//===- GuardWidening.cpp - ---- Guard widening ----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the guard widening pass. The semantics of the // @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails // more often that it did before the transform. This optimization is called // "widening" and can be used hoist and common runtime checks in situations like // these: // // %cmp0 = 7 u< Length // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ] // call @unknown_side_effects() // %cmp1 = 9 u< Length // call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ] // ... // // => // // %cmp0 = 9 u< Length // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ] // call @unknown_side_effects() // ... // // If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a // generic implementation of the same function, which will have the correct // semantics from that point onward. It is always _legal_ to deoptimize (so // replacing %cmp0 with false is "correct"), though it may not always be // profitable to do so. // // NB! This pass is a work in progress. It hasn't been tuned to be "production // ready" yet. It is known to have quadriatic running time and will not scale // to large numbers of guards // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/GuardWidening.h" #include #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/GuardUtils.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/KnownBits.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/LoopUtils.h" using namespace llvm; #define DEBUG_TYPE "guard-widening" STATISTIC(GuardsEliminated, "Number of eliminated guards"); STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches"); static cl::opt WidenFrequentBranches( "guard-widening-widen-frequent-branches", cl::Hidden, cl::desc("Widen conditions of explicit branches into dominating guards in " "case if their taken frequency exceeds threshold set by " "guard-widening-frequent-branch-threshold option"), cl::init(false)); static cl::opt FrequentBranchThreshold( "guard-widening-frequent-branch-threshold", cl::Hidden, cl::desc("When WidenFrequentBranches is set to true, this option is used " "to determine which branches are frequently taken. The criteria " "that a branch is taken more often than " "((FrequentBranchThreshold - 1) / FrequentBranchThreshold), then " "it is considered frequently taken"), cl::init(1000)); static cl::opt WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden, cl::desc("Whether or not we should widen guards " "expressed as branches by widenable conditions"), cl::init(true)); namespace { // Get the condition of \p I. It can either be a guard or a conditional branch. static Value *getCondition(Instruction *I) { if (IntrinsicInst *GI = dyn_cast(I)) { assert(GI->getIntrinsicID() == Intrinsic::experimental_guard && "Bad guard intrinsic?"); return GI->getArgOperand(0); } if (isGuardAsWidenableBranch(I)) { auto *Cond = cast(I)->getCondition(); return cast(Cond)->getOperand(0); } return cast(I)->getCondition(); } // Set the condition for \p I to \p NewCond. \p I can either be a guard or a // conditional branch. static void setCondition(Instruction *I, Value *NewCond) { if (IntrinsicInst *GI = dyn_cast(I)) { assert(GI->getIntrinsicID() == Intrinsic::experimental_guard && "Bad guard intrinsic?"); GI->setArgOperand(0, NewCond); return; } cast(I)->setCondition(NewCond); } // Eliminates the guard instruction properly. static void eliminateGuard(Instruction *GuardInst) { GuardInst->eraseFromParent(); ++GuardsEliminated; } class GuardWideningImpl { DominatorTree &DT; PostDominatorTree *PDT; LoopInfo &LI; BranchProbabilityInfo *BPI; /// Together, these describe the region of interest. This might be all of /// the blocks within a function, or only a given loop's blocks and preheader. DomTreeNode *Root; std::function BlockFilter; /// The set of guards and conditional branches whose conditions have been /// widened into dominating guards. SmallVector EliminatedGuardsAndBranches; /// The set of guards which have been widened to include conditions to other /// guards. DenseSet WidenedGuards; /// Try to eliminate instruction \p Instr by widening it into an earlier /// dominating guard. \p DFSI is the DFS iterator on the dominator tree that /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock /// maps BasicBlocks to the set of guards seen in that block. bool eliminateInstrViaWidening( Instruction *Instr, const df_iterator &DFSI, const DenseMap> & GuardsPerBlock, bool InvertCondition = false); /// Used to keep track of which widening potential is more effective. enum WideningScore { /// Don't widen. WS_IllegalOrNegative, /// Widening is performance neutral as far as the cycles spent in