xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp (revision 580d00f42fdd94ce43583cc45fe3f1d9fdff47d4)
1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/PriorityWorklist.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/StringRef.h"
52 #include "llvm/ADT/Twine.h"
53 #include "llvm/Analysis/BlockFrequencyInfo.h"
54 #include "llvm/Analysis/BranchProbabilityInfo.h"
55 #include "llvm/Analysis/LoopAnalysisManager.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/InstrTypes.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Metadata.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/PatternMatch.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/User.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/Transforms/Scalar.h"
85 #include "llvm/Transforms/Utils/Cloning.h"
86 #include "llvm/Transforms/Utils/LoopSimplify.h"
87 #include "llvm/Transforms/Utils/LoopUtils.h"
88 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
89 #include "llvm/Transforms/Utils/ValueMapper.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <iterator>
93 #include <limits>
94 #include <optional>
95 #include <utility>
96 #include <vector>
97 
98 using namespace llvm;
99 using namespace llvm::PatternMatch;
100 
101 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
102                                         cl::init(64));
103 
104 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
105                                        cl::init(false));
106 
107 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
108                                       cl::init(false));
109 
110 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
111                                              cl::Hidden, cl::init(false));
112 
113 static cl::opt<unsigned> MinRuntimeIterations("irce-min-runtime-iterations",
114                                               cl::Hidden, cl::init(10));
115 
116 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
117                                                  cl::Hidden, cl::init(true));
118 
119 static cl::opt<bool> AllowNarrowLatchCondition(
120     "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
121     cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
122              "with narrow latch condition."));
123 
124 static const char *ClonedLoopTag = "irce.loop.clone";
125 
126 #define DEBUG_TYPE "irce"
127 
128 namespace {
129 
130 /// An inductive range check is conditional branch in a loop with
131 ///
132 ///  1. a very cold successor (i.e. the branch jumps to that successor very
133 ///     rarely)
134 ///
135 ///  and
136 ///
137 ///  2. a condition that is provably true for some contiguous range of values
138 ///     taken by the containing loop's induction variable.
139 ///
140 class InductiveRangeCheck {
141 
142   const SCEV *Begin = nullptr;
143   const SCEV *Step = nullptr;
144   const SCEV *End = nullptr;
145   Use *CheckUse = nullptr;
146 
147   static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
148                                   Value *&Index, Value *&Length,
149                                   bool &IsSigned);
150 
151   static void
152   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
153                              SmallVectorImpl<InductiveRangeCheck> &Checks,
154                              SmallPtrSetImpl<Value *> &Visited);
155 
156 public:
157   const SCEV *getBegin() const { return Begin; }
158   const SCEV *getStep() const { return Step; }
159   const SCEV *getEnd() const { return End; }
160 
161   void print(raw_ostream &OS) const {
162     OS << "InductiveRangeCheck:\n";
163     OS << "  Begin: ";
164     Begin->print(OS);
165     OS << "  Step: ";
166     Step->print(OS);
167     OS << "  End: ";
168     End->print(OS);
169     OS << "\n  CheckUse: ";
170     getCheckUse()->getUser()->print(OS);
171     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
172   }
173 
174   LLVM_DUMP_METHOD
175   void dump() {
176     print(dbgs());
177   }
178 
179   Use *getCheckUse() const { return CheckUse; }
180 
181   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
182   /// R.getEnd() le R.getBegin(), then R denotes the empty range.
183 
184   class Range {
185     const SCEV *Begin;
186     const SCEV *End;
187 
188   public:
189     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
190       assert(Begin->getType() == End->getType() && "ill-typed range!");
191     }
192 
193     Type *getType() const { return Begin->getType(); }
194     const SCEV *getBegin() const { return Begin; }
195     const SCEV *getEnd() const { return End; }
196     bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
197       if (Begin == End)
198         return true;
199       if (IsSigned)
200         return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
201       else
202         return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
203     }
204   };
205 
206   /// This is the value the condition of the branch needs to evaluate to for the
207   /// branch to take the hot successor (see (1) above).
208   bool getPassingDirection() { return true; }
209 
210   /// Computes a range for the induction variable (IndVar) in which the range
211   /// check is redundant and can be constant-folded away.  The induction
212   /// variable is not required to be the canonical {0,+,1} induction variable.
213   std::optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
214                                                  const SCEVAddRecExpr *IndVar,
215                                                  bool IsLatchSigned) const;
216 
217   /// Parse out a set of inductive range checks from \p BI and append them to \p
218   /// Checks.
219   ///
220   /// NB! There may be conditions feeding into \p BI that aren't inductive range
221   /// checks, and hence don't end up in \p Checks.
222   static void
223   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
224                                BranchProbabilityInfo *BPI,
225                                SmallVectorImpl<InductiveRangeCheck> &Checks);
226 };
227 
228 struct LoopStructure;
229 
230 class InductiveRangeCheckElimination {
231   ScalarEvolution &SE;
232   BranchProbabilityInfo *BPI;
233   DominatorTree &DT;
234   LoopInfo &LI;
235 
236   using GetBFIFunc =
237       std::optional<llvm::function_ref<llvm::BlockFrequencyInfo &()>>;
238   GetBFIFunc GetBFI;
239 
240   // Returns true if it is profitable to do a transform basing on estimation of
241   // number of iterations.
242   bool isProfitableToTransform(const Loop &L, LoopStructure &LS);
243 
244 public:
245   InductiveRangeCheckElimination(ScalarEvolution &SE,
246                                  BranchProbabilityInfo *BPI, DominatorTree &DT,
247                                  LoopInfo &LI, GetBFIFunc GetBFI = std::nullopt)
248       : SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {}
249 
250   bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
251 };
252 
253 class IRCELegacyPass : public FunctionPass {
254 public:
255   static char ID;
256 
257   IRCELegacyPass() : FunctionPass(ID) {
258     initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
259   }
260 
261   void getAnalysisUsage(AnalysisUsage &AU) const override {
262     AU.addRequired<BranchProbabilityInfoWrapperPass>();
263     AU.addRequired<DominatorTreeWrapperPass>();
264     AU.addPreserved<DominatorTreeWrapperPass>();
265     AU.addRequired<LoopInfoWrapperPass>();
266     AU.addPreserved<LoopInfoWrapperPass>();
267     AU.addRequired<ScalarEvolutionWrapperPass>();
268     AU.addPreserved<ScalarEvolutionWrapperPass>();
269   }
270 
271   bool runOnFunction(Function &F) override;
272 };
273 
274 } // end anonymous namespace
275 
276 char IRCELegacyPass::ID = 0;
277 
278 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
279                       "Inductive range check elimination", false, false)
280 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
281 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
282 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
283 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
284 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
285                     false, false)
286 
287 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
288 /// be interpreted as a range check, return false and set `Index` and `Length`
289 /// to `nullptr`.  Otherwise set `Index` to the value being range checked, and
290 /// set `Length` to the upper limit `Index` is being range checked.
291 bool
292 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
293                                          ScalarEvolution &SE, Value *&Index,
294                                          Value *&Length, bool &IsSigned) {
295   auto IsLoopInvariant = [&SE, L](Value *V) {
296     return SE.isLoopInvariant(SE.getSCEV(V), L);
297   };
298 
299   ICmpInst::Predicate Pred = ICI->getPredicate();
300   Value *LHS = ICI->getOperand(0);
301   Value *RHS = ICI->getOperand(1);
302 
303   switch (Pred) {
304   default:
305     return false;
306 
307   case ICmpInst::ICMP_SLE:
308     std::swap(LHS, RHS);
309     [[fallthrough]];
310   case ICmpInst::ICMP_SGE:
311     IsSigned = true;
312     if (match(RHS, m_ConstantInt<0>())) {
313       Index = LHS;
314       return true; // Lower.
