xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp (revision a2464ee12761660f50d0b6f59f233949ebcacc87)
1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address basic correctness
10 // checker.
11 // Details of the algorithm:
12 //  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13 //
14 // FIXME: This sanitizer does not yet handle scalable vectors
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/StackSafetyAnalysis.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/BinaryFormat/MachO.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Comdat.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GlobalAlias.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/IRBuilder.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/InstIterator.h"
53 #include "llvm/IR/InstVisitor.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/MDBuilder.h"
61 #include "llvm/IR/Metadata.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/Use.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/InitializePasses.h"
67 #include "llvm/MC/MCSectionMachO.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/ScopedPrinter.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Instrumentation.h"
77 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
78 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
79 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
80 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
81 #include "llvm/Transforms/Utils/Local.h"
82 #include "llvm/Transforms/Utils/ModuleUtils.h"
83 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
84 #include <algorithm>
85 #include <cassert>
86 #include <cstddef>
87 #include <cstdint>
88 #include <iomanip>
89 #include <limits>
90 #include <memory>
91 #include <sstream>
92 #include <string>
93 #include <tuple>
94 
95 using namespace llvm;
96 
97 #define DEBUG_TYPE "asan"
98 
99 static const uint64_t kDefaultShadowScale = 3;
100 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
101 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
102 static const uint64_t kDynamicShadowSentinel =
103     std::numeric_limits<uint64_t>::max();
104 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
105 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
106 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
107 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
108 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
109 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
110 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
111 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
112 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000;
113 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
114 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
115 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
116 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
117 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
118 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
119 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
120 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
121 static const uint64_t kEmscriptenShadowOffset = 0;
122 
123 // The shadow memory space is dynamically allocated.
124 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
125 
126 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
127 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
128 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
129 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
130 
131 const char kAsanModuleCtorName[] = "asan.module_ctor";
132 const char kAsanModuleDtorName[] = "asan.module_dtor";
133 static const uint64_t kAsanCtorAndDtorPriority = 1;
134 // On Emscripten, the system needs more than one priorities for constructors.
135 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
136 const char kAsanReportErrorTemplate[] = "__asan_report_";
137 const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
138 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
139 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
140 const char kAsanUnregisterImageGlobalsName[] =
141     "__asan_unregister_image_globals";
142 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
143 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
144 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
145 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
146 const char kAsanInitName[] = "__asan_init";
147 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
148 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
149 const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
150 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
151 static const int kMaxAsanStackMallocSizeClass = 10;
152 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
153 const char kAsanStackMallocAlwaysNameTemplate[] =
154     "__asan_stack_malloc_always_";
155 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
156 const char kAsanGenPrefix[] = "___asan_gen_";
157 const char kODRGenPrefix[] = "__odr_asan_gen_";
158 const char kSanCovGenPrefix[] = "__sancov_gen_";
159 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
160 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
161 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
162 
163 // ASan version script has __asan_* wildcard. Triple underscore prevents a
164 // linker (gold) warning about attempting to export a local symbol.
165 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
166 
167 const char kAsanOptionDetectUseAfterReturn[] =
168     "__asan_option_detect_stack_use_after_return";
169 
170 const char kAsanShadowMemoryDynamicAddress[] =
171     "__asan_shadow_memory_dynamic_address";
172 
173 const char kAsanAllocaPoison[] = "__asan_alloca_poison";
174 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
175 
176 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
177 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
178 
179 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
180 static const size_t kNumberOfAccessSizes = 5;
181 
182 static const uint64_t kAllocaRzSize = 32;
183 
184 // ASanAccessInfo implementation constants.
185 constexpr size_t kCompileKernelShift = 0;
186 constexpr size_t kCompileKernelMask = 0x1;
187 constexpr size_t kAccessSizeIndexShift = 1;
188 constexpr size_t kAccessSizeIndexMask = 0xf;
189 constexpr size_t kIsWriteShift = 5;
190 constexpr size_t kIsWriteMask = 0x1;
191 
192 // Command-line flags.
193 
194 static cl::opt<bool> ClEnableKasan(
195     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
196     cl::Hidden, cl::init(false));
197 
198 static cl::opt<bool> ClRecover(
199     "asan-recover",
200     cl::desc("Enable recovery mode (continue-after-error)."),
201     cl::Hidden, cl::init(false));
202 
203 static cl::opt<bool> ClInsertVersionCheck(
204     "asan-guard-against-version-mismatch",
205     cl::desc("Guard against compiler/runtime version mismatch."),
206     cl::Hidden, cl::init(true));
207 
208 // This flag may need to be replaced with -f[no-]asan-reads.
209 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
210                                        cl::desc("instrument read instructions"),
211                                        cl::Hidden, cl::init(true));
212 
213 static cl::opt<bool> ClInstrumentWrites(
214     "asan-instrument-writes", cl::desc("instrument write instructions"),
215     cl::Hidden, cl::init(true));
216 
217 static cl::opt<bool>
218     ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false),
219                      cl::Hidden, cl::desc("Use Stack Safety analysis results"),
220                      cl::Optional);
221 
222 static cl::opt<bool> ClInstrumentAtomics(
223     "asan-instrument-atomics",
224     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
225     cl::init(true));
226 
227 static cl::opt<bool>
228     ClInstrumentByval("asan-instrument-byval",
229                       cl::desc("instrument byval call arguments"), cl::Hidden,
230                       cl::init(true));
231 
232 static cl::opt<bool> ClAlwaysSlowPath(
233     "asan-always-slow-path",
234     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
235     cl::init(false));
236 
237 static cl::opt<bool> ClForceDynamicShadow(
238     "asan-force-dynamic-shadow",
239     cl::desc("Load shadow address into a local variable for each function"),
240     cl::Hidden, cl::init(false));
241 
242 static cl::opt<bool>
243     ClWithIfunc("asan-with-ifunc",
244                 cl::desc("Access dynamic shadow through an ifunc global on "
245                          "platforms that support this"),
246                 cl::Hidden, cl::init(true));
247 
248 static cl::opt<bool> ClWithIfuncSuppressRemat(
249     "asan-with-ifunc-suppress-remat",
250     cl::desc("Suppress rematerialization of dynamic shadow address by passing "
251              "it through inline asm in prologue."),
252     cl::Hidden, cl::init(true));
253 
254 // This flag limits the number of instructions to be instrumented
255 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
256 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
257 // set it to 10000.
258 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
259     "asan-max-ins-per-bb", cl::init(10000),
260     cl::desc("maximal number of instructions to instrument in any given BB"),
261     cl::Hidden);
262 
263 // This flag may need to be replaced with -f[no]asan-stack.
264 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
265                              cl::Hidden, cl::init(true));
266 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
267     "asan-max-inline-poisoning-size",
268     cl::desc(
269         "Inline shadow poisoning for blocks up to the given size in bytes."),
270     cl::Hidden, cl::init(64));
271 
272 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn(
273     "asan-use-after-return",
274     cl::desc("Sets the mode of detection for stack-use-after-return."),
275     cl::values(
276         clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",
277                    "Never detect stack use after return."),
278         clEnumValN(
279             AsanDetectStackUseAfterReturnMode::Runtime, "runtime",
280             "Detect stack use after return if "
281             "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."),
282         clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",
283                    "Always detect stack use after return.")),
284     cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime));
285 
286 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
287                                         cl::desc("Create redzones for byval "
288                                                  "arguments (extra copy "
289                                                  "required)"), cl::Hidden,
290                                         cl::init(true));
291 
292 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
293                                      cl::desc("Check stack-use-after-scope"),
294                                      cl::Hidden, cl::init(false));
295 
296 // This flag may need to be replaced with -f[no]asan-globals.
297 static cl::opt<bool> ClGlobals("asan-globals",
298                                cl::desc("Handle global objects"), cl::Hidden,
299                                cl::init(true));
300 
301 static cl::opt<bool> ClInitializers("asan-initialization-order",
302                                     cl::desc("Handle C++ initializer order"),
303                                     cl::Hidden, cl::init(true));
304 
305 static cl::opt<bool> ClInvalidPointerPairs(
306     "asan-detect-invalid-pointer-pair",
307     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
308     cl::init(false));
309 
310 static cl::opt<bool> ClInvalidPointerCmp(
311     "asan-detect-invalid-pointer-cmp",
312     cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
313     cl::init(false));
314 
315 static cl::opt<bool> ClInvalidPointerSub(
316     "asan-detect-invalid-pointer-sub",
317     cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
318     cl::init(false));
319 
320 static cl::opt<unsigned> ClRealignStack(
321     "asan-realign-stack",
322     cl::desc("Realign stack to the value of this flag (power of two)"),
323     cl::Hidden, cl::init(32));
324 
325 static cl::opt<int> ClInstrumentationWithCallsThreshold(
326     "asan-instrumentation-with-call-threshold",
327     cl::desc(
328         "If the function being instrumented contains more than "
329         "this number of memory accesses, use callbacks instead of "
330         "inline checks (-1 means never use callbacks)."),
331     cl::Hidden, cl::init(7000));
332 
333 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
334     "asan-memory-access-callback-prefix",
335     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
336     cl::init("__asan_"));
337 
338 static cl::opt<bool>
339     ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
340                                cl::desc("instrument dynamic allocas"),
341                                cl::Hidden, cl::init(true));
342 
343 static cl::opt<bool> ClSkipPromotableAllocas(
344     "asan-skip-promotable-allocas",
345     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
346     cl::init(true));
347 
348 // These flags allow to change the shadow mapping.
349 // The shadow mapping looks like
350 //    Shadow = (Mem >> scale) + offset
351 
352 static cl::opt<int> ClMappingScale("asan-mapping-scale",
353                                    cl::desc("scale of asan shadow mapping"),
354                                    cl::Hidden, cl::init(0));
355 
356 static cl::opt<uint64_t>
357     ClMappingOffset("asan-mapping-offset",
358                     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
359                     cl::Hidden, cl::init(0));
360 
361 // Optimization flags. Not user visible, used mostly for testing
362 // and benchmarking the tool.
