xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/GuardWidening.cpp (revision e40139ff33b48b56a24c808b166b04b8ee6f5b21)
1 //===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the guard widening pass.  The semantics of the
10 // @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
11 // more often that it did before the transform.  This optimization is called
12 // "widening" and can be used hoist and common runtime checks in situations like
13 // these:
14 //
15 //    %cmp0 = 7 u< Length
16 //    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
17 //    call @unknown_side_effects()
18 //    %cmp1 = 9 u< Length
19 //    call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
20 //    ...
21 //
22 // =>
23 //
24 //    %cmp0 = 9 u< Length
25 //    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
26 //    call @unknown_side_effects()
27 //    ...
28 //
29 // If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
30 // generic implementation of the same function, which will have the correct
31 // semantics from that point onward.  It is always _legal_ to deoptimize (so
32 // replacing %cmp0 with false is "correct"), though it may not always be
33 // profitable to do so.
34 //
35 // NB! This pass is a work in progress.  It hasn't been tuned to be "production
36 // ready" yet.  It is known to have quadriatic running time and will not scale
37 // to large numbers of guards
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/Transforms/Scalar/GuardWidening.h"
42 #include <functional>
43 #include "llvm/ADT/DenseMap.h"
44 #include "llvm/ADT/DepthFirstIterator.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/BranchProbabilityInfo.h"
47 #include "llvm/Analysis/GuardUtils.h"
48 #include "llvm/Analysis/LoopInfo.h"
49 #include "llvm/Analysis/LoopPass.h"
50 #include "llvm/Analysis/PostDominators.h"
51 #include "llvm/Analysis/ValueTracking.h"
52 #include "llvm/IR/ConstantRange.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "guard-widening"
65 
66 STATISTIC(GuardsEliminated, "Number of eliminated guards");
67 STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
68 
69 static cl::opt<bool> WidenFrequentBranches(
70     "guard-widening-widen-frequent-branches", cl::Hidden,
71     cl::desc("Widen conditions of explicit branches into dominating guards in "
72              "case if their taken frequency exceeds threshold set by "
73              "guard-widening-frequent-branch-threshold option"),
74     cl::init(false));
75 
76 static cl::opt<unsigned> FrequentBranchThreshold(
77     "guard-widening-frequent-branch-threshold", cl::Hidden,
78     cl::desc("When WidenFrequentBranches is set to true, this option is used "
79              "to determine which branches are frequently taken. The criteria "
80              "that a branch is taken more often than "
81              "((FrequentBranchThreshold - 1) / FrequentBranchThreshold), then "
82              "it is considered frequently taken"),
83     cl::init(1000));
84 
85 static cl::opt<bool>
86     WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
87                       cl::desc("Whether or not we should widen guards  "
88                                "expressed as branches by widenable conditions"),
89                       cl::init(true));
90 
91 namespace {
92 
93 // Get the condition of \p I. It can either be a guard or a conditional branch.
94 static Value *getCondition(Instruction *I) {
95   if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
96     assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
97            "Bad guard intrinsic?");
98     return GI->getArgOperand(0);
99   }
100   if (isGuardAsWidenableBranch(I)) {
101     auto *Cond = cast<BranchInst>(I)->getCondition();
102     return cast<BinaryOperator>(Cond)->getOperand(0);
103   }
104   return cast<BranchInst>(I)->getCondition();
105 }
106 
107 // Set the condition for \p I to \p NewCond. \p I can either be a guard or a
108 // conditional branch.
109 static void setCondition(Instruction *I, Value *NewCond) {
110   if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
111     assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
112            "Bad guard intrinsic?");
113     GI->setArgOperand(0, NewCond);
114     return;
115   }
116   cast<BranchInst>(I)->setCondition(NewCond);
117 }
118 
119 // Eliminates the guard instruction properly.
120 static void eliminateGuard(Instruction *GuardInst) {
121   GuardInst->eraseFromParent();
122   ++GuardsEliminated;
123 }
124 
125 class GuardWideningImpl {
126   DominatorTree &DT;
127   PostDominatorTree *PDT;
128   LoopInfo &LI;
129   BranchProbabilityInfo *BPI;
130 
131   /// Together, these describe the region of interest.  This might be all of
132   /// the blocks within a function, or only a given loop's blocks and preheader.
