xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopDistribute.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop Distribution Pass.  Its main focus is to
10 // distribute loops that cannot be vectorized due to dependence cycles.  It
11 // tries to isolate the offending dependences into a new loop allowing
12 // vectorization of the remaining parts.
13 //
14 // For dependence analysis, the pass uses the LoopVectorizer's
15 // LoopAccessAnalysis.  Because this analysis presumes no change in the order of
16 // memory operations, special care is taken to preserve the lexical order of
17 // these operations.
18 //
19 // Similarly to the Vectorizer, the pass also supports loop versioning to
20 // run-time disambiguate potentially overlapping arrays.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/Scalar/LoopDistribute.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/EquivalenceClasses.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/GlobalsModRef.h"
37 #include "llvm/Analysis/LoopAccessAnalysis.h"
38 #include "llvm/Analysis/LoopAnalysisManager.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/TargetLibraryInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DiagnosticInfo.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Scalar.h"
62 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
63 #include "llvm/Transforms/Utils/Cloning.h"
64 #include "llvm/Transforms/Utils/LoopUtils.h"
65 #include "llvm/Transforms/Utils/LoopVersioning.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <cassert>
68 #include <functional>
69 #include <list>
70 #include <tuple>
71 #include <utility>
72 
73 using namespace llvm;
74 
75 #define LDIST_NAME "loop-distribute"
76 #define DEBUG_TYPE LDIST_NAME
77 
78 /// @{
79 /// Metadata attribute names
80 static const char *const LLVMLoopDistributeFollowupAll =
81     "llvm.loop.distribute.followup_all";
82 static const char *const LLVMLoopDistributeFollowupCoincident =
83     "llvm.loop.distribute.followup_coincident";
84 static const char *const LLVMLoopDistributeFollowupSequential =
85     "llvm.loop.distribute.followup_sequential";
86 static const char *const LLVMLoopDistributeFollowupFallback =
87     "llvm.loop.distribute.followup_fallback";
88 /// @}
89 
90 static cl::opt<bool>
91     LDistVerify("loop-distribute-verify", cl::Hidden,
92                 cl::desc("Turn on DominatorTree and LoopInfo verification "
93                          "after Loop Distribution"),
94                 cl::init(false));
95 
96 static cl::opt<bool> DistributeNonIfConvertible(
97     "loop-distribute-non-if-convertible", cl::Hidden,
98     cl::desc("Whether to distribute into a loop that may not be "
99              "if-convertible by the loop vectorizer"),
100     cl::init(false));
101 
102 static cl::opt<unsigned> DistributeSCEVCheckThreshold(
103     "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
104     cl::desc("The maximum number of SCEV checks allowed for Loop "
105              "Distribution"));
106 
107 static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold(
108     "loop-distribute-scev-check-threshold-with-pragma", cl::init(128),
109     cl::Hidden,
110     cl::desc(
111         "The maximum number of SCEV checks allowed for Loop "
112         "Distribution for loop marked with #pragma loop distribute(enable)"));
113 
114 static cl::opt<bool> EnableLoopDistribute(
115     "enable-loop-distribute", cl::Hidden,
116     cl::desc("Enable the new, experimental LoopDistribution Pass"),
117     cl::init(false));
118 
119 STATISTIC(NumLoopsDistributed, "Number of loops distributed");
120 
121 namespace {
122 
123 /// Maintains the set of instructions of the loop for a partition before
124 /// cloning.  After cloning, it hosts the new loop.
125 class InstPartition {
126   using InstructionSet = SmallPtrSet<Instruction *, 8>;
127 
128 public:
129   InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
130       : DepCycle(DepCycle), OrigLoop(L) {
131     Set.insert(I);
132   }
133 
134   /// Returns whether this partition contains a dependence cycle.
135   bool hasDepCycle() const { return DepCycle; }
136 
137   /// Adds an instruction to this partition.
138   void add(Instruction *I) { Set.insert(I); }
139 
140   /// Collection accessors.
141   InstructionSet::iterator begin() { return Set.begin(); }
142   InstructionSet::iterator end() { return Set.end(); }
143   InstructionSet::const_iterator begin() const { return Set.begin(); }
144   InstructionSet::const_iterator end() const { return Set.end(); }
145   bool empty() const { return Set.empty(); }
146 
147   /// Moves this partition into \p Other.  This partition becomes empty
148   /// after this.
149   void moveTo(InstPartition &Other) {
150     Other.Set.insert(Set.begin(), Set.end());
151     Set.clear();
152     Other.DepCycle |= DepCycle;
153   }
154 
155   /// Populates the partition with a transitive closure of all the
156   /// instructions that the seeded instructions dependent on.
157   void populateUsedSet() {
158     // FIXME: We currently don't use control-dependence but simply include all
159     // blocks (possibly empty at the end) and let simplifycfg mostly clean this
160     // up.
