1 //===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop Distribution Pass. Its main focus is to
10 // distribute loops that cannot be vectorized due to dependence cycles. It
11 // tries to isolate the offending dependences into a new loop allowing
12 // vectorization of the remaining parts.
13 //
14 // For dependence analysis, the pass uses the LoopVectorizer's
15 // LoopAccessAnalysis. Because this analysis presumes no change in the order of
16 // memory operations, special care is taken to preserve the lexical order of
17 // these operations.
18 //
19 // Similarly to the Vectorizer, the pass also supports loop versioning to
20 // run-time disambiguate potentially overlapping arrays.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/Transforms/Scalar/LoopDistribute.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/EquivalenceClasses.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/GlobalsModRef.h"
37 #include "llvm/Analysis/LoopAccessAnalysis.h"
38 #include "llvm/Analysis/LoopAnalysisManager.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/TargetLibraryInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DiagnosticInfo.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/LoopUtils.h"
62 #include "llvm/Transforms/Utils/LoopVersioning.h"
63 #include "llvm/Transforms/Utils/ValueMapper.h"
64 #include <cassert>
65 #include <functional>
66 #include <list>
67 #include <tuple>
68 #include <utility>
69
70 using namespace llvm;
71
72 #define LDIST_NAME "loop-distribute"
73 #define DEBUG_TYPE LDIST_NAME
74
75 /// @{
76 /// Metadata attribute names
77 static const char *const LLVMLoopDistributeFollowupAll =
78 "llvm.loop.distribute.followup_all";
79 static const char *const LLVMLoopDistributeFollowupCoincident =
80 "llvm.loop.distribute.followup_coincident";
81 static const char *const LLVMLoopDistributeFollowupSequential =
82 "llvm.loop.distribute.followup_sequential";
83 static const char *const LLVMLoopDistributeFollowupFallback =
84 "llvm.loop.distribute.followup_fallback";
85 /// @}
86
87 static cl::opt<bool>
88 LDistVerify("loop-distribute-verify", cl::Hidden,
89 cl::desc("Turn on DominatorTree and LoopInfo verification "
90 "after Loop Distribution"),
91 cl::init(false));
92
93 static cl::opt<bool> DistributeNonIfConvertible(
94 "loop-distribute-non-if-convertible", cl::Hidden,
95 cl::desc("Whether to distribute into a loop that may not be "
96 "if-convertible by the loop vectorizer"),
97 cl::init(false));
98
99 static cl::opt<unsigned> DistributeSCEVCheckThreshold(
100 "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
101 cl::desc("The maximum number of SCEV checks allowed for Loop "
102 "Distribution"));
103
104 static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold(
105 "loop-distribute-scev-check-threshold-with-pragma", cl::init(128),
106 cl::Hidden,
107 cl::desc("The maximum number of SCEV checks allowed for Loop "
108 "Distribution for loop marked with #pragma clang loop "
109 "distribute(enable)"));
110
111 static cl::opt<bool> EnableLoopDistribute(
112 "enable-loop-distribute", cl::Hidden,
113 cl::desc("Enable the new, experimental LoopDistribution Pass"),
114 cl::init(false));
115
116 STATISTIC(NumLoopsDistributed, "Number of loops distributed");
117
118 namespace {
119
120 /// Maintains the set of instructions of the loop for a partition before
121 /// cloning. After cloning, it hosts the new loop.
122 class InstPartition {
123 using InstructionSet = SmallSetVector<Instruction *, 8>;
124
125 public:
InstPartition(Instruction * I,Loop * L,bool DepCycle=false)126 InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
127 : DepCycle(DepCycle), OrigLoop(L) {
128 Set.insert(I);
129 }
130
131 /// Returns whether this partition contains a dependence cycle.
hasDepCycle() const132 bool hasDepCycle() const { return DepCycle; }
133
134 /// Adds an instruction to this partition.
add(Instruction * I)135 void add(Instruction *I) { Set.insert(I); }
136
137 /// Collection accessors.
begin()138 InstructionSet::iterator begin() { return Set.begin(); }
end()139 InstructionSet::iterator end() { return Set.end(); }
begin() const140 InstructionSet::const_iterator begin() const { return Set.begin(); }
end() const141 InstructionSet::const_iterator end() const { return Set.end(); }
empty() const142 bool empty() const { return Set.empty(); }
143
144 /// Moves this partition into \p Other. This partition becomes empty
145 /// after this.
moveTo(InstPartition & Other)146 void moveTo(InstPartition &Other) {
147 Other.Set.insert(Set.begin(), Set.end());
148 Set.clear();
149 Other.DepCycle |= DepCycle;
150 }
151
152 /// Populates the partition with a transitive closure of all the
153 /// instructions that the seeded instructions dependent on.
populateUsedSet()154 void populateUsedSet() {
155 // FIXME: We currently don't use control-dependence but simply include all
156 // blocks (possibly empty at the end) and let simplifycfg mostly clean this
157 // up.