133   DomTreeNode *Root;
134   std::function<bool(BasicBlock*)> BlockFilter;
135 
136   /// The set of guards and conditional branches whose conditions have been
137   /// widened into dominating guards.
138   SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;
139 
140   /// The set of guards which have been widened to include conditions to other
141   /// guards.
142   DenseSet<Instruction *> WidenedGuards;
143 
144   /// Try to eliminate instruction \p Instr by widening it into an earlier
145   /// dominating guard.  \p DFSI is the DFS iterator on the dominator tree that
146   /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
147   /// maps BasicBlocks to the set of guards seen in that block.
148   bool eliminateInstrViaWidening(
149       Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
150       const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
151           GuardsPerBlock, bool InvertCondition = false);
152 
153   /// Used to keep track of which widening potential is more effective.
154   enum WideningScore {
155     /// Don't widen.
156     WS_IllegalOrNegative,
157 
158     /// Widening is performance neutral as far as the cycles spent in check
159     /// conditions goes (but can still help, e.g., code layout, having less
160     /// deopt state).
161     WS_Neutral,
162 
163     /// Widening is profitable.
164     WS_Positive,
165 
166     /// Widening is very profitable.  Not significantly different from \c
167     /// WS_Positive, except by the order.
168     WS_VeryPositive
169   };
170 
171   static StringRef scoreTypeToString(WideningScore WS);
172 
173   /// Compute the score for widening the condition in \p DominatedInstr
174   /// into \p DominatingGuard. If \p InvertCond is set, then we widen the
175   /// inverted condition of the dominating guard.
176   WideningScore computeWideningScore(Instruction *DominatedInstr,
177                                      Instruction *DominatingGuard,
178                                      bool InvertCond);
179 
180   /// Helper to check if \p V can be hoisted to \p InsertPos.
181   bool isAvailableAt(const Value *V, const Instruction *InsertPos) const {
182     SmallPtrSet<const Instruction *, 8> Visited;
183     return isAvailableAt(V, InsertPos, Visited);
184   }
185 
186   bool isAvailableAt(const Value *V, const Instruction *InsertPos,
187                      SmallPtrSetImpl<const Instruction *> &Visited) const;
188 
189   /// Helper to hoist \p V to \p InsertPos.  Guaranteed to succeed if \c
190   /// isAvailableAt returned true.
191   void makeAvailableAt(Value *V, Instruction *InsertPos) const;
192 
193   /// Common helper used by \c widenGuard and \c isWideningCondProfitable.  Try
194   /// to generate an expression computing the logical AND of \p Cond0 and (\p
195   /// Cond1 XOR \p InvertCondition).
196   /// Return true if the expression computing the AND is only as
197   /// expensive as computing one of the two. If \p InsertPt is true then
198   /// actually generate the resulting expression, make it available at \p
199   /// InsertPt and return it in \p Result (else no change to the IR is made).
200   bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt,
201                        Value *&Result, bool InvertCondition);
202 
203   /// Represents a range check of the form \c Base + \c Offset u< \c Length,
204   /// with the constraint that \c Length is not negative.  \c CheckInst is the
205   /// pre-existing instruction in the IR that computes the result of this range
206   /// check.
207   class RangeCheck {
208     const Value *Base;
209     const ConstantInt *Offset;
210     const Value *Length;
211     ICmpInst *CheckInst;
212 
213   public:
214     explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
215                         const Value *Length, ICmpInst *CheckInst)
216         : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}
217 
218     void setBase(const Value *NewBase) { Base = NewBase; }
219     void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }
220 
221     const Value *getBase() const { return Base; }
222     const ConstantInt *getOffset() const { return Offset; }
223     const APInt &getOffsetValue() const { return getOffset()->getValue(); }
224     const Value *getLength() const { return Length; };
225     ICmpInst *getCheckInst() const { return CheckInst; }
226 
227     void print(raw_ostream &OS, bool PrintTypes = false) {
228       OS << "Base: ";
229       Base->printAsOperand(OS, PrintTypes);
230       OS << " Offset: ";
231       Offset->printAsOperand(OS, PrintTypes);
232       OS << " Length: ";
233       Length->printAsOperand(OS, PrintTypes);
234     }
235 
236     LLVM_DUMP_METHOD void dump() {
237       print(dbgs());
238       dbgs() << "\n";
239     }
240   };
241 
242   /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and
243   /// append them to \p Checks.  Returns true on success, may clobber \c Checks
244   /// on failure.