check /// conditions goes (but can still help, e.g., code layout, having less /// deopt state). WS_Neutral, /// Widening is profitable. WS_Positive, /// Widening is very profitable. Not significantly different from \c /// WS_Positive, except by the order. WS_VeryPositive }; static StringRef scoreTypeToString(WideningScore WS); /// Compute the score for widening the condition in \p DominatedInstr /// into \p DominatingGuard. If \p InvertCond is set, then we widen the /// inverted condition of the dominating guard. WideningScore computeWideningScore(Instruction *DominatedInstr, Instruction *DominatingGuard, bool InvertCond); /// Helper to check if \p V can be hoisted to \p InsertPos. bool isAvailableAt(const Value *V, const Instruction *InsertPos) const { SmallPtrSet Visited; return isAvailableAt(V, InsertPos, Visited); } bool isAvailableAt(const Value *V, const Instruction *InsertPos, SmallPtrSetImpl &Visited) const; /// Helper to hoist \p V to \p InsertPos. Guaranteed to succeed if \c /// isAvailableAt returned true. void makeAvailableAt(Value *V, Instruction *InsertPos) const; /// Common helper used by \c widenGuard and \c isWideningCondProfitable. Try /// to generate an expression computing the logical AND of \p Cond0 and (\p /// Cond1 XOR \p InvertCondition). /// Return true if the expression computing the AND is only as /// expensive as computing one of the two. If \p InsertPt is true then /// actually generate the resulting expression, make it available at \p /// InsertPt and return it in \p Result (else no change to the IR is made). bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt, Value *&Result, bool InvertCondition); /// Represents a range check of the form \c Base + \c Offset u< \c Length, /// with the constraint that \c Length is not negative. \c CheckInst is the /// pre-existing instruction in the IR that computes the result of this range /// check. class RangeCheck { const Value *Base; const ConstantInt *Offset; const Value *Length; ICmpInst *CheckInst; public: explicit RangeCheck(const Value *Base, const ConstantInt *Offset, const Value *Length, ICmpInst *CheckInst) : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {} void setBase(const Value *NewBase) { Base = NewBase; } void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; } const Value *getBase() const { return Base; } const ConstantInt *getOffset() const { return Offset; } const APInt &getOffsetValue() const { return getOffset()->getValue(); } const Value *getLength() const { return Length; }; ICmpInst *getCheckInst() const { return CheckInst; } void print(raw_ostream &OS, bool PrintTypes = false) { OS << "Base: "; Base->printAsOperand(OS, PrintTypes); OS << " Offset: "; Offset->printAsOperand(OS, PrintTypes); OS << " Length: "; Length->printAsOperand(OS, PrintTypes); } LLVM_DUMP_METHOD void dump() { print(dbgs()); dbgs() << "\n"; } }; /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and /// append them to \p Checks. Returns true on success, may clobber \c Checks /// on failure. bool parseRangeChecks(Value *CheckCond, SmallVectorImpl &Checks) { SmallPtrSet Visited; return parseRangeChecks(CheckCond, Checks, Visited); } bool parseRangeChecks(Value *CheckCond, SmallVectorImpl &Checks, SmallPtrSetImpl &Visited); /// Combine the checks in \p Checks into a smaller set of checks and append /// them into \p CombinedChecks. Return true on success (i.e. all of checks /// in \p Checks were combined into \p CombinedChecks). Clobbers \p Checks /// and \p CombinedChecks on success and on failure. bool combineRangeChecks(SmallVectorImpl &Checks, SmallVectorImpl &CombinedChecks) const; /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of /// computing only one of the two expressions? bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) { Value *ResultUnused; return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused, InvertCond); } /// If \p InvertCondition is false, Widen \p ToWiden to fail if /// \p NewCondition is false, otherwise make it fail if \p NewCondition is /// true (in addition to whatever it is already checking). void widenGuard(Instruction *ToWiden, Value *NewCondition, bool InvertCondition) { Value *Result; widenCondCommon(getCondition(ToWiden), NewCondition, ToWiden, Result, InvertCondition); Value *WidenableCondition = nullptr; if (isGuardAsWidenableBranch(ToWiden)) { auto *Cond = cast(ToWiden)->getCondition(); WidenableCondition = cast(Cond)->getOperand(1); } if (WidenableCondition) Result = BinaryOperator::CreateAnd(Result, WidenableCondition, "guard.chk", ToWiden); setCondition(ToWiden, Result); } public: explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT, LoopInfo &LI, BranchProbabilityInfo *BPI, DomTreeNode *Root, std::function BlockFilter) : DT(DT), PDT(PDT), LI(LI), BPI(BPI), Root(Root), BlockFilter(BlockFilter) {} /// The entry point for this pass. bool run(); }; } static bool isSupportedGuardInstruction(const Instruction *Insn) { if (isGuard(Insn)) return true; if (WidenBranchGuards && isGuardAsWidenableBranch(Insn)) return true; return false; } bool GuardWideningImpl::run() { DenseMap> GuardsInBlock; bool Changed = false; Optional LikelyTaken = None; if (WidenFrequentBranches && BPI) { unsigned Threshold = FrequentBranchThreshold; assert(Threshold > 0 && "Zero threshold makes no sense!"); LikelyTaken = BranchProbability(Threshold - 1, Threshold); } for (auto DFI = df_begin(Root), DFE = df_end(Root); DFI != DFE; ++DFI) { auto *BB = (*DFI)->getBlock(); if (!BlockFilter(BB)) continue; auto &CurrentList = GuardsInBlock[BB]; for (auto &I : *BB) if (isSupportedGuardInstruction(&I)) CurrentList.push_back(cast(&I)); for (auto *II : CurrentList) Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock); if (WidenFrequentBranches && BPI) if (auto *BI = dyn_cast(BB->getTerminator())) if (BI->isConditional()) { // If one of branches of a conditional is likely taken, try to // eliminate it. if (BPI->getEdgeProbability(BB, 0U) >= *LikelyTaken) Changed |= eliminateInstrViaWidening(BI, DFI, GuardsInBlock); else if (BPI->getEdgeProbability(BB, 1U) >= *LikelyTaken) Changed |= eliminateInstrViaWidening(BI, DFI, GuardsInBlock, /*InvertCondition*/true); } } assert(EliminatedGuardsAndBranches.empty() || Changed); for (auto *I : EliminatedGuardsAndBranches) if (!WidenedGuards.count(I)) { assert(isa(getCondition(I)) && "Should be!"); if (isSupportedGuardInstruction(I)) eliminateGuard(I); else { assert(isa(I) && "Eliminated something other than guard or branch?"); ++CondBranchEliminated; } } return Changed; } bool GuardWideningImpl::eliminateInstrViaWidening( Instruction *Instr, const df_iterator &DFSI, const DenseMap> & GuardsInBlock, bool InvertCondition) { // Ignore trivial true or false conditions. These instructions will be // trivially eliminated by any cleanup pass. Do not erase them because other // guards can possibly be widened into them. if (isa(getCondition(Instr))) return false; Instruction *BestSoFar = nullptr; auto BestScoreSoFar = WS_IllegalOrNegative; // In the set of dominating guards, find the one we can merge GuardInst with // for the most profit. for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) { auto *CurBB = DFSI.getPath(i)->getBlock(); if (!BlockFilter(CurBB)) break; assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!"); const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second; auto I = GuardsInCurBB.begin(); auto E = Instr->getParent() == CurBB ? std::find(GuardsInCurBB.begin(), GuardsInCurBB.end(), Instr) : GuardsInCurBB.end(); #ifndef NDEBUG { unsigned Index = 0; for (auto &I : *CurBB) { if (Index == GuardsInCurBB.size()) break; if (GuardsInCurBB[Index] == &I) Index++; } assert(Index == GuardsInCurBB.size() && "Guards expected to be in order!"); } #endif assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?"); for (auto *Candidate : make_range(I, E)) { auto Score = computeWideningScore(Instr, Candidate, InvertCondition); LLVM_DEBUG(dbgs() << "Score between " << *getCondition(Instr) << " and " << *getCondition(Candidate) << " is " << scoreTypeToString(Score) << "\n"); if (Score > BestScoreSoFar) { BestScoreSoFar = Score; BestSoFar = Candidate; } } } if (BestScoreSoFar == WS_IllegalOrNegative) { LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n"); return false; } assert(BestSoFar != Instr && "Should have never visited same guard!"); assert(DT.dominates(BestSoFar, Instr) && "Should be!"); LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar << " with score " << scoreTypeToString(BestScoreSoFar) << "\n"); widenGuard(BestSoFar, getCondition(Instr), InvertCondition); auto NewGuardCondition = InvertCondition ? ConstantInt::getFalse(Instr->getContext()) : ConstantInt::getTrue(Instr->getContext()); setCondition(Instr, NewGuardCondition); EliminatedGuardsAndBranches.push_back(Instr); WidenedGuards.insert(BestSoFar); return true; } GuardWideningImpl::WideningScore GuardWideningImpl::computeWideningScore(Instruction *DominatedInstr, Instruction *DominatingGuard, bool InvertCond) { Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent()); Loop *DominatingGuardLoop = LI.getLoopFor(DominatingGuard->getParent()); bool HoistingOutOfLoop = false; if (DominatingGuardLoop != DominatedInstrLoop) { // Be conservative and don't widen into a sibling loop. TODO: If the // sibling is colder, we should consider allowing this. if (DominatingGuardLoop && !DominatingGuardLoop->contains(DominatedInstrLoop)) return