315     }
316     return false;
317 
318   case ICmpInst::ICMP_SLT:
319     std::swap(LHS, RHS);
320     [[fallthrough]];
321   case ICmpInst::ICMP_SGT:
322     IsSigned = true;
323     if (match(RHS, m_ConstantInt<-1>())) {
324       Index = LHS;
325       return true; // Lower.
326     }
327 
328     if (IsLoopInvariant(LHS)) {
329       Index = RHS;
330       Length = LHS;
331       return true; // Upper.
332     }
333     return false;
334 
335   case ICmpInst::ICMP_ULT:
336     std::swap(LHS, RHS);
337     [[fallthrough]];
338   case ICmpInst::ICMP_UGT:
339     IsSigned = false;
340     if (IsLoopInvariant(LHS)) {
341       Index = RHS;
342       Length = LHS;
343       return true; // Both lower and upper.
344     }
345     return false;
346   }
347 
348   llvm_unreachable("default clause returns!");
349 }
350 
351 void InductiveRangeCheck::extractRangeChecksFromCond(
352     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
353     SmallVectorImpl<InductiveRangeCheck> &Checks,
354     SmallPtrSetImpl<Value *> &Visited) {
355   Value *Condition = ConditionUse.get();
356   if (!Visited.insert(Condition).second)
357     return;
358 
359   // TODO: Do the same for OR, XOR, NOT etc?
360   if (match(Condition, m_LogicalAnd(m_Value(), m_Value()))) {
361     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
362                                Checks, Visited);
363     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
364                                Checks, Visited);
365     return;
366   }
367 
368   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
369   if (!ICI)
370     return;
371 
372   Value *Length = nullptr, *Index;
373   bool IsSigned;
374   if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
375     return;
376 
377   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
378   bool IsAffineIndex =
379       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
380 
381   if (!IsAffineIndex)
382     return;
383 
384   const SCEV *End = nullptr;
385   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
386   // We can potentially do much better here.
387   if (Length)
388     End = SE.getSCEV(Length);
389   else {
390     // So far we can only reach this point for Signed range check. This may
391     // change in future. In this case we will need to pick Unsigned max for the
392     // unsigned range check.
393     unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
394     const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
395     End = SIntMax;
396   }
397 
398   InductiveRangeCheck IRC;
399   IRC.End = End;
400   IRC.Begin = IndexAddRec->getStart();
401   IRC.Step = IndexAddRec->getStepRecurrence(SE);
402   IRC.CheckUse = &ConditionUse;
403   Checks.push_back(IRC);
404 }
405 
406 void InductiveRangeCheck::extractRangeChecksFromBranch(
407     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
408     SmallVectorImpl<InductiveRangeCheck> &Checks) {
409   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
410     return;
411 
412   BranchProbability LikelyTaken(15, 16);
413 
414   if (!SkipProfitabilityChecks && BPI &&
415       BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
416     return;
417 
418   SmallPtrSet<Value *, 8> Visited;
419   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
420                                                   Checks, Visited);
421 }
422 
423 // Add metadata to the loop L to disable loop optimizations. Callers need to
424 // confirm that optimizing loop L is not beneficial.
425 static void DisableAllLoopOptsOnLoop(Loop &L) {
426   // We do not care about any existing loopID related metadata for L, since we
427   // are setting all loop metadata to false.
428   LLVMContext &Context = L.getHeader()->getContext();
429   // Reserve first location for self reference to the LoopID metadata node.
430   MDNode *Dummy = MDNode::get(Context, {});
431   MDNode *DisableUnroll = MDNode::get(
432       Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
433   Metadata *FalseVal =
434       ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
435   MDNode *DisableVectorize = MDNode::get(
436       Context,
437       {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
438   MDNode *DisableLICMVersioning = MDNode::get(
439       Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
440   MDNode *DisableDistribution= MDNode::get(
441       Context,
442       {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
443   MDNode *NewLoopID =
444       MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
445                             DisableLICMVersioning, DisableDistribution});
446   // Set operand 0 to refer to the loop id itself.
447   NewLoopID->replaceOperandWith(0, NewLoopID);
448   L.setLoopID(NewLoopID);
449 }
450 
451 namespace {
452 
453 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
454 // except that it is more lightweight and can track the state of a loop through
455 // changing and potentially invalid IR.  This structure also formalizes the
456 // kinds of loops we can deal with -- ones that have a single latch that is also
457 // an exiting block *and* have a canonical induction variable.
458 struct LoopStructure {
459   const char *Tag = "";
460 
461   BasicBlock *Header = nullptr;
462   BasicBlock *Latch = nullptr;
463 
464   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
465   // successor is `LatchExit', the exit block of the loop.
466   BranchInst *LatchBr = nullptr;
467   BasicBlock *LatchExit = nullptr;
468   unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
469 
470   // The loop represented by this instance of LoopStructure is semantically
471   // equivalent to:
472   //
473   // intN_ty inc = IndVarIncreasing ? 1 : -1;
474   // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
475   //
476   // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
477   //   ... body ...
478 
479   Value *IndVarBase = nullptr;
480   Value *IndVarStart = nullptr;
481   Value *IndVarStep = nullptr;
482   Value *LoopExitAt = nullptr;
483   bool IndVarIncreasing = false;
484   bool IsSignedPredicate = true;
485 
486   LoopStructure() = default;
487 
488   template <typename M> LoopStructure map(M Map) const {
489     LoopStructure Result;
490     Result.Tag = Tag;
491     Result.Header = cast<BasicBlock>(Map(Header));
492     Result.Latch = cast<BasicBlock>(Map(Latch));
493     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
494     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
495     Result.LatchBrExitIdx = LatchBrExitIdx;
496     Result.IndVarBase = Map(IndVarBase);
497     Result.IndVarStart = Map(IndVarStart);
498     Result.IndVarStep = Map(IndVarStep);
499     Result.LoopExitAt = Map(LoopExitAt);
500     Result.IndVarIncreasing = IndVarIncreasing;
501     Result.IsSignedPredicate = IsSignedPredicate;
502     return Result;
503   }
504 
505   static std::optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
506                                                          Loop &, const char *&);
507 };
508 
509 /// This class is used to constrain loops to run within a given iteration space.
510 /// The algorithm this class implements is given a Loop and a range [Begin,
511 /// End).  The algorithm then tries to break out a "main loop" out of the loop
512 /// it is given in a way that the "main loop" runs with the induction variable
513 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
514 /// loops to run any remaining iterations.  The pre loop runs any iterations in
515 /// which the induction variable is < Begin, and the post loop runs any
516 /// iterations in which the induction variable is >= End.
517 class LoopConstrainer {
518   // The representation of a clone of the original loop we started out with.
519   struct ClonedLoop {
520     // The cloned blocks
521     std::vector<BasicBlock *> Blocks;
522 
523     // `Map` maps values in the clonee into values in the cloned version
524     ValueToValueMapTy Map;
525 
526     // An instance of `LoopStructure` for the cloned loop
527     LoopStructure Structure;
528   };
529 
530   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
531   // more details on what these fields mean.
532   struct RewrittenRangeInfo {
533     BasicBlock *PseudoExit = nullptr;
534     BasicBlock *ExitSelector = nullptr;
535     std::vector<PHINode *> PHIValuesAtPseudoExit;
536     PHINode *IndVarEnd = nullptr;
537 
538     RewrittenRangeInfo() = default;
539   };
540 
541   // Calculated subranges we restrict the iteration space of the main loop to.
542   // See the implementation of `calculateSubRanges' for more details on how
543   // these fields are computed.  `LowLimit` is std::nullopt if there is no
544   // restriction on low end of the restricted iteration space of the main loop.
545   // `HighLimit` is std::nullopt if there is no restriction on high end of the
546   // restricted iteration space of the main loop.
547 
548   struct SubRanges {
549     std::optional<const SCEV *> LowLimit;
550     std::optional<const SCEV *> HighLimit;
551   };
552 
553   // Compute a safe set of limits for the main loop to run in -- effectively the
554   // intersection of `Range' and the iteration space of the original loop.