158 for (auto *B : OrigLoop->getBlocks())
159 Set.insert(B->getTerminator());
160
161 // Follow the use-def chains to form a transitive closure of all the
162 // instructions that the originally seeded instructions depend on.
163 SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
164 while (!Worklist.empty()) {
165 Instruction *I = Worklist.pop_back_val();
166 // Insert instructions from the loop that we depend on.
167 for (Value *V : I->operand_values()) {
168 auto *I = dyn_cast<Instruction>(V);
169 if (I && OrigLoop->contains(I->getParent()) && Set.insert(I))
170 Worklist.push_back(I);
171 }
172 }
173 }
174
175 /// Clones the original loop.
176 ///
177 /// Updates LoopInfo and DominatorTree using the information that block \p
178 /// LoopDomBB dominates the loop.
cloneLoopWithPreheader(BasicBlock * InsertBefore,BasicBlock * LoopDomBB,unsigned Index,LoopInfo * LI,DominatorTree * DT)179 Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
180 unsigned Index, LoopInfo *LI,
181 DominatorTree *DT) {
182 ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
183 VMap, Twine(".ldist") + Twine(Index),
184 LI, DT, ClonedLoopBlocks);
185 return ClonedLoop;
186 }
187
188 /// The cloned loop. If this partition is mapped to the original loop,
189 /// this is null.
getClonedLoop() const190 const Loop *getClonedLoop() const { return ClonedLoop; }
191
192 /// Returns the loop where this partition ends up after distribution.
193 /// If this partition is mapped to the original loop then use the block from
194 /// the loop.
getDistributedLoop() const195 Loop *getDistributedLoop() const {
196 return ClonedLoop ? ClonedLoop : OrigLoop;
197 }
198
199 /// The VMap that is populated by cloning and then used in
200 /// remapinstruction to remap the cloned instructions.
getVMap()201 ValueToValueMapTy &getVMap() { return VMap; }
202
203 /// Remaps the cloned instructions using VMap.
remapInstructions()204 void remapInstructions() {
205 remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
206 }
207
208 /// Based on the set of instructions selected for this partition,
209 /// removes the unnecessary ones.
removeUnusedInsts()210 void removeUnusedInsts() {
211 SmallVector<Instruction *, 8> Unused;
212
213 for (auto *Block : OrigLoop->getBlocks())
214 for (auto &Inst : *Block)
215 if (!Set.count(&Inst)) {
216 Instruction *NewInst = &Inst;
217 if (!VMap.empty())
218 NewInst = cast<Instruction>(VMap[NewInst]);
219
220 assert(!isa<BranchInst>(NewInst) &&
221 "Branches are marked used early on");
222 Unused.push_back(NewInst);
223 }
224
225 // Delete the instructions backwards, as it has a reduced likelihood of
226 // having to update as many def-use and use-def chains.
227 for (auto *Inst : reverse(Unused)) {
228 if (!Inst->use_empty())
229 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType()));
230 Inst->eraseFromParent();
231 }
232 }
233
print(raw_ostream & OS) const234 void print(raw_ostream &OS) const {
235 OS << (DepCycle ? " (cycle)\n" : "\n");
236 for (auto *I : Set)
237 // Prefix with the block name.
238 OS << " " << I->getParent()->getName() << ":" << *I << "\n";
239 }
240
printBlocks(raw_ostream & OS) const241 void printBlocks(raw_ostream &OS) const {
242 for (auto *BB : getDistributedLoop()->getBlocks())
243 OS << *BB;
244 }
245
246 private:
247 /// Instructions from OrigLoop selected for this partition.
248 InstructionSet Set;
249
250 /// Whether this partition contains a dependence cycle.
251 bool DepCycle;
252
253 /// The original loop.
254 Loop *OrigLoop;
255
256 /// The cloned loop. If this partition is mapped to the original loop,
257 /// this is null.
258 Loop *ClonedLoop = nullptr;
259
260 /// The blocks of ClonedLoop including the preheader. If this
261 /// partition is mapped to the original loop, this is empty.
262 SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
263
264 /// These gets populated once the set of instructions have been
265 /// finalized. If this partition is mapped to the original loop, these are not
266 /// set.
267 ValueToValueMapTy VMap;
268 };
269
270 /// Holds the set of Partitions. It populates them, merges them and then
271 /// clones the loops.
272 class InstPartitionContainer {
273 using InstToPartitionIdT = DenseMap<Instruction *, int>;
274
275 public:
InstPartitionContainer(Loop * L,LoopInfo * LI,DominatorTree * DT)276 InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
277 : L(L), LI(LI), DT(DT) {}
278
279 /// Returns the number of partitions.
getSize() const280 unsigned getSize() const { return PartitionContainer.size(); }
281
282 /// Adds \p Inst into the current partition if that is marked to
283 /// contain cycles. Otherwise start a new partition for it.
addToCyclicPartition(Instruction * Inst)284 void addToCyclicPartition(Instruction *Inst) {
285 // If the current partition is non-cyclic. Start a new one.
