//===- InductiveRangeCheckElimination.cpp - -------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // The InductiveRangeCheckElimination pass splits a loop's iteration space into // three disjoint ranges. It does that in a way such that the loop running in // the middle loop provably does not need range checks. As an example, it will // convert // // len = < known positive > // for (i = 0; i < n; i++) { // if (0 <= i && i < len) { // do_something(); // } else { // throw_out_of_bounds(); // } // } // // to // // len = < known positive > // limit = smin(n, len) // // no first segment // for (i = 0; i < limit; i++) { // if (0 <= i && i < len) { // this check is fully redundant // do_something(); // } else { // throw_out_of_bounds(); // } // } // for (i = limit; i < n; i++) { // if (0 <= i && i < len) { // do_something(); // } else { // throw_out_of_bounds(); // } // } // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/PriorityWorklist.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/LoopAnalysisManager.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/LoopSimplify.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; static cl::opt LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, cl::init(64)); static cl::opt PrintChangedLoops("irce-print-changed-loops", cl::Hidden, cl::init(false)); static cl::opt PrintRangeChecks("irce-print-range-checks", cl::Hidden, cl::init(false)); static cl::opt SkipProfitabilityChecks("irce-skip-profitability-checks", cl::Hidden, cl::init(false)); static cl::opt MinRuntimeIterations("irce-min-runtime-iterations", cl::Hidden, cl::init(10)); static cl::opt AllowUnsignedLatchCondition("irce-allow-unsigned-latch", cl::Hidden, cl::init(true)); static cl::opt AllowNarrowLatchCondition( "irce-allow-narrow-latch", cl::Hidden, cl::init(true), cl::desc("If set to true, IRCE may eliminate wide range checks in loops " "with narrow latch condition.")); static const char *ClonedLoopTag = "irce.loop.clone"; #define DEBUG_TYPE "irce" namespace { /// An inductive range check is conditional branch in a loop with /// /// 1. a very cold successor (i.e. the branch jumps to that successor very /// rarely) /// /// and /// /// 2. a condition that is provably true for some contiguous range of values /// taken by the containing loop's induction variable. /// class InductiveRangeCheck { const SCEV *Begin = nullptr; const SCEV *Step = nullptr; const SCEV *End = nullptr; Use *CheckUse = nullptr; static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE, Value *&Index, Value *&Length, bool &IsSigned); static void extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, SmallVectorImpl &Checks, SmallPtrSetImpl &Visited); public: const SCEV *getBegin() const { return Begin; } const SCEV *getStep() const { return Step; } const SCEV *getEnd() const { return End; } void print(raw_ostream &OS) const { OS << "InductiveRangeCheck:\n"; OS << " Begin: "; Begin->print(OS); OS << " Step: "; Step->print(OS); OS << " End: "; End->print(OS); OS << "\n CheckUse: "; getCheckUse()->getUser()->print(OS); OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; } LLVM_DUMP_METHOD void dump() { print(dbgs()); } Use *getCheckUse() const { return CheckUse; } /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If /// R.getEnd() le R.getBegin(), then R denotes the empty range. class Range { const SCEV *Begin; const SCEV *End; public: Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { assert(Begin->getType() == End->getType() && "ill-typed range!"); } Type *getType() const { return Begin->getType(); } const SCEV *getBegin() const { return Begin; } const SCEV *getEnd() const { return End; } bool isEmpty(ScalarEvolution &SE, bool IsSigned) const { if (Begin == End) return true; if (IsSigned) return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End); else return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End); } }; /// This is the value the condition of the branch needs to evaluate to for the /// branch to take the hot successor (see (1) above). bool getPassingDirection() { return true; } /// Computes a range for the induction variable (IndVar) in which the range /// check is redundant and can be constant-folded away. The induction /// variable is not required to be the canonical {0,+,1} induction variable. std::optional computeSafeIterationSpace(ScalarEvolution &SE, const SCEVAddRecExpr *IndVar, bool IsLatchSigned) const; /// Parse out a set of inductive range checks from \p BI and append them to \p /// Checks. /// /// NB! There may be conditions feeding into \p BI that aren't inductive range /// checks, and hence don't end up in \p Checks. static void extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI, SmallVectorImpl &Checks); }; struct LoopStructure; class InductiveRangeCheckElimination { ScalarEvolution &SE; BranchProbabilityInfo *BPI; DominatorTree &DT; LoopInfo &LI; using GetBFIFunc = std::optional>; GetBFIFunc GetBFI; // Returns true if it is profitable to do a transform basing on estimation of // number of iterations. bool isProfitableToTransform(const Loop &L, LoopStructure &LS); public: InductiveRangeCheckElimination(ScalarEvolution &SE, BranchProbabilityInfo *BPI, DominatorTree &DT, LoopInfo &LI, GetBFIFunc GetBFI = std::nullopt) : SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {} bool run(Loop *L, function_ref LPMAddNewLoop); }; class IRCELegacyPass : public FunctionPass { public: static char ID; IRCELegacyPass() : FunctionPass(ID) { initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); } bool runOnFunction(Function &F) override; }; } // end anonymous namespace char IRCELegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce", "Inductive range check elimination", false, false) INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination", false, false) /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot /// be interpreted as a range check, return false and set `Index` and `Length` /// to `nullptr`. Otherwise set `Index` to the value being range checked, and /// set `Length` to the upper limit `Index` is being range checked. bool InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE, Value *&Index, Value *&Length, bool &IsSigned) { auto IsLoopInvariant = [&SE, L](Value *V) { return SE.isLoopInvariant(SE.getSCEV(V), L); }; ICmpInst::Predicate Pred = ICI->getPredicate(); Value *LHS = ICI->getOperand(0); Value *RHS = ICI->getOperand(1); switch (Pred) { default: return false; case ICmpInst::ICMP_SLE: std::swap(LHS, RHS); [[fallthrough]]; case ICmpInst::ICMP_SGE: IsSigned = true; if (match(RHS, m_ConstantInt<0>())) { Index = LHS; return true; // Lower. } return false; case ICmpInst::ICMP_SLT: std::swap(LHS, RHS); [[fallthrough]]; case ICmpInst::ICMP_SGT: IsSigned = true; if (match(RHS, m_ConstantInt<-1>())) { Index = LHS; return true; // Lower. } if (IsLoopInvariant(LHS)) { Index = RHS; Length = LHS; return true; // Upper. } return false; case ICmpInst::ICMP_ULT: std::swap(LHS, RHS); [[fallthrough]]; case ICmpInst::ICMP_UGT: IsSigned = false; if (IsLoopInvariant(LHS)) { Index = RHS; Length = LHS; return true; // Both lower and upper. } return false; } llvm_unreachable("default clause returns!"); } void InductiveRangeCheck::extractRangeChecksFromCond( Loop *L, ScalarEvolution &SE, Use &ConditionUse, SmallVectorImpl &Checks, SmallPtrSetImpl &Visited) { Value *Condition = ConditionUse.get(); if (!Visited.insert(Condition).second) return; // TODO: Do the same for OR, XOR, NOT etc? if (match(Condition, m_LogicalAnd(m_Value(), m_Value()))) { extractRangeChecksFromCond(L, SE, cast(Condition)->getOperandUse(0), Checks, Visited); extractRangeChecksFromCond(L, SE, cast(Condition)->getOperandUse(1), Checks, Visited); return; } ICmpInst *ICI = dyn_cast(Condition); if (!ICI) return; Value *Length = nullptr, *Index; bool IsSigned; if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned)) return; const auto *IndexAddRec = dyn_cast(SE.getSCEV(Index)); bool IsAffineIndex = IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); if (!IsAffineIndex) return; const SCEV *End = nullptr; // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". // We can potentially do much better here. if (Length) End = SE.getSCEV(Length); else { // So far we can only reach this point for Signed range check. This may // change in future. In this case we will need to pick Unsigned max for the // unsigned range check. unsigned BitWidth = cast(IndexAddRec->getType())->getBitWidth(); const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); End = SIntMax; } InductiveRangeCheck IRC; IRC.End = End; IRC.Begin = IndexAddRec->getStart(); IRC.Step = IndexAddRec->getStepRecurrence(SE); IRC.CheckUse = &ConditionUse; Checks.push_back(IRC); } void InductiveRangeCheck::extractRangeChecksFromBranch( BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI, SmallVectorImpl &Checks) { if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) return; BranchProbability LikelyTaken(15, 16); if (!SkipProfitabilityChecks && BPI && BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) return; SmallPtrSet Visited; InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), Checks, Visited); } // Add metadata to the loop L to disable loop optimizations. Callers need to // confirm that optimizing loop L is not beneficial. static void DisableAllLoopOptsOnLoop(Loop &L) { // We do not care about any existing loopID related metadata for L, since we // are setting all loop metadata to false. LLVMContext &Context = L.getHeader()->getContext(); // Reserve first location for self reference to the LoopID metadata node. MDNode *Dummy = MDNode::get(Context, {}); MDNode *DisableUnroll = MDNode::get( Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); Metadata *FalseVal = ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); MDNode *DisableVectorize = MDNode::get( Context, {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); MDNode *DisableLICMVersioning = MDNode::get( Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); MDNode *DisableDistribution= MDNode::get( Context, {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); MDNode *NewLoopID = MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, DisableLICMVersioning, DisableDistribution}); // Set operand 0 to refer to the loop id itself. NewLoopID->replaceOperandWith(0, NewLoopID); L.setLoopID(NewLoopID); } namespace { // Keeps track of the structure of a loop. This is similar to llvm::Loop, // except that it is more lightweight and can track the state of a loop through // changing and potentially invalid IR. This structure also formalizes the // kinds of loops we can deal with -- ones that have a single latch that is also // an exiting block *and* have a canonical induction variable. struct LoopStructure { const char *Tag = ""; BasicBlock *Header = nullptr; BasicBlock *Latch = nullptr; // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th // successor is `LatchExit', the exit block of the loop. BranchInst *LatchBr = nullptr; BasicBlock *LatchExit = nullptr; unsigned LatchBrExitIdx = std::numeric_limits::max(); // The loop represented by this instance of LoopStructure is semantically // equivalent to: // // intN_ty inc = IndVarIncreasing ? 1 : -1; // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; // // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase) // ... body ... Value *IndVarBase = nullptr; Value *IndVarStart = nullptr; Value *IndVarStep = nullptr; Value *LoopExitAt = nullptr; bool IndVarIncreasing = false; bool IsSignedPredicate = true; LoopStructure() = default; template LoopStructure map(M Map) const { LoopStructure Result; Result.Tag = Tag; Result.Header = cast(Map(Header)); Result.Latch = cast(Map(Latch)); Result.LatchBr = cast(Map(LatchBr)); Result.LatchExit = cast(Map(LatchExit)); Result.LatchBrExitIdx = LatchBrExitIdx; Result.IndVarBase = Map(IndVarBase); Result.IndVarStart = Map(IndVarStart); Result.IndVarStep = Map(IndVarStep); Result.LoopExitAt = Map(LoopExitAt); Result.IndVarIncreasing = IndVarIncreasing; Result.IsSignedPredicate = IsSignedPredicate; return Result; } static std::optional parseLoopStructure(ScalarEvolution &, Loop &, const char *&); }; /// This class is used to constrain loops to run within a given iteration space. /// The algorithm this class implements is given a Loop and a range [Begin, /// End). The algorithm then tries to break out a "main loop" out of the loop /// it is given in a way that the "main loop" runs with the induction variable /// in a subset of [Begin, End). The algorithm emits appropriate pre and post /// loops to run any remaining iterations. The pre loop runs any iterations in /// which the induction variable is < Begin, and the post loop runs any /// iterations in which the induction variable is >= End. class LoopConstrainer { // The representation of a clone of the original loop we started out with. struct ClonedLoop { // The cloned blocks std::vector Blocks; // `Map` maps values in the clonee into values in the cloned version ValueToValueMapTy Map; // An instance of `LoopStructure` for the cloned loop LoopStructure Structure; }; // Result of rewriting the range of a loop. See changeIterationSpaceEnd for // more details on what these fields mean. struct RewrittenRangeInfo { BasicBlock *PseudoExit = nullptr; BasicBlock *ExitSelector = nullptr; std::vector PHIValuesAtPseudoExit; PHINode *IndVarEnd = nullptr; RewrittenRangeInfo() = default; }; // Calculated subranges we restrict the iteration space of the main loop to. // See the implementation of `calculateSubRanges' for more details on how // these fields are computed. `LowLimit` is std::nullopt if there is no // restriction on low end of the restricted iteration space of the main loop. // `HighLimit` is std::nullopt if there is no restriction on high end of the // restricted iteration space of the main loop. struct SubRanges { std::optional LowLimit; std::optional HighLimit; }; // Compute a safe set of limits for the main loop to run in -- effectively the // intersection of `Range' and the iteration space of the original loop. // Return std::nullopt if unable to compute the set of subranges. std::optional calculateSubRanges(bool IsSignedPredicate) const; // Clone `OriginalLoop' and return the result in CLResult. The IR after // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- // the PHI nodes say that there is an incoming edge from `OriginalPreheader` // but there is no such edge. void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; // Create the appropriate loop structure needed to describe a cloned copy of // `Original`. The clone is described by `VM`. Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, ValueToValueMapTy &VM, bool IsSubloop); // Rewrite the iteration space of the loop denoted by (LS, Preheader). The // iteration space of the rewritten loop ends at ExitLoopAt. The start of the // iteration space is not changed. `ExitLoopAt' is assumed to be slt // `OriginalHeaderCount'. // // If there are iterations left to execute, control is made to jump to // `ContinuationBlock', otherwise they take the normal loop exit. The // returned `RewrittenRangeInfo' object is populated as follows: // // .PseudoExit is a basic block that unconditionally branches to // `ContinuationBlock'. // // .ExitSelector is a basic block that decides, on exit from the loop, // whether to branch to the "true" exit or to `PseudoExit'. // // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value // for each PHINode in the loop header on taking the pseudo exit. // // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate // preheader because it is made to branch to the loop header only // conditionally. RewrittenRangeInfo changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, Value *ExitLoopAt, BasicBlock *ContinuationBlock) const; // The loop denoted by `LS' has `OldPreheader' as its preheader. This // function creates a new preheader for `LS' and returns it. BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, const char *Tag) const; // `ContinuationBlockAndPreheader' was the continuation block for some call to // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. // This function rewrites the PHI nodes in `LS.Header' to start with the // correct value. void rewriteIncomingValuesForPHIs( LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, const LoopConstrainer::RewrittenRangeInfo &RRI) const; // Even though we do not preserve any passes at this time, we at least need to // keep the parent loop structure consistent. The `LPPassManager' seems to // verify this after running a loop pass. This function adds the list of // blocks denoted by BBs to this loops parent loop if required. void addToParentLoopIfNeeded(ArrayRef BBs); // Some global state. Function &F; LLVMContext &Ctx; ScalarEvolution &SE; DominatorTree &DT; LoopInfo &LI; function_ref LPMAddNewLoop; // Information about the original loop we started out with. Loop &OriginalLoop; const SCEV *LatchTakenCount = nullptr; BasicBlock *OriginalPreheader = nullptr; // The preheader of the main loop. This may or may not be different from // `OriginalPreheader'. BasicBlock *MainLoopPreheader = nullptr; // The range we need to run the main loop in. InductiveRangeCheck::Range Range; // The structure of the main loop (see comment at the beginning of this class // for a definition) LoopStructure MainLoopStructure; public: LoopConstrainer(Loop &L, LoopInfo &LI, function_ref LPMAddNewLoop, const LoopStructure &LS, ScalarEvolution &SE, DominatorTree &DT, InductiveRangeCheck::Range R) : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L), Range(R), MainLoopStructure(LS) {} // Entry point for the algorithm. Returns true on success. bool run(); }; } // end anonymous namespace /// Given a loop with an deccreasing induction variable, is it possible to /// safely calculate the bounds of a new loop using the given Predicate. static bool isSafeDecreasingBound(const SCEV *Start, const SCEV *BoundSCEV, const SCEV *Step, ICmpInst::Predicate Pred, unsigned LatchBrExitIdx, Loop *L, ScalarEvolution &SE) { if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) return false; if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) return false; assert(SE.isKnownNegative(Step) && "expecting negative step"); LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n"); LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) << "\n"); LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); bool IsSigned = ICmpInst::isSigned(Pred); // The predicate that we need to check that the induction variable lies // within bounds. ICmpInst::Predicate BoundPred = IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; if (LatchBrExitIdx == 1) return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be either 0 or 1"); const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType())); unsigned BitWidth = cast(BoundSCEV->getType())->getBitWidth(); APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) : APInt::getMinValue(BitWidth); const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne); const SCEV *MinusOne = SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType())); return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) && SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit); } /// Given a loop with an increasing induction variable, is it possible to /// safely calculate the bounds of a new loop using the given Predicate. static bool isSafeIncreasingBound(const SCEV *Start, const SCEV *BoundSCEV, const SCEV *Step, ICmpInst::Predicate Pred, unsigned LatchBrExitIdx, Loop *L, ScalarEvolution &SE) { if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) return false; if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) return false; LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n"); LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) << "\n"); LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); bool IsSigned = ICmpInst::isSigned(Pred); // The predicate that we need to check that the induction variable lies // within bounds. ICmpInst::Predicate BoundPred = IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; if (LatchBrExitIdx == 1) return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1"); const SCEV *StepMinusOne = SE.getMinusSCEV(Step, SE.getOne(Step->getType())); unsigned BitWidth = cast(BoundSCEV->getType())->getBitWidth(); APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) : APInt::getMaxValue(BitWidth); const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne); return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start, SE.getAddExpr(BoundSCEV, Step)) && SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit)); } std::optional LoopStructure::parseLoopStructure(ScalarEvolution &SE, Loop &L, const char *&FailureReason) { if (!L.isLoopSimplifyForm()) { FailureReason = "loop not in LoopSimplify form"; return std::nullopt; } BasicBlock *Latch = L.getLoopLatch(); assert(Latch && "Simplified loops only have one latch!"); if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { FailureReason = "loop has already been cloned"; return std::nullopt; } if (!L.isLoopExiting(Latch)) { FailureReason = "no loop latch"; return std::nullopt; } BasicBlock *Header = L.getHeader(); BasicBlock *Preheader = L.getLoopPreheader(); if (!Preheader) { FailureReason = "no preheader"; return std::nullopt; } BranchInst *LatchBr = dyn_cast(Latch->getTerminator()); if (!LatchBr || LatchBr->isUnconditional()) { FailureReason = "latch terminator not conditional branch"; return std::nullopt; } unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; ICmpInst *ICI = dyn_cast(LatchBr->getCondition()); if (!ICI || !isa(ICI->getOperand(0)->getType())) { FailureReason = "latch terminator branch not conditional on integral icmp"; return std::nullopt; } const SCEV *LatchCount = SE.getExitCount(&L, Latch); if (isa(LatchCount)) { FailureReason = "could not compute latch count"; return