotBottomTested", "loop is not bottom tested"); 673 674 BasicBlock *PH = L->getLoopPreheader(); 675 676 LAI = &LAIs.getInfo(*L); 677 678 // Currently, we only distribute to isolate the part of the loop with 679 // dependence cycles to enable partial vectorization. 680 if (LAI->canVectorizeMemory()) 681 return fail("MemOpsCanBeVectorized", 682 "memory operations are safe for vectorization"); 683 684 auto *Dependences = LAI->getDepChecker().getDependences(); 685 if (!Dependences || Dependences->empty()) 686 return fail("NoUnsafeDeps", "no unsafe dependences to isolate"); 687 688 LLVM_DEBUG(dbgs() << "LDist: Found a candidate loop: " 689 << L->getHeader()->getName() << "\n"); 690 691 InstPartitionContainer Partitions(L, LI, DT); 692 693 // First, go through each memory operation and assign them to consecutive 694 // partitions (the order of partitions follows program order). Put those 695 // with unsafe dependences into "cyclic" partition otherwise put each store 696 // in its own "non-cyclic" partition (we'll merge these later). 697 // 698 // Note that a memory operation (e.g. Load2 below) at a program point that 699 // has an unsafe dependence (Store3->Load1) spanning over it must be 700 // included in the same cyclic partition as the dependent operations. This 701 // is to preserve the original program order after distribution. E.g.: 702 // 703 // NumUnsafeDependencesStartOrEnd NumUnsafeDependencesActive 704 // Load1 -. 1 0->1 705 // Load2 | /Unsafe/ 0 1 706 // Store3 -' -1 1->0 707 // Load4 0 0 708 // 709 // NumUnsafeDependencesActive > 0 indicates this situation and in this case 710 // we just keep assigning to the same cyclic partition until 711 // NumUnsafeDependencesActive reaches 0. 712 const MemoryDepChecker &DepChecker = LAI->getDepChecker(); 713 MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(), 714 *Dependences); 715 716 int NumUnsafeDependencesActive = 0; 717 for (const auto &InstDep : MID) { 718 Instruction *I = InstDep.Inst; 719 // We update NumUnsafeDependencesActive post-instruction, catch the 720 // start of a dependence directly via NumUnsafeDependencesStartOrEnd. 721 if (NumUnsafeDependencesActive || 722 InstDep.NumUnsafeDependencesStartOrEnd > 0) 723 Partitions.addToCyclicPartition(I); 724 else 725 Partitions.addToNewNonCyclicPartition(I); 726 NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd; 727 assert(NumUnsafeDependencesActive >= 0 && 728 "Negative number of dependences active"); 729 } 730 731 // Add partitions for values used outside. These partitions can be out of 732 // order from the original program order. This is OK because if the 733 // partition uses a load we will merge this partition with the original 734 // partition of the load that we set up in the previous loop (see 735 // mergeToAvoidDuplicatedLoads). 736 auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L); 737 for (auto *Inst : DefsUsedOutside) 738 Partitions.addToNewNonCyclicPartition(Inst); 739 740 LLVM_DEBUG(dbgs() << "LDist: Seeded partitions:\n" << Partitions); 741 if (Partitions.getSize() < 2) 742 return fail("CantIsolateUnsafeDeps", 743 "cannot isolate unsafe dependencies"); 744 745 // Run the merge heuristics: Merge non-cyclic adjacent partitions since we 746 // should be able to vectorize these together. 747 Partitions.mergeBeforePopulating(); 748 LLVM_DEBUG(dbgs() << "LDist: Merged partitions:\n" << Partitions); 749 if (Partitions.getSize() < 2) 750 return fail("CantIsolateUnsafeDeps", 751 "cannot isolate unsafe dependencies"); 752 753 // Now, populate the partitions with non-memory operations. 754 Partitions.populateUsedSet(); 755 LLVM_DEBUG(dbgs() << "LDist: Populated partitions:\n" << Partitions); 756 757 // In order to preserve original lexical order for loads, keep them in the 758 // partition that we set up in the MemoryInstructionDependences loop. 759 if (Partitions.mergeToAvoidDuplicatedLoads()) { 760 LLVM_DEBUG(dbgs() << "LDist: Partitions merged to ensure unique loads:\n" 761 << Partitions); 762 if (Partitions.getSize() < 2) 763 return fail("CantIsolateUnsafeDeps", 764 "cannot isolate unsafe dependencies"); 765 } 766 767 // Don't distribute the loop if we need too many SCEV run-time checks, or 768 // any if it's illegal. 769 const SCEVPredicate &Pred = LAI->getPSE().getPredicate(); 770 if (LAI->hasConvergentOp() && !Pred.isAlwaysTrue()) { 771 return fail("RuntimeCheckWithConvergent", 772 "may not insert runtime check with convergent operation"); 773 } 774 775 if (Pred.getComplexity() > (IsForced.value_or(false) 776 ? PragmaDistributeSCEVCheckThreshold 777 : DistributeSCEVCheckThreshold)) 778 return fail("TooManySCEVRuntimeChecks", 779 "too many SCEV run-time checks needed.