555   // Return std::nullopt if unable to compute the set of subranges.
556   std::optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
557 
558   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
559   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
560   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
561   // but there is no such edge.
562   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
563 
564   // Create the appropriate loop structure needed to describe a cloned copy of
565   // `Original`.  The clone is described by `VM`.
566   Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
567                                   ValueToValueMapTy &VM, bool IsSubloop);
568 
569   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
570   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
571   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
572   // `OriginalHeaderCount'.
573   //
574   // If there are iterations left to execute, control is made to jump to
575   // `ContinuationBlock', otherwise they take the normal loop exit.  The
576   // returned `RewrittenRangeInfo' object is populated as follows:
577   //
578   //  .PseudoExit is a basic block that unconditionally branches to
579   //      `ContinuationBlock'.
580   //
581   //  .ExitSelector is a basic block that decides, on exit from the loop,
582   //      whether to branch to the "true" exit or to `PseudoExit'.
583   //
584   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
585   //      for each PHINode in the loop header on taking the pseudo exit.
586   //
587   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
588   // preheader because it is made to branch to the loop header only
589   // conditionally.
590   RewrittenRangeInfo
591   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
592                           Value *ExitLoopAt,
593                           BasicBlock *ContinuationBlock) const;
594 
595   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
596   // function creates a new preheader for `LS' and returns it.
597   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
598                               const char *Tag) const;
599 
600   // `ContinuationBlockAndPreheader' was the continuation block for some call to
601   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
602   // This function rewrites the PHI nodes in `LS.Header' to start with the
603   // correct value.
604   void rewriteIncomingValuesForPHIs(
605       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
606       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
607 
608   // Even though we do not preserve any passes at this time, we at least need to
609   // keep the parent loop structure consistent.  The `LPPassManager' seems to
610   // verify this after running a loop pass.  This function adds the list of
611   // blocks denoted by BBs to this loops parent loop if required.
612   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
613 
614   // Some global state.
615   Function &F;
616   LLVMContext &Ctx;
617   ScalarEvolution &SE;
618   DominatorTree &DT;
619   LoopInfo &LI;
620   function_ref<void(Loop *, bool)> LPMAddNewLoop;
621 
622   // Information about the original loop we started out with.
623   Loop &OriginalLoop;
624 
625   const SCEV *LatchTakenCount = nullptr;
626   BasicBlock *OriginalPreheader = nullptr;
627 
628   // The preheader of the main loop.  This may or may not be different from
629   // `OriginalPreheader'.
630   BasicBlock *MainLoopPreheader = nullptr;
631 
632   // The range we need to run the main loop in.
633   InductiveRangeCheck::Range Range;
634 
635   // The structure of the main loop (see comment at the beginning of this class
636   // for a definition)
637   LoopStructure MainLoopStructure;
638 
639 public:
640   LoopConstrainer(Loop &L, LoopInfo &LI,
641                   function_ref<void(Loop *, bool)> LPMAddNewLoop,
642                   const LoopStructure &LS, ScalarEvolution &SE,
643                   DominatorTree &DT, InductiveRangeCheck::Range R)
644       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
645         SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
646         Range(R), MainLoopStructure(LS) {}
647 
648   // Entry point for the algorithm.  Returns true on success.
649   bool run();
650 };
651 
652 } // end anonymous namespace
653 
654 /// Given a loop with an deccreasing induction variable, is it possible to
655 /// safely calculate the bounds of a new loop using the given Predicate.
656 static bool isSafeDecreasingBound(const SCEV *Start,
657                                   const SCEV *BoundSCEV, const SCEV *Step,
658                                   ICmpInst::Predicate Pred,
659                                   unsigned LatchBrExitIdx,
660                                   Loop *L, ScalarEvolution &SE) {
661   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
662       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
663     return false;
664 
665   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
666     return false;
667 
668   assert(SE.isKnownNegative(Step) && "expecting negative step");
669 
670   LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
671   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
672   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
673   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
674   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
675                     << "\n");
676   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
677 
678   bool IsSigned = ICmpInst::isSigned(Pred);
679   // The predicate that we need to check that the induction variable lies
680   // within bounds.
681   ICmpInst::Predicate BoundPred =
682     IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
683 
684   if (LatchBrExitIdx == 1)
685     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
686 
687   assert(LatchBrExitIdx == 0 &&
688          "LatchBrExitIdx should be either 0 or 1");
689 
690   const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
691   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
692   APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
693     APInt::getMinValue(BitWidth);
694   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
695 
696   const SCEV *MinusOne =
697     SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
698 
699   return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
700          SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
701 
702 }
703 
704 /// Given a loop with an increasing induction variable, is it possible to
705 /// safely calculate the bounds of a new loop using the given Predicate.
706 static bool isSafeIncreasingBound(const SCEV *Start,
707                                   const SCEV *BoundSCEV, const SCEV *Step,
708                                   ICmpInst::Predicate Pred,
709                                   unsigned LatchBrExitIdx,
710                                   Loop *L, ScalarEvolution &SE) {
711   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
712       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
713     return false;
714 
715   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
716     return false;
717 
718   LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
719   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
720   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
721   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
722   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
723                     << "\n");
724   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
725 
726   bool IsSigned = ICmpInst::isSigned(Pred);
727   // The predicate that we need to check that the induction variable lies
728   // within bounds.
729   ICmpInst::Predicate BoundPred =
730       IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
731 
732   if (LatchBrExitIdx == 1)
733     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
734 
735   assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
736 
737   const SCEV *StepMinusOne =
738     SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
739   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
740   APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
741     APInt::getMaxValue(BitWidth);
742   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
743 
744   return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
745                                       SE.getAddExpr(BoundSCEV, Step)) &&
746           SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
747 }
748 
749 std::optional<LoopStructure>
750 LoopStructure::parseLoopStructure(ScalarEvolution &SE, Loop &L,
751                                   const char *&FailureReason) {
752   if (!L.isLoopSimplifyForm()) {
753     FailureReason = "loop not in LoopSimplify form";
754     return std::nullopt;
755   }
756 
757   BasicBlock *Latch = L.getLoopLatch();
758   assert(Latch && "Simplified loops only have one latch!");
759 
760   if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
761     FailureReason = "loop has already been cloned";
762     return std::nullopt;
763   }
764 
765   if (!L.isLoopExiting(Latch)) {
766     FailureReason = "no loop latch";
767     return std::nullopt;
768   }
769 
770   BasicBlock *Header = L.getHeader();
771   BasicBlock *Preheader = L.getLoopPreheader();
772   if (!Preheader) {
773     FailureReason = "no preheader";
774     return std::nullopt;
775   }
776 
777   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
778   if (!LatchBr || LatchBr->isUnconditional()) {
779     FailureReason = "latch terminator not conditional branch";
780     return std::nullopt;
781   }
782 
783   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
784 
785   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
786   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
787     FailureReason = "latch terminator branch not conditional on integral icmp";
788     return std::nullopt;
789   }
790 
791   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
792   if (isa<SCEVCouldNotCompute>(LatchCount)) {
793     FailureReason = "could not compute latch count";
794     return std::nullopt;
795   }
796 
797   ICmpInst::Predicate Pred = ICI->getPredicate();
798   Value *LeftValue = ICI->getOperand(0);
799   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
800   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
801 
802   Value *RightValue = ICI->getOperand(1);
803   const SCEV *RightSCEV = SE.getSCEV(RightValue);
804 
805   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
806   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
807     if (isa<SCEVAddRecExpr>(RightSCEV)) {
808       std::swap(LeftSCEV, RightSCEV);
809       std::swap(LeftValue, RightValue);
810       Pred = ICmpInst::getSwappedPredicate(Pred);
811     } else {
812       FailureReason = "no add recurrences in the icmp";
813       return std::nullopt;
814     }
815   }
816 
817   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
818     if (AR->getNoWrapFlags(SCEV::FlagNSW))
819       return true;
820 
821     IntegerType *Ty = cast<IntegerType>(AR->getType());
822     IntegerType *WideTy =
823         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
824 
825     const SCEVAddRecExpr *ExtendAfterOp =
826         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
827     if (ExtendAfterOp) {
828       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
829       const SCEV *ExtendedStep =
830           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
831 
832       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
833                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
834 
835       if (NoSignedWrap)
836         return true;
837     }
838 
839     // We may have proved this when computing the sign extension above.