std::nullopt; } ICmpInst::Predicate Pred = ICI->getPredicate(); Value *LeftValue = ICI->getOperand(0); const SCEV *LeftSCEV = SE.getSCEV(LeftValue); IntegerType *IndVarTy = cast(LeftValue->getType()); Value *RightValue = ICI->getOperand(1); const SCEV *RightSCEV = SE.getSCEV(RightValue); // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. if (!isa(LeftSCEV)) { if (isa(RightSCEV)) { std::swap(LeftSCEV, RightSCEV); std::swap(LeftValue, RightValue); Pred = ICmpInst::getSwappedPredicate(Pred); } else { FailureReason = "no add recurrences in the icmp"; return std::nullopt; } } auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { if (AR->getNoWrapFlags(SCEV::FlagNSW)) return true; IntegerType *Ty = cast(AR->getType()); IntegerType *WideTy = IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); const SCEVAddRecExpr *ExtendAfterOp = dyn_cast(SE.getSignExtendExpr(AR, WideTy)); if (ExtendAfterOp) { const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); const SCEV *ExtendedStep = SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; if (NoSignedWrap) return true; } // We may have proved this when computing the sign extension above. return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; }; // `ICI` is interpreted as taking the backedge if the *next* value of the // induction variable satisfies some constraint. const SCEVAddRecExpr *IndVarBase = cast(LeftSCEV); if (IndVarBase->getLoop() != &L) { FailureReason = "LHS in cmp is not an AddRec for this loop"; return std::nullopt; } if (!IndVarBase->isAffine()) { FailureReason = "LHS in icmp not induction variable"; return std::nullopt; } const SCEV* StepRec = IndVarBase->getStepRecurrence(SE); if (!isa(StepRec)) { FailureReason = "LHS in icmp not induction variable"; return std::nullopt; } ConstantInt *StepCI = cast(StepRec)->getValue(); if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) { FailureReason = "LHS in icmp needs nsw for equality predicates"; return std::nullopt; } assert(!StepCI->isZero() && "Zero step?"); bool IsIncreasing = !StepCI->isNegative(); bool IsSignedPredicate; const SCEV *StartNext = IndVarBase->getStart(); const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE)); const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); const SCEV *Step = SE.getSCEV(StepCI); const SCEV *FixedRightSCEV = nullptr; // If RightValue resides within loop (but still being loop invariant), // regenerate it as preheader. if (auto *I = dyn_cast(RightValue)) if (L.contains(I->getParent())) FixedRightSCEV = RightSCEV; if (IsIncreasing) { bool DecreasedRightValueByOne = false; if (StepCI->isOne()) { // Try to turn eq/ne predicates to those we can work with. if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) // while (++i != len) { while (++i < len) { // ... ---> ... // } } // If both parts are known non-negative, it is profitable to use // unsigned comparison in increasing loop. This allows us to make the // comparison check against "RightSCEV + 1" more optimistic. if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) && isKnownNonNegativeInLoop(RightSCEV, &L, SE)) Pred = ICmpInst::ICMP_ULT; else Pred = ICmpInst::ICMP_SLT; else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { // while (true) { while (true) { // if (++i == len) ---> if (++i > len - 1) // break; break; // ... ... // } } if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) { Pred = ICmpInst::ICMP_UGT; RightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())); DecreasedRightValueByOne = true; } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) { Pred = ICmpInst::ICMP_SGT; RightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())); DecreasedRightValueByOne = true; } } } bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); bool FoundExpectedPred = (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); if (!FoundExpectedPred) { FailureReason = "expected icmp slt semantically, found something else"; return std::nullopt; } IsSignedPredicate = ICmpInst::isSigned(Pred); if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { FailureReason = "unsigned latch conditions are explicitly prohibited"; return std::nullopt; } if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred, LatchBrExitIdx, &L, SE)) { FailureReason = "Unsafe loop bounds"; return std::nullopt; } if (LatchBrExitIdx == 0) { // We need to increase the right value unless we have already decreased // it virtually when we replaced EQ with SGT. if (!DecreasedRightValueByOne) FixedRightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); } else { assert(!DecreasedRightValueByOne && "Right value can be decreased only for LatchBrExitIdx == 0!"); } } else { bool IncreasedRightValueByOne = false; if (StepCI->isMinusOne()) { // Try to turn eq/ne predicates to those we can work with. if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) // while (--i != len) { while (--i > len) { // ... ---> ... // } } // We intentionally don't turn the predicate into UGT even if we know // that both operands are non-negative, because it will only pessimize // our check against "RightSCEV - 1". Pred = ICmpInst::ICMP_SGT; else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { // while (true) { while (true) { // if (--i == len) ---> if (--i < len + 1) // break; break; // ... ... // } } if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) { Pred = ICmpInst::ICMP_ULT; RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); IncreasedRightValueByOne = true; } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) { Pred = ICmpInst::ICMP_SLT; RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); IncreasedRightValueByOne = true; } } } bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); bool FoundExpectedPred = (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); if (!FoundExpectedPred) { FailureReason = "expected icmp sgt semantically, found something else"; return std::nullopt; } IsSignedPredicate = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { FailureReason = "unsigned latch conditions are explicitly prohibited"; return std::nullopt; } if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred, LatchBrExitIdx, &L, SE)) { FailureReason = "Unsafe bounds"; return std::nullopt; } if (LatchBrExitIdx == 0) { // We need to decrease the right value unless we have already increased // it virtually when we replaced EQ with SLT. if (!IncreasedRightValueByOne) FixedRightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())); } else { assert(!IncreasedRightValueByOne && "Right value can be increased only for LatchBrExitIdx == 0!"); } } BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); assert(SE.getLoopDisposition(LatchCount, &L) == ScalarEvolution::LoopInvariant && "loop variant exit count doesn't make sense!"); assert(!L.contains(LatchExit) && "expected an exit block!"); const DataLayout &DL = Preheader->getModule()->getDataLayout(); SCEVExpander Expander(SE, DL, "irce"); Instruction *Ins = Preheader->getTerminator(); if (FixedRightSCEV) RightValue = Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins); Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins); IndVarStartV->setName("indvar.start"); LoopStructure Result; Result.Tag = "main"; Result.Header = Header; Result.Latch = Latch; Result.LatchBr = LatchBr; Result.LatchExit = LatchExit; Result.LatchBrExitIdx = LatchBrExitIdx; Result.IndVarStart = IndVarStartV; Result.IndVarStep = StepCI; Result.IndVarBase = LeftValue; Result.IndVarIncreasing = IsIncreasing; Result.LoopExitAt = RightValue; Result.IsSignedPredicate = IsSignedPredicate; FailureReason = nullptr; return Result; } /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return /// signed or unsigned extension of \p S to type \p Ty. static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE, bool Signed) { return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty); } std::optional LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const { IntegerType *Ty = cast(LatchTakenCount->getType()); auto *RTy = cast(Range.getType()); // We only support wide range checks and narrow latches. if (!AllowNarrowLatchCondition && RTy != Ty) return std::nullopt; if (RTy->getBitWidth() < Ty->getBitWidth()) return std::nullopt; LoopConstrainer::SubRanges Result; // I think we can be more aggressive here and make this nuw / nsw if the // addition that feeds into the icmp for the latch's terminating branch is nuw // / nsw. In any case, a wrapping 2's complement addition is safe. const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart), RTy, SE, IsSignedPredicate); const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy, SE, IsSignedPredicate); bool Increasing = MainLoopStructure.IndVarIncreasing; // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or // [Smallest, GreatestSeen] is the range of values the induction variable // takes. const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; const SCEV *One = SE.getOne(RTy); if (Increasing) { Smallest = Start; Greatest = End; // No overflow, because the range [Smallest, GreatestSeen] is not empty. GreatestSeen = SE.getMinusSCEV(End, One); } else { // These two computations may sign-overflow. Here is why that is okay: // // We know that the induction variable does not sign-overflow on any // iteration except the last one, and it starts at `Start` and ends at // `End`, decrementing by one every time. // // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the // induction variable is decreasing we know that that the smallest value // the loop body is actually executed with is `INT_SMIN` == `Smallest`. // // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In // that case, `Clamp` will always return `Smallest` and // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) // will be an empty range. Returning an empty range is always safe. Smallest = SE.getAddExpr(End, One); Greatest = SE.getAddExpr(Start, One); GreatestSeen = Start; } auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { return IsSignedPredicate ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); }; // In some cases we can prove that we don't need a pre or post loop. ICmpInst::Predicate PredLE = IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; ICmpInst::Predicate PredLT = IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; bool ProvablyNoPreloop = SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); if (!ProvablyNoPreloop) Result.LowLimit = Clamp(Range.getBegin()); bool ProvablyNoPostLoop = SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); if (!ProvablyNoPostLoop) Result.HighLimit = Clamp(Range.getEnd()); return Result; } void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, const char *Tag) const { for (BasicBlock *BB : OriginalLoop.getBlocks()) { BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); Result.Blocks.push_back(Clone); Result.Map[BB] = Clone; } auto GetClonedValue = [&Result](Value *V) { assert(V && "null values not in domain!"); auto It = Result.Map.find(V); if (It == Result.Map.end()) return V; return static_cast(It->second); }; auto *ClonedLatch = cast(GetClonedValue(OriginalLoop.getLoopLatch())); ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, MDNode::get(Ctx, {})); Result.Structure = MainLoopStructure.map(GetClonedValue); Result.Structure.Tag = Tag; for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { BasicBlock *ClonedBB = Result.Blocks[i]; BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); for (Instruction &I : *ClonedBB) RemapInstruction(&I, Result.Map, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); // Exit blocks will now have one more predecessor and their PHI nodes need // to be edited to reflect that. No phi nodes need to be introduced because // the loop is in LCSSA. for (auto *SBB : successors(OriginalBB)) { if (OriginalLoop.contains(SBB)) continue; // not an exit block for (PHINode &PN : SBB->phis()) { Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB); PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB); SE.forgetValue(&PN); } } } } LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, BasicBlock *ContinuationBlock) const { // We start with a loop with a single latch: // // +--------------------+ // | | // | preheader | // | | // +--------+-----------+ // | ----------------\ // | / | // +--------v----v------+ | // | | | // | header | | // | | | // +--------------------+ | // | // ..... | // | // +--------------------+ | // | | | // | latch >----------/ // | | // +-------v------------+ // | // | // | +--------------------+ // | | | // +---> original exit | // | | // +--------------------+ // // We change the control flow to look like // // // +--------------------+ // | | // | preheader >-------------------------+ // | | | // +--------v-----------+ | // | /-------------+ | // | / | | // +--------v--v--------+ | | // | | | | // | header | | +--------+ | // | | | | | | // +--------------------+ | | +-----v-----v-----------+ // | | | | // | | | .pseudo.exit | // | | | | // | | +-----------v-----------+ // | | | // ..... | | | // | | +--------v-------------+ // +--------------------+ | | | | // | | | | | ContinuationBlock | // | latch >------+ | | | // | | | +----------------------+ // +---------v----------+ | // | | // | | // | +---------------^-----+ // | | | // +-----> .exit.selector | // | | // +----------v----------+ // | // +--------------------+ | // | | | // | original exit <----+ // | | // +--------------------+ RewrittenRangeInfo RRI; BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", &F, BBInsertLocation); RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, BBInsertLocation); BranchInst *PreheaderJump = cast(Preheader->getTerminator()); bool Increasing = LS.IndVarIncreasing; bool IsSignedPredicate = LS.IsSignedPredicate; IRBuilder<> B(PreheaderJump); auto *RangeTy = Range.getBegin()->getType(); auto NoopOrExt = [&](Value *V) { if (V->getType() == RangeTy) return V; return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName()) : B.CreateZExt(V, RangeTy, "wide." + V->getName()); }; // EnterLoopCond - is it okay to start executing this `LS'? Value *EnterLoopCond = nullptr; auto Pred = Increasing ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT) : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); Value *IndVarStart = NoopOrExt(LS.IndVarStart); EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt); B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); PreheaderJump->eraseFromParent(); LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); B.SetInsertPoint(LS.LatchBr); Value *IndVarBase = NoopOrExt(LS.IndVarBase); Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt); Value *CondForBranch = LS.LatchBrExitIdx == 1 ? TakeBackedgeLoopCond : B.CreateNot(TakeBackedgeLoopCond); LS.LatchBr->setCondition(CondForBranch); B.SetInsertPoint(RRI.ExitSelector); // IterationsLeft - are there any more iterations left, given the original // upper bound on the induction variable? If not, we branch to the "real" // exit. Value *LoopExitAt = NoopOrExt(LS.LoopExitAt); Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt); B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); BranchInst *BranchToContinuation = BranchInst::Create(ContinuationBlock, RRI.PseudoExit); // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of // each of the PHI nodes in the loop header. This feeds into the initial // value of the same PHI nodes if/when we continue execution. for (PHINode &PN : LS.Header->phis()) { PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy", BranchToContinuation); NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader); NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch), RRI.ExitSelector); RRI.PHIValuesAtPseudoExit.push_back(NewPHI); } RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end", BranchToContinuation); RRI.IndVarEnd->addIncoming(IndVarStart, Preheader); RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector); // The latch exit now has a branch from `RRI.ExitSelector' instead of // `LS.Latch'. The PHI nodes need to be updated to reflect that. LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector); return RRI; } void LoopConstrainer::rewriteIncomingValuesForPHIs( LoopStructure &LS, BasicBlock *ContinuationBlock, const LoopConstrainer::RewrittenRangeInfo &RRI) const { unsigned PHIIndex = 0; for (PHINode &PN : LS.Header->phis()) PN.setIncomingValueForBlock(ContinuationBlock, RRI.PHIValuesAtPseudoExit[PHIIndex++]); LS.IndVarStart = RRI.IndVarEnd; } BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, const char *Tag) const { BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); BranchInst::Create(LS.Header, Preheader); LS.Header->replacePhiUsesWith(OldPreheader, Preheader); return Preheader; } void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef BBs) { Loop *ParentLoop = OriginalLoop.getParentLoop(); if (!ParentLoop) return; for (BasicBlock *BB : BBs) ParentLoop->addBasicBlockToLoop(BB, LI); } Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, ValueToValueMapTy &VM, bool IsSubloop) { Loop &New = *LI.AllocateLoop(); if (Parent) Parent->addChildLoop(&New); else LI.addTopLevelLoop(&New); LPMAddNewLoop(&New, IsSubloop); // Add all of the blocks in Original to the new loop. for (auto *BB : Original->blocks()) if (LI.getLoopFor(BB) == Original) New.addBasicBlockToLoop(cast(VM[BB]), LI); // Add all of the subloops to the new loop. for (Loop *SubLoop : *Original) createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true); return &New; } bool LoopConstrainer::run() { BasicBlock *Preheader = nullptr; LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); Preheader = OriginalLoop.getLoopPreheader(); assert(!isa(LatchTakenCount) && Preheader != nullptr && "preconditions!"); OriginalPreheader = Preheader; MainLoopPreheader = Preheader; bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; std::optional MaybeSR = calculateSubRanges(IsSignedPredicate); if (!MaybeSR) { LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n"); return false; } SubRanges SR = *MaybeSR; bool Increasing = MainLoopStructure.IndVarIncreasing; IntegerType *IVTy = cast(Range.getBegin()->getType()); SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); Instruction *InsertPt = OriginalPreheader->getTerminator(); // It would have been better to make `PreLoop' and `PostLoop' // `std::optional's, but `ValueToValueMapTy' does not have a copy // constructor. ClonedLoop PreLoop, PostLoop; bool NeedsPreLoop = Increasing ? SR.LowLimit.has_value() : SR.HighLimit.has_value(); bool NeedsPostLoop = Increasing ? SR.HighLimit.has_value() : SR.LowLimit.has_value(); Value *ExitPreLoopAt = nullptr; Value *ExitMainLoopAt = nullptr; const SCEVConstant *MinusOneS = cast(SE.getConstant(IVTy, -1, true /* isSigned */)); if (NeedsPreLoop) { const SCEV *ExitPreLoopAtSCEV = nullptr; if (Increasing) ExitPreLoopAtSCEV = *SR.LowLimit; else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE, IsSignedPredicate)) ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); else { LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing " << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) << "\n"); return false; } if (!Expander.isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt)) { LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" << " preloop exit limit " << *ExitPreLoopAtSCEV << " at block " << InsertPt->getParent()->getName() << "\n"); return false; } ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); ExitPreLoopAt->setName("exit.preloop.at"); } if (NeedsPostLoop) { const SCEV *ExitMainLoopAtSCEV = nullptr; if (Increasing) ExitMainLoopAtSCEV = *SR.HighLimit; else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE, IsSignedPredicate)) ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); else { LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing " << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) << "\n"); return false; } if (!Expander.isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt)) { LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" << " main loop exit limit " << *ExitMainLoopAtSCEV << " at block " << InsertPt->getParent()->getName() << "\n"); return false; } ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); ExitMainLoopAt->setName("exit.mainloop.at"); } // We clone these ahead of time so that we don't have to deal with changing // and temporarily invalid IR as we transform the loops. if (NeedsPreLoop) cloneLoop(PreLoop, "preloop"); if (NeedsPostLoop) cloneLoop(PostLoop, "postloop"); RewrittenRangeInfo PreLoopRRI; if (NeedsPreLoop) { Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, PreLoop.Structure.Header); MainLoopPreheader = createPreheader(MainLoopStructure, Preheader, "mainloop"); PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, ExitPreLoopAt, MainLoopPreheader); rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, PreLoopRRI); } BasicBlock *PostLoopPreheader = nullptr; RewrittenRangeInfo PostLoopRRI; if (NeedsPostLoop) { PostLoopPreheader = createPreheader(PostLoop.Structure, Preheader, "postloop"); PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, ExitMainLoopAt, PostLoopPreheader); rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, PostLoopRRI); } BasicBlock *NewMainLoopPreheader = MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, PostLoopRRI.ExitSelector, NewMainLoopPreheader}; // Some of the above may be nullptr, filter them out before passing to // addToParentLoopIfNeeded. auto NewBlocksEnd = std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); addToParentLoopIfNeeded(ArrayRef(std::begin(NewBlocks), NewBlocksEnd)); DT.recalculate(F); // We need to first add all the pre and post loop blocks into the loop // structures (as part of createClonedLoopStructure), and then update the // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating // LI when LoopSimplifyForm is generated. Loop *PreL = nullptr, *PostL = nullptr; if (!PreLoop.Blocks.empty()) { PreL = createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map, /* IsSubLoop */ false); } if (!PostLoop.Blocks.empty()) { PostL = createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map, /* IsSubLoop */ false); } // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { formLCSSARecursively(*L, DT, &LI, &SE); simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true); // Pre/post loops are slow paths, we do not need to perform any loop // optimizations on them. if (!IsOriginalLoop) DisableAllLoopOptsOnLoop(*L); }; if (PreL) CanonicalizeLoop(PreL, false); if (PostL) CanonicalizeLoop(PostL, false); CanonicalizeLoop(&OriginalLoop, true); return true; } /// Computes and returns a range of values for the induction variable (IndVar) /// in which the range check can be safely elided. If it cannot compute such a /// range, returns std::nullopt. std::optional InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE, const SCEVAddRecExpr *IndVar, bool IsLatchSigned) const { // We can deal when types of latch check and range checks don't match in case // if latch check is more narrow. auto *IVType = dyn_cast(IndVar->getType()); auto *RCType = dyn_cast(getBegin()->getType()); // Do not work with pointer types. if (!IVType || !RCType) return std::nullopt; if (IVType->getBitWidth() > RCType->getBitWidth()) return std::nullopt; // IndVar is of the form "A + B * I" (where "I" is the canonical induction // variable, that may or may not exist as a real llvm::Value in the loop) and // this inductive range check is a range check on the "C + D * I" ("C" is // getBegin() and "D" is getStep()). We rewrite the value being range // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". // // The actual inequalities we solve are of the form // // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) // // Here L stands for upper limit of the safe iteration space. // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid // overflows when calculating (0 - M) and (L - M) we, depending on type of // IV's iteration space, limit the calculations by borders of the iteration // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0. // If we figured out that "anything greater than (-M) is safe", we strengthen // this to "everything greater than 0 is safe", assuming that values between // -M and 0 just do not exist in unsigned iteration space, and we don't want // to deal with overflown values. if (!IndVar->isAffine()) return std::nullopt; const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned); const SCEVConstant *B = dyn_cast( NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned)); if (!B) return std::nullopt; assert(!B->isZero() && "Recurrence with zero step?"); const SCEV *C = getBegin(); const SCEVConstant *D = dyn_cast(getStep()); if (D != B) return std::nullopt; assert(!D->getValue()->isZero() && "Recurrence with zero step?"); unsigned BitWidth = RCType->getBitWidth(); const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); // Subtract Y from X so that it does not go through border of the IV // iteration space. Mathematically, it is equivalent to: // // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1] // // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to // any width of bit grid). But after we take min/max, the result is // guaranteed to be within [INT_MIN, INT_MAX]. // // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min // values, depending on type of latch condition that defines IV iteration // space. auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) { // FIXME: The current implementation assumes that X is in [0, SINT_MAX]. // This is required to ensure that SINT_MAX - X does not overflow signed and // that X - Y does not overflow unsigned if Y is negative. Can we lift this // restriction and make it work for negative X either? if (IsLatchSigned) { // X is a number from signed range, Y is interpreted as signed. // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only // thing we should care about is that we didn't cross SINT_MAX. // So, if Y is positive, we subtract Y safely. // Rule 1: Y > 0 ---> Y. // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely. // Rule 2: Y >=s (X - SINT_MAX) ---> Y. // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX). // Rule 3: Y (X - SINT_MAX). // It gives us smax(Y, X - SINT_MAX) to subtract in all cases. const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax); return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax), SCEV::FlagNSW); } else // X is a number from unsigned range, Y is interpreted as signed. // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only // thing we should care about is that we didn't cross zero. // So, if Y is negative, we subtract Y safely. // Rule 1: Y Y. // If 0 <= Y <= X, we subtract Y safely. // Rule 2: Y <=s X ---> Y. // If 0 <= X < Y, we should stop at 0 and can only subtract X. // Rule 3: Y >s X ---> X. // It gives us smin(X, Y) to subtract in all cases. return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW); }; const SCEV *M = SE.getMinusSCEV(C, A); const SCEV *Zero = SE.getZero(M->getType()); // This function returns SCEV equal to 1 if X is non-negative 0 otherwise. auto SCEVCheckNonNegative = [&](const SCEV *X) { const Loop *L = IndVar->getLoop(); const SCEV *One = SE.getOne(X->getType()); // Can we trivially prove that X is a non-negative or negative value? if (isKnownNonNegativeInLoop(X, L, SE)) return One; else if (isKnownNegativeInLoop(X, L, SE)) return Zero; // If not, we will have to figure it out during the execution. // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0. const SCEV *NegOne = SE.getNegativeSCEV(One); return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One); }; // FIXME: Current implementation of ClampedSubtract implicitly assumes that // X is non-negative (in sense of a signed value). We need to re-implement // this function in a way that it will correctly handle negative X as well. // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can // end up with a negative X and produce wrong results. So currently we ensure // that if getEnd() is negative then both ends of the safe range are zero. // Note that this may pessimize elimination of unsigned range checks against // negative values. const SCEV *REnd = getEnd(); const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd); const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative); const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative); return InductiveRangeCheck::Range(Begin, End); } static std::optional IntersectSignedRange(ScalarEvolution &SE, const std::optional &R1, const InductiveRangeCheck::Range &R2) { if (R2.isEmpty(SE, /* IsSigned */ true)) return std::nullopt; if (!R1) return R2; auto &R1Value = *R1; // We never return empty ranges from this function, and R1 is supposed to be // a result of intersection. Thus, R1 is never empty. assert(!R1Value.isEmpty(SE, /* IsSigned */ true) && "We should never have empty R1!"); // TODO: we could widen the smaller range and have this work; but for now we // bail out to keep things simple. if (R1Value.getType() != R2.getType()) return std::nullopt; const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); // If the resulting range is empty, just return