161     for (auto *B : OrigLoop->getBlocks())
162       Set.insert(B->getTerminator());
163 
164     // Follow the use-def chains to form a transitive closure of all the
165     // instructions that the originally seeded instructions depend on.
166     SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
167     while (!Worklist.empty()) {
168       Instruction *I = Worklist.pop_back_val();
169       // Insert instructions from the loop that we depend on.
170       for (Value *V : I->operand_values()) {
171         auto *I = dyn_cast<Instruction>(V);
172         if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
173           Worklist.push_back(I);
174       }
175     }
176   }
177 
178   /// Clones the original loop.
179   ///
180   /// Updates LoopInfo and DominatorTree using the information that block \p
181   /// LoopDomBB dominates the loop.
182   Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
183                                unsigned Index, LoopInfo *LI,
184                                DominatorTree *DT) {
185     ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
186                                           VMap, Twine(".ldist") + Twine(Index),
187                                           LI, DT, ClonedLoopBlocks);
188     return ClonedLoop;
189   }
190 
191   /// The cloned loop.  If this partition is mapped to the original loop,
192   /// this is null.
193   const Loop *getClonedLoop() const { return ClonedLoop; }
194 
195   /// Returns the loop where this partition ends up after distribution.
196   /// If this partition is mapped to the original loop then use the block from
197   /// the loop.
198   Loop *getDistributedLoop() const {
199     return ClonedLoop ? ClonedLoop : OrigLoop;
200   }
201 
202   /// The VMap that is populated by cloning and then used in
203   /// remapinstruction to remap the cloned instructions.
204   ValueToValueMapTy &getVMap() { return VMap; }
205 
206   /// Remaps the cloned instructions using VMap.
207   void remapInstructions() {
208     remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
209   }
210 
211   /// Based on the set of instructions selected for this partition,
212   /// removes the unnecessary ones.
213   void removeUnusedInsts() {
214     SmallVector<Instruction *, 8> Unused;
215 
216     for (auto *Block : OrigLoop->getBlocks())
217       for (auto &Inst : *Block)
218         if (!Set.count(&Inst)) {
219           Instruction *NewInst = &Inst;
220           if (!VMap.empty())
221             NewInst = cast<Instruction>(VMap[NewInst]);
222 
223           assert(!isa<BranchInst>(NewInst) &&
224                  "Branches are marked used early on");
225           Unused.push_back(NewInst);
226         }
227 
228     // Delete the instructions backwards, as it has a reduced likelihood of
229     // having to update as many def-use and use-def chains.
230     for (auto *Inst : reverse(Unused)) {
231       if (!Inst->use_empty())
232         Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType()));
233       Inst->eraseFromParent();
234     }
235   }
236 
237   void print() const {
238     if (DepCycle)
239       dbgs() << "  (cycle)\n";
240     for (auto *I : Set)
241       // Prefix with the block name.
242       dbgs() << "  " << I->getParent()->getName() << ":" << *I << "\n";
243   }
244 
245   void printBlocks() const {
246     for (auto *BB : getDistributedLoop()->getBlocks())
247       dbgs() << *BB;
248   }
249 
250 private:
251   /// Instructions from OrigLoop selected for this partition.
252   InstructionSet Set;
253 
254   /// Whether this partition contains a dependence cycle.
255   bool DepCycle;
256 
257   /// The original loop.
258   Loop *OrigLoop;
259 
260   /// The cloned loop.  If this partition is mapped to the original loop,
261   /// this is null.
262   Loop *ClonedLoop = nullptr;
263 
264   /// The blocks of ClonedLoop including the preheader.  If this
265   /// partition is mapped to the original loop, this is empty.
266   SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
267 
268   /// These gets populated once the set of instructions have been
269   /// finalized. If this partition is mapped to the original loop, these are not
270   /// set.
271   ValueToValueMapTy VMap;
272 };
273 
274 /// Holds the set of Partitions.  It populates them, merges them and then
275 /// clones the loops.
276 class InstPartitionContainer {
277   using InstToPartitionIdT = DenseMap<Instruction *, int>;
278 
279 public:
280   InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
281       : L(L), LI(LI), DT(DT) {}
282 
283   /// Returns the number of partitions.
284   unsigned getSize() const { return PartitionContainer.size(); }
285 
286   /// Adds \p Inst into the current partition if that is marked to
287   /// contain cycles.  Otherwise start a new partition for it.
288   void addToCyclicPartition(Instruction *Inst) {
289     // If the current partition is non-cyclic.  Start a new one.
290     if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
291       PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
292     else
293       PartitionContainer.back().add(Inst);
294   }
295 
296   /// Adds \p Inst into a partition that is not marked to contain
297   /// dependence cycles.
298   ///
299   //  Initially we isolate memory instructions into as many partitions as
300   //  possible, then later we may merge them back together.