286 if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
287 PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
288 else
289 PartitionContainer.back().add(Inst);
290 }
291
292 /// Adds \p Inst into a partition that is not marked to contain
293 /// dependence cycles.
294 ///
295 // Initially we isolate memory instructions into as many partitions as
296 // possible, then later we may merge them back together.
addToNewNonCyclicPartition(Instruction * Inst)297 void addToNewNonCyclicPartition(Instruction *Inst) {
298 PartitionContainer.emplace_back(Inst, L);
299 }
300
301 /// Merges adjacent non-cyclic partitions.
302 ///
303 /// The idea is that we currently only want to isolate the non-vectorizable
304 /// partition. We could later allow more distribution among these partition
305 /// too.
mergeAdjacentNonCyclic()306 void mergeAdjacentNonCyclic() {
307 mergeAdjacentPartitionsIf(
308 [](const InstPartition *P) { return !P->hasDepCycle(); });
309 }
310
311 /// If a partition contains only conditional stores, we won't vectorize
312 /// it. Try to merge it with a previous cyclic partition.
mergeNonIfConvertible()313 void mergeNonIfConvertible() {
314 mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
315 if (Partition->hasDepCycle())
316 return true;
317
318 // Now, check if all stores are conditional in this partition.
319 bool seenStore = false;
320
321 for (auto *Inst : *Partition)
322 if (isa<StoreInst>(Inst)) {
323 seenStore = true;
324 if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
325 return false;
326 }
327 return seenStore;
328 });
329 }
330
331 /// Merges the partitions according to various heuristics.
mergeBeforePopulating()332 void mergeBeforePopulating() {
333 mergeAdjacentNonCyclic();
334 if (!DistributeNonIfConvertible)
335 mergeNonIfConvertible();
336 }
337
338 /// Merges partitions in order to ensure that no loads are duplicated.
339 ///
340 /// We can't duplicate loads because that could potentially reorder them.
341 /// LoopAccessAnalysis provides dependency information with the context that
342 /// the order of memory operation is preserved.
343 ///
344 /// Return if any partitions were merged.
mergeToAvoidDuplicatedLoads()345 bool mergeToAvoidDuplicatedLoads() {
346 using LoadToPartitionT = DenseMap<Instruction *, InstPartition *>;
347 using ToBeMergedT = EquivalenceClasses<InstPartition *>;
348
349 LoadToPartitionT LoadToPartition;
350 ToBeMergedT ToBeMerged;
351
352 // Step through the partitions and create equivalence between partitions
353 // that contain the same load. Also put partitions in between them in the
354 // same equivalence class to avoid reordering of memory operations.
355 for (PartitionContainerT::iterator I = PartitionContainer.begin(),
356 E = PartitionContainer.end();
357 I != E; ++I) {
358 auto *PartI = &*I;
359
360 // If a load occurs in two partitions PartI and PartJ, merge all
361 // partitions (PartI, PartJ] into PartI.
362 for (Instruction *Inst : *PartI)
363 if (isa<LoadInst>(Inst)) {
364 bool NewElt;
365 LoadToPartitionT::iterator LoadToPart;
366
367 std::tie(LoadToPart, NewElt) =
368 LoadToPartition.insert(std::make_pair(Inst, PartI));
369 if (!NewElt) {
370 LLVM_DEBUG(
371 dbgs()
372 << "LDist: Merging partitions due to this load in multiple "
373 << "partitions: " << PartI << ", " << LoadToPart->second << "\n"
374 << *Inst << "\n");
375
376 auto PartJ = I;
377 do {
378 --PartJ;
379 ToBeMerged.unionSets(PartI, &*PartJ);
380 } while (&*PartJ != LoadToPart->second);
381 }
382 }
383 }
384 if (ToBeMerged.empty())
385 return false;
386
387 // Merge the member of an equivalence class into its class leader. This
388 // makes the members empty.
389 for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
390 I != E; ++I) {
391 if (!I->isLeader())
392 continue;
393
394 auto PartI = I->getData();
395 for (auto *PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
396 ToBeMerged.member_end())) {
397 PartJ->moveTo(*PartI);
398 }
399 }
400
401 // Remove the empty partitions.