\n"); 780 781 if (!IsForced.value_or(false) && hasDisableAllTransformsHint(L)) 782 return fail("HeuristicDisabled", "distribution heuristic disabled"); 783 784 LLVM_DEBUG(dbgs() << "LDist: Distributing loop: " 785 << L->getHeader()->getName() << "\n"); 786 // We're done forming the partitions set up the reverse mapping from 787 // instructions to partitions. 788 Partitions.setupPartitionIdOnInstructions(); 789 790 // If we need run-time checks, version the loop now. 791 auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI); 792 const auto *RtPtrChecking = LAI->getRuntimePointerChecking(); 793 const auto &AllChecks = RtPtrChecking->getChecks(); 794 auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition, 795 RtPtrChecking); 796 797 if (LAI->hasConvergentOp() && !Checks.empty()) { 798 return fail("RuntimeCheckWithConvergent", 799 "may not insert runtime check with convergent operation"); 800 } 801 802 // To keep things simple have an empty preheader before we version or clone 803 // the loop. (Also split if this has no predecessor, i.e. entry, because we 804 // rely on PH having a predecessor.) 805 if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator()) 806 SplitBlock(PH, PH->getTerminator(), DT, LI); 807 808 if (!Pred.isAlwaysTrue() || !Checks.empty()) { 809 assert(!LAI->hasConvergentOp() && "inserting illegal loop versioning"); 810 811 MDNode *OrigLoopID = L->getLoopID(); 812 813 LLVM_DEBUG(dbgs() << "LDist: Pointers:\n"); 814 LLVM_DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 815 LoopVersioning LVer(*LAI, Checks, L, LI, DT, SE); 816 LVer.versionLoop(DefsUsedOutside); 817 LVer.annotateLoopWithNoAlias(); 818 819 // The unversioned loop will not be changed, so we inherit all attributes 820 // from the original loop, but remove the loop distribution metadata to 821 // avoid to distribute it again. 822 MDNode *UnversionedLoopID = *makeFollowupLoopID( 823 OrigLoopID, 824 {LLVMLoopDistributeFollowupAll, LLVMLoopDistributeFollowupFallback}, 825 "llvm.loop.distribute.", true); 826 LVer.getNonVersionedLoop()->setLoopID(UnversionedLoopID); 827 } 828 829 // Create identical copies of the original loop for each partition and hook 830 // them up sequentially. 831 Partitions.cloneLoops(); 832 833 // Now, we remove the instruction from each loop that don't belong to that 834 // partition. 835 Partitions.removeUnusedInsts(); 836 LLVM_DEBUG(dbgs() << "LDist: After removing unused Instrs:\n"); 837 LLVM_DEBUG(Partitions.printBlocks(dbgs())); 838 839 if (LDistVerify) { 840 LI->verify(*DT); 841 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 842 } 843 844 ++NumLoopsDistributed; 845 // Report the success. 846 ORE->emit([&]() { 847 return OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(), 848 L->getHeader()) 849 << "distributed loop"; 850 }); 851 return true; 852 } 853 854 /// Provide diagnostics then \return with false. 855 bool fail(StringRef RemarkName, StringRef Message) { 856 LLVMContext &Ctx = F->getContext(); 857 bool Forced = isForced().value_or(false); 858 859 LLVM_DEBUG(dbgs() << "LDist: Skipping; " << Message << "\n"); 860 861 // With Rpass-missed report that distribution failed. 862 ORE->emit([&]() { 863 return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed", 864 L->getStartLoc(), L->getHeader()) 865 << "loop not distributed: use -Rpass-analysis=loop-distribute for " 866 "more " 867 "info"; 868 }); 869 870 // With Rpass-analysis report why. This is on by default if distribution 871 // was requested explicitly. 872 ORE->emit(OptimizationRemarkAnalysis( 873 Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME, 874 RemarkName, L->getStartLoc(), L->getHeader()) 875 << "loop not distributed: " << Message); 876 877 // Also issue a warning if distribution was requested explicitly but it 878 // failed. 879 if (Forced) 880 Ctx.diagnose(DiagnosticInfoOptimizationFailure( 881 *F, L->getStartLoc(), "loop not distributed: failed " 882 "explicitly specified loop distribution")); 883 884 return false; 885 } 886 887 /// Return if distribution forced to be enabled/disabled for the loop. 888 /// 889 /// If the optional has a value, it indicates whether distribution was forced 890 /// to be enabled (true) or disabled (false). If the optional has no value 891 /// distribution was not forced either way. 892 const std::optional<bool> &isForced() const { return IsForced; } 893 894 private: 895 /// Filter out checks between pointers from the same partition. 