301   void addToNewNonCyclicPartition(Instruction *Inst) {
302     PartitionContainer.emplace_back(Inst, L);
303   }
304 
305   /// Merges adjacent non-cyclic partitions.
306   ///
307   /// The idea is that we currently only want to isolate the non-vectorizable
308   /// partition.  We could later allow more distribution among these partition
309   /// too.
310   void mergeAdjacentNonCyclic() {
311     mergeAdjacentPartitionsIf(
312         [](const InstPartition *P) { return !P->hasDepCycle(); });
313   }
314 
315   /// If a partition contains only conditional stores, we won't vectorize
316   /// it.  Try to merge it with a previous cyclic partition.
317   void mergeNonIfConvertible() {
318     mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
319       if (Partition->hasDepCycle())
320         return true;
321 
322       // Now, check if all stores are conditional in this partition.
323       bool seenStore = false;
324 
325       for (auto *Inst : *Partition)
326         if (isa<StoreInst>(Inst)) {
327           seenStore = true;
328           if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
329             return false;
330         }
331       return seenStore;
332     });
333   }
334 
335   /// Merges the partitions according to various heuristics.
336   void mergeBeforePopulating() {
337     mergeAdjacentNonCyclic();
338     if (!DistributeNonIfConvertible)
339       mergeNonIfConvertible();
340   }
341 
342   /// Merges partitions in order to ensure that no loads are duplicated.
343   ///
344   /// We can't duplicate loads because that could potentially reorder them.
345   /// LoopAccessAnalysis provides dependency information with the context that
346   /// the order of memory operation is preserved.
347   ///
348   /// Return if any partitions were merged.
349   bool mergeToAvoidDuplicatedLoads() {
350     using LoadToPartitionT = DenseMap<Instruction *, InstPartition *>;
351     using ToBeMergedT = EquivalenceClasses<InstPartition *>;
352 
353     LoadToPartitionT LoadToPartition;
354     ToBeMergedT ToBeMerged;
355 
356     // Step through the partitions and create equivalence between partitions
357     // that contain the same load.  Also put partitions in between them in the
358     // same equivalence class to avoid reordering of memory operations.
359     for (PartitionContainerT::iterator I = PartitionContainer.begin(),
360                                        E = PartitionContainer.end();
361          I != E; ++I) {
362       auto *PartI = &*I;
363 
364       // If a load occurs in two partitions PartI and PartJ, merge all
365       // partitions (PartI, PartJ] into PartI.
366       for (Instruction *Inst : *PartI)
367         if (isa<LoadInst>(Inst)) {
368           bool NewElt;
369           LoadToPartitionT::iterator LoadToPart;
370 
371           std::tie(LoadToPart, NewElt) =
372               LoadToPartition.insert(std::make_pair(Inst, PartI));
373           if (!NewElt) {
374             LLVM_DEBUG(dbgs()
375                        << "Merging partitions due to this load in multiple "
376                        << "partitions: " << PartI << ", " << LoadToPart->second
377                        << "\n"
378                        << *Inst << "\n");
379 
380             auto PartJ = I;
381             do {
382               --PartJ;
383               ToBeMerged.unionSets(PartI, &*PartJ);
384             } while (&*PartJ != LoadToPart->second);
385           }
386         }
387     }
388     if (ToBeMerged.empty())
389       return false;
390 
391     // Merge the member of an equivalence class into its class leader.  This
392     // makes the members empty.
393     for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
394          I != E; ++I) {
395       if (!I->isLeader())
396         continue;
397 
398       auto PartI = I->getData();
399       for (auto *PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
400                                    ToBeMerged.member_end())) {
401         PartJ->moveTo(*PartI);
402       }
403     }
404 
405     // Remove the empty partitions.
406     PartitionContainer.remove_if(
407         [](const InstPartition &P) { return P.empty(); });
408 
409     return true;
410   }
411 
412   /// Sets up the mapping between instructions to partitions.  If the
413   /// instruction is duplicated across multiple partitions, set the entry to -1.
414   void setupPartitionIdOnInstructions() {
415     int PartitionID = 0;
416     for (const auto &Partition : PartitionContainer) {
417       for (Instruction *Inst : Partition) {
418         bool NewElt;
419         InstToPartitionIdT::iterator Iter;
420 
421         std::tie(Iter, NewElt) =
422             InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
423         if (!NewElt)
424           Iter->second = -1;
425       }
426       ++PartitionID;
427     }
428   }
429 
430   /// Populates the partition with everything that the seeding
431   /// instructions require.
432   void populateUsedSet() {
433     for (auto &P : PartitionContainer)
434       P.populateUsedSet();
435   }
436 
437   /// This performs the main chunk of the work of cloning the loops for
438   /// the partitions.
439   void cloneLoops() {
440     BasicBlock *OrigPH = L->getLoopPreheader();
441     // At this point the predecessor of the preheader is either the memcheck
442     // block or the top part of the original preheader.