245   bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) {
246     SmallPtrSet<const Value *, 8> Visited;
247     return parseRangeChecks(CheckCond, Checks, Visited);
248   }
249 
250   bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks,
251                         SmallPtrSetImpl<const Value *> &Visited);
252 
253   /// Combine the checks in \p Checks into a smaller set of checks and append
254   /// them into \p CombinedChecks.  Return true on success (i.e. all of checks
255   /// in \p Checks were combined into \p CombinedChecks).  Clobbers \p Checks
256   /// and \p CombinedChecks on success and on failure.
257   bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
258                           SmallVectorImpl<RangeCheck> &CombinedChecks) const;
259 
260   /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of
261   /// computing only one of the two expressions?
262   bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) {
263     Value *ResultUnused;
264     return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused,
265                            InvertCond);
266   }
267 
268   /// If \p InvertCondition is false, Widen \p ToWiden to fail if
269   /// \p NewCondition is false, otherwise make it fail if \p NewCondition is
270   /// true (in addition to whatever it is already checking).
271   void widenGuard(Instruction *ToWiden, Value *NewCondition,
272                   bool InvertCondition) {
273     Value *Result;
274     widenCondCommon(getCondition(ToWiden), NewCondition, ToWiden, Result,
275                     InvertCondition);
276     Value *WidenableCondition = nullptr;
277     if (isGuardAsWidenableBranch(ToWiden)) {
278       auto *Cond = cast<BranchInst>(ToWiden)->getCondition();
279       WidenableCondition = cast<BinaryOperator>(Cond)->getOperand(1);
280     }
281     if (WidenableCondition)
282       Result = BinaryOperator::CreateAnd(Result, WidenableCondition,
283                                          "guard.chk", ToWiden);
284     setCondition(ToWiden, Result);
285   }
286 
287 public:
288 
289   explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
290                              LoopInfo &LI, BranchProbabilityInfo *BPI,
291                              DomTreeNode *Root,
292                              std::function<bool(BasicBlock*)> BlockFilter)
293     : DT(DT), PDT(PDT), LI(LI), BPI(BPI), Root(Root), BlockFilter(BlockFilter)
294         {}
295 
296   /// The entry point for this pass.
297   bool run();
298 };
299 }
300 
301 static bool isSupportedGuardInstruction(const Instruction *Insn) {
302   if (isGuard(Insn))
303     return true;
304   if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
305     return true;
306   return false;
307 }
308 
309 bool GuardWideningImpl::run() {
310   DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
311   bool Changed = false;
312   Optional<BranchProbability> LikelyTaken = None;
313   if (WidenFrequentBranches && BPI) {
314     unsigned Threshold = FrequentBranchThreshold;
315     assert(Threshold > 0 && "Zero threshold makes no sense!");
316     LikelyTaken = BranchProbability(Threshold - 1, Threshold);
317   }
318 
319   for (auto DFI = df_begin(Root), DFE = df_end(Root);
320        DFI != DFE; ++DFI) {
321     auto *BB = (*DFI)->getBlock();
322     if (!BlockFilter(BB))
323       continue;
324 
325     auto &CurrentList = GuardsInBlock[BB];
326 
327     for (auto &I : *BB)
328       if (isSupportedGuardInstruction(&I))
329         CurrentList.push_back(cast<Instruction>(&I));
330 
331     for (auto *II : CurrentList)
332       Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
333     if (WidenFrequentBranches && BPI)
334       if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator()))
335         if (BI->isConditional()) {
336           // If one of branches of a conditional is likely taken, try to
337           // eliminate it.