WS_IllegalOrNegative; HoistingOutOfLoop = true; } if (!isAvailableAt(getCondition(DominatedInstr), DominatingGuard)) return WS_IllegalOrNegative; // If the guard was conditional executed, it may never be reached // dynamically. There are two potential downsides to hoisting it out of the // conditionally executed region: 1) we may spuriously deopt without need and // 2) we have the extra cost of computing the guard condition in the common // case. At the moment, we really only consider the second in our heuristic // here. TODO: evaluate cost model for spurious deopt // NOTE: As written, this also lets us hoist right over another guard which // is essentially just another spelling for control flow. if (isWideningCondProfitable(getCondition(DominatedInstr), getCondition(DominatingGuard), InvertCond)) return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive; if (HoistingOutOfLoop) return WS_Positive; // Returns true if we might be hoisting above explicit control flow. Note // that this completely ignores implicit control flow (guards, calls which // throw, etc...). That choice appears arbitrary. auto MaybeHoistingOutOfIf = [&]() { auto *DominatingBlock = DominatingGuard->getParent(); auto *DominatedBlock = DominatedInstr->getParent(); if (isGuardAsWidenableBranch(DominatingGuard)) DominatingBlock = cast(DominatingGuard)->getSuccessor(0); // Same Block? if (DominatedBlock == DominatingBlock) return false; // Obvious successor (common loop header/preheader case) if (DominatedBlock == DominatingBlock->getUniqueSuccessor()) return false; // TODO: diamond, triangle cases if (!PDT) return true; return !PDT->dominates(DominatedBlock, DominatingBlock); }; return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral; } bool GuardWideningImpl::isAvailableAt( const Value *V, const Instruction *Loc, SmallPtrSetImpl &Visited) const { auto *Inst = dyn_cast(V); if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst)) return true; if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) || Inst->mayReadFromMemory()) return false; Visited.insert(Inst); // We only want to go _up_ the dominance chain when recursing. assert(!isa(Loc) && "PHIs should return false for isSafeToSpeculativelyExecute"); assert(DT.isReachableFromEntry(Inst->getParent()) && "We did a DFS from the block entry!"); return all_of(Inst->operands(), [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); }); } void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const { auto *Inst = dyn_cast(V); if (!Inst || DT.dominates(Inst, Loc)) return; assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) && !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!"); for (Value *Op : Inst->operands()) makeAvailableAt(Op, Loc); Inst->moveBefore(Loc); } bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt, Value *&Result, bool InvertCondition) { using namespace llvm::PatternMatch; { // L >u C0 && L >u C1 -> L >u max(C0, C1) ConstantInt *RHS0, *RHS1; Value *LHS; ICmpInst::Predicate Pred0, Pred1; if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) && match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) { if (InvertCondition) Pred1 = ICmpInst::getInversePredicate(Pred1); ConstantRange CR0 = ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue()); ConstantRange CR1 = ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue()); // SubsetIntersect is a subset of the actual mathematical intersection of // CR0 and CR1, while SupersetIntersect is a superset of the actual // mathematical intersection. If these two ConstantRanges are equal, then // we know we were able to represent the actual mathematical intersection // of CR0 and CR1, and can use the same to generate an icmp instruction. // // Given what we're doing here and the semantics of guards, it would // actually be correct to just use SubsetIntersect, but that may be too // aggressive in cases we care about. auto SubsetIntersect = CR0.inverse().unionWith(CR1.inverse()).inverse(); auto SupersetIntersect = CR0.intersectWith(CR1); APInt NewRHSAP; CmpInst::Predicate Pred; if (SubsetIntersect == SupersetIntersect && SubsetIntersect.getEquivalentICmp(Pred, NewRHSAP)) { if (InsertPt) { ConstantInt *NewRHS = ConstantInt::get(Cond0->getContext(), NewRHSAP); Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk"); } return true; } } } { SmallVector Checks, CombinedChecks; // TODO: Support InvertCondition case? if (!InvertCondition && parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) && combineRangeChecks(Checks, CombinedChecks)) { if (InsertPt) { Result = nullptr; for (auto &RC : CombinedChecks) { makeAvailableAt(RC.getCheckInst(), InsertPt); if (Result) Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "", InsertPt); else Result = RC.getCheckInst(); } assert(Result && "Failed to find result value"); Result->setName("wide.chk"); } return true; } } // Base case -- just logical-and the two conditions together. if (InsertPt) { makeAvailableAt(Cond0, InsertPt); makeAvailableAt(Cond1, InsertPt); if (InvertCondition) Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt); Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt); } // We were not able to compute Cond0 AND Cond1 for the price of one. return false; } bool GuardWideningImpl::parseRangeChecks( Value *CheckCond, SmallVectorImpl &Checks, SmallPtrSetImpl &Visited) { if (!Visited.insert(CheckCond).second) return true; using namespace llvm::PatternMatch; { Value *AndLHS, *AndRHS; if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS)))) return parseRangeChecks(AndLHS, Checks) && parseRangeChecks(AndRHS, Checks); } auto *IC = dyn_cast(CheckCond); if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() || (IC->getPredicate() != ICmpInst::ICMP_ULT && IC->getPredicate() != ICmpInst::ICMP_UGT)) return false; const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1); if (IC->getPredicate() == ICmpInst::ICMP_UGT) std::swap(CmpLHS, CmpRHS); auto &DL = IC->getModule()->getDataLayout(); GuardWideningImpl::RangeCheck Check( CmpLHS, cast(ConstantInt::getNullValue(CmpRHS->getType())), CmpRHS, IC); if (!isKnownNonNegative(Check.getLength(), DL)) return false; // What we have in \c Check now is a correct interpretation of \p CheckCond. // Try to see if we can move some constant offsets into the \c Offset field. bool Changed; auto &Ctx = CheckCond->getContext(); do { Value *OpLHS; ConstantInt *OpRHS; Changed = false; #ifndef NDEBUG auto *BaseInst = dyn_cast(Check.getBase()); assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) && "Unreachable instruction?"); #endif if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) { Check.setBase(OpLHS); APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue(); Check.setOffset(ConstantInt::get(Ctx, NewOffset)); Changed = true; } else if (match(Check.getBase(), m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) { KnownBits Known = computeKnownBits(OpLHS, DL); if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) { Check.setBase(OpLHS); APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue(); Check.setOffset(ConstantInt::get(Ctx, NewOffset)); Changed = true; } } } while (Changed); Checks.push_back(Check); return true; } bool GuardWideningImpl::combineRangeChecks( SmallVectorImpl &Checks, SmallVectorImpl &RangeChecksOut) const { unsigned OldCount = Checks.size(); while (!Checks.empty()) { // Pick all of the range checks with a specific base and length, and try to // merge them. const Value *CurrentBase = Checks.front().getBase(); const Value *CurrentLength = Checks.front().getLength(); SmallVector CurrentChecks; auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) { return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength; }; copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck); Checks.erase(remove_if(Checks, IsCurrentCheck), Checks.end()); assert(CurrentChecks.size() != 0 && "We know we have at least one!"); if (CurrentChecks.size() < 3) { RangeChecksOut.insert(RangeChecksOut.end(), CurrentChecks.begin(), CurrentChecks.end()); continue; } // CurrentChecks.size() will typically be 3 here, but so far there has been // no need to hard-code that fact. llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS, const GuardWideningImpl::RangeCheck &RHS) { return LHS.getOffsetValue().slt(RHS.getOffsetValue()); }); // Note: std::sort should not invalidate the ChecksStart iterator. const ConstantInt *MinOffset = CurrentChecks.front().getOffset(); const ConstantInt *MaxOffset = CurrentChecks.back().getOffset(); unsigned BitWidth = MaxOffset->getValue().getBitWidth(); if ((MaxOffset->getValue() - MinOffset->getValue()) .ugt(APInt::getSignedMinValue(BitWidth))) return false; APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue(); const APInt &HighOffset = MaxOffset->getValue(); auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) { return (HighOffset - RC.getOffsetValue()).ult(MaxDiff); }; if (MaxDiff.isMinValue() || !std::all_of(std::next(CurrentChecks.begin()), CurrentChecks.end(), OffsetOK)) return false; // We have a series of f+1 checks as: // // I+k_0 u< L ... Chk_0 // I+k_1 u< L ... Chk_1 // ... // I+k_f u< L ... Chk_f // // with forall i in [0,f]: k_f-k_i u< k_f-k_0 ... Precond_0 // k_f-k_0 u< INT_MIN+k_f ... Precond_1 // k_f != k_0 ... Precond_2 // // Claim: // Chk_0 AND Chk_f implies all the other checks // // Informal proof sketch: // // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and // thus I+k_f is the greatest unsigned value in that range. // // This combined with Ckh_(f+1) shows that everything in that range is u< L. // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1) // lie in [I+k_0,I+k_f], this proving our claim. // // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal // since k_0 != k_f). In the former case, [I+k_0,I+k_f] is not a wrapping // range by definition, and the latter case is impossible: // // 0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1) // xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx // // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted // with 'x' above) to be at least >u INT_MIN. RangeChecksOut.emplace_back(CurrentChecks.front()); RangeChecksOut.emplace_back(CurrentChecks.back()); } assert(RangeChecksOut.size() <= OldCount && "We pessimized!"); return RangeChecksOut.size() != OldCount; } #ifndef NDEBUG StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) { switch (WS) { case WS_IllegalOrNegative: return "IllegalOrNegative"; case WS_Neutral: return "Neutral"; case WS_Positive: return "Positive"; case WS_VeryPositive: return "VeryPositive"; } llvm_unreachable("Fully covered switch above!"); } #endif PreservedAnalyses GuardWideningPass::run(Function &F, FunctionAnalysisManager &AM) { auto &DT = AM.getResult(F); auto &LI = AM.getResult(F); auto &PDT = AM.getResult(F); BranchProbabilityInfo *BPI = nullptr; if (WidenFrequentBranches) BPI = AM.getCachedResult(F); if (!GuardWideningImpl(DT, &PDT, LI, BPI, DT.getRootNode(), [](BasicBlock*) { return true; } ).run()) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); return PA; } PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U) { const auto &FAM = AM.getResult(L, AR).getManager(); Function &F = *L.getHeader()->getParent(); BranchProbabilityInfo *BPI = nullptr; if (WidenFrequentBranches) BPI = FAM.getCachedResult(F); BasicBlock *RootBB = L.getLoopPredecessor(); if (!RootBB) RootBB = L.getHeader(); auto BlockFilter = [&](BasicBlock *BB) { return BB == RootBB || L.contains(BB); }; if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, BPI, AR.DT.getNode(RootBB), BlockFilter).run()) return PreservedAnalyses::all(); return getLoopPassPreservedAnalyses(); } namespace { struct GuardWideningLegacyPass : public FunctionPass { static char ID; GuardWideningLegacyPass() : FunctionPass(ID) { initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto &DT = getAnalysis().getDomTree(); auto &LI = getAnalysis().getLoopInfo(); auto &PDT = getAnalysis().getPostDomTree(); BranchProbabilityInfo *BPI = nullptr; if (WidenFrequentBranches) BPI = &getAnalysis().getBPI(); return GuardWideningImpl(DT, &PDT, LI, BPI, DT.getRootNode(), [](BasicBlock*) { return true; } ).run(); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addRequired(); if (WidenFrequentBranches) AU.addRequired(); } }; /// Same as above, but restricted to a single loop at a time. Can be /// scheduled with other loop passes w/o breaking out of LPM struct LoopGuardWideningLegacyPass : public LoopPass { static char ID; LoopGuardWideningLegacyPass() : LoopPass(ID) { initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnLoop(Loop *L, LPPassManager &LPM) override { if (skipLoop(L)) return false; auto &DT = getAnalysis().getDomTree(); auto &LI = getAnalysis().getLoopInfo(); auto *PDTWP = getAnalysisIfAvailable(); auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; BasicBlock *RootBB = L->getLoopPredecessor(); if (!RootBB) RootBB = L->getHeader(); auto BlockFilter = [&](BasicBlock *BB) { return BB == RootBB || L->contains(BB); }; BranchProbabilityInfo *BPI = nullptr; if (WidenFrequentBranches) BPI = &getAnalysis().getBPI(); return GuardWideningImpl(DT, PDT, LI, BPI, DT.getNode(RootBB), BlockFilter).run(); } void getAnalysisUsage(AnalysisUsage &AU) const override { if (WidenFrequentBranches) AU.addRequired(); AU.setPreservesCFG(); getLoopAnalysisUsage(AU); AU.addPreserved(); } }; } char GuardWideningLegacyPass::ID = 0; char LoopGuardWideningLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) if (WidenFrequentBranches) INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards", false, false) INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening", "Widen guards (within a single loop, as a loop pass)", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) if (WidenFrequentBranches) INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening", "Widen guards (within a single loop, as a loop pass)", false, false) FunctionPass *llvm::createGuardWideningPass() { return new GuardWideningLegacyPass(); } Pass *llvm::createLoopGuardWideningPass() { return new LoopGuardWideningLegacyPass(); }