840     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
841   };
842 
843   // `ICI` is interpreted as taking the backedge if the *next* value of the
844   // induction variable satisfies some constraint.
845 
846   const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
847   if (IndVarBase->getLoop() != &L) {
848     FailureReason = "LHS in cmp is not an AddRec for this loop";
849     return std::nullopt;
850   }
851   if (!IndVarBase->isAffine()) {
852     FailureReason = "LHS in icmp not induction variable";
853     return std::nullopt;
854   }
855   const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
856   if (!isa<SCEVConstant>(StepRec)) {
857     FailureReason = "LHS in icmp not induction variable";
858     return std::nullopt;
859   }
860   ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
861 
862   if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
863     FailureReason = "LHS in icmp needs nsw for equality predicates";
864     return std::nullopt;
865   }
866 
867   assert(!StepCI->isZero() && "Zero step?");
868   bool IsIncreasing = !StepCI->isNegative();
869   bool IsSignedPredicate;
870   const SCEV *StartNext = IndVarBase->getStart();
871   const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
872   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
873   const SCEV *Step = SE.getSCEV(StepCI);
874 
875   const SCEV *FixedRightSCEV = nullptr;
876 
877   // If RightValue resides within loop (but still being loop invariant),
878   // regenerate it as preheader.
879   if (auto *I = dyn_cast<Instruction>(RightValue))
880     if (L.contains(I->getParent()))
881       FixedRightSCEV = RightSCEV;
882 
883   if (IsIncreasing) {
884     bool DecreasedRightValueByOne = false;
885     if (StepCI->isOne()) {
886       // Try to turn eq/ne predicates to those we can work with.
887       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
888         // while (++i != len) {         while (++i < len) {
889         //   ...                 --->     ...
890         // }                            }
891         // If both parts are known non-negative, it is profitable to use
892         // unsigned comparison in increasing loop. This allows us to make the
893         // comparison check against "RightSCEV + 1" more optimistic.
894         if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
895             isKnownNonNegativeInLoop(RightSCEV, &L, SE))
896           Pred = ICmpInst::ICMP_ULT;
897         else
898           Pred = ICmpInst::ICMP_SLT;
899       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
900         // while (true) {               while (true) {
901         //   if (++i == len)     --->     if (++i > len - 1)
902         //     break;                       break;
903         //   ...                          ...
904         // }                            }
905         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
906             cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
907           Pred = ICmpInst::ICMP_UGT;
908           RightSCEV = SE.getMinusSCEV(RightSCEV,
909                                       SE.getOne(RightSCEV->getType()));
910           DecreasedRightValueByOne = true;
911         } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
912           Pred = ICmpInst::ICMP_SGT;
913           RightSCEV = SE.getMinusSCEV(RightSCEV,
914                                       SE.getOne(RightSCEV->getType()));
915           DecreasedRightValueByOne = true;
916         }
917       }
918     }
919 
920     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
921     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
922     bool FoundExpectedPred =
923         (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
924 
925     if (!FoundExpectedPred) {
926       FailureReason = "expected icmp slt semantically, found something else";
927       return std::nullopt;
928     }
929 
930     IsSignedPredicate = ICmpInst::isSigned(Pred);
931     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
932       FailureReason = "unsigned latch conditions are explicitly prohibited";
933       return std::nullopt;
934     }
935 
936     if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
937                                LatchBrExitIdx, &L, SE)) {
938       FailureReason = "Unsafe loop bounds";
939       return std::nullopt;
940     }
941     if (LatchBrExitIdx == 0) {
942       // We need to increase the right value unless we have already decreased
943       // it virtually when we replaced EQ with SGT.
944       if (!DecreasedRightValueByOne)
945         FixedRightSCEV =
946             SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
947     } else {
948       assert(!DecreasedRightValueByOne &&
949              "Right value can be decreased only for LatchBrExitIdx == 0!");
950     }
951   } else {
952     bool IncreasedRightValueByOne = false;
953     if (StepCI->isMinusOne()) {
954       // Try to turn eq/ne predicates to those we can work with.
955       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
956         // while (--i != len) {         while (--i > len) {
957         //   ...                 --->     ...
958         // }                            }
959         // We intentionally don't turn the predicate into UGT even if we know
960         // that both operands are non-negative, because it will only pessimize
961         // our check against "RightSCEV - 1".
962         Pred = ICmpInst::ICMP_SGT;
963       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
964         // while (true) {               while (true) {
965         //   if (--i == len)     --->     if (--i < len + 1)
966         //     break;                       break;
967         //   ...                          ...
968         // }                            }
969         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
970             cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
971           Pred = ICmpInst::ICMP_ULT;
972           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
973           IncreasedRightValueByOne = true;
974         } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
975           Pred = ICmpInst::ICMP_SLT;
976           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
977           IncreasedRightValueByOne = true;
978         }
979       }
980     }
981 
982     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
983     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
984 
985     bool FoundExpectedPred =
986         (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
987 
988     if (!FoundExpectedPred) {
989       FailureReason = "expected icmp sgt semantically, found something else";
990       return std::nullopt;
991     }
992 
993     IsSignedPredicate =
994         Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
995 
996     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
997       FailureReason = "unsigned latch conditions are explicitly prohibited";
998       return std::nullopt;
999     }
1000 
1001     if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
1002                                LatchBrExitIdx, &L, SE)) {
1003       FailureReason = "Unsafe bounds";
1004       return std::nullopt;
1005     }
1006 
1007     if (LatchBrExitIdx == 0) {
1008       // We need to decrease the right value unless we have already increased
1009       // it virtually when we replaced EQ with SLT.
1010       if (!IncreasedRightValueByOne)
1011         FixedRightSCEV =
1012             SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
1013     } else {
1014       assert(!IncreasedRightValueByOne &&
1015              "Right value can be increased only for LatchBrExitIdx == 0!");
1016     }
1017   }
1018   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1019 
1020   assert(SE.getLoopDisposition(LatchCount, &L) ==
1021              ScalarEvolution::LoopInvariant &&
1022          "loop variant exit count doesn't make sense!");
1023 
1024   assert(!L.contains(LatchExit) && "expected an exit block!");
1025   const DataLayout &DL = Preheader->getModule()->getDataLayout();
1026   SCEVExpander Expander(SE, DL, "irce");
1027   Instruction *Ins = Preheader->getTerminator();
1028 
1029   if (FixedRightSCEV)
1030     RightValue =
1031         Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins);
1032 
1033   Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins);
1034   IndVarStartV->setName("indvar.start");
1035 
1036   LoopStructure Result;
1037 
1038   Result.Tag = "main";
1039   Result.Header = Header;
1040   Result.Latch = Latch;
1041   Result.LatchBr = LatchBr;
1042   Result.LatchExit = LatchExit;
1043   Result.LatchBrExitIdx = LatchBrExitIdx;
1044   Result.IndVarStart = IndVarStartV;
1045   Result.IndVarStep = StepCI;
1046   Result.IndVarBase = LeftValue;
1047   Result.IndVarIncreasing = IsIncreasing;
1048   Result.LoopExitAt = RightValue;
1049   Result.IsSignedPredicate = IsSignedPredicate;
1050 
1051   FailureReason = nullptr;
1052 
1053   return Result;
1054 }
1055 
1056 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1057 /// signed or unsigned extension of \p S to type \p Ty.