443     BasicBlock *Pred = OrigPH->getSinglePredecessor();
444     assert(Pred && "Preheader does not have a single predecessor");
445     BasicBlock *ExitBlock = L->getExitBlock();
446     assert(ExitBlock && "No single exit block");
447     Loop *NewLoop;
448 
449     assert(!PartitionContainer.empty() && "at least two partitions expected");
450     // We're cloning the preheader along with the loop so we already made sure
451     // it was empty.
452     assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
453            "preheader not empty");
454 
455     // Preserve the original loop ID for use after the transformation.
456     MDNode *OrigLoopID = L->getLoopID();
457 
458     // Create a loop for each partition except the last.  Clone the original
459     // loop before PH along with adding a preheader for the cloned loop.  Then
460     // update PH to point to the newly added preheader.
461     BasicBlock *TopPH = OrigPH;
462     unsigned Index = getSize() - 1;
463     for (auto &Part : llvm::drop_begin(llvm::reverse(PartitionContainer))) {
464       NewLoop = Part.cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
465 
466       Part.getVMap()[ExitBlock] = TopPH;
467       Part.remapInstructions();
468       setNewLoopID(OrigLoopID, &Part);
469       --Index;
470       TopPH = NewLoop->getLoopPreheader();
471     }
472     Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
473 
474     // Also set a new loop ID for the last loop.
475     setNewLoopID(OrigLoopID, &PartitionContainer.back());
476 
477     // Now go in forward order and update the immediate dominator for the
478     // preheaders with the exiting block of the previous loop.  Dominance
479     // within the loop is updated in cloneLoopWithPreheader.
480     for (auto Curr = PartitionContainer.cbegin(),
481               Next = std::next(PartitionContainer.cbegin()),
482               E = PartitionContainer.cend();
483          Next != E; ++Curr, ++Next)
484       DT->changeImmediateDominator(
485           Next->getDistributedLoop()->getLoopPreheader(),
486           Curr->getDistributedLoop()->getExitingBlock());
487   }
488 
489   /// Removes the dead instructions from the cloned loops.
490   void removeUnusedInsts() {
491     for (auto &Partition : PartitionContainer)
492       Partition.removeUnusedInsts();
493   }
494 
495   /// For each memory pointer, it computes the partitionId the pointer is
496   /// used in.
497   ///
498   /// This returns an array of int where the I-th entry corresponds to I-th
499   /// entry in LAI.getRuntimePointerCheck().  If the pointer is used in multiple
500   /// partitions its entry is set to -1.
501   SmallVector<int, 8>
502   computePartitionSetForPointers(const LoopAccessInfo &LAI) {
503     const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();
504 
505     unsigned N = RtPtrCheck->Pointers.size();
506     SmallVector<int, 8> PtrToPartitions(N);
507     for (unsigned I = 0; I < N; ++I) {
508       Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
509       auto Instructions =
510           LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);
511 
512       int &Partition = PtrToPartitions[I];
513       // First set it to uninitialized.
514       Partition = -2;
515       for (Instruction *Inst : Instructions) {
516         // Note that this could be -1 if Inst is duplicated across multiple
517         // partitions.
518         int ThisPartition = this->InstToPartitionId[Inst];
519         if (Partition == -2)
520           Partition = ThisPartition;
521         // -1 means belonging to multiple partitions.
522         else if (Partition == -1)
523           break;
524         else if (Partition != (int)ThisPartition)
525           Partition = -1;
526       }
527       assert(Partition != -2 && "Pointer not belonging to any partition");
528     }
529 
530     return PtrToPartitions;
531   }
532 
533   void print(raw_ostream &OS) const {
534     unsigned Index = 0;
535     for (const auto &P : PartitionContainer) {
536       OS << "Partition " << Index++ << " (" << &P << "):\n";
537       P.print();
538     }
539   }
540 
541   void dump() const { print(dbgs()); }
542 
543 #ifndef NDEBUG
544   friend raw_ostream &operator<<(raw_ostream &OS,
545                                  const InstPartitionContainer &Partitions) {
546     Partitions.print(OS);
547     return OS;
548   }
549 #endif
550 
551   void printBlocks() const {
552     unsigned Index = 0;
553     for (const auto &P : PartitionContainer) {
554       dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
555       P.printBlocks();
556     }
557   }
558 
559 private:
560   using PartitionContainerT = std::list<InstPartition>;
561 
562   /// List of partitions.
563   PartitionContainerT PartitionContainer;
564 
565   /// Mapping from Instruction to partition Id.  If the instruction
566   /// belongs to multiple partitions the entry contains -1.
567   InstToPartitionIdT InstToPartitionId;
568 
569   Loop *L;
570   LoopInfo *LI;
571   DominatorTree *DT;
572 
573   /// The control structure to merge adjacent partitions if both satisfy
574   /// the \p Predicate.