363 
364 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
365                            cl::Hidden, cl::init(true));
366 
367 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks",
368                                          cl::desc("Optimize callbacks"),
369                                          cl::Hidden, cl::init(false));
370 
371 static cl::opt<bool> ClOptSameTemp(
372     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
373     cl::Hidden, cl::init(true));
374 
375 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
376                                   cl::desc("Don't instrument scalar globals"),
377                                   cl::Hidden, cl::init(true));
378 
379 static cl::opt<bool> ClOptStack(
380     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
381     cl::Hidden, cl::init(false));
382 
383 static cl::opt<bool> ClDynamicAllocaStack(
384     "asan-stack-dynamic-alloca",
385     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
386     cl::init(true));
387 
388 static cl::opt<uint32_t> ClForceExperiment(
389     "asan-force-experiment",
390     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
391     cl::init(0));
392 
393 static cl::opt<bool>
394     ClUsePrivateAlias("asan-use-private-alias",
395                       cl::desc("Use private aliases for global variables"),
396                       cl::Hidden, cl::init(false));
397 
398 static cl::opt<bool>
399     ClUseOdrIndicator("asan-use-odr-indicator",
400                       cl::desc("Use odr indicators to improve ODR reporting"),
401                       cl::Hidden, cl::init(false));
402 
403 static cl::opt<bool>
404     ClUseGlobalsGC("asan-globals-live-support",
405                    cl::desc("Use linker features to support dead "
406                             "code stripping of globals"),
407                    cl::Hidden, cl::init(true));
408 
409 // This is on by default even though there is a bug in gold:
410 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
411 static cl::opt<bool>
412     ClWithComdat("asan-with-comdat",
413                  cl::desc("Place ASan constructors in comdat sections"),
414                  cl::Hidden, cl::init(true));
415 
416 static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
417     "asan-destructor-kind",
418     cl::desc("Sets the ASan destructor kind. The default is to use the value "
419              "provided to the pass constructor"),
420     cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"),
421                clEnumValN(AsanDtorKind::Global, "global",
422                           "Use global destructors")),
423     cl::init(AsanDtorKind::Invalid), cl::Hidden);
424 
425 // Debug flags.
426 
427 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
428                             cl::init(0));
429 
430 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
431                                  cl::Hidden, cl::init(0));
432 
433 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
434                                         cl::desc("Debug func"));
435 
436 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
437                                cl::Hidden, cl::init(-1));
438 
439 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
440                                cl::Hidden, cl::init(-1));
441 
442 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
443 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
444 STATISTIC(NumOptimizedAccessesToGlobalVar,
445           "Number of optimized accesses to global vars");
446 STATISTIC(NumOptimizedAccessesToStackVar,
447           "Number of optimized accesses to stack vars");
448 
449 namespace {
450 
451 /// This struct defines the shadow mapping using the rule:
452 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
453 /// If InGlobal is true, then
454 ///   extern char __asan_shadow[];
455 ///   shadow = (mem >> Scale) + &__asan_shadow
456 struct ShadowMapping {
457   int Scale;
458   uint64_t Offset;
459   bool OrShadowOffset;
460   bool InGlobal;
461 };
462 
463 } // end anonymous namespace
464 
465 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize,
466                                       bool IsKasan) {
467   bool IsAndroid = TargetTriple.isAndroid();
468   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
469   bool IsMacOS = TargetTriple.isMacOSX();
470   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
471   bool IsNetBSD = TargetTriple.isOSNetBSD();
472   bool IsPS4CPU = TargetTriple.isPS4CPU();
473   bool IsLinux = TargetTriple.isOSLinux();
474   bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
475                  TargetTriple.getArch() == Triple::ppc64le;
476   bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
477   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
478   bool IsMIPS32 = TargetTriple.isMIPS32();
479   bool IsMIPS64 = TargetTriple.isMIPS64();
480   bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
481   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
482   bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
483   bool IsWindows = TargetTriple.isOSWindows();
484   bool IsFuchsia = TargetTriple.isOSFuchsia();
485   bool IsEmscripten = TargetTriple.isOSEmscripten();
486   bool IsAMDGPU = TargetTriple.isAMDGPU();
487 
488   ShadowMapping Mapping;
489 
490   Mapping.Scale = kDefaultShadowScale;
491   if (ClMappingScale.getNumOccurrences() > 0) {
492     Mapping.Scale = ClMappingScale;
493   }
494 
495   if (LongSize == 32) {
496     if (IsAndroid)
497       Mapping.Offset = kDynamicShadowSentinel;
498     else if (IsMIPS32)
499       Mapping.Offset = kMIPS32_ShadowOffset32;
500     else if (IsFreeBSD)
501       Mapping.Offset = kFreeBSD_ShadowOffset32;
502     else if (IsNetBSD)
503       Mapping.Offset = kNetBSD_ShadowOffset32;
504     else if (IsIOS)
505       Mapping.Offset = kDynamicShadowSentinel;
506     else if (IsWindows)
507       Mapping.Offset = kWindowsShadowOffset32;
508     else if (IsEmscripten)
509       Mapping.Offset = kEmscriptenShadowOffset;
510     else
511       Mapping.Offset = kDefaultShadowOffset32;
512   } else {  // LongSize == 64
513     // Fuchsia is always PIE, which means that the beginning of the address
514     // space is always available.
515     if (IsFuchsia)
516       Mapping.Offset = 0;
517     else if (IsPPC64)
518       Mapping.Offset = kPPC64_ShadowOffset64;
519     else if (IsSystemZ)
520       Mapping.Offset = kSystemZ_ShadowOffset64;
521     else if (IsFreeBSD && !IsMIPS64) {
522       if (IsKasan)
523         Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
524       else
525         Mapping.Offset = kFreeBSD_ShadowOffset64;
526     } else if (IsNetBSD) {
527       if (IsKasan)
528         Mapping.Offset = kNetBSDKasan_ShadowOffset64;
529       else
530         Mapping.Offset = kNetBSD_ShadowOffset64;
531     } else if (IsPS4CPU)
532       Mapping.Offset = kPS4CPU_ShadowOffset64;
533     else if (IsLinux && IsX86_64) {
534       if (IsKasan)
535         Mapping.Offset = kLinuxKasan_ShadowOffset64;
536       else
537         Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
538                           (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
539     } else if (IsWindows && IsX86_64) {
540       Mapping.Offset = kWindowsShadowOffset64;
541     } else if (IsMIPS64)
542       Mapping.Offset = kMIPS64_ShadowOffset64;
543     else if (IsIOS)
544       Mapping.Offset = kDynamicShadowSentinel;
545     else if (IsMacOS && IsAArch64)
546       Mapping.Offset = kDynamicShadowSentinel;
547     else if (IsAArch64)
548       Mapping.Offset = kAArch64_ShadowOffset64;
549     else if (IsRISCV64)
550       Mapping.Offset = kRISCV64_ShadowOffset64;
551     else if (IsAMDGPU)
552       Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
553                         (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
554     else
555       Mapping.Offset = kDefaultShadowOffset64;
556   }
557 
558   if (ClForceDynamicShadow) {
559     Mapping.Offset = kDynamicShadowSentinel;
560   }
561 
562   if (ClMappingOffset.getNumOccurrences() > 0) {
563     Mapping.Offset = ClMappingOffset;
564   }
565 
566   // OR-ing shadow offset if more efficient (at least on x86) if the offset
567   // is a power of two, but on ppc64 we have to use add since the shadow
568   // offset is not necessary 1/8-th of the address space.  On SystemZ,
569   // we could OR the constant in a single instruction, but it's more
570   // efficient to load it once and use indexed addressing.
571   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
572                            !IsRISCV64 &&
573                            !(Mapping.Offset & (Mapping.Offset - 1)) &&
574                            Mapping.Offset != kDynamicShadowSentinel;
575   bool IsAndroidWithIfuncSupport =
576       IsAndroid && !TargetTriple.isAndroidVersionLT(21);
577   Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
578 
579   return Mapping;
580 }
581 
582 namespace llvm {
583 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize,
584                                bool IsKasan, uint64_t *ShadowBase,
585                                int *MappingScale, bool *OrShadowOffset) {
586   auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan);
587   *ShadowBase = Mapping.Offset;
588   *MappingScale = Mapping.Scale;
589   *OrShadowOffset = Mapping.OrShadowOffset;
590 }
591 
592 ASanAccessInfo::ASanAccessInfo(int32_t Packed)
593     : Packed(Packed),
594       AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask),
595       IsWrite((Packed >> kIsWriteShift) & kIsWriteMask),
596       CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {}
597 
598 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel,
599                                uint8_t AccessSizeIndex)
600     : Packed((IsWrite << kIsWriteShift) +
601              (CompileKernel << kCompileKernelShift) +
602              (AccessSizeIndex << kAccessSizeIndexShift)),
603       AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite),
604       CompileKernel(CompileKernel) {}
605 
606 } // namespace llvm
607 
608 static uint64_t getRedzoneSizeForScale(int MappingScale) {
609   // Redzone used for stack and globals is at least 32 bytes.
610   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
611   return std::max(32U, 1U << MappingScale);
612 }
613 
614 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
615   if (TargetTriple.isOSEmscripten()) {
616     return kAsanEmscriptenCtorAndDtorPriority;
617   } else {
618     return kAsanCtorAndDtorPriority;
619   }
620 }
621 
622 namespace {
623 
624 /// Module analysis for getting various metadata about the module.
625 class ASanGlobalsMetadataWrapperPass : public ModulePass {
626 public:
627   static char ID;
628 
629   ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
630     initializeASanGlobalsMetadataWrapperPassPass(
631         *PassRegistry::getPassRegistry());
632   }
633 
634   bool runOnModule(Module &M) override {
635     GlobalsMD = GlobalsMetadata(M);
636     return false;
637   }
638 
639   StringRef getPassName() const override {
640     return "ASanGlobalsMetadataWrapperPass";
641   }
642 
643   void getAnalysisUsage(AnalysisUsage &AU) const override {
644     AU.setPreservesAll();
645   }
646 
647   GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
648 
649 private:
650   GlobalsMetadata GlobalsMD;
651 };
652 
653 char ASanGlobalsMetadataWrapperPass::ID = 0;
654 
655 /// AddressSanitizer: instrument the code in module to find memory bugs.
656 struct AddressSanitizer {
657   AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
658                    const StackSafetyGlobalInfo *SSGI,
659                    bool CompileKernel = false, bool Recover = false,
660                    bool UseAfterScope = false,
661                    AsanDetectStackUseAfterReturnMode UseAfterReturn =
662                        AsanDetectStackUseAfterReturnMode::Runtime)
663       : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
664                                                             : CompileKernel),
665         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
666         UseAfterScope(UseAfterScope || ClUseAfterScope),
667         UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn
668                                                             : UseAfterReturn),
669         GlobalsMD(*GlobalsMD), SSGI(SSGI) {
670     C = &(M.getContext());
671     LongSize = M.getDataLayout().getPointerSizeInBits();
672     IntptrTy = Type::getIntNTy(*C, LongSize);
673     Int8PtrTy = Type::getInt8PtrTy(*C);
674     Int32Ty = Type::getInt32Ty(*C);
675     TargetTriple = Triple(M.getTargetTriple());
676 
677     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
678 
679     assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid);
680   }
681 
682   uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
683     uint64_t ArraySize = 1;
684     if (AI.isArrayAllocation()) {
685       const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
686       assert(CI && "non-constant array size");
687       ArraySize = CI->getZExtValue();
688     }
689     Type *Ty = AI.getAllocatedType();
690     uint64_t SizeInBytes =
691         AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
692     return SizeInBytes * ArraySize;
693   }
694 
695   /// Check if we want (and can) handle this alloca.