338           if (BPI->getEdgeProbability(BB, 0U) >= *LikelyTaken)
339             Changed |= eliminateInstrViaWidening(BI, DFI, GuardsInBlock);
340           else if (BPI->getEdgeProbability(BB, 1U) >= *LikelyTaken)
341             Changed |= eliminateInstrViaWidening(BI, DFI, GuardsInBlock,
342                                                  /*InvertCondition*/true);
343         }
344   }
345 
346   assert(EliminatedGuardsAndBranches.empty() || Changed);
347   for (auto *I : EliminatedGuardsAndBranches)
348     if (!WidenedGuards.count(I)) {
349       assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
350       if (isSupportedGuardInstruction(I))
351         eliminateGuard(I);
352       else {
353         assert(isa<BranchInst>(I) &&
354                "Eliminated something other than guard or branch?");
355         ++CondBranchEliminated;
356       }
357     }
358 
359   return Changed;
360 }
361 
362 bool GuardWideningImpl::eliminateInstrViaWidening(
363     Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
364     const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
365         GuardsInBlock, bool InvertCondition) {
366   // Ignore trivial true or false conditions. These instructions will be
367   // trivially eliminated by any cleanup pass. Do not erase them because other
368   // guards can possibly be widened into them.
369   if (isa<ConstantInt>(getCondition(Instr)))
370     return false;
371 
372   Instruction *BestSoFar = nullptr;
373   auto BestScoreSoFar = WS_IllegalOrNegative;
374 
375   // In the set of dominating guards, find the one we can merge GuardInst with
376   // for the most profit.
377   for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
378     auto *CurBB = DFSI.getPath(i)->getBlock();
379     if (!BlockFilter(CurBB))
380       break;
381     assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
382     const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;
383 
384     auto I = GuardsInCurBB.begin();
385     auto E = Instr->getParent() == CurBB
386                  ? std::find(GuardsInCurBB.begin(), GuardsInCurBB.end(), Instr)
387                  : GuardsInCurBB.end();
388 
389 #ifndef NDEBUG
390     {
391       unsigned Index = 0;
392       for (auto &I : *CurBB) {
393         if (Index == GuardsInCurBB.size())
394           break;
395         if (GuardsInCurBB[Index] == &I)
396           Index++;
397       }
398       assert(Index == GuardsInCurBB.size() &&
399              "Guards expected to be in order!");
400     }
401 #endif
402 
403     assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");
404 
405     for (auto *Candidate : make_range(I, E)) {
406       auto Score = computeWideningScore(Instr, Candidate, InvertCondition);
407       LLVM_DEBUG(dbgs() << "Score between " << *getCondition(Instr)
408                         << " and " << *getCondition(Candidate) << " is "
409                         << scoreTypeToString(Score) << "\n");
410       if (Score > BestScoreSoFar) {
411         BestScoreSoFar = Score;
412         BestSoFar = Candidate;
413       }
414     }
415   }
416 
417   if (BestScoreSoFar == WS_IllegalOrNegative) {
418     LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
419     return false;
420   }
421 
422   assert(BestSoFar != Instr && "Should have never visited same guard!");
423   assert(DT.dominates(BestSoFar, Instr) && "Should be!");
424 
425   LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
426                     << " with score " << scoreTypeToString(BestScoreSoFar)
427                     << "\n");
428   widenGuard(BestSoFar, getCondition(Instr), InvertCondition);
429   auto NewGuardCondition = InvertCondition
430                                ? ConstantInt::getFalse(Instr->getContext())
431                                : ConstantInt::getTrue(Instr->getContext());
432   setCondition(Instr, NewGuardCondition);
433   EliminatedGuardsAndBranches.push_back(Instr);
434   WidenedGuards.insert(BestSoFar);
435   return true;
436 }
437 
438 GuardWideningImpl::WideningScore
439 GuardWideningImpl::computeWideningScore(Instruction *DominatedInstr,
440                                         Instruction *DominatingGuard,
441                                         bool InvertCond) {
442   Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
443   Loop *DominatingGuardLoop = LI.getLoopFor(DominatingGuard->getParent());
444   bool HoistingOutOfLoop = false;
445 
446   if (DominatingGuardLoop != DominatedInstrLoop) {
447     // Be conservative and don't widen into a sibling loop.  TODO: If the
448     // sibling is colder, we should consider allowing this.