402 PartitionContainer.remove_if(
403 [](const InstPartition &P) { return P.empty(); });
404
405 return true;
406 }
407
408 /// Sets up the mapping between instructions to partitions. If the
409 /// instruction is duplicated across multiple partitions, set the entry to -1.
setupPartitionIdOnInstructions()410 void setupPartitionIdOnInstructions() {
411 int PartitionID = 0;
412 for (const auto &Partition : PartitionContainer) {
413 for (Instruction *Inst : Partition) {
414 bool NewElt;
415 InstToPartitionIdT::iterator Iter;
416
417 std::tie(Iter, NewElt) =
418 InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
419 if (!NewElt)
420 Iter->second = -1;
421 }
422 ++PartitionID;
423 }
424 }
425
426 /// Populates the partition with everything that the seeding
427 /// instructions require.
populateUsedSet()428 void populateUsedSet() {
429 for (auto &P : PartitionContainer)
430 P.populateUsedSet();
431 }
432
433 /// This performs the main chunk of the work of cloning the loops for
434 /// the partitions.
cloneLoops()435 void cloneLoops() {
436 BasicBlock *OrigPH = L->getLoopPreheader();
437 // At this point the predecessor of the preheader is either the memcheck
438 // block or the top part of the original preheader.
439 BasicBlock *Pred = OrigPH->getSinglePredecessor();
440 assert(Pred && "Preheader does not have a single predecessor");
441 BasicBlock *ExitBlock = L->getExitBlock();
442 assert(ExitBlock && "No single exit block");
443 Loop *NewLoop;
444
445 assert(!PartitionContainer.empty() && "at least two partitions expected");
446 // We're cloning the preheader along with the loop so we already made sure
447 // it was empty.
448 assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
449 "preheader not empty");
450
451 // Preserve the original loop ID for use after the transformation.
452 MDNode *OrigLoopID = L->getLoopID();
453
454 // Create a loop for each partition except the last. Clone the original
455 // loop before PH along with adding a preheader for the cloned loop. Then
456 // update PH to point to the newly added preheader.
457 BasicBlock *TopPH = OrigPH;
458 unsigned Index = getSize() - 1;
459 for (auto &Part : llvm::drop_begin(llvm::reverse(PartitionContainer))) {
460 NewLoop = Part.cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
461
462 Part.getVMap()[ExitBlock] = TopPH;
463 Part.remapInstructions();
464 setNewLoopID(OrigLoopID, &Part);
465 --Index;
466 TopPH = NewLoop->getLoopPreheader();
467 }
468 Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
469
470 // Also set a new loop ID for the last loop.
471 setNewLoopID(OrigLoopID, &PartitionContainer.back());
472
473 // Now go in forward order and update the immediate dominator for the
474 // preheaders with the exiting block of the previous loop. Dominance
475 // within the loop is updated in cloneLoopWithPreheader.
476 for (auto Curr = PartitionContainer.cbegin(),
477 Next = std::next(PartitionContainer.cbegin()),
478 E = PartitionContainer.cend();
479 Next != E; ++Curr, ++Next)
480 DT->changeImmediateDominator(
481 Next->getDistributedLoop()->getLoopPreheader(),
482 Curr->getDistributedLoop()->getExitingBlock());
483 }
484
485 /// Removes the dead instructions from the cloned loops.
removeUnusedInsts()486 void removeUnusedInsts() {
487 for (auto &Partition : PartitionContainer)
488 Partition.removeUnusedInsts();
489 }
490
491 /// For each memory pointer, it computes the partitionId the pointer is
492 /// used in.
493 ///
494 /// This returns an array of int where the I-th entry corresponds to I-th
495 /// entry in LAI.getRuntimePointerCheck(). If the pointer is used in multiple
496 /// partitions its entry is set to -1.
497 SmallVector<int, 8>
computePartitionSetForPointers(const LoopAccessInfo & LAI)498 computePartitionSetForPointers(const LoopAccessInfo &LAI) {
499 const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();
500
501 unsigned N = RtPtrCheck->Pointers.size();
502 SmallVector<int, 8> PtrToPartitions(N);
503 for (unsigned I = 0; I < N; ++I) {
504 Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
505 auto Instructions =
506 LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);
507
508 int &Partition = PtrToPartitions[I];
509 // First set it to uninitialized.
510 Partition = -2;
511 for (Instruction *Inst : Instructions) {
512 // Note that this could be -1 if Inst is duplicated across multiple
513 // partitions.
514 int ThisPartition = this->InstToPartitionId[Inst];
515 if (Partition == -2)
516 Partition = ThisPartition;
517 // -1 means belonging to multiple partitions.
518 else if (Partition == -1)
519 break;
520 else if (Partition != (int)ThisPartition)
521 Partition = -1;
522 }
523 assert(Partition != -2 && "Pointer not belonging to any partition");
524 }
525
526 return PtrToPartitions;
527 }
528
print(raw_ostream & OS) const529 void print(raw_ostream &OS) const {
530 unsigned Index = 0;
531 for (const auto &P : PartitionContainer) {
532 OS << "LDist: Partition " << Index++ << ":";
533 P.print(OS);
534 }
535 }
536
dump() const537 void dump() const { print(dbgs()); }
538
539 #ifndef NDEBUG
operator <<(raw_ostream & OS,const InstPartitionContainer & Partitions)540 friend raw_ostream &operator<<(raw_ostream &OS,
541 const InstPartitionContainer &Partitions) {
542 Partitions.print(OS);
543 return OS;
544 }
545 #endif
546
printBlocks(raw_ostream & OS) const547 void printBlocks(raw_ostream &OS) const {
548 unsigned Index = 0;
549 for (const auto &P : PartitionContainer) {
550 OS << "LDist: Partition " << Index++ << ":";
551 P.printBlocks(OS);
552 }
553 }
554
555 private:
556 using PartitionContainerT = std::list<InstPartition>;
557
558 /// List of partitions.