575   template <class UnaryPredicate>
576   void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
577     InstPartition *PrevMatch = nullptr;
578     for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
579       auto DoesMatch = Predicate(&*I);
580       if (PrevMatch == nullptr && DoesMatch) {
581         PrevMatch = &*I;
582         ++I;
583       } else if (PrevMatch != nullptr && DoesMatch) {
584         I->moveTo(*PrevMatch);
585         I = PartitionContainer.erase(I);
586       } else {
587         PrevMatch = nullptr;
588         ++I;
589       }
590     }
591   }
592 
593   /// Assign new LoopIDs for the partition's cloned loop.
594   void setNewLoopID(MDNode *OrigLoopID, InstPartition *Part) {
595     std::optional<MDNode *> PartitionID = makeFollowupLoopID(
596         OrigLoopID,
597         {LLVMLoopDistributeFollowupAll,
598          Part->hasDepCycle() ? LLVMLoopDistributeFollowupSequential
599                              : LLVMLoopDistributeFollowupCoincident});
600     if (PartitionID) {
601       Loop *NewLoop = Part->getDistributedLoop();
602       NewLoop->setLoopID(*PartitionID);
603     }
604   }
605 };
606 
607 /// For each memory instruction, this class maintains difference of the
608 /// number of unsafe dependences that start out from this instruction minus
609 /// those that end here.
610 ///
611 /// By traversing the memory instructions in program order and accumulating this
612 /// number, we know whether any unsafe dependence crosses over a program point.
613 class MemoryInstructionDependences {
614   using Dependence = MemoryDepChecker::Dependence;
615 
616 public:
617   struct Entry {
618     Instruction *Inst;
619     unsigned NumUnsafeDependencesStartOrEnd = 0;
620 
621     Entry(Instruction *Inst) : Inst(Inst) {}
622   };
623 
624   using AccessesType = SmallVector<Entry, 8>;
625 
626   AccessesType::const_iterator begin() const { return Accesses.begin(); }
627   AccessesType::const_iterator end() const { return Accesses.end(); }
628 
629   MemoryInstructionDependences(
630       const SmallVectorImpl<Instruction *> &Instructions,
631       const SmallVectorImpl<Dependence> &Dependences) {
632     Accesses.append(Instructions.begin(), Instructions.end());
633 
634     LLVM_DEBUG(dbgs() << "Backward dependences:\n");
635     for (const auto &Dep : Dependences)
636       if (Dep.isPossiblyBackward()) {
637         // Note that the designations source and destination follow the program
638         // order, i.e. source is always first.  (The direction is given by the
639         // DepType.)
640         ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
641         --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
642 
643         LLVM_DEBUG(Dep.print(dbgs(), 2, Instructions));
644       }
645   }
646 
647 private:
648   AccessesType Accesses;
649 };
650 
651 /// The actual class performing the per-loop work.
652 class LoopDistributeForLoop {
653 public:
654   LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT,
655                         ScalarEvolution *SE, LoopAccessInfoManager &LAIs,
656                         OptimizationRemarkEmitter *ORE)
657       : L(L), F(F), LI(LI), DT(DT), SE(SE), LAIs(LAIs), ORE(ORE) {
658     setForced();
659   }
660 
661   /// Try to distribute an inner-most loop.
662   bool processLoop() {
663     assert(L->isInnermost() && "Only process inner loops.");
664 
665     LLVM_DEBUG(dbgs() << "\nLDist: In \""
666                       << L->getHeader()->getParent()->getName()
667                       << "\" checking " << *L << "\n");
668 
669     // Having a single exit block implies there's also one exiting block.
670     if (!L->getExitBlock())
671       return fail("MultipleExitBlocks", "multiple exit blocks");
672     if (!L->isLoopSimplifyForm())
673       return fail("NotLoopSimplifyForm",
674                   "loop is not in loop-simplify form");
675     if (!L->isRotatedForm())
676       return fail("NotBottomTested", "loop is not bottom tested");
677 
678     BasicBlock *PH = L->getLoopPreheader();
679 
680     LAI = &LAIs.getInfo(*L);
681 
682     // Currently, we only distribute to isolate the part of the loop with
683     // dependence cycles to enable partial vectorization.
684     if (LAI->canVectorizeMemory())
685       return fail("MemOpsCanBeVectorized",
686                   "memory operations are safe for vectorization");
687 
688     auto *Dependences = LAI->getDepChecker().getDependences();
689     if (!Dependences || Dependences->empty())
690       return fail("NoUnsafeDeps", "no unsafe dependences to isolate");
691 
692     InstPartitionContainer Partitions(L, LI, DT);
693 
694     // First, go through each memory operation and assign them to consecutive
695     // partitions (the order of partitions follows program order).  Put those
696     // with unsafe dependences into "cyclic" partition otherwise put each store
697     // in its own "non-cyclic" partition (we'll merge these later).