696   bool isInterestingAlloca(const AllocaInst &AI);
697 
698   bool ignoreAccess(Instruction *Inst, Value *Ptr);
699   void getInterestingMemoryOperands(
700       Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
701 
702   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
703                      InterestingMemoryOperand &O, bool UseCalls,
704                      const DataLayout &DL);
705   void instrumentPointerComparisonOrSubtraction(Instruction *I);
706   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
707                          Value *Addr, uint32_t TypeSize, bool IsWrite,
708                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
709   Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
710                                        Instruction *InsertBefore, Value *Addr,
711                                        uint32_t TypeSize, bool IsWrite,
712                                        Value *SizeArgument);
713   void instrumentUnusualSizeOrAlignment(Instruction *I,
714                                         Instruction *InsertBefore, Value *Addr,
715                                         uint32_t TypeSize, bool IsWrite,
716                                         Value *SizeArgument, bool UseCalls,
717                                         uint32_t Exp);
718   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
719                            Value *ShadowValue, uint32_t TypeSize);
720   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
721                                  bool IsWrite, size_t AccessSizeIndex,
722                                  Value *SizeArgument, uint32_t Exp);
723   void instrumentMemIntrinsic(MemIntrinsic *MI);
724   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
725   bool suppressInstrumentationSiteForDebug(int &Instrumented);
726   bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
727   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
728   bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
729   void markEscapedLocalAllocas(Function &F);
730 
731 private:
732   friend struct FunctionStackPoisoner;
733 
734   void initializeCallbacks(Module &M);
735 
736   bool LooksLikeCodeInBug11395(Instruction *I);
737   bool GlobalIsLinkerInitialized(GlobalVariable *G);
738   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
739                     uint64_t TypeSize) const;
740 
741   /// Helper to cleanup per-function state.
742   struct FunctionStateRAII {
743     AddressSanitizer *Pass;
744 
745     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
746       assert(Pass->ProcessedAllocas.empty() &&
747              "last pass forgot to clear cache");
748       assert(!Pass->LocalDynamicShadow);
749     }
750 
751     ~FunctionStateRAII() {
752       Pass->LocalDynamicShadow = nullptr;
753       Pass->ProcessedAllocas.clear();
754     }
755   };
756 
757   LLVMContext *C;
758   Triple TargetTriple;
759   int LongSize;
760   bool CompileKernel;
761   bool Recover;
762   bool UseAfterScope;
763   AsanDetectStackUseAfterReturnMode UseAfterReturn;
764   Type *IntptrTy;
765   Type *Int8PtrTy;
766   Type *Int32Ty;
767   ShadowMapping Mapping;
768   FunctionCallee AsanHandleNoReturnFunc;
769   FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
770   Constant *AsanShadowGlobal;
771 
772   // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
773   FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
774   FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
775 
776   // These arrays is indexed by AccessIsWrite and Experiment.
777   FunctionCallee AsanErrorCallbackSized[2][2];
778   FunctionCallee AsanMemoryAccessCallbackSized[2][2];
779 
780   FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
781   Value *LocalDynamicShadow = nullptr;
782   const GlobalsMetadata &GlobalsMD;
783   const StackSafetyGlobalInfo *SSGI;
784   DenseMap<const AllocaInst *, bool> ProcessedAllocas;
785 
786   FunctionCallee AMDGPUAddressShared;
787   FunctionCallee AMDGPUAddressPrivate;
788 };
789 
790 class AddressSanitizerLegacyPass : public FunctionPass {
791 public:
792   static char ID;
793 
794   explicit AddressSanitizerLegacyPass(
795       bool CompileKernel = false, bool Recover = false,
796       bool UseAfterScope = false,
797       AsanDetectStackUseAfterReturnMode UseAfterReturn =
798           AsanDetectStackUseAfterReturnMode::Runtime)
799       : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
800         UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) {
801     initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
802   }
803 
804   StringRef getPassName() const override {
805     return "AddressSanitizerFunctionPass";
806   }
807 
808   void getAnalysisUsage(AnalysisUsage &AU) const override {
809     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
810     if (ClUseStackSafety)
811       AU.addRequired<StackSafetyGlobalInfoWrapperPass>();
812     AU.addRequired<TargetLibraryInfoWrapperPass>();
813   }
814 
815   bool runOnFunction(Function &F) override {
816     GlobalsMetadata &GlobalsMD =
817         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
818     const StackSafetyGlobalInfo *const SSGI =
819         ClUseStackSafety
820             ? &getAnalysis<StackSafetyGlobalInfoWrapperPass>().getResult()
821             : nullptr;
822     const TargetLibraryInfo *TLI =
823         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
824     AddressSanitizer ASan(*F.getParent(), &GlobalsMD, SSGI, CompileKernel,
825                           Recover, UseAfterScope, UseAfterReturn);
826     return ASan.instrumentFunction(F, TLI);
827   }
828 
829 private:
830   bool CompileKernel;
831   bool Recover;
832   bool UseAfterScope;
833   AsanDetectStackUseAfterReturnMode UseAfterReturn;
834 };
835 
836 class ModuleAddressSanitizer {
837 public:
838   ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
839                          bool CompileKernel = false, bool Recover = false,
840                          bool UseGlobalsGC = true, bool UseOdrIndicator = false,
841                          AsanDtorKind DestructorKind = AsanDtorKind::Global)
842       : GlobalsMD(*GlobalsMD),
843         CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
844                                                             : CompileKernel),
845         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
846         UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
847         // Enable aliases as they should have no downside with ODR indicators.
848         UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
849         UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
850         // Not a typo: ClWithComdat is almost completely pointless without
851         // ClUseGlobalsGC (because then it only works on modules without
852         // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
853         // and both suffer from gold PR19002 for which UseGlobalsGC constructor
854         // argument is designed as workaround. Therefore, disable both
855         // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
856         // do globals-gc.
857         UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
858         DestructorKind(DestructorKind) {
859     C = &(M.getContext());
860     int LongSize = M.getDataLayout().getPointerSizeInBits();
861     IntptrTy = Type::getIntNTy(*C, LongSize);
862     TargetTriple = Triple(M.getTargetTriple());
863     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
864 
865     if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
866       this->DestructorKind = ClOverrideDestructorKind;
867     assert(this->DestructorKind != AsanDtorKind::Invalid);
868   }
869 
870   bool instrumentModule(Module &);
871 
872 private:
873   void initializeCallbacks(Module &M);
874 
875   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
876   void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
877                              ArrayRef<GlobalVariable *> ExtendedGlobals,
878                              ArrayRef<Constant *> MetadataInitializers);
879   void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
880                             ArrayRef<GlobalVariable *> ExtendedGlobals,
881                             ArrayRef<Constant *> MetadataInitializers,
882                             const std::string &UniqueModuleId);
883   void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
884                               ArrayRef<GlobalVariable *> ExtendedGlobals,
885                               ArrayRef<Constant *> MetadataInitializers);
886   void
887   InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
888                                      ArrayRef<GlobalVariable *> ExtendedGlobals,
889                                      ArrayRef<Constant *> MetadataInitializers);
890 
891   GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
892                                        StringRef OriginalName);
893   void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
894                                   StringRef InternalSuffix);
895   Instruction *CreateAsanModuleDtor(Module &M);
896 
897   const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
898   bool shouldInstrumentGlobal(GlobalVariable *G) const;
899   bool ShouldUseMachOGlobalsSection() const;
900   StringRef getGlobalMetadataSection() const;
901   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
902   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
903   uint64_t getMinRedzoneSizeForGlobal() const {
904     return getRedzoneSizeForScale(Mapping.Scale);
905   }
906   uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
907   int GetAsanVersion(const Module &M) const;
908 
909   const GlobalsMetadata &GlobalsMD;
910   bool CompileKernel;
911   bool Recover;
912   bool UseGlobalsGC;
913   bool UsePrivateAlias;
914   bool UseOdrIndicator;
915   bool UseCtorComdat;
916   AsanDtorKind DestructorKind;
917   Type *IntptrTy;
918   LLVMContext *C;
919   Triple TargetTriple;
920   ShadowMapping Mapping;
921   FunctionCallee AsanPoisonGlobals;
922   FunctionCallee AsanUnpoisonGlobals;
923   FunctionCallee AsanRegisterGlobals;
924   FunctionCallee AsanUnregisterGlobals;
925   FunctionCallee AsanRegisterImageGlobals;
926   FunctionCallee AsanUnregisterImageGlobals;
927   FunctionCallee AsanRegisterElfGlobals;
928   FunctionCallee AsanUnregisterElfGlobals;
929 
930   Function *AsanCtorFunction = nullptr;
931   Function *AsanDtorFunction = nullptr;
932 };
933 
934 class ModuleAddressSanitizerLegacyPass : public ModulePass {
935 public:
936   static char ID;
937 
938   explicit ModuleAddressSanitizerLegacyPass(
939       bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true,
940       bool UseOdrIndicator = false,
941       AsanDtorKind DestructorKind = AsanDtorKind::Global)
942       : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
943         UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator),
944         DestructorKind(DestructorKind) {
945     initializeModuleAddressSanitizerLegacyPassPass(
946         *PassRegistry::getPassRegistry());
947   }
948 
949   StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
950 
951   void getAnalysisUsage(AnalysisUsage &AU) const override {
952     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
953   }
954 
955   bool runOnModule(Module &M) override {
956     GlobalsMetadata &GlobalsMD =
957         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
958     ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
959                                       UseGlobalGC, UseOdrIndicator,
960                                       DestructorKind);
961     return ASanModule.instrumentModule(M);
962   }
963 
964 private:
965   bool CompileKernel;
966   bool Recover;
967   bool UseGlobalGC;
968   bool UseOdrIndicator;
969   AsanDtorKind DestructorKind;
970 };
971 
972 // Stack poisoning does not play well with exception handling.
973 // When an exception is thrown, we essentially bypass the code
974 // that unpoisones the stack. This is why the run-time library has
975 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
976 // stack in the interceptor. This however does not work inside the
977 // actual function which catches the exception. Most likely because the
978 // compiler hoists the load of the shadow value somewhere too high.
979 // This causes asan to report a non-existing bug on 453.povray.
980 // It sounds like an LLVM bug.