559 PartitionContainerT PartitionContainer;
560
561 /// Mapping from Instruction to partition Id. If the instruction
562 /// belongs to multiple partitions the entry contains -1.
563 InstToPartitionIdT InstToPartitionId;
564
565 Loop *L;
566 LoopInfo *LI;
567 DominatorTree *DT;
568
569 /// The control structure to merge adjacent partitions if both satisfy
570 /// the \p Predicate.
571 template <class UnaryPredicate>
mergeAdjacentPartitionsIf(UnaryPredicate Predicate)572 void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
573 InstPartition *PrevMatch = nullptr;
574 for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
575 auto DoesMatch = Predicate(&*I);
576 if (PrevMatch == nullptr && DoesMatch) {
577 PrevMatch = &*I;
578 ++I;
579 } else if (PrevMatch != nullptr && DoesMatch) {
580 I->moveTo(*PrevMatch);
581 I = PartitionContainer.erase(I);
582 } else {
583 PrevMatch = nullptr;
584 ++I;
585 }
586 }
587 }
588
589 /// Assign new LoopIDs for the partition's cloned loop.
setNewLoopID(MDNode * OrigLoopID,InstPartition * Part)590 void setNewLoopID(MDNode *OrigLoopID, InstPartition *Part) {
591 std::optional<MDNode *> PartitionID = makeFollowupLoopID(
592 OrigLoopID,
593 {LLVMLoopDistributeFollowupAll,
594 Part->hasDepCycle() ? LLVMLoopDistributeFollowupSequential
595 : LLVMLoopDistributeFollowupCoincident});
596 if (PartitionID) {
597 Loop *NewLoop = Part->getDistributedLoop();
598 NewLoop->setLoopID(*PartitionID);
599 }
600 }
601 };
602
603 /// For each memory instruction, this class maintains difference of the
604 /// number of unsafe dependences that start out from this instruction minus
605 /// those that end here.
606 ///
607 /// By traversing the memory instructions in program order and accumulating this
608 /// number, we know whether any unsafe dependence crosses over a program point.
609 class MemoryInstructionDependences {
610 using Dependence = MemoryDepChecker::Dependence;
611
612 public:
613 struct Entry {
614 Instruction *Inst;
615 unsigned NumUnsafeDependencesStartOrEnd = 0;
616
Entry__anon5f80120c0111::MemoryInstructionDependences::Entry617 Entry(Instruction *Inst) : Inst(Inst) {}
618 };
619
620 using AccessesType = SmallVector<Entry, 8>;
621
begin() const622 AccessesType::const_iterator begin() const { return Accesses.begin(); }
end() const623 AccessesType::const_iterator end() const { return Accesses.end(); }
624
MemoryInstructionDependences(const SmallVectorImpl<Instruction * > & Instructions,const SmallVectorImpl<Dependence> & Dependences)625 MemoryInstructionDependences(
626 const SmallVectorImpl<Instruction *> &Instructions,
627 const SmallVectorImpl<Dependence> &Dependences) {
628 Accesses.append(Instructions.begin(), Instructions.end());
629
630 LLVM_DEBUG(dbgs() << "LDist: Backward dependences:\n");
631 for (const auto &Dep : Dependences)
632 if (Dep.isPossiblyBackward()) {
633 // Note that the designations source and destination follow the program
634 // order, i.e. source is always first. (The direction is given by the
635 // DepType.)
636 ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
637 --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
638
639 LLVM_DEBUG(Dep.print(dbgs(), 2, Instructions));
640 }
641 }
642
643 private:
644 AccessesType Accesses;
645 };
646
647 /// The actual class performing the per-loop work.
648 class LoopDistributeForLoop {
649 public:
LoopDistributeForLoop(Loop * L,Function * F,LoopInfo * LI,DominatorTree * DT,ScalarEvolution * SE,LoopAccessInfoManager & LAIs,OptimizationRemarkEmitter * ORE)650 LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT,
651 ScalarEvolution *SE, LoopAccessInfoManager &LAIs,
652 OptimizationRemarkEmitter *ORE)
653 : L(L), F(F), LI(LI), DT(DT), SE(SE), LAIs(LAIs), ORE(ORE) {
654 setForced();
655 }
656
657 /// Try to distribute an inner-most loop.
processLoop()658 bool processLoop() {
659 assert(L->isInnermost() && "Only process inner loops.");
660
661 LLVM_DEBUG(dbgs() << "\nLDist: Checking a loop in '"
662 << L->getHeader()->getParent()->getName() << "' from "
663 << L->getLocStr() << "\n");
664
665 // Having a single exit block implies there's also one exiting block.