698     //
699     // Note that a memory operation (e.g. Load2 below) at a program point that
700     // has an unsafe dependence (Store3->Load1) spanning over it must be
701     // included in the same cyclic partition as the dependent operations.  This
702     // is to preserve the original program order after distribution.  E.g.:
703     //
704     //                NumUnsafeDependencesStartOrEnd  NumUnsafeDependencesActive
705     //  Load1   -.                     1                       0->1
706     //  Load2    | /Unsafe/            0                       1
707     //  Store3  -'                    -1                       1->0
708     //  Load4                          0                       0
709     //
710     // NumUnsafeDependencesActive > 0 indicates this situation and in this case
711     // we just keep assigning to the same cyclic partition until
712     // NumUnsafeDependencesActive reaches 0.
713     const MemoryDepChecker &DepChecker = LAI->getDepChecker();
714     MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
715                                      *Dependences);
716 
717     int NumUnsafeDependencesActive = 0;
718     for (const auto &InstDep : MID) {
719       Instruction *I = InstDep.Inst;
720       // We update NumUnsafeDependencesActive post-instruction, catch the
721       // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
722       if (NumUnsafeDependencesActive ||
723           InstDep.NumUnsafeDependencesStartOrEnd > 0)
724         Partitions.addToCyclicPartition(I);
725       else
726         Partitions.addToNewNonCyclicPartition(I);
727       NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
728       assert(NumUnsafeDependencesActive >= 0 &&
729              "Negative number of dependences active");
730     }
731 
732     // Add partitions for values used outside.  These partitions can be out of
733     // order from the original program order.  This is OK because if the
734     // partition uses a load we will merge this partition with the original
735     // partition of the load that we set up in the previous loop (see
736     // mergeToAvoidDuplicatedLoads).
737     auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
738     for (auto *Inst : DefsUsedOutside)
739       Partitions.addToNewNonCyclicPartition(Inst);
740 
741     LLVM_DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
742     if (Partitions.getSize() < 2)
743       return fail("CantIsolateUnsafeDeps",
744                   "cannot isolate unsafe dependencies");
745 
746     // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
747     // should be able to vectorize these together.
748     Partitions.mergeBeforePopulating();
749     LLVM_DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
750     if (Partitions.getSize() < 2)
751       return fail("CantIsolateUnsafeDeps",
752                   "cannot isolate unsafe dependencies");
753 
754     // Now, populate the partitions with non-memory operations.
755     Partitions.populateUsedSet();
756     LLVM_DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);
757 
758     // In order to preserve original lexical order for loads, keep them in the
759     // partition that we set up in the MemoryInstructionDependences loop.
760     if (Partitions.mergeToAvoidDuplicatedLoads()) {
761       LLVM_DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
762                         << Partitions);
763       if (Partitions.getSize() < 2)
764         return fail("CantIsolateUnsafeDeps",
765                     "cannot isolate unsafe dependencies");
766     }
767 
768     // Don't distribute the loop if we need too many SCEV run-time checks, or
769     // any if it's illegal.
770     const SCEVPredicate &Pred = LAI->getPSE().getPredicate();
771     if (LAI->hasConvergentOp() && !Pred.isAlwaysTrue()) {
772       return fail("RuntimeCheckWithConvergent",
773                   "may not insert runtime check with convergent operation");
774     }
775 
776     if (Pred.getComplexity() > (IsForced.value_or(false)
777                                     ? PragmaDistributeSCEVCheckThreshold
778                                     : DistributeSCEVCheckThreshold))
779       return fail("TooManySCEVRuntimeChecks",
780                   "too many SCEV run-time checks needed.\n");
781 
782     if (!IsForced.value_or(false) && hasDisableAllTransformsHint(L))
783       return fail("HeuristicDisabled", "distribution heuristic disabled");
784 
785     LLVM_DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
786     // We're done forming the partitions set up the reverse mapping from
787     // instructions to partitions.
788     Partitions.setupPartitionIdOnInstructions();
789 
790     // If we need run-time checks, version the loop now.
791     auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI);
792     const auto *RtPtrChecking = LAI->getRuntimePointerChecking();
793     const auto &AllChecks = RtPtrChecking->getChecks();
794     auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
795                                                   RtPtrChecking);
796 
797     if (LAI->hasConvergentOp() && !Checks.empty()) {
798       return fail("RuntimeCheckWithConvergent",
799                   "may not insert runtime check with convergent operation");
800     }
801 
802     // To keep things simple have an empty preheader before we version or clone
803     // the loop.  (Also split if this has no predecessor, i.e. entry, because we
804     // rely on PH having a predecessor.)