981 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
982   Function &F;
983   AddressSanitizer &ASan;
984   DIBuilder DIB;
985   LLVMContext *C;
986   Type *IntptrTy;
987   Type *IntptrPtrTy;
988   ShadowMapping Mapping;
989 
990   SmallVector<AllocaInst *, 16> AllocaVec;
991   SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
992   SmallVector<Instruction *, 8> RetVec;
993 
994   FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
995       AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
996   FunctionCallee AsanSetShadowFunc[0x100] = {};
997   FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
998   FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
999 
1000   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
1001   struct AllocaPoisonCall {
1002     IntrinsicInst *InsBefore;
1003     AllocaInst *AI;
1004     uint64_t Size;
1005     bool DoPoison;
1006   };
1007   SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
1008   SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
1009   bool HasUntracedLifetimeIntrinsic = false;
1010 
1011   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
1012   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
1013   AllocaInst *DynamicAllocaLayout = nullptr;
1014   IntrinsicInst *LocalEscapeCall = nullptr;
1015 
1016   bool HasInlineAsm = false;
1017   bool HasReturnsTwiceCall = false;
1018   bool PoisonStack;
1019 
1020   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
1021       : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
1022         C(ASan.C), IntptrTy(ASan.IntptrTy),
1023         IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
1024         PoisonStack(ClStack &&
1025                     !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}
1026 
1027   bool runOnFunction() {
1028     if (!PoisonStack)
1029       return false;
1030 
1031     if (ClRedzoneByvalArgs)
1032       copyArgsPassedByValToAllocas();
1033 
1034     // Collect alloca, ret, lifetime instructions etc.
1035     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
1036 
1037     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
1038 
1039     initializeCallbacks(*F.getParent());
1040 
1041     if (HasUntracedLifetimeIntrinsic) {
1042       // If there are lifetime intrinsics which couldn't be traced back to an
1043       // alloca, we may not know exactly when a variable enters scope, and
1044       // therefore should "fail safe" by not poisoning them.
1045       StaticAllocaPoisonCallVec.clear();
1046       DynamicAllocaPoisonCallVec.clear();
1047     }
1048 
1049     processDynamicAllocas();
1050     processStaticAllocas();
1051 
1052     if (ClDebugStack) {
1053       LLVM_DEBUG(dbgs() << F);
1054     }
1055     return true;
1056   }
1057 
1058   // Arguments marked with the "byval" attribute are implicitly copied without
1059   // using an alloca instruction.  To produce redzones for those arguments, we
1060   // copy them a second time into memory allocated with an alloca instruction.
1061   void copyArgsPassedByValToAllocas();
1062 
1063   // Finds all Alloca instructions and puts
1064   // poisoned red zones around all of them.
1065   // Then unpoison everything back before the function returns.
1066   void processStaticAllocas();
1067   void processDynamicAllocas();
1068 
1069   void createDynamicAllocasInitStorage();
1070 
1071   // ----------------------- Visitors.
1072   /// Collect all Ret instructions, or the musttail call instruction if it
1073   /// precedes the return instruction.
1074   void visitReturnInst(ReturnInst &RI) {
1075     if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
1076       RetVec.push_back(CI);
1077     else
1078       RetVec.push_back(&RI);
1079   }
1080 
1081   /// Collect all Resume instructions.
1082   void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
1083 
1084   /// Collect all CatchReturnInst instructions.
1085   void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
1086 
1087   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
1088                                         Value *SavedStack) {
1089     IRBuilder<> IRB(InstBefore);
1090     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
1091     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1092     // need to adjust extracted SP to compute the address of the most recent
1093     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1094     // this purpose.
1095     if (!isa<ReturnInst>(InstBefore)) {
1096       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
1097           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
1098           {IntptrTy});
1099 
1100       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
1101 
1102       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
1103                                      DynamicAreaOffset);
1104     }
1105 
1106     IRB.CreateCall(
1107         AsanAllocasUnpoisonFunc,
1108         {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1109   }
1110 
1111   // Unpoison dynamic allocas redzones.
1112   void unpoisonDynamicAllocas() {
1113     for (Instruction *Ret : RetVec)
1114       unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1115 
1116     for (Instruction *StackRestoreInst : StackRestoreVec)
1117       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1118                                        StackRestoreInst->getOperand(0));
1119   }
1120 
1121   // Deploy and poison redzones around dynamic alloca call. To do this, we
1122   // should replace this call with another one with changed parameters and
1123   // replace all its uses with new address, so
1124   //   addr = alloca type, old_size, align
1125   // is replaced by
1126   //   new_size = (old_size + additional_size) * sizeof(type)
1127   //   tmp = alloca i8, new_size, max(align, 32)
1128   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
1129   // Additional_size is added to make new memory allocation contain not only
1130   // requested memory, but also left, partial and right redzones.
1131   void handleDynamicAllocaCall(AllocaInst *AI);
1132 
1133   /// Collect Alloca instructions we want (and can) handle.
1134   void visitAllocaInst(AllocaInst &AI) {
1135     if (!ASan.isInterestingAlloca(AI)) {
1136       if (AI.isStaticAlloca()) {
1137         // Skip over allocas that are present *before* the first instrumented
1138         // alloca, we don't want to move those around.
1139         if (AllocaVec.empty())
1140           return;
1141 
1142         StaticAllocasToMoveUp.push_back(&AI);
1143       }
1144       return;
1145     }
1146 
1147     if (!AI.isStaticAlloca())
1148       DynamicAllocaVec.push_back(&AI);
1149     else
1150       AllocaVec.push_back(&AI);
1151   }
1152 
1153   /// Collect lifetime intrinsic calls to check for use-after-scope
1154   /// errors.
1155   void visitIntrinsicInst(IntrinsicInst &II) {
1156     Intrinsic::ID ID = II.getIntrinsicID();
1157     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1158     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1159     if (!ASan.UseAfterScope)
1160       return;
1161     if (!II.isLifetimeStartOrEnd())
1162       return;
1163     // Found lifetime intrinsic, add ASan instrumentation if necessary.
1164     auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1165     // If size argument is undefined, don't do anything.
1166     if (Size->isMinusOne()) return;
1167     // Check that size doesn't saturate uint64_t and can
1168     // be stored in IntptrTy.
1169     const uint64_t SizeValue = Size->getValue().getLimitedValue();
1170     if (SizeValue == ~0ULL ||
1171         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1172       return;
1173     // Find alloca instruction that corresponds to llvm.lifetime argument.
1174     // Currently we can only handle lifetime markers pointing to the
1175     // beginning of the alloca.
1176     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
1177     if (!AI) {
1178       HasUntracedLifetimeIntrinsic = true;
1179       return;
1180     }
1181     // We're interested only in allocas we can handle.
1182     if (!ASan.isInterestingAlloca(*AI))
1183       return;
1184     bool DoPoison = (ID == Intrinsic::lifetime_end);
1185     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1186     if (AI->isStaticAlloca())
1187       StaticAllocaPoisonCallVec.push_back(APC);
1188     else if (ClInstrumentDynamicAllocas)
1189       DynamicAllocaPoisonCallVec.push_back(APC);
1190   }
1191 
1192   void visitCallBase(CallBase &CB) {
1193     if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1194       HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
1195       HasReturnsTwiceCall |= CI->canReturnTwice();
1196     }
1197   }
1198 
1199   // ---------------------- Helpers.
1200   void initializeCallbacks(Module &M);
1201 
1202   // Copies bytes from ShadowBytes into shadow memory for indexes where
1203   // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1204   // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1205   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1206                     IRBuilder<> &IRB, Value *ShadowBase);
1207   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1208                     size_t Begin, size_t End, IRBuilder<> &IRB,
1209                     Value *ShadowBase);
1210   void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1211                           ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1212                           size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1213 
1214   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1215 
1216   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1217                                bool Dynamic);
1218   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1219                      Instruction *ThenTerm, Value *ValueIfFalse);
1220 };
1221 
1222 } // end anonymous namespace
1223 
1224 void LocationMetadata::parse(MDNode *MDN) {
1225   assert(MDN->getNumOperands() == 3);
1226   MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1227   Filename = DIFilename->getString();
1228   LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1229   ColumnNo =
1230       mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1231 }
1232 
1233 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1234 // we want to sanitize instead and reading this metadata on each pass over a
1235 // function instead of reading module level metadata at first.
1236 GlobalsMetadata::GlobalsMetadata(Module &M) {
1237   NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1238   if (!Globals)
1239     return;
1240   for (auto MDN : Globals->operands()) {
1241     // Metadata node contains the global and the fields of "Entry".
1242     assert(MDN->getNumOperands() == 5);
1243     auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1244     // The optimizer may optimize away a global entirely.
1245     if (!V)
1246       continue;
1247     auto *StrippedV = V->stripPointerCasts();
1248     auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1249     if (!GV)
1250       continue;
1251     // We can already have an entry for GV if it was merged with another
1252     // global.