1058 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1059                                 bool Signed) {
1060   return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1061 }
1062 
1063 std::optional<LoopConstrainer::SubRanges>
1064 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1065   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1066 
1067   auto *RTy = cast<IntegerType>(Range.getType());
1068 
1069   // We only support wide range checks and narrow latches.
1070   if (!AllowNarrowLatchCondition && RTy != Ty)
1071     return std::nullopt;
1072   if (RTy->getBitWidth() < Ty->getBitWidth())
1073     return std::nullopt;
1074 
1075   LoopConstrainer::SubRanges Result;
1076 
1077   // I think we can be more aggressive here and make this nuw / nsw if the
1078   // addition that feeds into the icmp for the latch's terminating branch is nuw
1079   // / nsw.  In any case, a wrapping 2's complement addition is safe.
1080   const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1081                                    RTy, SE, IsSignedPredicate);
1082   const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1083                                  SE, IsSignedPredicate);
1084 
1085   bool Increasing = MainLoopStructure.IndVarIncreasing;
1086 
1087   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1088   // [Smallest, GreatestSeen] is the range of values the induction variable
1089   // takes.
1090 
1091   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1092 
1093   const SCEV *One = SE.getOne(RTy);
1094   if (Increasing) {
1095     Smallest = Start;
1096     Greatest = End;
1097     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1098     GreatestSeen = SE.getMinusSCEV(End, One);
1099   } else {
1100     // These two computations may sign-overflow.  Here is why that is okay:
1101     //
1102     // We know that the induction variable does not sign-overflow on any
1103     // iteration except the last one, and it starts at `Start` and ends at
1104     // `End`, decrementing by one every time.
1105     //
1106     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1107     //    induction variable is decreasing we know that that the smallest value
1108     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1109     //
1110     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
1111     //    that case, `Clamp` will always return `Smallest` and
1112     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1113     //    will be an empty range.  Returning an empty range is always safe.
1114 
1115     Smallest = SE.getAddExpr(End, One);
1116     Greatest = SE.getAddExpr(Start, One);
1117     GreatestSeen = Start;
1118   }
1119 
1120   auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1121     return IsSignedPredicate
1122                ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1123                : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1124   };
1125 
1126   // In some cases we can prove that we don't need a pre or post loop.
1127   ICmpInst::Predicate PredLE =
1128       IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1129   ICmpInst::Predicate PredLT =
1130       IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1131 
1132   bool ProvablyNoPreloop =
1133       SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1134   if (!ProvablyNoPreloop)
1135     Result.LowLimit = Clamp(Range.getBegin());
1136 
1137   bool ProvablyNoPostLoop =
1138       SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1139   if (!ProvablyNoPostLoop)
1140     Result.HighLimit = Clamp(Range.getEnd());
1141 
1142   return Result;
1143 }
1144 
1145 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1146                                 const char *Tag) const {
1147   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1148     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1149     Result.Blocks.push_back(Clone);
1150     Result.Map[BB] = Clone;
1151   }
1152 
1153   auto GetClonedValue = [&Result](Value *V) {
1154     assert(V && "null values not in domain!");
1155     auto It = Result.Map.find(V);
1156     if (It == Result.Map.end())
1157       return V;
1158     return static_cast<Value *>(It->second);
1159   };
1160 
1161   auto *ClonedLatch =
1162       cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1163   ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1164                                             MDNode::get(Ctx, {}));
1165 
1166   Result.Structure = MainLoopStructure.map(GetClonedValue);
1167   Result.Structure.Tag = Tag;
1168 
1169   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1170     BasicBlock *ClonedBB = Result.Blocks[i];
1171     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1172 
1173     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1174 
1175     for (Instruction &I : *ClonedBB)
1176       RemapInstruction(&I, Result.Map,
1177                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1178 
1179     // Exit blocks will now have one more predecessor and their PHI nodes need
1180     // to be edited to reflect that.  No phi nodes need to be introduced because
1181     // the loop is in LCSSA.
1182 
1183     for (auto *SBB : successors(OriginalBB)) {
1184       if (OriginalLoop.contains(SBB))
1185         continue; // not an exit block
1186 
1187       for (PHINode &PN : SBB->phis()) {
1188         Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1189         PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1190         SE.forgetValue(&PN);
1191       }
1192     }
1193   }
1194 }
1195 
1196 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1197     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1198     BasicBlock *ContinuationBlock) const {
1199   // We start with a loop with a single latch:
1200   //
1201   //    +--------------------+
1202   //    |                    |
1203   //    |     preheader      |
1204   //    |                    |
1205   //    +--------+-----------+
1206   //             |      ----------------\
1207   //             |     /                |
1208   //    +--------v----v------+          |
1209   //    |                    |          |
1210   //    |      header        |          |
1211   //    |                    |          |
1212   //    +--------------------+          |
1213   //                                    |
1214   //            .....                   |
1215   //                                    |
1216   //    +--------------------+          |
1217   //    |                    |          |
1218   //    |       latch        >----------/
1219   //    |                    |
1220   //    +-------v------------+
1221   //            |
1222   //            |
1223   //            |   +--------------------+
1224   //            |   |                    |
1225   //            +--->   original exit    |
1226   //                |                    |
1227   //                +--------------------+
1228   //
1229   // We change the control flow to look like
1230   //
1231   //
1232   //    +--------------------+
1233   //    |                    |
1234   //    |     preheader      >-------------------------+
1235   //    |                    |                         |
1236   //    +--------v-----------+                         |
1237   //             |    /-------------+                  |
1238   //             |   /              |                  |
1239   //    +--------v--v--------+      |                  |
1240   //    |                    |      |                  |
1241   //    |      header        |      |   +--------+     |
1242   //    |                    |      |   |        |     |
1243   //    +--------------------+      |   |  +-----v-----v-----------+
1244   //                                |   |  |                       |
1245   //                                |   |  |     .pseudo.exit      |
1246   //                                |   |  |                       |
1247   //                                |   |  +-----------v-----------+
1248   //                                |   |              |
1249   //            .....               |   |              |
1250   //                                |   |     +--------v-------------+
1251   //    +--------------------+      |   |     |                      |
1252   //    |                    |      |   |     |   ContinuationBlock  |
1253   //    |       latch        >------+   |     |                      |
1254   //    |                    |          |     +----------------------+
1255   //    +---------v----------+          |
1256   //              |                     |
1257   //              |                     |
1258   //              |     +---------------^-----+
1259   //              |     |                     |
1260   //              +----->    .exit.selector   |
1261   //                    |                     |
1262   //                    +----------v----------+
1263   //                               |
1264   //     +--------------------+    |
1265   //     |                    |    |
1266   //     |   original exit    <----+
1267   //     |                    |
1268   //     +--------------------+
1269 
1270   RewrittenRangeInfo RRI;
1271 
1272   BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1273   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1274                                         &F, BBInsertLocation);
1275   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1276                                       BBInsertLocation);
1277 
1278   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1279   bool Increasing = LS.IndVarIncreasing;
1280   bool IsSignedPredicate = LS.IsSignedPredicate;
1281 
1282   IRBuilder<> B(PreheaderJump);
1283   auto *RangeTy = Range.getBegin()->getType();
1284   auto NoopOrExt = [&](Value *V) {
1285     if (V->getType() == RangeTy)
1286       return V;
1287     return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1288                              : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1289   };
1290 
1291   // EnterLoopCond - is it okay to start executing this `LS'?