805     if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
806       SplitBlock(PH, PH->getTerminator(), DT, LI);
807 
808     if (!Pred.isAlwaysTrue() || !Checks.empty()) {
809       assert(!LAI->hasConvergentOp() && "inserting illegal loop versioning");
810 
811       MDNode *OrigLoopID = L->getLoopID();
812 
813       LLVM_DEBUG(dbgs() << "\nPointers:\n");
814       LLVM_DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks));
815       LoopVersioning LVer(*LAI, Checks, L, LI, DT, SE);
816       LVer.versionLoop(DefsUsedOutside);
817       LVer.annotateLoopWithNoAlias();
818 
819       // The unversioned loop will not be changed, so we inherit all attributes
820       // from the original loop, but remove the loop distribution metadata to
821       // avoid to distribute it again.
822       MDNode *UnversionedLoopID = *makeFollowupLoopID(
823           OrigLoopID,
824           {LLVMLoopDistributeFollowupAll, LLVMLoopDistributeFollowupFallback},
825           "llvm.loop.distribute.", true);
826       LVer.getNonVersionedLoop()->setLoopID(UnversionedLoopID);
827     }
828 
829     // Create identical copies of the original loop for each partition and hook
830     // them up sequentially.
831     Partitions.cloneLoops();
832 
833     // Now, we remove the instruction from each loop that don't belong to that
834     // partition.
835     Partitions.removeUnusedInsts();
836     LLVM_DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
837     LLVM_DEBUG(Partitions.printBlocks());
838 
839     if (LDistVerify) {
840       LI->verify(*DT);
841       assert(DT->verify(DominatorTree::VerificationLevel::Fast));
842     }
843 
844     ++NumLoopsDistributed;
845     // Report the success.
846     ORE->emit([&]() {
847       return OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(),
848                                 L->getHeader())
849              << "distributed loop";
850     });
851     return true;
852   }
853 
854   /// Provide diagnostics then \return with false.
855   bool fail(StringRef RemarkName, StringRef Message) {
856     LLVMContext &Ctx = F->getContext();
857     bool Forced = isForced().value_or(false);
858 
859     LLVM_DEBUG(dbgs() << "Skipping; " << Message << "\n");
860 
861     // With Rpass-missed report that distribution failed.
862     ORE->emit([&]() {
863       return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed",
864                                       L->getStartLoc(), L->getHeader())
865              << "loop not distributed: use -Rpass-analysis=loop-distribute for "
866                 "more "
867                 "info";
868     });
869 
870     // With Rpass-analysis report why.  This is on by default if distribution
871     // was requested explicitly.
872     ORE->emit(OptimizationRemarkAnalysis(
873                   Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME,
874                   RemarkName, L->getStartLoc(), L->getHeader())
875               << "loop not distributed: " << Message);
876 
877     // Also issue a warning if distribution was requested explicitly but it
878     // failed.
879     if (Forced)
880       Ctx.diagnose(DiagnosticInfoOptimizationFailure(
881           *F, L->getStartLoc(), "loop not distributed: failed "
882                                 "explicitly specified loop distribution"));
883 
884     return false;
885   }
886 
887   /// Return if distribution forced to be enabled/disabled for the loop.
888   ///
889   /// If the optional has a value, it indicates whether distribution was forced
890   /// to be enabled (true) or disabled (false).  If the optional has no value
891   /// distribution was not forced either way.
892   const std::optional<bool> &isForced() const { return IsForced; }
893 
894 private:
895   /// Filter out checks between pointers from the same partition.
896   ///
897   /// \p PtrToPartition contains the partition number for pointers.  Partition
898   /// number -1 means that the pointer is used in multiple partitions.  In this
899   /// case we can't safely omit the check.
900   SmallVector<RuntimePointerCheck, 4> includeOnlyCrossPartitionChecks(
901       const SmallVectorImpl<RuntimePointerCheck> &AllChecks,
902       const SmallVectorImpl<int> &PtrToPartition,
903       const RuntimePointerChecking *RtPtrChecking) {
904     SmallVector<RuntimePointerCheck, 4> Checks;
905 
906     copy_if(AllChecks, std::back_inserter(Checks),
907             [&](const RuntimePointerCheck &Check) {
908               for (unsigned PtrIdx1 : Check.first->Members)
909                 for (unsigned PtrIdx2 : Check.second->Members)
910                   // Only include this check if there is a pair of pointers
911                   // that require checking and the pointers fall into
912                   // separate partitions.
913                   //
914                   // (Note that we already know at this point that the two
915                   // pointer groups need checking but it doesn't follow
916                   // that each pair of pointers within the two groups need
917                   // checking as well.
918                   //
919                   // In other words we don't want to include a check just
920                   // because there is a pair of pointers between the two
921                   // pointer groups that require checks and a different
922                   // pair whose pointers fall into different partitions.)