1253     Entry &E = Entries[GV];
1254     if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1255       E.SourceLoc.parse(Loc);
1256     if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1257       E.Name = Name->getString();
1258     ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1259     E.IsDynInit |= IsDynInit->isOne();
1260     ConstantInt *IsExcluded =
1261         mdconst::extract<ConstantInt>(MDN->getOperand(4));
1262     E.IsExcluded |= IsExcluded->isOne();
1263   }
1264 }
1265 
1266 AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1267 
1268 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1269                                                  ModuleAnalysisManager &AM) {
1270   return GlobalsMetadata(M);
1271 }
1272 
1273 PreservedAnalyses AddressSanitizerPass::run(Function &F,
1274                                             AnalysisManager<Function> &AM) {
1275   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1276   Module &M = *F.getParent();
1277   if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1278     const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1279     AddressSanitizer Sanitizer(M, R, nullptr, Options.CompileKernel,
1280                                Options.Recover, Options.UseAfterScope,
1281                                Options.UseAfterReturn);
1282     if (Sanitizer.instrumentFunction(F, TLI))
1283       return PreservedAnalyses::none();
1284     return PreservedAnalyses::all();
1285   }
1286 
1287   report_fatal_error(
1288       "The ASanGlobalsMetadataAnalysis is required to run before "
1289       "AddressSanitizer can run");
1290   return PreservedAnalyses::all();
1291 }
1292 
1293 void AddressSanitizerPass::printPipeline(
1294     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1295   static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline(
1296       OS, MapClassName2PassName);
1297   OS << "<";
1298   if (Options.CompileKernel)
1299     OS << "kernel";
1300   OS << ">";
1301 }
1302 
1303 void ModuleAddressSanitizerPass::printPipeline(
1304     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1305   static_cast<PassInfoMixin<ModuleAddressSanitizerPass> *>(this)->printPipeline(
1306       OS, MapClassName2PassName);
1307   OS << "<";
1308   if (Options.CompileKernel)
1309     OS << "kernel";
1310   OS << ">";
1311 }
1312 
1313 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(
1314     const AddressSanitizerOptions &Options, bool UseGlobalGC,
1315     bool UseOdrIndicator, AsanDtorKind DestructorKind)
1316     : Options(Options), UseGlobalGC(UseGlobalGC),
1317       UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {}
1318 
1319 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1320                                                   ModuleAnalysisManager &MAM) {
1321   GlobalsMetadata &GlobalsMD = MAM.getResult<ASanGlobalsMetadataAnalysis>(M);
1322   ModuleAddressSanitizer ModuleSanitizer(M, &GlobalsMD, Options.CompileKernel,
1323                                          Options.Recover, UseGlobalGC,
1324                                          UseOdrIndicator, DestructorKind);
1325   bool Modified = false;
1326   auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1327   const StackSafetyGlobalInfo *const SSGI =
1328       ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr;
1329   for (Function &F : M) {
1330     AddressSanitizer FunctionSanitizer(
1331         M, &GlobalsMD, SSGI, Options.CompileKernel, Options.Recover,
1332         Options.UseAfterScope, Options.UseAfterReturn);
1333     const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1334     Modified |= FunctionSanitizer.instrumentFunction(F, &TLI);
1335   }
1336   Modified |= ModuleSanitizer.instrumentModule(M);
1337   return Modified ? PreservedAnalyses::none() : PreservedAnalyses::all();
1338 }
1339 
1340 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
1341                 "Read metadata to mark which globals should be instrumented "
1342                 "when running ASan.",
1343                 false, true)
1344 
1345 char AddressSanitizerLegacyPass::ID = 0;
1346 
1347 INITIALIZE_PASS_BEGIN(
1348     AddressSanitizerLegacyPass, "asan",
1349     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1350     false)
1351 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
1352 INITIALIZE_PASS_DEPENDENCY(StackSafetyGlobalInfoWrapperPass)
1353 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1354 INITIALIZE_PASS_END(
1355     AddressSanitizerLegacyPass, "asan",
1356     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1357     false)
1358 
1359 FunctionPass *llvm::createAddressSanitizerFunctionPass(
1360     bool CompileKernel, bool Recover, bool UseAfterScope,
1361     AsanDetectStackUseAfterReturnMode UseAfterReturn) {
1362   assert(!CompileKernel || Recover);
1363   return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope,
1364                                         UseAfterReturn);
1365 }
1366 
1367 char ModuleAddressSanitizerLegacyPass::ID = 0;
1368 
1369 INITIALIZE_PASS(
1370     ModuleAddressSanitizerLegacyPass, "asan-module",
1371     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1372     "ModulePass",
1373     false, false)
1374 
1375 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1376     bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator,
1377     AsanDtorKind Destructor) {
1378   assert(!CompileKernel || Recover);
1379   return new ModuleAddressSanitizerLegacyPass(
1380       CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor);
1381 }
1382 
1383 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1384   size_t Res = countTrailingZeros(TypeSize / 8);
1385   assert(Res < kNumberOfAccessSizes);
1386   return Res;
1387 }
1388 
1389 /// Create a global describing a source location.
1390 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1391                                                        LocationMetadata MD) {
1392   Constant *LocData[] = {
1393       createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1394       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1395       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1396   };
1397   auto LocStruct = ConstantStruct::getAnon(LocData);
1398   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1399                                GlobalValue::PrivateLinkage, LocStruct,
1400                                kAsanGenPrefix);
1401   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1402   return GV;
1403 }
1404 
1405 /// Check if \p G has been created by a trusted compiler pass.
1406 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1407   // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1408   if (G->getName().startswith("llvm."))
1409     return true;
1410 
1411   // Do not instrument asan globals.
1412   if (G->getName().startswith(kAsanGenPrefix) ||
1413       G->getName().startswith(kSanCovGenPrefix) ||
1414       G->getName().startswith(kODRGenPrefix))
1415     return true;
1416 
1417   // Do not instrument gcov counter arrays.
1418   if (G->getName() == "__llvm_gcov_ctr")
1419     return true;
1420 
1421   return false;
1422 }
1423 
1424 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
1425   Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1426   unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
1427   if (AddrSpace == 3 || AddrSpace == 5)
1428     return true;
1429   return false;
1430 }
1431 
1432 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1433   // Shadow >> scale
1434   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1435   if (Mapping.Offset == 0) return Shadow;
1436   // (Shadow >> scale) | offset
1437   Value *ShadowBase;
1438   if (LocalDynamicShadow)
1439     ShadowBase = LocalDynamicShadow;
1440   else
1441     ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1442   if (Mapping.OrShadowOffset)
1443     return IRB.CreateOr(Shadow, ShadowBase);
1444   else
1445     return IRB.CreateAdd(Shadow, ShadowBase);
1446 }
1447 
1448 // Instrument memset/memmove/memcpy
1449 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1450   IRBuilder<> IRB(MI);
1451   if (isa<MemTransferInst>(MI)) {
1452     IRB.CreateCall(
1453         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1454         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1455          IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1456          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1457   } else if (isa<MemSetInst>(MI)) {
1458     IRB.CreateCall(
1459         AsanMemset,
1460         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1461          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1462          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1463   }
1464   MI->eraseFromParent();
1465 }
1466 
1467 /// Check if we want (and can) handle this alloca.
1468 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1469   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1470 
1471   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1472     return PreviouslySeenAllocaInfo->getSecond();
1473 
1474   bool IsInteresting =
1475       (AI.getAllocatedType()->isSized() &&
1476        // alloca() may be called with 0 size, ignore it.
1477        ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1478        // We are only interested in allocas not promotable to registers.
1479        // Promotable allocas are common under -O0.
1480        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1481        // inalloca allocas are not treated as static, and we don't want
1482        // dynamic alloca instrumentation for them as well.
1483        !AI.isUsedWithInAlloca() &&
1484        // swifterror allocas are register promoted by ISel
1485        !AI.isSwiftError());
1486 
1487   ProcessedAllocas[&AI] = IsInteresting;
1488   return IsInteresting;
1489 }
1490 
1491 bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) {
1492   // Instrument acesses from different address spaces only for AMDGPU.
1493   Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1494   if (PtrTy->getPointerAddressSpace() != 0 &&
1495       !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
1496     return true;
1497 
1498   // Ignore swifterror addresses.
1499   // swifterror memory addresses are mem2reg promoted by instruction
1500   // selection. As such they cannot have regular uses like an instrumentation
1501   // function and it makes no sense to track them as memory.
1502   if (Ptr->isSwiftError())
1503     return true;
1504 
1505   // Treat memory accesses to promotable allocas as non-interesting since they
1506   // will not cause memory violations. This greatly speeds up the instrumented
1507   // executable at -O0.
1508   if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1509     if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1510       return true;
1511 
1512   if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) &&
1513       findAllocaForValue(Ptr))
1514     return true;
1515 
1516   return false;
1517 }
1518 
1519 void AddressSanitizer::getInterestingMemoryOperands(
1520     Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1521   // Skip memory accesses inserted by another instrumentation.
1522   if (I->hasMetadata("nosanitize"))
1523     return;
1524 
1525   // Do not instrument the load fetching the dynamic shadow address.
1526   if (LocalDynamicShadow == I)
1527     return;
1528 
1529   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1530     if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand()))
1531       return;
1532     Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1533                              LI->getType(), LI->getAlign());
1534   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1535     if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand()))
1536       return;
1537     Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1538                              SI->getValueOperand()->getType(), SI->getAlign());
1539   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1540     if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand()))
1541       return;
1542     Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1543                              RMW->getValOperand()->getType(), None);
1544   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1545     if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand()))
1546       return;
1547     Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1548                              XCHG->getCompareOperand()->getType(), None);
1549   } else if (auto CI = dyn_cast<CallInst>(I)) {
1550     if (CI->getIntrinsicID() == Intrinsic::masked_load ||
1551         CI->getIntrinsicID() == Intrinsic::masked_store) {
1552       bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_store;
1553       // Masked store has an initial operand for the value.
1554       unsigned OpOffset = IsWrite ? 1 : 0;
1555       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1556         return;
1557 
1558       auto BasePtr = CI->getOperand(OpOffset);
1559       if (ignoreAccess(I, BasePtr))
1560         return;
1561       Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1562       MaybeAlign Alignment = Align(1);
1563       // Otherwise no alignment guarantees. We probably got Undef.
1564       if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1565         Alignment = Op->getMaybeAlignValue();
1566       Value *Mask = CI->getOperand(2 + OpOffset);
1567       Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1568     } else {
1569       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) {
1570         if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1571             ignoreAccess(I, CI->getArgOperand(ArgNo)))
1572           continue;
1573         Type *Ty = CI->getParamByValType(ArgNo);
1574         Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
1575       }
1576     }
1577   }
1578 }
1579 
1580 static bool isPointerOperand(Value *V) {
1581   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1582 }
1583 
1584 // This is a rough heuristic; it may cause both false positives and
1585 // false negatives. The proper implementation requires cooperation with
1586 // the frontend.
1587 static bool isInterestingPointerComparison(Instruction *I) {
1588   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1589     if (!Cmp->isRelational())
1590       return false;
1591   } else {
1592     return false;
1593   }
1594   return isPointerOperand(I->getOperand(0)) &&
1595          isPointerOperand(I->getOperand(1));
1596 }
1597 
1598 // This is a rough heuristic; it may cause both false positives and
1599 // false negatives. The proper implementation requires cooperation with
1600 // the frontend.
1601 static bool isInterestingPointerSubtraction(Instruction *I) {
1602   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1603     if (BO->getOpcode() != Instruction::Sub)
1604       return false;
1605   } else {
1606     return false;
1607   }
1608   return isPointerOperand(I->getOperand(0)) &&
1609          isPointerOperand(I->getOperand(1));
1610 }
1611 
1612 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1613   // If a global variable does not have dynamic initialization we don't
1614   // have to instrument it.  However, if a global does not have initializer
1615   // at all, we assume it has dynamic initializer (in other TU).
1616   //
1617   // FIXME: Metadata should be attched directly to the global directly instead
1618   // of being added to llvm.asan.globals.
1619   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1620 }
1621 
1622 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1623     Instruction *I) {
1624   IRBuilder<> IRB(I);
1625   FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1626   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1627   for (Value *&i : Param) {
1628     if (i->getType()->isPointerTy())
1629       i = IRB.CreatePointerCast(i, IntptrTy);
1630   }
1631   IRB.CreateCall(F, Param);
1632 }
1633 
1634 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1635                                 Instruction *InsertBefore, Value *Addr,
1636                                 MaybeAlign Alignment, unsigned Granularity,
1637                                 uint32_t TypeSize, bool IsWrite,
1638                                 Value *SizeArgument, bool UseCalls,
1639                                 uint32_t Exp) {
1640   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1641   // if the data is properly aligned.