1292   Value *EnterLoopCond = nullptr;
1293   auto Pred =
1294       Increasing
1295           ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1296           : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1297   Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1298   EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1299 
1300   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1301   PreheaderJump->eraseFromParent();
1302 
1303   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1304   B.SetInsertPoint(LS.LatchBr);
1305   Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1306   Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1307 
1308   Value *CondForBranch = LS.LatchBrExitIdx == 1
1309                              ? TakeBackedgeLoopCond
1310                              : B.CreateNot(TakeBackedgeLoopCond);
1311 
1312   LS.LatchBr->setCondition(CondForBranch);
1313 
1314   B.SetInsertPoint(RRI.ExitSelector);
1315 
1316   // IterationsLeft - are there any more iterations left, given the original
1317   // upper bound on the induction variable?  If not, we branch to the "real"
1318   // exit.
1319   Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1320   Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1321   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1322 
1323   BranchInst *BranchToContinuation =
1324       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1325 
1326   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1327   // each of the PHI nodes in the loop header.  This feeds into the initial
1328   // value of the same PHI nodes if/when we continue execution.
1329   for (PHINode &PN : LS.Header->phis()) {
1330     PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1331                                       BranchToContinuation);
1332 
1333     NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1334     NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1335                         RRI.ExitSelector);
1336     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1337   }
1338 
1339   RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1340                                   BranchToContinuation);
1341   RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1342   RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1343 
1344   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1345   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1346   LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector);
1347 
1348   return RRI;
1349 }
1350 
1351 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1352     LoopStructure &LS, BasicBlock *ContinuationBlock,
1353     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1354   unsigned PHIIndex = 0;
1355   for (PHINode &PN : LS.Header->phis())
1356     PN.setIncomingValueForBlock(ContinuationBlock,
1357                                 RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1358 
1359   LS.IndVarStart = RRI.IndVarEnd;
1360 }
1361 
1362 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1363                                              BasicBlock *OldPreheader,
1364                                              const char *Tag) const {
1365   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1366   BranchInst::Create(LS.Header, Preheader);
1367 
1368   LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
1369 
1370   return Preheader;
1371 }
1372 
1373 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1374   Loop *ParentLoop = OriginalLoop.getParentLoop();
1375   if (!ParentLoop)
1376     return;
1377 
1378   for (BasicBlock *BB : BBs)
1379     ParentLoop->addBasicBlockToLoop(BB, LI);
1380 }
1381 
1382 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1383                                                  ValueToValueMapTy &VM,
1384                                                  bool IsSubloop) {
1385   Loop &New = *LI.AllocateLoop();
1386   if (Parent)
1387     Parent->addChildLoop(&New);
1388   else
1389     LI.addTopLevelLoop(&New);
1390   LPMAddNewLoop(&New, IsSubloop);
1391 
1392   // Add all of the blocks in Original to the new loop.
1393   for (auto *BB : Original->blocks())
1394     if (LI.getLoopFor(BB) == Original)
1395       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1396 
1397   // Add all of the subloops to the new loop.
1398   for (Loop *SubLoop : *Original)
1399     createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1400 
1401   return &New;
1402 }
1403 
1404 bool LoopConstrainer::run() {
1405   BasicBlock *Preheader = nullptr;
1406   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1407   Preheader = OriginalLoop.getLoopPreheader();
1408   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1409          "preconditions!");
1410 
1411   OriginalPreheader = Preheader;
1412   MainLoopPreheader = Preheader;
1413 
1414   bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1415   std::optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1416   if (!MaybeSR) {
1417     LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1418     return false;
1419   }
1420 
1421   SubRanges SR = *MaybeSR;
1422   bool Increasing = MainLoopStructure.IndVarIncreasing;
1423   IntegerType *IVTy =
1424       cast<IntegerType>(Range.getBegin()->getType());
1425 
1426   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1427   Instruction *InsertPt = OriginalPreheader->getTerminator();
1428 
1429   // It would have been better to make `PreLoop' and `PostLoop'
1430   // `std::optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1431   // constructor.
1432   ClonedLoop PreLoop, PostLoop;
1433   bool NeedsPreLoop =
1434       Increasing ? SR.LowLimit.has_value() : SR.HighLimit.has_value();
1435   bool NeedsPostLoop =
1436       Increasing ? SR.HighLimit.has_value() : SR.LowLimit.has_value();
1437 
1438   Value *ExitPreLoopAt = nullptr;
1439   Value *ExitMainLoopAt = nullptr;
1440   const SCEVConstant *MinusOneS =
1441       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1442 
1443   if (NeedsPreLoop) {
1444     const SCEV *ExitPreLoopAtSCEV = nullptr;
1445 
1446     if (Increasing)
1447       ExitPreLoopAtSCEV = *SR.LowLimit;
1448     else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1449                                IsSignedPredicate))
1450       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1451     else {
1452       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1453                         << "preloop exit limit.  HighLimit = "
1454                         << *(*SR.HighLimit) << "\n");
1455       return false;
1456     }
1457 
1458     if (!Expander.isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt)) {
1459       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1460                         << " preloop exit limit " << *ExitPreLoopAtSCEV
1461                         << " at block " << InsertPt->getParent()->getName()
1462                         << "\n");
1463       return false;
1464     }
1465 
1466     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1467     ExitPreLoopAt->setName("exit.preloop.at");
1468   }
1469 
1470   if (NeedsPostLoop) {
1471     const SCEV *ExitMainLoopAtSCEV = nullptr;
1472 
1473     if (Increasing)
1474       ExitMainLoopAtSCEV = *SR.HighLimit;
1475     else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1476                                IsSignedPredicate))
1477       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1478     else {
1479       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1480                         << "mainloop exit limit.  LowLimit = "
1481                         << *(*SR.LowLimit) << "\n");
1482       return false;
1483     }
1484 
1485     if (!Expander.isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt)) {
1486       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1487                         << " main loop exit limit " << *ExitMainLoopAtSCEV
1488                         << " at block " << InsertPt->getParent()->getName()
1489                         << "\n");
1490       return false;
1491     }
1492 
1493     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1494     ExitMainLoopAt->setName("exit.mainloop.at");
1495   }
1496 
1497   // We clone these ahead of time so that we don't have to deal with changing
1498   // and temporarily invalid IR as we transform the loops.
1499   if (NeedsPreLoop)
1500     cloneLoop(PreLoop, "preloop");
1501   if (NeedsPostLoop)
1502     cloneLoop(PostLoop, "postloop");
1503 
1504   RewrittenRangeInfo PreLoopRRI;
1505 
1506   if (NeedsPreLoop) {
1507     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1508                                                   PreLoop.Structure.Header);
1509 
1510     MainLoopPreheader =
1511         createPreheader(MainLoopStructure, Preheader, "mainloop");
1512     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1513                                          ExitPreLoopAt, MainLoopPreheader);
1514     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1515                                  PreLoopRRI);
1516   }
1517 
1518   BasicBlock *PostLoopPreheader = nullptr;
1519   RewrittenRangeInfo PostLoopRRI;
1520 
1521   if (NeedsPostLoop) {
1522     PostLoopPreheader =
1523         createPreheader(PostLoop.Structure, Preheader, "postloop");
1524     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1525                                           ExitMainLoopAt, PostLoopPreheader);
1526     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1527                                  PostLoopRRI);
1528   }
1529 
1530   BasicBlock *NewMainLoopPreheader =
1531       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1532   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1533                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1534                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1535 
1536   // Some of the above may be nullptr, filter them out before passing to
1537   // addToParentLoopIfNeeded.
1538   auto NewBlocksEnd =
1539       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1540 
1541   addToParentLoopIfNeeded(ArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1542 
1543   DT.recalculate(F);
1544 
1545   // We need to first add all the pre and post loop blocks into the loop
1546   // structures (as part of createClonedLoopStructure), and then update the
1547   // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1548   // LI when LoopSimplifyForm is generated.