std::nullopt. auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); if (Ret.isEmpty(SE, /* IsSigned */ true)) return std::nullopt; return Ret; } static std::optional IntersectUnsignedRange(ScalarEvolution &SE, const std::optional &R1, const InductiveRangeCheck::Range &R2) { if (R2.isEmpty(SE, /* IsSigned */ false)) return std::nullopt; if (!R1) return R2; auto &R1Value = *R1; // We never return empty ranges from this function, and R1 is supposed to be // a result of intersection. Thus, R1 is never empty. assert(!R1Value.isEmpty(SE, /* IsSigned */ false) && "We should never have empty R1!"); // TODO: we could widen the smaller range and have this work; but for now we // bail out to keep things simple. if (R1Value.getType() != R2.getType()) return std::nullopt; const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin()); const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd()); // If the resulting range is empty, just return std::nullopt. auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); if (Ret.isEmpty(SE, /* IsSigned */ false)) return std::nullopt; return Ret; } PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) { auto &DT = AM.getResult(F); LoopInfo &LI = AM.getResult(F); // There are no loops in the function. Return before computing other expensive // analyses. if (LI.empty()) return PreservedAnalyses::all(); auto &SE = AM.getResult(F); auto &BPI = AM.getResult(F); // Get BFI analysis result on demand. Please note that modification of // CFG invalidates this analysis and we should handle it. auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & { return AM.getResult(F); }; InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI }); bool Changed = false; { bool CFGChanged = false; for (const auto &L : LI) { CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, /*PreserveLCSSA=*/false); Changed |= formLCSSARecursively(*L, DT, &LI, &SE); } Changed |= CFGChanged; if (CFGChanged && !SkipProfitabilityChecks) { PreservedAnalyses PA = PreservedAnalyses::all(); PA.abandon(); AM.invalidate(F, PA); } } SmallPriorityWorklist Worklist; appendLoopsToWorklist(LI, Worklist); auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) { if (!IsSubloop) appendLoopsToWorklist(*NL, Worklist); }; while (!Worklist.empty()) { Loop *L = Worklist.pop_back_val(); if (IRCE.run(L, LPMAddNewLoop)) { Changed = true; if (!SkipProfitabilityChecks) { PreservedAnalyses PA = PreservedAnalyses::all(); PA.abandon(); AM.invalidate(F, PA); } } } if (!Changed) return PreservedAnalyses::all(); return getLoopPassPreservedAnalyses(); } bool IRCELegacyPass::runOnFunction(Function &F) { if (skipFunction(F)) return false; ScalarEvolution &SE = getAnalysis().getSE(); BranchProbabilityInfo &BPI = getAnalysis().getBPI(); auto &DT = getAnalysis().getDomTree(); auto &LI = getAnalysis().getLoopInfo(); InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI); bool Changed = false; for (const auto &L : LI) { Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, /*PreserveLCSSA=*/false); Changed |= formLCSSARecursively(*L, DT, &LI, &SE); } SmallPriorityWorklist Worklist; appendLoopsToWorklist(LI, Worklist); auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) { if (!IsSubloop) appendLoopsToWorklist(*NL, Worklist); }; while (!Worklist.empty()) { Loop *L = Worklist.pop_back_val(); Changed |= IRCE.run(L, LPMAddNewLoop); } return Changed; } bool InductiveRangeCheckElimination::isProfitableToTransform(const Loop &L, LoopStructure &LS) { if (SkipProfitabilityChecks) return true; if (GetBFI) { BlockFrequencyInfo &BFI = (*GetBFI)(); uint64_t hFreq = BFI.getBlockFreq(LS.Header).getFrequency(); uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency(); if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) { LLVM_DEBUG(dbgs() << "irce: could not prove profitability: " << "the estimated number of iterations basing on " "frequency info is " << (hFreq / phFreq) << "\n";); return false; } return true; } if (!BPI) return true; BranchProbability ExitProbability = BPI->getEdgeProbability(LS.Latch, LS.LatchBrExitIdx); if (ExitProbability > BranchProbability(1, MinRuntimeIterations)) { LLVM_DEBUG(dbgs() << "irce: could not prove profitability: " << "the exit probability is too big " << ExitProbability << "\n";); return false; } return true; } bool InductiveRangeCheckElimination::run( Loop *L, function_ref LPMAddNewLoop) { if (L->getBlocks().size() >= LoopSizeCutoff) { LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n"); return false; } BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) { LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); return false; } LLVMContext &Context = Preheader->getContext(); SmallVector RangeChecks; for (auto *BBI : L->getBlocks()) if (BranchInst *TBI = dyn_cast(BBI->getTerminator())) InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, RangeChecks); if (RangeChecks.empty()) return false; auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { OS << "irce: looking at loop "; L->print(OS); OS << "irce: loop has " << RangeChecks.size() << " inductive range checks: \n"; for (InductiveRangeCheck &IRC : RangeChecks) IRC.print(OS); }; LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs())); if (PrintRangeChecks) PrintRecognizedRangeChecks(errs()); const char *FailureReason = nullptr; std::optional MaybeLoopStructure = LoopStructure::parseLoopStructure(SE, *L, FailureReason); if (!MaybeLoopStructure) { LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason << "\n";); return false; } LoopStructure LS = *MaybeLoopStructure; if (!isProfitableToTransform(*L, LS)) return false; const SCEVAddRecExpr *IndVar = cast(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); std::optional SafeIterRange; Instruction *ExprInsertPt = Preheader->getTerminator(); SmallVector RangeChecksToEliminate; // Basing on the type of latch predicate, we interpret the IV iteration range // as signed or unsigned range. We use different min/max functions (signed or // unsigned) when intersecting this range with safe iteration ranges implied // by range checks. auto IntersectRange = LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange; IRBuilder<> B(ExprInsertPt); for (InductiveRangeCheck &IRC : RangeChecks) { auto Result = IRC.computeSafeIterationSpace(SE, IndVar, LS.IsSignedPredicate); if (Result) { auto MaybeSafeIterRange = IntersectRange(SE, SafeIterRange, *Result); if (MaybeSafeIterRange) { assert(!MaybeSafeIterRange->isEmpty(SE, LS.IsSignedPredicate) && "We should never return empty ranges!"); RangeChecksToEliminate.push_back(IRC); SafeIterRange = *MaybeSafeIterRange; } } } if (!SafeIterRange) return false; LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT, *SafeIterRange); bool Changed = LC.run(); if (Changed) { auto PrintConstrainedLoopInfo = [L]() { dbgs() << "irce: in function "; dbgs() << L->getHeader()->getParent()->getName() << ": "; dbgs() << "constrained "; L->print(dbgs()); }; LLVM_DEBUG(PrintConstrainedLoopInfo()); if (PrintChangedLoops) PrintConstrainedLoopInfo(); // Optimize away the now-redundant range checks. for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() ? ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context); IRC.getCheckUse()->set(FoldedRangeCheck); } } return Changed; } Pass *llvm::createInductiveRangeCheckEliminationPass() { return new IRCELegacyPass(); }