1642   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1643        TypeSize == 128) &&
1644       (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8))
1645     return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1646                                    nullptr, UseCalls, Exp);
1647   Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1648                                          IsWrite, nullptr, UseCalls, Exp);
1649 }
1650 
1651 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1652                                         const DataLayout &DL, Type *IntptrTy,
1653                                         Value *Mask, Instruction *I,
1654                                         Value *Addr, MaybeAlign Alignment,
1655                                         unsigned Granularity, Type *OpType,
1656                                         bool IsWrite, Value *SizeArgument,
1657                                         bool UseCalls, uint32_t Exp) {
1658   auto *VTy = cast<FixedVectorType>(OpType);
1659   uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1660   unsigned Num = VTy->getNumElements();
1661   auto Zero = ConstantInt::get(IntptrTy, 0);
1662   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1663     Value *InstrumentedAddress = nullptr;
1664     Instruction *InsertBefore = I;
1665     if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1666       // dyn_cast as we might get UndefValue
1667       if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1668         if (Masked->isZero())
1669           // Mask is constant false, so no instrumentation needed.
1670           continue;
1671         // If we have a true or undef value, fall through to doInstrumentAddress
1672         // with InsertBefore == I
1673       }
1674     } else {
1675       IRBuilder<> IRB(I);
1676       Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1677       Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1678       InsertBefore = ThenTerm;
1679     }
1680 
1681     IRBuilder<> IRB(InsertBefore);
1682     InstrumentedAddress =
1683         IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1684     doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1685                         Granularity, ElemTypeSize, IsWrite, SizeArgument,
1686                         UseCalls, Exp);
1687   }
1688 }
1689 
1690 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1691                                      InterestingMemoryOperand &O, bool UseCalls,
1692                                      const DataLayout &DL) {
1693   Value *Addr = O.getPtr();
1694 
1695   // Optimization experiments.
1696   // The experiments can be used to evaluate potential optimizations that remove
1697   // instrumentation (assess false negatives). Instead of completely removing
1698   // some instrumentation, you set Exp to a non-zero value (mask of optimization
1699   // experiments that want to remove instrumentation of this instruction).
1700   // If Exp is non-zero, this pass will emit special calls into runtime
1701   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1702   // make runtime terminate the program in a special way (with a different
1703   // exit status). Then you run the new compiler on a buggy corpus, collect
1704   // the special terminations (ideally, you don't see them at all -- no false
1705   // negatives) and make the decision on the optimization.
1706   uint32_t Exp = ClForceExperiment;
1707 
1708   if (ClOpt && ClOptGlobals) {
1709     // If initialization order checking is disabled, a simple access to a
1710     // dynamically initialized global is always valid.
1711     GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
1712     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1713         isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1714       NumOptimizedAccessesToGlobalVar++;
1715       return;
1716     }
1717   }
1718 
1719   if (ClOpt && ClOptStack) {
1720     // A direct inbounds access to a stack variable is always valid.
1721     if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
1722         isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1723       NumOptimizedAccessesToStackVar++;
1724       return;
1725     }
1726   }
1727 
1728   if (O.IsWrite)
1729     NumInstrumentedWrites++;
1730   else
1731     NumInstrumentedReads++;
1732 
1733   unsigned Granularity = 1 << Mapping.Scale;
1734   if (O.MaybeMask) {
1735     instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(),
1736                                 Addr, O.Alignment, Granularity, O.OpType,
1737                                 O.IsWrite, nullptr, UseCalls, Exp);
1738   } else {
1739     doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1740                         Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls,
1741                         Exp);
1742   }
1743 }
1744 
1745 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1746                                                  Value *Addr, bool IsWrite,
1747                                                  size_t AccessSizeIndex,
1748                                                  Value *SizeArgument,
1749                                                  uint32_t Exp) {
1750   IRBuilder<> IRB(InsertBefore);
1751   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1752   CallInst *Call = nullptr;
1753   if (SizeArgument) {
1754     if (Exp == 0)
1755       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1756                             {Addr, SizeArgument});
1757     else
1758       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1759                             {Addr, SizeArgument, ExpVal});
1760   } else {
1761     if (Exp == 0)
1762       Call =
1763           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1764     else
1765       Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1766                             {Addr, ExpVal});
1767   }
1768 
1769   Call->setCannotMerge();
1770   return Call;
1771 }
1772 
1773 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1774                                            Value *ShadowValue,
1775                                            uint32_t TypeSize) {
1776   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1777   // Addr & (Granularity - 1)
1778   Value *LastAccessedByte =
1779       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1780   // (Addr & (Granularity - 1)) + size - 1
1781   if (TypeSize / 8 > 1)
1782     LastAccessedByte = IRB.CreateAdd(
1783         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1784   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1785   LastAccessedByte =
1786       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1787   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1788   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1789 }
1790 
1791 Instruction *AddressSanitizer::instrumentAMDGPUAddress(
1792     Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
1793     uint32_t TypeSize, bool IsWrite, Value *SizeArgument) {
1794   // Do not instrument unsupported addrspaces.
1795   if (isUnsupportedAMDGPUAddrspace(Addr))
1796     return nullptr;
1797   Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1798   // Follow host instrumentation for global and constant addresses.
1799   if (PtrTy->getPointerAddressSpace() != 0)
1800     return InsertBefore;
1801   // Instrument generic addresses in supported addressspaces.
1802   IRBuilder<> IRB(InsertBefore);
1803   Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy());
1804   Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong});
1805   Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong});
1806   Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
1807   Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate);
1808   Value *AddrSpaceZeroLanding =
1809       SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
1810   InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
1811   return InsertBefore;
1812 }
1813 
1814 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1815                                          Instruction *InsertBefore, Value *Addr,
1816                                          uint32_t TypeSize, bool IsWrite,
1817                                          Value *SizeArgument, bool UseCalls,
1818                                          uint32_t Exp) {
1819   if (TargetTriple.isAMDGPU()) {
1820     InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
1821                                            TypeSize, IsWrite, SizeArgument);
1822     if (!InsertBefore)
1823       return;
1824   }
1825 
1826   IRBuilder<> IRB(InsertBefore);
1827   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1828   const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
1829 
1830   if (UseCalls && ClOptimizeCallbacks) {
1831     const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
1832     Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1833     IRB.CreateCall(
1834         Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess),
1835         {IRB.CreatePointerCast(Addr, Int8PtrTy),
1836          ConstantInt::get(Int32Ty, AccessInfo.Packed)});
1837     return;
1838   }
1839 
1840   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1841   if (UseCalls) {
1842     if (Exp == 0)
1843       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1844                      AddrLong);
1845     else
1846       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1847                      {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1848     return;
1849   }
1850 
1851   Type *ShadowTy =
1852       IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1853   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1854   Value *ShadowPtr = memToShadow(AddrLong, IRB);
1855   Value *CmpVal = Constant::getNullValue(ShadowTy);
1856   Value *ShadowValue =
1857       IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1858 
1859   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1860   size_t Granularity = 1ULL << Mapping.Scale;
1861   Instruction *CrashTerm = nullptr;
1862 
1863   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1864     // We use branch weights for the slow path check, to indicate that the slow
1865     // path is rarely taken. This seems to be the case for SPEC benchmarks.
1866     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1867         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1868     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1869     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1870     IRB.SetInsertPoint(CheckTerm);
1871     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1872     if (Recover) {
1873       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1874     } else {
1875       BasicBlock *CrashBlock =
1876         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1877       CrashTerm = new UnreachableInst(*C, CrashBlock);
1878       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1879       ReplaceInstWithInst(CheckTerm, NewTerm);
1880     }
1881   } else {
1882     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1883   }
1884 
1885   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1886                                          AccessSizeIndex, SizeArgument, Exp);
1887   Crash->setDebugLoc(OrigIns->getDebugLoc());
1888 }
1889 
1890 // Instrument unusual size or unusual alignment.
1891 // We can not do it with a single check, so we do 1-byte check for the first
1892 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1893 // to report the actual access size.
1894 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1895     Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1896     bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1897   IRBuilder<> IRB(InsertBefore);
1898   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1899   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1900   if (UseCalls) {
1901     if (Exp == 0)
1902       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1903                      {AddrLong, Size});
1904     else
1905       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1906                      {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1907   } else {
1908     Value *LastByte = IRB.CreateIntToPtr(
1909         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1910         Addr->getType());
1911     instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1912     instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1913   }
1914 }
1915 
1916 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1917                                                   GlobalValue *ModuleName) {
1918   // Set up the arguments to our poison/unpoison functions.
1919   IRBuilder<> IRB(&GlobalInit.front(),
1920                   GlobalInit.front().getFirstInsertionPt());
1921 
1922   // Add a call to poison all external globals before the given function starts.
1923   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1924   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1925 
1926   // Add calls to unpoison all globals before each return instruction.
1927   for (auto &BB : GlobalInit.getBasicBlockList())
1928     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1929       CallInst::Create(AsanUnpoisonGlobals, "", RI);
1930 }
1931 
1932 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1933     Module &M, GlobalValue *ModuleName) {
1934   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1935   if (!GV)
1936     return;
1937 
1938   ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1939   if (!CA)
1940     return;
1941 
1942   for (Use &OP : CA->operands()) {
1943     if (isa<ConstantAggregateZero>(OP)) continue;
1944     ConstantStruct *CS = cast<ConstantStruct>(OP);
1945 
1946     // Must have a function or null ptr.
1947     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1948       if (F->getName() == kAsanModuleCtorName) continue;
1949       auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1950       // Don't instrument CTORs that will run before asan.module_ctor.
1951       if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1952         continue;
1953       poisonOneInitializer(*F, ModuleName);
1954     }
1955   }
1956 }
1957 
1958 const GlobalVariable *
1959 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
1960   // In case this function should be expanded to include rules that do not just
1961   // apply when CompileKernel is true, either guard all existing rules with an
1962   // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
1963   // should also apply to user space.
1964   assert(CompileKernel && "Only expecting to be called when compiling kernel");
1965 
1966   const Constant *C = GA.getAliasee();
1967 
1968   // When compiling the kernel, globals that are aliased by symbols prefixed
1969   // by "__" are special and cannot be padded with a redzone.
1970   if (GA.getName().startswith("__"))
1971     return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
1972 
1973   return nullptr;
1974 }
1975 
1976 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
1977   Type *Ty = G->getValueType();
1978   LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1979 
1980   // FIXME: Metadata should be attched directly to the global directly instead
1981   // of being added to llvm.asan.globals.
1982   if (GlobalsMD.get(G).IsExcluded) return false;
1983   if (!Ty->isSized()) return false;
1984   if (!G->hasInitializer()) return false;
1985   // Globals in address space 1 and 4 are supported for AMDGPU.
1986   if (G->getAddressSpace() &&
1987       !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
1988     return false;
1989   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1990   // Two problems with thread-locals:
1991   //   - The address of the main thread's copy can't be computed at link-time.
1992   //   - Need to poison all copies, not just the main thread's one.
1993   if (G->isThreadLocal()) return false;
1994   // For now, just ignore this Global if the alignment is large.