449     if (DominatingGuardLoop &&
450         !DominatingGuardLoop->contains(DominatedInstrLoop))
451       return WS_IllegalOrNegative;
452 
453     HoistingOutOfLoop = true;
454   }
455 
456   if (!isAvailableAt(getCondition(DominatedInstr), DominatingGuard))
457     return WS_IllegalOrNegative;
458 
459   // If the guard was conditional executed, it may never be reached
460   // dynamically.  There are two potential downsides to hoisting it out of the
461   // conditionally executed region: 1) we may spuriously deopt without need and
462   // 2) we have the extra cost of computing the guard condition in the common
463   // case.  At the moment, we really only consider the second in our heuristic
464   // here.  TODO: evaluate cost model for spurious deopt
465   // NOTE: As written, this also lets us hoist right over another guard which
466   // is essentially just another spelling for control flow.
467   if (isWideningCondProfitable(getCondition(DominatedInstr),
468                                getCondition(DominatingGuard), InvertCond))
469     return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;
470 
471   if (HoistingOutOfLoop)
472     return WS_Positive;
473 
474   // Returns true if we might be hoisting above explicit control flow.  Note
475   // that this completely ignores implicit control flow (guards, calls which
476   // throw, etc...).  That choice appears arbitrary.
477   auto MaybeHoistingOutOfIf = [&]() {
478     auto *DominatingBlock = DominatingGuard->getParent();
479     auto *DominatedBlock = DominatedInstr->getParent();
480     if (isGuardAsWidenableBranch(DominatingGuard))
481       DominatingBlock = cast<BranchInst>(DominatingGuard)->getSuccessor(0);
482 
483     // Same Block?
484     if (DominatedBlock == DominatingBlock)
485       return false;
486     // Obvious successor (common loop header/preheader case)
487     if (DominatedBlock == DominatingBlock->getUniqueSuccessor())
488       return false;
489     // TODO: diamond, triangle cases
490     if (!PDT) return true;
491     return !PDT->dominates(DominatedBlock, DominatingBlock);
492   };
493 
494   return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral;
495 }
496 
497 bool GuardWideningImpl::isAvailableAt(
498     const Value *V, const Instruction *Loc,
499     SmallPtrSetImpl<const Instruction *> &Visited) const {
500   auto *Inst = dyn_cast<Instruction>(V);
501   if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
502     return true;
503 
504   if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) ||
505       Inst->mayReadFromMemory())
506     return false;
507 
508   Visited.insert(Inst);
509 
510   // We only want to go _up_ the dominance chain when recursing.
511   assert(!isa<PHINode>(Loc) &&
512          "PHIs should return false for isSafeToSpeculativelyExecute");
513   assert(DT.isReachableFromEntry(Inst->getParent()) &&
514          "We did a DFS from the block entry!");
515   return all_of(Inst->operands(),
516                 [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); });
517 }
518 
519 void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const {
520   auto *Inst = dyn_cast<Instruction>(V);
521   if (!Inst || DT.dominates(Inst, Loc))
522     return;
523 
524   assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) &&
525          !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!");
526 
527   for (Value *Op : Inst->operands())
528     makeAvailableAt(Op, Loc);
529 
530   Inst->moveBefore(Loc);
531 }
532 
533 bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1,
534                                         Instruction *InsertPt, Value *&Result,
535                                         bool InvertCondition) {
536   using namespace llvm::PatternMatch;
537 
538   {
539     // L >u C0 && L >u C1  ->  L >u max(C0, C1)
540     ConstantInt *RHS0, *RHS1;
541     Value *LHS;
542     ICmpInst::Predicate Pred0, Pred1;
543     if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
544         match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
545       if (InvertCondition)
546         Pred1 = ICmpInst::getInversePredicate(Pred1);
547 
548       ConstantRange CR0 =
549           ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
550       ConstantRange CR1 =
551           ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());
552 
553       // SubsetIntersect is a subset of the actual mathematical intersection of
554       // CR0 and CR1, while SupersetIntersect is a superset of the actual
555       // mathematical intersection.  If these two ConstantRanges are equal, then
556       // we know we were able to represent the actual mathematical intersection
557       // of CR0 and CR1, and can use the same to generate an icmp instruction.