666 if (!L->getExitBlock())
667 return fail("MultipleExitBlocks", "multiple exit blocks");
668 if (!L->isLoopSimplifyForm())
669 return fail("NotLoopSimplifyForm",
670 "loop is not in loop-simplify form");
671 if (!L->isRotatedForm())
672 return fail("NotBottomTested", "loop is not bottom tested");
673
674 BasicBlock *PH = L->getLoopPreheader();
675
676 LAI = &LAIs.getInfo(*L);
677
678 // Currently, we only distribute to isolate the part of the loop with
679 // dependence cycles to enable partial vectorization.
680 if (LAI->canVectorizeMemory())
681 return fail("MemOpsCanBeVectorized",
682 "memory operations are safe for vectorization");
683
684 auto *Dependences = LAI->getDepChecker().getDependences();
685 if (!Dependences || Dependences->empty())
686 return fail("NoUnsafeDeps", "no unsafe dependences to isolate");
687
688 LLVM_DEBUG(dbgs() << "LDist: Found a candidate loop: "
689 << L->getHeader()->getName() << "\n");
690
691 InstPartitionContainer Partitions(L, LI, DT);
692
693 // First, go through each memory operation and assign them to consecutive
694 // partitions (the order of partitions follows program order). Put those
695 // with unsafe dependences into "cyclic" partition otherwise put each store
696 // in its own "non-cyclic" partition (we'll merge these later).
697 //
698 // Note that a memory operation (e.g. Load2 below) at a program point that
699 // has an unsafe dependence (Store3->Load1) spanning over it must be
700 // included in the same cyclic partition as the dependent operations. This
701 // is to preserve the original program order after distribution. E.g.:
702 //
703 // NumUnsafeDependencesStartOrEnd NumUnsafeDependencesActive
704 // Load1 -. 1 0->1
705 // Load2 | /Unsafe/ 0 1
706 // Store3 -' -1 1->0
707 // Load4 0 0
708 //
709 // NumUnsafeDependencesActive > 0 indicates this situation and in this case
710 // we just keep assigning to the same cyclic partition until
711 // NumUnsafeDependencesActive reaches 0.
712 const MemoryDepChecker &DepChecker = LAI->getDepChecker();
713 MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
714 *Dependences);
715
716 int NumUnsafeDependencesActive = 0;
717 for (const auto &InstDep : MID) {
718 Instruction *I = InstDep.Inst;
719 // We update NumUnsafeDependencesActive post-instruction, catch the
720 // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
721 if (NumUnsafeDependencesActive ||
722 InstDep.NumUnsafeDependencesStartOrEnd > 0)
723 Partitions.addToCyclicPartition(I);
724 else
725 Partitions.addToNewNonCyclicPartition(I);
726 NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
727 assert(NumUnsafeDependencesActive >= 0 &&
728 "Negative number of dependences active");
729 }
730
731 // Add partitions for values used outside. These partitions can be out of
732 // order from the original program order. This is OK because if the
733 // partition uses a load we will merge this partition with the original
734 // partition of the load that we set up in the previous loop (see
735 // mergeToAvoidDuplicatedLoads).
736 auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
737 for (auto *Inst : DefsUsedOutside)
738 Partitions.addToNewNonCyclicPartition(Inst);
739
740 LLVM_DEBUG(dbgs() << "LDist: Seeded partitions:\n" << Partitions);
741 if (Partitions.getSize() < 2)
742 return fail("CantIsolateUnsafeDeps",
743 "cannot isolate unsafe dependencies");
744
745 // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
746 // should be able to vectorize these together.
747 Partitions.mergeBeforePopulating();
748 LLVM_DEBUG(dbgs() << "LDist: Merged partitions:\n" << Partitions);
749 if (Partitions.getSize() < 2)
750 return fail("CantIsolateUnsafeDeps",
751 "cannot isolate unsafe dependencies");
752
753 // Now, populate the partitions with non-memory operations.
754 Partitions.populateUsedSet();
755 LLVM_DEBUG(dbgs() << "LDist: Populated partitions:\n" << Partitions);
756
757 // In order to preserve original lexical order for loads, keep them in the
758 // partition that we set up in the MemoryInstructionDependences loop.
759 if (Partitions.mergeToAvoidDuplicatedLoads()) {
760 LLVM_DEBUG(dbgs() << "LDist: Partitions merged to ensure unique loads:\n"
761 << Partitions);
762 if (Partitions.getSize() < 2)
763 return fail("CantIsolateUnsafeDeps",
764 "cannot isolate unsafe dependencies");
765 }
766
767 // Don't distribute the loop if we need too many SCEV run-time checks, or
768 // any if it's illegal.