1995   if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false;
1996 
1997   // For non-COFF targets, only instrument globals known to be defined by this
1998   // TU.
1999   // FIXME: We can instrument comdat globals on ELF if we are using the
2000   // GC-friendly metadata scheme.
2001   if (!TargetTriple.isOSBinFormatCOFF()) {
2002     if (!G->hasExactDefinition() || G->hasComdat())
2003       return false;
2004   } else {
2005     // On COFF, don't instrument non-ODR linkages.
2006     if (G->isInterposable())
2007       return false;
2008   }
2009 
2010   // If a comdat is present, it must have a selection kind that implies ODR
2011   // semantics: no duplicates, any, or exact match.
2012   if (Comdat *C = G->getComdat()) {
2013     switch (C->getSelectionKind()) {
2014     case Comdat::Any:
2015     case Comdat::ExactMatch:
2016     case Comdat::NoDeduplicate:
2017       break;
2018     case Comdat::Largest:
2019     case Comdat::SameSize:
2020       return false;
2021     }
2022   }
2023 
2024   if (G->hasSection()) {
2025     // The kernel uses explicit sections for mostly special global variables
2026     // that we should not instrument. E.g. the kernel may rely on their layout
2027     // without redzones, or remove them at link time ("discard.*"), etc.
2028     if (CompileKernel)
2029       return false;
2030 
2031     StringRef Section = G->getSection();
2032 
2033     // Globals from llvm.metadata aren't emitted, do not instrument them.
2034     if (Section == "llvm.metadata") return false;
2035     // Do not instrument globals from special LLVM sections.
2036     if (Section.contains("__llvm") || Section.contains("__LLVM"))
2037       return false;
2038 
2039     // Do not instrument function pointers to initialization and termination
2040     // routines: dynamic linker will not properly handle redzones.
2041     if (Section.startswith(".preinit_array") ||
2042         Section.startswith(".init_array") ||
2043         Section.startswith(".fini_array")) {
2044       return false;
2045     }
2046 
2047     // Do not instrument user-defined sections (with names resembling
2048     // valid C identifiers)
2049     if (TargetTriple.isOSBinFormatELF()) {
2050       if (llvm::all_of(Section,
2051                        [](char c) { return llvm::isAlnum(c) || c == '_'; }))
2052         return false;
2053     }
2054 
2055     // On COFF, if the section name contains '$', it is highly likely that the
2056     // user is using section sorting to create an array of globals similar to
2057     // the way initialization callbacks are registered in .init_array and
2058     // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
2059     // to such globals is counterproductive, because the intent is that they
2060     // will form an array, and out-of-bounds accesses are expected.
2061     // See https://github.com/google/sanitizers/issues/305
2062     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
2063     if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
2064       LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
2065                         << *G << "\n");
2066       return false;
2067     }
2068 
2069     if (TargetTriple.isOSBinFormatMachO()) {
2070       StringRef ParsedSegment, ParsedSection;
2071       unsigned TAA = 0, StubSize = 0;
2072       bool TAAParsed;
2073       cantFail(MCSectionMachO::ParseSectionSpecifier(
2074           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
2075 
2076       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
2077       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
2078       // them.
2079       if (ParsedSegment == "__OBJC" ||
2080           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
2081         LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
2082         return false;
2083       }
2084       // See https://github.com/google/sanitizers/issues/32
2085       // Constant CFString instances are compiled in the following way:
2086       //  -- the string buffer is emitted into
2087       //     __TEXT,__cstring,cstring_literals
2088       //  -- the constant NSConstantString structure referencing that buffer
2089       //     is placed into __DATA,__cfstring
2090       // Therefore there's no point in placing redzones into __DATA,__cfstring.
2091       // Moreover, it causes the linker to crash on OS X 10.7
2092       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
2093         LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
2094         return false;
2095       }
2096       // The linker merges the contents of cstring_literals and removes the
2097       // trailing zeroes.
2098       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
2099         LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
2100         return false;
2101       }
2102     }
2103   }
2104 
2105   if (CompileKernel) {
2106     // Globals that prefixed by "__" are special and cannot be padded with a
2107     // redzone.
2108     if (G->getName().startswith("__"))
2109       return false;
2110   }
2111 
2112   return true;
2113 }
2114 
2115 // On Mach-O platforms, we emit global metadata in a separate section of the
2116 // binary in order to allow the linker to properly dead strip. This is only
2117 // supported on recent versions of ld64.
2118 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
2119   if (!TargetTriple.isOSBinFormatMachO())
2120     return false;
2121 
2122   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
2123     return true;
2124   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
2125     return true;
2126   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
2127     return true;
2128 
2129   return false;
2130 }
2131 
2132 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
2133   switch (TargetTriple.getObjectFormat()) {
2134   case Triple::COFF:  return ".ASAN$GL";
2135   case Triple::ELF:   return "asan_globals";
2136   case Triple::MachO: return "__DATA,__asan_globals,regular";
2137   case Triple::Wasm:
2138   case Triple::GOFF:
2139   case Triple::XCOFF:
2140     report_fatal_error(
2141         "ModuleAddressSanitizer not implemented for object file format");
2142   case Triple::UnknownObjectFormat:
2143     break;
2144   }
2145   llvm_unreachable("unsupported object format");
2146 }
2147 
2148 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
2149   IRBuilder<> IRB(*C);
2150 
2151   // Declare our poisoning and unpoisoning functions.
2152   AsanPoisonGlobals =
2153       M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
2154   AsanUnpoisonGlobals =
2155       M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
2156 
2157   // Declare functions that register/unregister globals.
2158   AsanRegisterGlobals = M.getOrInsertFunction(
2159       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2160   AsanUnregisterGlobals = M.getOrInsertFunction(
2161       kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2162 
2163   // Declare the functions that find globals in a shared object and then invoke
2164   // the (un)register function on them.
2165   AsanRegisterImageGlobals = M.getOrInsertFunction(
2166       kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2167   AsanUnregisterImageGlobals = M.getOrInsertFunction(
2168       kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2169 
2170   AsanRegisterElfGlobals =
2171       M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
2172                             IntptrTy, IntptrTy, IntptrTy);
2173   AsanUnregisterElfGlobals =
2174       M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
2175                             IntptrTy, IntptrTy, IntptrTy);
2176 }
2177 
2178 // Put the metadata and the instrumented global in the same group. This ensures
2179 // that the metadata is discarded if the instrumented global is discarded.
2180 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2181     GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2182   Module &M = *G->getParent();
2183   Comdat *C = G->getComdat();
2184   if (!C) {
2185     if (!G->hasName()) {
2186       // If G is unnamed, it must be internal. Give it an artificial name
2187       // so we can put it in a comdat.
2188       assert(G->hasLocalLinkage());
2189       G->setName(Twine(kAsanGenPrefix) + "_anon_global");
2190     }
2191 
2192     if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2193       std::string Name = std::string(G->getName());
2194       Name += InternalSuffix;
2195       C = M.getOrInsertComdat(Name);
2196     } else {
2197       C = M.getOrInsertComdat(G->getName());
2198     }
2199 
2200     // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2201     // linkage to internal linkage so that a symbol table entry is emitted. This
2202     // is necessary in order to create the comdat group.
2203     if (TargetTriple.isOSBinFormatCOFF()) {
2204       C->setSelectionKind(Comdat::NoDeduplicate);
2205       if (G->hasPrivateLinkage())
2206         G->setLinkage(GlobalValue::InternalLinkage);
2207     }
2208     G->setComdat(C);
2209   }
2210 
2211   assert(G->hasComdat());
2212   Metadata->setComdat(G->getComdat());
2213 }
2214 
2215 // Create a separate metadata global and put it in the appropriate ASan
2216 // global registration section.
2217 GlobalVariable *
2218 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2219                                              StringRef OriginalName) {
2220   auto Linkage = TargetTriple.isOSBinFormatMachO()
2221                      ? GlobalVariable::InternalLinkage
2222                      : GlobalVariable::PrivateLinkage;
2223   GlobalVariable *Metadata = new GlobalVariable(
2224       M, Initializer->getType(), false, Linkage, Initializer,
2225       Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2226   Metadata->setSection(getGlobalMetadataSection());
2227   return Metadata;
2228 }
2229 
2230 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2231   AsanDtorFunction = Function::createWithDefaultAttr(
2232       FunctionType::get(Type::getVoidTy(*C), false),
2233       GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
2234   AsanDtorFunction->addFnAttr(Attribute::NoUnwind);
2235   // Ensure Dtor cannot be discarded, even if in a comdat.
2236   appendToUsed(M, {AsanDtorFunction});
2237   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2238 
2239   return ReturnInst::Create(*C, AsanDtorBB);
2240 }
2241 
2242 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2243     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2244     ArrayRef<Constant *> MetadataInitializers) {
2245   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2246   auto &DL = M.getDataLayout();
2247 
2248   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2249   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2250     Constant *Initializer = MetadataInitializers[i];
2251     GlobalVariable *G = ExtendedGlobals[i];
2252     GlobalVariable *Metadata =
2253         CreateMetadataGlobal(M, Initializer, G->getName());
2254     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2255     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2256     MetadataGlobals[i] = Metadata;
2257 
2258     // The MSVC linker always inserts padding when linking incrementally. We
2259     // cope with that by aligning each struct to its size, which must be a power
2260     // of two.
2261     unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2262     assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2263            "global metadata will not be padded appropriately");
2264     Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2265 
2266     SetComdatForGlobalMetadata(G, Metadata, "");
2267   }
2268 
2269   // Update llvm.compiler.used, adding the new metadata globals. This is
2270   // needed so that during LTO these variables stay alive.
2271   if (!MetadataGlobals.empty())
2272     appendToCompilerUsed(M, MetadataGlobals);
2273 }
2274 
2275 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2276     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2277     ArrayRef<Constant *> MetadataInitializers,
2278     const std::string &UniqueModuleId) {
2279   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2280 
2281   // Putting globals in a comdat changes the semantic and potentially cause
2282   // false negative odr violations at link time. If odr indicators are used, we
2283   // keep the comdat sections, as link time odr violations will be dectected on
2284   // the odr indicator symbols.
2285   bool UseComdatForGlobalsGC = UseOdrIndicator;
2286 
2287   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2288   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2289     GlobalVariable *G = ExtendedGlobals[i];
2290     GlobalVariable *Metadata =
2291         CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2292     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2293     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2294     MetadataGlobals[i] = Metadata;
2295 
2296     if (UseComdatForGlobalsGC)
2297       SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2298   }
2299 
2300   // Update llvm.compiler.used, adding the new metadata globals. This is
2301   // needed so that during LTO these variables stay alive.
2302   if (!MetadataGlobals.empty())
2303     appendToCompilerUsed(M, MetadataGlobals);
2304 
2305   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2306   // to look up the loaded image that contains it. Second, we can store in it
2307   // whether registration has already occurred, to prevent duplicate
2308   // registration.