558       //
559       // Given what we're doing here and the semantics of guards, it would
560       // actually be correct to just use SubsetIntersect, but that may be too
561       // aggressive in cases we care about.
562       auto SubsetIntersect = CR0.inverse().unionWith(CR1.inverse()).inverse();
563       auto SupersetIntersect = CR0.intersectWith(CR1);
564 
565       APInt NewRHSAP;
566       CmpInst::Predicate Pred;
567       if (SubsetIntersect == SupersetIntersect &&
568           SubsetIntersect.getEquivalentICmp(Pred, NewRHSAP)) {
569         if (InsertPt) {
570           ConstantInt *NewRHS = ConstantInt::get(Cond0->getContext(), NewRHSAP);
571           Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk");
572         }
573         return true;
574       }
575     }
576   }
577 
578   {
579     SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
580     // TODO: Support InvertCondition case?
581     if (!InvertCondition &&
582         parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) &&
583         combineRangeChecks(Checks, CombinedChecks)) {
584       if (InsertPt) {
585         Result = nullptr;
586         for (auto &RC : CombinedChecks) {
587           makeAvailableAt(RC.getCheckInst(), InsertPt);
588           if (Result)
589             Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
590                                                InsertPt);
591           else
592             Result = RC.getCheckInst();
593         }
594         assert(Result && "Failed to find result value");
595         Result->setName("wide.chk");
596       }
597       return true;
598     }
599   }
600 
601   // Base case -- just logical-and the two conditions together.
602 
603   if (InsertPt) {
604     makeAvailableAt(Cond0, InsertPt);
605     makeAvailableAt(Cond1, InsertPt);
606     if (InvertCondition)
607       Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt);
608     Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt);
609   }
610 
611   // We were not able to compute Cond0 AND Cond1 for the price of one.
612   return false;
613 }
614 
615 bool GuardWideningImpl::parseRangeChecks(
616     Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
617     SmallPtrSetImpl<const Value *> &Visited) {
618   if (!Visited.insert(CheckCond).second)
619     return true;
620 
621   using namespace llvm::PatternMatch;
622 
623   {
624     Value *AndLHS, *AndRHS;
625     if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS))))
626       return parseRangeChecks(AndLHS, Checks) &&
627              parseRangeChecks(AndRHS, Checks);
628   }
629 
630   auto *IC = dyn_cast<ICmpInst>(CheckCond);
631   if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
632       (IC->getPredicate() != ICmpInst::ICMP_ULT &&
633        IC->getPredicate() != ICmpInst::ICMP_UGT))
634     return false;
635 
636   const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
637   if (IC->getPredicate() == ICmpInst::ICMP_UGT)
638     std::swap(CmpLHS, CmpRHS);
639 
640   auto &DL = IC->getModule()->getDataLayout();
641 
642   GuardWideningImpl::RangeCheck Check(
643       CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
644       CmpRHS, IC);
645 
646   if (!isKnownNonNegative(Check.getLength(), DL))
647     return false;
648 
649   // What we have in \c Check now is a correct interpretation of \p CheckCond.
650   // Try to see if we can move some constant offsets into the \c Offset field.
651 
652   bool Changed;
653   auto &Ctx = CheckCond->getContext();
654 
655   do {
656     Value *OpLHS;
657     ConstantInt *OpRHS;
658     Changed = false;
659 
660 #ifndef NDEBUG
661     auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
662     assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
663            "Unreachable instruction?");
664 #endif
665 
666     if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
667       Check.setBase(OpLHS);
668       APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
669       Check.setOffset(ConstantInt::get(Ctx, NewOffset));
670       Changed = true;
671     } else if (match(Check.getBase(),
672                      m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
673       KnownBits Known = computeKnownBits(OpLHS, DL);
674       if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
675         Check.setBase(OpLHS);
676         APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
677         Check.setOffset(ConstantInt::get(Ctx, NewOffset));
678         Changed = true;
679       }
680     }
681   } while (Changed);
682 
683   Checks.push_back(Check);
684   return true;
685 }
686 
687 bool GuardWideningImpl::combineRangeChecks(
688     SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
689     SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
690   unsigned OldCount = Checks.size();
691   while (!Checks.empty()) {
692     // Pick all of the range checks with a specific base and length, and try to
693     // merge them.