769 const SCEVPredicate &Pred = LAI->getPSE().getPredicate();
770 if (LAI->hasConvergentOp() && !Pred.isAlwaysTrue()) {
771 return fail("RuntimeCheckWithConvergent",
772 "may not insert runtime check with convergent operation");
773 }
774
775 if (Pred.getComplexity() > (IsForced.value_or(false)
776 ? PragmaDistributeSCEVCheckThreshold
777 : DistributeSCEVCheckThreshold))
778 return fail("TooManySCEVRuntimeChecks",
779 "too many SCEV run-time checks needed.\n");
780
781 if (!IsForced.value_or(false) && hasDisableAllTransformsHint(L))
782 return fail("HeuristicDisabled", "distribution heuristic disabled");
783
784 LLVM_DEBUG(dbgs() << "LDist: Distributing loop: "
785 << L->getHeader()->getName() << "\n");
786 // We're done forming the partitions set up the reverse mapping from
787 // instructions to partitions.
788 Partitions.setupPartitionIdOnInstructions();
789
790 // If we need run-time checks, version the loop now.
791 auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI);
792 const auto *RtPtrChecking = LAI->getRuntimePointerChecking();
793 const auto &AllChecks = RtPtrChecking->getChecks();
794 auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
795 RtPtrChecking);
796
797 if (LAI->hasConvergentOp() && !Checks.empty()) {
798 return fail("RuntimeCheckWithConvergent",
799 "may not insert runtime check with convergent operation");
800 }
801
802 // To keep things simple have an empty preheader before we version or clone
803 // the loop. (Also split if this has no predecessor, i.e. entry, because we
804 // rely on PH having a predecessor.)
805 if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
806 SplitBlock(PH, PH->getTerminator(), DT, LI);
807
808 if (!Pred.isAlwaysTrue() || !Checks.empty()) {
809 assert(!LAI->hasConvergentOp() && "inserting illegal loop versioning");
810
811 MDNode *OrigLoopID = L->getLoopID();
812
813 LLVM_DEBUG(dbgs() << "LDist: Pointers:\n");
814 LLVM_DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks));
815 LoopVersioning LVer(*LAI, Checks, L, LI, DT, SE);
816 LVer.versionLoop(DefsUsedOutside);
817 LVer.annotateLoopWithNoAlias();
818
819 // The unversioned loop will not be changed, so we inherit all attributes
820 // from the original loop, but remove the loop distribution metadata to
821 // avoid to distribute it again.
822 MDNode *UnversionedLoopID = *makeFollowupLoopID(
823 OrigLoopID,
824 {LLVMLoopDistributeFollowupAll, LLVMLoopDistributeFollowupFallback},
825 "llvm.loop.distribute.", true);
826 LVer.getNonVersionedLoop()->setLoopID(UnversionedLoopID);
827 }
828
829 // Create identical copies of the original loop for each partition and hook
830 // them up sequentially.
831 Partitions.cloneLoops();
832
833 // Now, we remove the instruction from each loop that don't belong to that
834 // partition.
835 Partitions.removeUnusedInsts();
836 LLVM_DEBUG(dbgs() << "LDist: After removing unused Instrs:\n");
837 LLVM_DEBUG(Partitions.printBlocks(dbgs()));
838
839 if (LDistVerify) {
840 LI->verify(*DT);
841 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
842 }
843
844 ++NumLoopsDistributed;
845 // Report the success.
846 ORE->emit([&]() {
847 return OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(),
848 L->getHeader())
849 << "distributed loop";
850 });
851 return true;
852 }
853
854 /// Provide diagnostics then \return with false.
fail(StringRef RemarkName,StringRef Message)855 bool fail(StringRef RemarkName, StringRef Message) {
856 LLVMContext &Ctx = F->getContext();
857 bool Forced = isForced().value_or(false);
858
859 LLVM_DEBUG(dbgs() << "LDist: Skipping; " << Message << "\n");
860
861 // With Rpass-missed report that distribution failed.
862 ORE->emit([&]() {
863 return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed",
864 L->getStartLoc(), L->getHeader())
865 << "loop not distributed: use -Rpass-analysis=loop-distribute for "
866 "more "
867 "info";
868 });
869
870 // With Rpass-analysis report why. This is on by default if distribution
871 // was requested explicitly.
872 ORE->emit(OptimizationRemarkAnalysis(
873 Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME,
874 RemarkName, L->getStartLoc(), L->getHeader())
875 << "loop not distributed: " << Message);
876
877 // Also issue a warning if distribution was requested explicitly but it
878 // failed.
879 if (Forced)
880 Ctx.diagnose(DiagnosticInfoOptimizationFailure(
881 *F, L->getStartLoc(), "loop not distributed: failed "
882 "explicitly specified loop distribution"));
883
884 return false;
885 }
886
887 /// Return if distribution forced to be enabled/disabled for the loop.