923                   if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
924                       !RuntimePointerChecking::arePointersInSamePartition(
925                           PtrToPartition, PtrIdx1, PtrIdx2))
926                     return true;
927               return false;
928             });
929 
930     return Checks;
931   }
932 
933   /// Check whether the loop metadata is forcing distribution to be
934   /// enabled/disabled.
935   void setForced() {
936     std::optional<const MDOperand *> Value =
937         findStringMetadataForLoop(L, "llvm.loop.distribute.enable");
938     if (!Value)
939       return;
940 
941     const MDOperand *Op = *Value;
942     assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
943     IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
944   }
945 
946   Loop *L;
947   Function *F;
948 
949   // Analyses used.
950   LoopInfo *LI;
951   const LoopAccessInfo *LAI = nullptr;
952   DominatorTree *DT;
953   ScalarEvolution *SE;
954   LoopAccessInfoManager &LAIs;
955   OptimizationRemarkEmitter *ORE;
956 
957   /// Indicates whether distribution is forced to be enabled/disabled for
958   /// the loop.
959   ///
960   /// If the optional has a value, it indicates whether distribution was forced
961   /// to be enabled (true) or disabled (false).  If the optional has no value
962   /// distribution was not forced either way.
963   std::optional<bool> IsForced;
964 };
965 
966 } // end anonymous namespace
967 
968 /// Shared implementation between new and old PMs.
969 static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT,
970                     ScalarEvolution *SE, OptimizationRemarkEmitter *ORE,
971                     LoopAccessInfoManager &LAIs) {
972   // Build up a worklist of inner-loops to vectorize. This is necessary as the
973   // act of distributing a loop creates new loops and can invalidate iterators
974   // across the loops.
975   SmallVector<Loop *, 8> Worklist;
976 
977   for (Loop *TopLevelLoop : *LI)
978     for (Loop *L : depth_first(TopLevelLoop))
979       // We only handle inner-most loops.
980       if (L->isInnermost())
981         Worklist.push_back(L);
982 
983   // Now walk the identified inner loops.
984   bool Changed = false;
985   for (Loop *L : Worklist) {
986     LoopDistributeForLoop LDL(L, &F, LI, DT, SE, LAIs, ORE);
987 
988     // If distribution was forced for the specific loop to be
989     // enabled/disabled, follow that.  Otherwise use the global flag.
990     if (LDL.isForced().value_or(EnableLoopDistribute))
991       Changed |= LDL.processLoop();
992   }
993 
994   // Process each loop nest in the function.
995   return Changed;
996 }
997 
998 namespace {
999 
1000 /// The pass class.
1001 class LoopDistributeLegacy : public FunctionPass {
1002 public:
1003   static char ID;
1004 
1005   LoopDistributeLegacy() : FunctionPass(ID) {
1006     // The default is set by the caller.
1007     initializeLoopDistributeLegacyPass(*PassRegistry::getPassRegistry());
1008   }
1009 
1010   bool runOnFunction(Function &F) override {
1011     if (skipFunction(F))
1012       return false;
1013 
1014     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1015     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1016     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1017     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1018     auto &LAIs = getAnalysis<LoopAccessLegacyAnalysis>().getLAIs();
1019 
1020     return runImpl(F, LI, DT, SE, ORE, LAIs);
1021   }
1022 
1023   void getAnalysisUsage(AnalysisUsage &AU) const override {
1024     AU.addRequired<ScalarEvolutionWrapperPass>();
1025     AU.addRequired<LoopInfoWrapperPass>();
1026     AU.addPreserved<LoopInfoWrapperPass>();
1027     AU.addRequired<LoopAccessLegacyAnalysis>();
1028     AU.addRequired<DominatorTreeWrapperPass>();
1029     AU.addPreserved<DominatorTreeWrapperPass>();
1030     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1031     AU.addPreserved<GlobalsAAWrapperPass>();
1032   }
1033 };
1034 
1035 } // end anonymous namespace
1036 
1037 PreservedAnalyses LoopDistributePass::run(Function &F,
1038                                           FunctionAnalysisManager &AM) {
1039   auto &LI = AM.getResult<LoopAnalysis>(F);
1040   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1041   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1042   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1043 
1044   LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
1045   bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, LAIs);
1046   if (!Changed)
1047     return PreservedAnalyses::all();
1048   PreservedAnalyses PA;
1049   PA.preserve<LoopAnalysis>();
1050   PA.preserve<DominatorTreeAnalysis>();
1051   return PA;
1052 }
1053 
1054 char LoopDistributeLegacy::ID;
1055 
1056 static const char ldist_name[] = "Loop Distribution";
1057 
1058 INITIALIZE_PASS_BEGIN(LoopDistributeLegacy, LDIST_NAME, ldist_name, false,
1059                       false)
1060 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1061 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
1062 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1063 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1064 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1065 INITIALIZE_PASS_END(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, false)
1066 
1067 FunctionPass *llvm::createLoopDistributePass() { return new LoopDistributeLegacy(); }
1068