694     const Value *CurrentBase = Checks.front().getBase();
695     const Value *CurrentLength = Checks.front().getLength();
696 
697     SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;
698 
699     auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
700       return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
701     };
702 
703     copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
704     Checks.erase(remove_if(Checks, IsCurrentCheck), Checks.end());
705 
706     assert(CurrentChecks.size() != 0 && "We know we have at least one!");
707 
708     if (CurrentChecks.size() < 3) {
709       RangeChecksOut.insert(RangeChecksOut.end(), CurrentChecks.begin(),
710                             CurrentChecks.end());
711       continue;
712     }
713 
714     // CurrentChecks.size() will typically be 3 here, but so far there has been
715     // no need to hard-code that fact.
716 
717     llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
718                                   const GuardWideningImpl::RangeCheck &RHS) {
719       return LHS.getOffsetValue().slt(RHS.getOffsetValue());
720     });
721 
722     // Note: std::sort should not invalidate the ChecksStart iterator.
723 
724     const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
725     const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();
726 
727     unsigned BitWidth = MaxOffset->getValue().getBitWidth();
728     if ((MaxOffset->getValue() - MinOffset->getValue())
729             .ugt(APInt::getSignedMinValue(BitWidth)))
730       return false;
731 
732     APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
733     const APInt &HighOffset = MaxOffset->getValue();
734     auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
735       return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
736     };
737 
738     if (MaxDiff.isMinValue() ||
739         !std::all_of(std::next(CurrentChecks.begin()), CurrentChecks.end(),
740                      OffsetOK))
741       return false;
742 
743     // We have a series of f+1 checks as:
744     //
745     //   I+k_0 u< L   ... Chk_0
746     //   I+k_1 u< L   ... Chk_1
747     //   ...
748     //   I+k_f u< L   ... Chk_f
749     //
750     //     with forall i in [0,f]: k_f-k_i u< k_f-k_0  ... Precond_0
751     //          k_f-k_0 u< INT_MIN+k_f                 ... Precond_1
752     //          k_f != k_0                             ... Precond_2
753     //
754     // Claim:
755     //   Chk_0 AND Chk_f  implies all the other checks
756     //
757     // Informal proof sketch:
758     //
759     // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
760     // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
761     // thus I+k_f is the greatest unsigned value in that range.
762     //
763     // This combined with Ckh_(f+1) shows that everything in that range is u< L.
764     // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
765     // lie in [I+k_0,I+k_f], this proving our claim.
766     //
767     // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
768     // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
769     // since k_0 != k_f).  In the former case, [I+k_0,I+k_f] is not a wrapping
770     // range by definition, and the latter case is impossible:
771     //
772     //   0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
773     //   xxxxxx             xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
774     //
775     // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
776     // with 'x' above) to be at least >u INT_MIN.
777 
778     RangeChecksOut.emplace_back(CurrentChecks.front());
779     RangeChecksOut.emplace_back(CurrentChecks.back());
780   }
781 
782   assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
783   return RangeChecksOut.size() != OldCount;
784 }
785 
786 #ifndef NDEBUG
787 StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
788   switch (WS) {
789   case WS_IllegalOrNegative:
790     return "IllegalOrNegative";
791   case WS_Neutral:
792     return "Neutral";
793   case WS_Positive:
794     return "Positive";
795   case WS_VeryPositive:
796     return "VeryPositive";
797   }
798 
799   llvm_unreachable("Fully covered switch above!");
800 }
801 #endif
802 
803 PreservedAnalyses GuardWideningPass::run(Function &F,
804                                          FunctionAnalysisManager &AM) {
805   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
806   auto &LI = AM.getResult<LoopAnalysis>(F);
807   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
808   BranchProbabilityInfo *BPI = nullptr;
809   if (WidenFrequentBranches)
810     BPI = AM.getCachedResult<BranchProbabilityAnalysis>(F);
811   if (!GuardWideningImpl(DT, &PDT, LI, BPI, DT.getRootNode(),
812                          [](BasicBlock*) { return true; } ).run())
813     return PreservedAnalyses::all();
814 
815   PreservedAnalyses PA;
816   PA.preserveSet<CFGAnalyses>();
817   return PA;
818 }
819 
820 PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