888 ///
889 /// If the optional has a value, it indicates whether distribution was forced
890 /// to be enabled (true) or disabled (false). If the optional has no value
891 /// distribution was not forced either way.
isForced() const892 const std::optional<bool> &isForced() const { return IsForced; }
893
894 private:
895 /// Filter out checks between pointers from the same partition.
896 ///
897 /// \p PtrToPartition contains the partition number for pointers. Partition
898 /// number -1 means that the pointer is used in multiple partitions. In this
899 /// case we can't safely omit the check.
includeOnlyCrossPartitionChecks(const SmallVectorImpl<RuntimePointerCheck> & AllChecks,const SmallVectorImpl<int> & PtrToPartition,const RuntimePointerChecking * RtPtrChecking)900 SmallVector<RuntimePointerCheck, 4> includeOnlyCrossPartitionChecks(
901 const SmallVectorImpl<RuntimePointerCheck> &AllChecks,
902 const SmallVectorImpl<int> &PtrToPartition,
903 const RuntimePointerChecking *RtPtrChecking) {
904 SmallVector<RuntimePointerCheck, 4> Checks;
905
906 copy_if(AllChecks, std::back_inserter(Checks),
907 [&](const RuntimePointerCheck &Check) {
908 for (unsigned PtrIdx1 : Check.first->Members)
909 for (unsigned PtrIdx2 : Check.second->Members)
910 // Only include this check if there is a pair of pointers
911 // that require checking and the pointers fall into
912 // separate partitions.
913 //
914 // (Note that we already know at this point that the two
915 // pointer groups need checking but it doesn't follow
916 // that each pair of pointers within the two groups need
917 // checking as well.
918 //
919 // In other words we don't want to include a check just
920 // because there is a pair of pointers between the two
921 // pointer groups that require checks and a different
922 // pair whose pointers fall into different partitions.)
923 if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
924 !RuntimePointerChecking::arePointersInSamePartition(
925 PtrToPartition, PtrIdx1, PtrIdx2))
926 return true;
927 return false;
928 });
929
930 return Checks;
931 }
932
933 /// Check whether the loop metadata is forcing distribution to be
934 /// enabled/disabled.
setForced()935 void setForced() {
936 std::optional<const MDOperand *> Value =
937 findStringMetadataForLoop(L, "llvm.loop.distribute.enable");
938 if (!Value)
939 return;
940
941 const MDOperand *Op = *Value;
942 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
943 IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
944 }
945
946 Loop *L;
947 Function *F;
948
949 // Analyses used.
950 LoopInfo *LI;
951 const LoopAccessInfo *LAI = nullptr;
952 DominatorTree *DT;
953 ScalarEvolution *SE;
954 LoopAccessInfoManager &LAIs;
955 OptimizationRemarkEmitter *ORE;
956
957 /// Indicates whether distribution is forced to be enabled/disabled for
958 /// the loop.
959 ///
960 /// If the optional has a value, it indicates whether distribution was forced
961 /// to be enabled (true) or disabled (false). If the optional has no value
962 /// distribution was not forced either way.
963 std::optional<bool> IsForced;
964 };
965
966 } // end anonymous namespace
967
runImpl(Function & F,LoopInfo * LI,DominatorTree * DT,ScalarEvolution * SE,OptimizationRemarkEmitter * ORE,LoopAccessInfoManager & LAIs)968 static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT,
969 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE,
970 LoopAccessInfoManager &LAIs) {
971 // Build up a worklist of inner-loops to distribute. This is necessary as the
972 // act of distributing a loop creates new loops and can invalidate iterators
973 // across the loops.
974 SmallVector<Loop *, 8> Worklist;
975
976 for (Loop *TopLevelLoop : *LI)
977 for (Loop *L : depth_first(TopLevelLoop))
978 // We only handle inner-most loops.
979 if (L->isInnermost())
980 Worklist.push_back(L);
981
982 // Now walk the identified inner loops.
983 bool Changed = false;
984 for (Loop *L : Worklist) {
985 LoopDistributeForLoop LDL(L, &F, LI, DT, SE, LAIs, ORE);
986
987 // If distribution was forced for the specific loop to be
988 // enabled/disabled, follow that. Otherwise use the global flag.
989 if (LDL.isForced().value_or(EnableLoopDistribute))
990 Changed |= LDL.processLoop();
991 }
992
993 // Process each loop nest in the function.
994 return Changed;
995 }
996
run(Function & F,FunctionAnalysisManager & AM)997 PreservedAnalyses LoopDistributePass::run(Function &F,
998 FunctionAnalysisManager &AM) {
999 auto &LI = AM.getResult<LoopAnalysis>(F);
1000 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1001 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1002 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1003
1004 LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
1005 bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, LAIs);
1006 if (!Changed)
1007 return PreservedAnalyses::all();
1008 PreservedAnalyses PA;
1009 PA.preserve<LoopAnalysis>();
1010 PA.preserve<DominatorTreeAnalysis>();
1011 return PA;
1012 }
1013