1549   Loop *PreL = nullptr, *PostL = nullptr;
1550   if (!PreLoop.Blocks.empty()) {
1551     PreL = createClonedLoopStructure(&OriginalLoop,
1552                                      OriginalLoop.getParentLoop(), PreLoop.Map,
1553                                      /* IsSubLoop */ false);
1554   }
1555 
1556   if (!PostLoop.Blocks.empty()) {
1557     PostL =
1558         createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1559                                   PostLoop.Map, /* IsSubLoop */ false);
1560   }
1561 
1562   // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1563   auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1564     formLCSSARecursively(*L, DT, &LI, &SE);
1565     simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true);
1566     // Pre/post loops are slow paths, we do not need to perform any loop
1567     // optimizations on them.
1568     if (!IsOriginalLoop)
1569       DisableAllLoopOptsOnLoop(*L);
1570   };
1571   if (PreL)
1572     CanonicalizeLoop(PreL, false);
1573   if (PostL)
1574     CanonicalizeLoop(PostL, false);
1575   CanonicalizeLoop(&OriginalLoop, true);
1576 
1577   return true;
1578 }
1579 
1580 /// Computes and returns a range of values for the induction variable (IndVar)
1581 /// in which the range check can be safely elided.  If it cannot compute such a
1582 /// range, returns std::nullopt.
1583 std::optional<InductiveRangeCheck::Range>
1584 InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
1585                                                const SCEVAddRecExpr *IndVar,
1586                                                bool IsLatchSigned) const {
1587   // We can deal when types of latch check and range checks don't match in case
1588   // if latch check is more narrow.
1589   auto *IVType = dyn_cast<IntegerType>(IndVar->getType());
1590   auto *RCType = dyn_cast<IntegerType>(getBegin()->getType());
1591   // Do not work with pointer types.
1592   if (!IVType || !RCType)
1593     return std::nullopt;
1594   if (IVType->getBitWidth() > RCType->getBitWidth())
1595     return std::nullopt;
1596   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1597   // variable, that may or may not exist as a real llvm::Value in the loop) and
1598   // this inductive range check is a range check on the "C + D * I" ("C" is
1599   // getBegin() and "D" is getStep()).  We rewrite the value being range
1600   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1601   //
1602   // The actual inequalities we solve are of the form
1603   //
1604   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1605   //
1606   // Here L stands for upper limit of the safe iteration space.
1607   // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1608   // overflows when calculating (0 - M) and (L - M) we, depending on type of
1609   // IV's iteration space, limit the calculations by borders of the iteration
1610   // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1611   // If we figured out that "anything greater than (-M) is safe", we strengthen
1612   // this to "everything greater than 0 is safe", assuming that values between
1613   // -M and 0 just do not exist in unsigned iteration space, and we don't want
1614   // to deal with overflown values.
1615 
1616   if (!IndVar->isAffine())
1617     return std::nullopt;
1618 
1619   const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1620   const SCEVConstant *B = dyn_cast<SCEVConstant>(
1621       NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1622   if (!B)
1623     return std::nullopt;
1624   assert(!B->isZero() && "Recurrence with zero step?");
1625 
1626   const SCEV *C = getBegin();
1627   const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1628   if (D != B)
1629     return std::nullopt;
1630 
1631   assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1632   unsigned BitWidth = RCType->getBitWidth();
1633   const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1634 
1635   // Subtract Y from X so that it does not go through border of the IV
1636   // iteration space. Mathematically, it is equivalent to:
1637   //
1638   //    ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX).        [1]
1639   //
1640   // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1641   // any width of bit grid). But after we take min/max, the result is
1642   // guaranteed to be within [INT_MIN, INT_MAX].
1643   //
1644   // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1645   // values, depending on type of latch condition that defines IV iteration
1646   // space.
1647   auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1648     // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1649     // This is required to ensure that SINT_MAX - X does not overflow signed and
1650     // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1651     // restriction and make it work for negative X either?
1652     if (IsLatchSigned) {
1653       // X is a number from signed range, Y is interpreted as signed.
1654       // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1655       // thing we should care about is that we didn't cross SINT_MAX.
1656       // So, if Y is positive, we subtract Y safely.
1657       //   Rule 1: Y > 0 ---> Y.
1658       // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1659       //   Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1660       // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1661       //   Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1662       // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1663       const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1664       return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1665                              SCEV::FlagNSW);
1666     } else
1667       // X is a number from unsigned range, Y is interpreted as signed.
1668       // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1669       // thing we should care about is that we didn't cross zero.
1670       // So, if Y is negative, we subtract Y safely.
1671       //   Rule 1: Y <s 0 ---> Y.
1672       // If 0 <= Y <= X, we subtract Y safely.
1673       //   Rule 2: Y <=s X ---> Y.
1674       // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1675       //   Rule 3: Y >s X ---> X.
1676       // It gives us smin(X, Y) to subtract in all cases.
1677       return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1678   };
1679   const SCEV *M = SE.getMinusSCEV(C, A);
1680   const SCEV *Zero = SE.getZero(M->getType());
1681 
1682   // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1683   auto SCEVCheckNonNegative = [&](const SCEV *X) {
1684     const Loop *L = IndVar->getLoop();
1685     const SCEV *One = SE.getOne(X->getType());
1686     // Can we trivially prove that X is a non-negative or negative value?
1687     if (isKnownNonNegativeInLoop(X, L, SE))
1688       return One;
1689     else if (isKnownNegativeInLoop(X, L, SE))
1690       return Zero;
1691     // If not, we will have to figure it out during the execution.
1692     // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1693     const SCEV *NegOne = SE.getNegativeSCEV(One);
1694     return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1695   };
1696   // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1697   // X is non-negative (in sense of a signed value). We need to re-implement
1698   // this function in a way that it will correctly handle negative X as well.
1699   // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1700   // end up with a negative X and produce wrong results. So currently we ensure
1701   // that if getEnd() is negative then both ends of the safe range are zero.
1702   // Note that this may pessimize elimination of unsigned range checks against
1703   // negative values.
1704   const SCEV *REnd = getEnd();
1705   const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1706 
1707   const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1708   const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1709   return InductiveRangeCheck::Range(Begin, End);
1710 }
1711 
1712 static std::optional<InductiveRangeCheck::Range>
1713 IntersectSignedRange(ScalarEvolution &SE,
1714                      const std::optional<InductiveRangeCheck::Range> &R1,
1715                      const InductiveRangeCheck::Range &R2) {
1716   if (R2.isEmpty(SE, /* IsSigned */ true))
1717     return std::nullopt;
1718   if (!R1)
1719     return R2;
1720   auto &R1Value = *R1;
1721   // We never return empty ranges from this function, and R1 is supposed to be
1722   // a result of intersection. Thus, R1 is never empty.
1723   assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1724          "We should never have empty R1!");
1725 
1726   // TODO: we could widen the smaller range and have this work; but for now we
1727   // bail out to keep things simple.
1728   if (R1Value.getType() != R2.getType())
1729     return std::nullopt;
1730 
1731   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1732   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1733 
1734   // If the resulting range is empty, just return std::nullopt.
1735   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1736   if (Ret.isEmpty(SE, /* IsSigned */ true))
1737     return std::nullopt;
1738   return Ret;
1739 }
1740 
1741 static std::optional<InductiveRangeCheck::Range>
1742 IntersectUnsignedRange(ScalarEvolution &SE,
1743                        const std::optional<InductiveRangeCheck::Range> &R1,
1744                        const InductiveRangeCheck::Range &R2) {
1745   if (R2.isEmpty(SE, /* IsSigned */ false))
1746     return std::nullopt;
1747   if (!R1)
1748     return R2;
1749   auto &R1Value = *R1;
1750   // We never return empty ranges from this function, and R1 is supposed to be
1751   // a result of intersection. Thus, R1 is never empty.
1752   assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1753          "We should never have empty R1!");
1754 
1755   // TODO: we could widen the smaller range and have this work; but for now we
1756   // bail out to keep things simple.
1757   if (R1Value.getType() != R2.getType())
1758     return std::nullopt;
1759 
1760   const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1761   const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1762 
1763   // If the resulting range is empty, just return std::nullopt.