821                                          LoopStandardAnalysisResults &AR,
822                                          LPMUpdater &U) {
823 
824   const auto &FAM =
825     AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
826   Function &F = *L.getHeader()->getParent();
827   BranchProbabilityInfo *BPI = nullptr;
828   if (WidenFrequentBranches)
829     BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(F);
830 
831   BasicBlock *RootBB = L.getLoopPredecessor();
832   if (!RootBB)
833     RootBB = L.getHeader();
834   auto BlockFilter = [&](BasicBlock *BB) {
835     return BB == RootBB || L.contains(BB);
836   };
837   if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, BPI,
838                          AR.DT.getNode(RootBB),
839                          BlockFilter).run())
840     return PreservedAnalyses::all();
841 
842   return getLoopPassPreservedAnalyses();
843 }
844 
845 namespace {
846 struct GuardWideningLegacyPass : public FunctionPass {
847   static char ID;
848 
849   GuardWideningLegacyPass() : FunctionPass(ID) {
850     initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
851   }
852 
853   bool runOnFunction(Function &F) override {
854     if (skipFunction(F))
855       return false;
856     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
857     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
858     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
859     BranchProbabilityInfo *BPI = nullptr;
860     if (WidenFrequentBranches)
861       BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
862     return GuardWideningImpl(DT, &PDT, LI, BPI, DT.getRootNode(),
863                          [](BasicBlock*) { return true; } ).run();
864   }
865 
866   void getAnalysisUsage(AnalysisUsage &AU) const override {
867     AU.setPreservesCFG();
868     AU.addRequired<DominatorTreeWrapperPass>();
869     AU.addRequired<PostDominatorTreeWrapperPass>();
870     AU.addRequired<LoopInfoWrapperPass>();
871     if (WidenFrequentBranches)
872       AU.addRequired<BranchProbabilityInfoWrapperPass>();
873   }
874 };
875 
876 /// Same as above, but restricted to a single loop at a time.  Can be
877 /// scheduled with other loop passes w/o breaking out of LPM
878 struct LoopGuardWideningLegacyPass : public LoopPass {
879   static char ID;
880 
881   LoopGuardWideningLegacyPass() : LoopPass(ID) {
882     initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
883   }
884 
885   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
886     if (skipLoop(L))
887       return false;
888     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
889     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
890     auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
891     auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
892     BasicBlock *RootBB = L->getLoopPredecessor();
893     if (!RootBB)
894       RootBB = L->getHeader();
895     auto BlockFilter = [&](BasicBlock *BB) {
896       return BB == RootBB || L->contains(BB);
897     };
898     BranchProbabilityInfo *BPI = nullptr;
899     if (WidenFrequentBranches)
900       BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
901     return GuardWideningImpl(DT, PDT, LI, BPI,
902                              DT.getNode(RootBB), BlockFilter).run();
903   }
904 
905   void getAnalysisUsage(AnalysisUsage &AU) const override {
906     if (WidenFrequentBranches)
907       AU.addRequired<BranchProbabilityInfoWrapperPass>();
908     AU.setPreservesCFG();
909     getLoopAnalysisUsage(AU);
910     AU.addPreserved<PostDominatorTreeWrapperPass>();
911   }
912 };
913 }
914 
915 char GuardWideningLegacyPass::ID = 0;
916 char LoopGuardWideningLegacyPass::ID = 0;
917 
918 INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards",
919                       false, false)
920 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
921 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
922 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
923 if (WidenFrequentBranches)
924   INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
925 INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards",
926                     false, false)
927 
928 INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening",
929                       "Widen guards (within a single loop, as a loop pass)",
930                       false, false)
931 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
932 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
933 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
934 if (WidenFrequentBranches)
935   INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
936 INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening",
937                     "Widen guards (within a single loop, as a loop pass)",
938                     false, false)
939 
940 FunctionPass *llvm::createGuardWideningPass() {
941   return new GuardWideningLegacyPass();
942 }
943 
944 Pass *llvm::createLoopGuardWideningPass() {
945   return new LoopGuardWideningLegacyPass();
946 }
947