896 /// 897 /// \p PtrToPartition contains the partition number for pointers. Partition 898 /// number -1 means that the pointer is used in multiple partitions. In this 899 /// case we can't safely omit the check. 900 SmallVector<RuntimePointerCheck, 4> includeOnlyCrossPartitionChecks( 901 const SmallVectorImpl<RuntimePointerCheck> &AllChecks, 902 const SmallVectorImpl<int> &PtrToPartition, 903 const RuntimePointerChecking *RtPtrChecking) { 904 SmallVector<RuntimePointerCheck, 4> Checks; 905 906 copy_if(AllChecks, std::back_inserter(Checks), 907 [&](const RuntimePointerCheck &Check) { 908 for (unsigned PtrIdx1 : Check.first->Members) 909 for (unsigned PtrIdx2 : Check.second->Members) 910 // Only include this check if there is a pair of pointers 911 // that require checking and the pointers fall into 912 // separate partitions. 913 // 914 // (Note that we already know at this point that the two 915 // pointer groups need checking but it doesn't follow 916 // that each pair of pointers within the two groups need 917 // checking as well. 918 // 919 // In other words we don't want to include a check just 920 // because there is a pair of pointers between the two 921 // pointer groups that require checks and a different 922 // pair whose pointers fall into different partitions.) 923 if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) && 924 !RuntimePointerChecking::arePointersInSamePartition( 925 PtrToPartition, PtrIdx1, PtrIdx2)) 926 return true; 927 return false; 928 }); 929 930 return Checks; 931 } 932 933 /// Check whether the loop metadata is forcing distribution to be 934 /// enabled/disabled. 935 void setForced() { 936 std::optional<const MDOperand *> Value = 937 findStringMetadataForLoop(L, "llvm.loop.distribute.enable"); 938 if (!Value) 939 return; 940 941 const MDOperand *Op = *Value; 942 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata"); 943 IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue(); 944 } 945 946 Loop *L; 947 Function *F; 948 949 // Analyses used. 950 LoopInfo *LI; 951 const LoopAccessInfo *LAI = nullptr; 952 DominatorTree *DT; 953 ScalarEvolution *SE; 954 LoopAccessInfoManager &LAIs; 955 OptimizationRemarkEmitter *ORE; 956 957 /// Indicates whether distribution is forced to be enabled/disabled for 958 /// the loop. 959 /// 960 /// If the optional has a value, it indicates whether distribution was forced 961 /// to be enabled (true) or disabled (false). If the optional has no value 962 /// distribution was not forced either way. 963 std::optional<bool> IsForced; 964 }; 965 966 } // end anonymous namespace 967 968 static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT, 969 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, 970 LoopAccessInfoManager &LAIs) { 971 // Build up a worklist of inner-loops to distribute. This is necessary as the 972 // act of distributing a loop creates new loops and can invalidate iterators 973 // across the loops. 974 SmallVector<Loop *, 8> Worklist; 975 976 for (Loop *TopLevelLoop : *LI) 977 for (Loop *L : depth_first(TopLevelLoop)) 978 // We only handle inner-most loops. 979 if (L->isInnermost()) 980 Worklist.push_back(L); 981 982 // Now walk the identified inner loops. 983 bool Changed = false; 984 for (Loop *L : Worklist) { 985 LoopDistributeForLoop LDL(L, &F, LI, DT, SE, LAIs, ORE); 986 987 // If distribution was forced for the specific loop to be 988 // enabled/disabled, follow that. Otherwise use the global flag. 989 if (LDL.isForced().value_or(EnableLoopDistribute)) 990 Changed |= LDL.processLoop(); 991 } 992 993 // Process each loop nest in the function. 994 return Changed; 995 } 996 997 PreservedAnalyses LoopDistributePass::run(Function &F, 998 FunctionAnalysisManager &AM) { 999 auto &LI = AM.getResult<LoopAnalysis>(F); 1000 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1001 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1002 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1003 1004 LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F); 1005 bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, LAIs); 1006 if (!Changed) 1007 return PreservedAnalyses::all(); 1008 PreservedAnalyses PA; 1009 PA.preserve<LoopAnalysis>(); 1010 PA.preserve<DominatorTreeAnalysis>(); 1011 return PA; 1012 } 1013