1764   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1765   if (Ret.isEmpty(SE, /* IsSigned */ false))
1766     return std::nullopt;
1767   return Ret;
1768 }
1769 
1770 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
1771   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1772   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1773   // There are no loops in the function. Return before computing other expensive
1774   // analyses.
1775   if (LI.empty())
1776     return PreservedAnalyses::all();
1777   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1778   auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
1779 
1780   // Get BFI analysis result on demand. Please note that modification of
1781   // CFG invalidates this analysis and we should handle it.
1782   auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & {
1783     return AM.getResult<BlockFrequencyAnalysis>(F);
1784   };
1785   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI });
1786 
1787   bool Changed = false;
1788   {
1789     bool CFGChanged = false;
1790     for (const auto &L : LI) {
1791       CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1792                                  /*PreserveLCSSA=*/false);
1793       Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1794     }
1795     Changed |= CFGChanged;
1796 
1797     if (CFGChanged && !SkipProfitabilityChecks) {
1798       PreservedAnalyses PA = PreservedAnalyses::all();
1799       PA.abandon<BlockFrequencyAnalysis>();
1800       AM.invalidate(F, PA);
1801     }
1802   }
1803 
1804   SmallPriorityWorklist<Loop *, 4> Worklist;
1805   appendLoopsToWorklist(LI, Worklist);
1806   auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
1807     if (!IsSubloop)
1808       appendLoopsToWorklist(*NL, Worklist);
1809   };
1810 
1811   while (!Worklist.empty()) {
1812     Loop *L = Worklist.pop_back_val();
1813     if (IRCE.run(L, LPMAddNewLoop)) {
1814       Changed = true;
1815       if (!SkipProfitabilityChecks) {
1816         PreservedAnalyses PA = PreservedAnalyses::all();
1817         PA.abandon<BlockFrequencyAnalysis>();
1818         AM.invalidate(F, PA);
1819       }
1820     }
1821   }
1822 
1823   if (!Changed)
1824     return PreservedAnalyses::all();
1825   return getLoopPassPreservedAnalyses();
1826 }
1827 
1828 bool IRCELegacyPass::runOnFunction(Function &F) {
1829   if (skipFunction(F))
1830     return false;
1831 
1832   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1833   BranchProbabilityInfo &BPI =
1834       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1835   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1836   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1837   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1838 
1839   bool Changed = false;
1840 
1841   for (const auto &L : LI) {
1842     Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1843                             /*PreserveLCSSA=*/false);
1844     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1845   }
1846 
1847   SmallPriorityWorklist<Loop *, 4> Worklist;
1848   appendLoopsToWorklist(LI, Worklist);
1849   auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) {
1850     if (!IsSubloop)
1851       appendLoopsToWorklist(*NL, Worklist);
1852   };
1853 
1854   while (!Worklist.empty()) {
1855     Loop *L = Worklist.pop_back_val();
1856     Changed |= IRCE.run(L, LPMAddNewLoop);
1857   }
1858   return Changed;
1859 }
1860 
1861 bool
1862 InductiveRangeCheckElimination::isProfitableToTransform(const Loop &L,
1863                                                         LoopStructure &LS) {
1864   if (SkipProfitabilityChecks)
1865     return true;
1866   if (GetBFI) {
1867     BlockFrequencyInfo &BFI = (*GetBFI)();
1868     uint64_t hFreq = BFI.getBlockFreq(LS.Header).getFrequency();
1869     uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency();
1870     if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) {
1871       LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
1872                         << "the estimated number of iterations basing on "
1873                            "frequency info is " << (hFreq / phFreq) << "\n";);
1874       return false;
1875     }
1876     return true;
1877   }
1878 
1879   if (!BPI)
1880     return true;
1881   BranchProbability ExitProbability =
1882       BPI->getEdgeProbability(LS.Latch, LS.LatchBrExitIdx);
1883   if (ExitProbability > BranchProbability(1, MinRuntimeIterations)) {
1884     LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
1885                       << "the exit probability is too big " << ExitProbability
1886                       << "\n";);
1887     return false;
1888   }
1889   return true;
1890 }
1891 
1892 bool InductiveRangeCheckElimination::run(
1893     Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1894   if (L->getBlocks().size() >= LoopSizeCutoff) {
1895     LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1896     return false;
1897   }
1898 
1899   BasicBlock *Preheader = L->getLoopPreheader();
1900   if (!Preheader) {
1901     LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1902     return false;
1903   }
1904 
1905   LLVMContext &Context = Preheader->getContext();
1906   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1907 
1908   for (auto *BBI : L->getBlocks())
1909     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1910       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1911                                                         RangeChecks);
1912 
1913   if (RangeChecks.empty())
1914     return false;
1915 
1916   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1917     OS << "irce: looking at loop "; L->print(OS);
1918     OS << "irce: loop has " << RangeChecks.size()
1919        << " inductive range checks: \n";
1920     for (InductiveRangeCheck &IRC : RangeChecks)
1921       IRC.print(OS);
1922   };
1923 
1924   LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1925 
1926   if (PrintRangeChecks)
1927     PrintRecognizedRangeChecks(errs());
1928 
1929   const char *FailureReason = nullptr;
1930   std::optional<LoopStructure> MaybeLoopStructure =
1931       LoopStructure::parseLoopStructure(SE, *L, FailureReason);
1932   if (!MaybeLoopStructure) {
1933     LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1934                       << FailureReason << "\n";);
1935     return false;
1936   }
1937   LoopStructure LS = *MaybeLoopStructure;
1938   if (!isProfitableToTransform(*L, LS))
1939     return false;
1940   const SCEVAddRecExpr *IndVar =
1941       cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1942 
1943   std::optional<InductiveRangeCheck::Range> SafeIterRange;
1944   Instruction *ExprInsertPt = Preheader->getTerminator();
1945 
1946   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1947   // Basing on the type of latch predicate, we interpret the IV iteration range
1948   // as signed or unsigned range. We use different min/max functions (signed or
1949   // unsigned) when intersecting this range with safe iteration ranges implied
1950   // by range checks.
1951   auto IntersectRange =
1952       LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1953 
1954   IRBuilder<> B(ExprInsertPt);
1955   for (InductiveRangeCheck &IRC : RangeChecks) {
1956     auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1957                                                 LS.IsSignedPredicate);
1958     if (Result) {
1959       auto MaybeSafeIterRange = IntersectRange(SE, SafeIterRange, *Result);
1960       if (MaybeSafeIterRange) {
1961         assert(!MaybeSafeIterRange->isEmpty(SE, LS.IsSignedPredicate) &&
1962                "We should never return empty ranges!");
1963         RangeChecksToEliminate.push_back(IRC);
1964         SafeIterRange = *MaybeSafeIterRange;
1965       }
1966     }
1967   }
1968 
1969   if (!SafeIterRange)
1970     return false;
1971 
1972   LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT, *SafeIterRange);
1973   bool Changed = LC.run();
1974 
1975   if (Changed) {
1976     auto PrintConstrainedLoopInfo = [L]() {
1977       dbgs() << "irce: in function ";
1978       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1979       dbgs() << "constrained ";
1980       L->print(dbgs());
1981     };
1982 
1983     LLVM_DEBUG(PrintConstrainedLoopInfo());
1984 
1985     if (PrintChangedLoops)
1986       PrintConstrainedLoopInfo();
1987 
1988     // Optimize away the now-redundant range checks.
1989 
1990     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1991       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1992                                           ? ConstantInt::getTrue(Context)
1993                                           : ConstantInt::getFalse(Context);
1994       IRC.getCheckUse()->set(FoldedRangeCheck);
1995     }
1996   }
1997 
1998   return Changed;
1999 }
2000 
2001 Pass *llvm::createInductiveRangeCheckEliminationPass() {
2002   return new IRCELegacyPass();
2003 }
2004