2309   //
2310   // Common linkage ensures that there is only one global per shared library.
2311   GlobalVariable *RegisteredFlag = new GlobalVariable(
2312       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2313       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2314   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2315 
2316   // Create start and stop symbols.
2317   GlobalVariable *StartELFMetadata = new GlobalVariable(
2318       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2319       "__start_" + getGlobalMetadataSection());
2320   StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2321   GlobalVariable *StopELFMetadata = new GlobalVariable(
2322       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2323       "__stop_" + getGlobalMetadataSection());
2324   StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2325 
2326   // Create a call to register the globals with the runtime.
2327   IRB.CreateCall(AsanRegisterElfGlobals,
2328                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2329                   IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2330                   IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2331 
2332   // We also need to unregister globals at the end, e.g., when a shared library
2333   // gets closed.
2334   if (DestructorKind != AsanDtorKind::None) {
2335     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2336     IrbDtor.CreateCall(AsanUnregisterElfGlobals,
2337                        {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2338                         IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2339                         IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2340   }
2341 }
2342 
2343 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2344     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2345     ArrayRef<Constant *> MetadataInitializers) {
2346   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2347 
2348   // On recent Mach-O platforms, use a structure which binds the liveness of
2349   // the global variable to the metadata struct. Keep the list of "Liveness" GV
2350   // created to be added to llvm.compiler.used
2351   StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2352   SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2353 
2354   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2355     Constant *Initializer = MetadataInitializers[i];
2356     GlobalVariable *G = ExtendedGlobals[i];
2357     GlobalVariable *Metadata =
2358         CreateMetadataGlobal(M, Initializer, G->getName());
2359 
2360     // On recent Mach-O platforms, we emit the global metadata in a way that
2361     // allows the linker to properly strip dead globals.
2362     auto LivenessBinder =
2363         ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2364                             ConstantExpr::getPointerCast(Metadata, IntptrTy));
2365     GlobalVariable *Liveness = new GlobalVariable(
2366         M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2367         Twine("__asan_binder_") + G->getName());
2368     Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2369     LivenessGlobals[i] = Liveness;
2370   }
2371 
2372   // Update llvm.compiler.used, adding the new liveness globals. This is
2373   // needed so that during LTO these variables stay alive. The alternative
2374   // would be to have the linker handling the LTO symbols, but libLTO
2375   // current API does not expose access to the section for each symbol.
2376   if (!LivenessGlobals.empty())
2377     appendToCompilerUsed(M, LivenessGlobals);
2378 
2379   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2380   // to look up the loaded image that contains it. Second, we can store in it
2381   // whether registration has already occurred, to prevent duplicate
2382   // registration.
2383   //
2384   // common linkage ensures that there is only one global per shared library.
2385   GlobalVariable *RegisteredFlag = new GlobalVariable(
2386       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2387       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2388   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2389 
2390   IRB.CreateCall(AsanRegisterImageGlobals,
2391                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2392 
2393   // We also need to unregister globals at the end, e.g., when a shared library
2394   // gets closed.
2395   if (DestructorKind != AsanDtorKind::None) {
2396     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2397     IrbDtor.CreateCall(AsanUnregisterImageGlobals,
2398                        {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2399   }
2400 }
2401 
2402 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2403     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2404     ArrayRef<Constant *> MetadataInitializers) {
2405   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2406   unsigned N = ExtendedGlobals.size();
2407   assert(N > 0);
2408 
2409   // On platforms that don't have a custom metadata section, we emit an array
2410   // of global metadata structures.
2411   ArrayType *ArrayOfGlobalStructTy =
2412       ArrayType::get(MetadataInitializers[0]->getType(), N);
2413   auto AllGlobals = new GlobalVariable(
2414       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2415       ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2416   if (Mapping.Scale > 3)
2417     AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2418 
2419   IRB.CreateCall(AsanRegisterGlobals,
2420                  {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2421                   ConstantInt::get(IntptrTy, N)});
2422 
2423   // We also need to unregister globals at the end, e.g., when a shared library
2424   // gets closed.
2425   if (DestructorKind != AsanDtorKind::None) {
2426     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2427     IrbDtor.CreateCall(AsanUnregisterGlobals,
2428                        {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2429                         ConstantInt::get(IntptrTy, N)});
2430   }
2431 }
2432 
2433 // This function replaces all global variables with new variables that have
2434 // trailing redzones. It also creates a function that poisons
2435 // redzones and inserts this function into llvm.global_ctors.
2436 // Sets *CtorComdat to true if the global registration code emitted into the
2437 // asan constructor is comdat-compatible.
2438 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2439                                                bool *CtorComdat) {
2440   *CtorComdat = false;
2441 
2442   // Build set of globals that are aliased by some GA, where
2443   // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
2444   SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
2445   if (CompileKernel) {
2446     for (auto &GA : M.aliases()) {
2447       if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
2448         AliasedGlobalExclusions.insert(GV);
2449     }
2450   }
2451 
2452   SmallVector<GlobalVariable *, 16> GlobalsToChange;
2453   for (auto &G : M.globals()) {
2454     if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
2455       GlobalsToChange.push_back(&G);
2456   }
2457 
2458   size_t n = GlobalsToChange.size();
2459   if (n == 0) {
2460     *CtorComdat = true;
2461     return false;
2462   }
2463 
2464   auto &DL = M.getDataLayout();
2465 
2466   // A global is described by a structure
2467   //   size_t beg;
2468   //   size_t size;
2469   //   size_t size_with_redzone;
2470   //   const char *name;
2471   //   const char *module_name;
2472   //   size_t has_dynamic_init;
2473   //   void *source_location;
2474   //   size_t odr_indicator;
2475   // We initialize an array of such structures and pass it to a run-time call.
2476   StructType *GlobalStructTy =
2477       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2478                       IntptrTy, IntptrTy, IntptrTy);
2479   SmallVector<GlobalVariable *, 16> NewGlobals(n);
2480   SmallVector<Constant *, 16> Initializers(n);
2481 
2482   bool HasDynamicallyInitializedGlobals = false;
2483 
2484   // We shouldn't merge same module names, as this string serves as unique
2485   // module ID in runtime.
2486   GlobalVariable *ModuleName = createPrivateGlobalForString(
2487       M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2488 
2489   for (size_t i = 0; i < n; i++) {
2490     GlobalVariable *G = GlobalsToChange[i];
2491 
2492     // FIXME: Metadata should be attched directly to the global directly instead
2493     // of being added to llvm.asan.globals.
2494     auto MD = GlobalsMD.get(G);
2495     StringRef NameForGlobal = G->getName();
2496     // Create string holding the global name (use global name from metadata
2497     // if it's available, otherwise just write the name of global variable).
2498     GlobalVariable *Name = createPrivateGlobalForString(
2499         M, MD.Name.empty() ? NameForGlobal : MD.Name,
2500         /*AllowMerging*/ true, kAsanGenPrefix);
2501 
2502     Type *Ty = G->getValueType();
2503     const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2504     const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2505     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2506 
2507     StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2508     Constant *NewInitializer = ConstantStruct::get(
2509         NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2510 
2511     // Create a new global variable with enough space for a redzone.
2512     GlobalValue::LinkageTypes Linkage = G->getLinkage();
2513     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2514       Linkage = GlobalValue::InternalLinkage;
2515     GlobalVariable *NewGlobal = new GlobalVariable(
2516         M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
2517         G->getThreadLocalMode(), G->getAddressSpace());
2518     NewGlobal->copyAttributesFrom(G);
2519     NewGlobal->setComdat(G->getComdat());
2520     NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal()));
2521     // Don't fold globals with redzones. ODR violation detector and redzone
2522     // poisoning implicitly creates a dependence on the global's address, so it
2523     // is no longer valid for it to be marked unnamed_addr.
2524     NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2525 
2526     // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2527     if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2528         G->isConstant()) {
2529       auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2530       if (Seq && Seq->isCString())
2531         NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2532     }
2533 
2534     // Transfer the debug info and type metadata.  The payload starts at offset
2535     // zero so we can copy the metadata over as is.
2536     NewGlobal->copyMetadata(G, 0);
2537 
2538     Value *Indices2[2];
2539     Indices2[0] = IRB.getInt32(0);
2540     Indices2[1] = IRB.getInt32(0);
2541 
2542     G->replaceAllUsesWith(
2543         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2544     NewGlobal->takeName(G);
2545     G->eraseFromParent();
2546     NewGlobals[i] = NewGlobal;
2547 
2548     Constant *SourceLoc;
2549     if (!MD.SourceLoc.empty()) {
2550       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2551       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2552     } else {
2553       SourceLoc = ConstantInt::get(IntptrTy, 0);
2554     }
2555 
2556     Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2557     GlobalValue *InstrumentedGlobal = NewGlobal;
2558 
2559     bool CanUsePrivateAliases =
2560         TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2561         TargetTriple.isOSBinFormatWasm();
2562     if (CanUsePrivateAliases && UsePrivateAlias) {
2563       // Create local alias for NewGlobal to avoid crash on ODR between
2564       // instrumented and non-instrumented libraries.
2565       InstrumentedGlobal =
2566           GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2567     }
2568 
2569     // ODR should not happen for local linkage.
2570     if (NewGlobal->hasLocalLinkage()) {
2571       ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2572                                                IRB.getInt8PtrTy());
2573     } else if (UseOdrIndicator) {
2574       // With local aliases, we need to provide another externally visible
2575       // symbol __odr_asan_XXX to detect ODR violation.
2576       auto *ODRIndicatorSym =
2577           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2578                              Constant::getNullValue(IRB.getInt8Ty()),
2579                              kODRGenPrefix + NameForGlobal, nullptr,
2580                              NewGlobal->getThreadLocalMode());
2581 
2582       // Set meaningful attributes for indicator symbol.
2583       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2584       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2585       ODRIndicatorSym->setAlignment(Align(1));
2586       ODRIndicator = ODRIndicatorSym;
2587     }
2588 
2589     Constant *Initializer = ConstantStruct::get(
2590         GlobalStructTy,
2591         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2592         ConstantInt::get(IntptrTy, SizeInBytes),
2593         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2594         ConstantExpr::getPointerCast(Name, IntptrTy),
2595         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2596         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2597         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2598 
2599     if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2600 
2601     LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2602 
2603     Initializers[i] = Initializer;
2604   }
2605 
2606   // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2607   // ConstantMerge'ing them.
2608   SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2609   for (size_t i = 0; i < n; i++) {
2610     GlobalVariable *G = NewGlobals[i];
2611     if (G->getName().empty()) continue;
2612     GlobalsToAddToUsedList.push_back(G);
2613   }
2614   appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2615 
2616   std::string ELFUniqueModuleId =
2617       (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2618                                                         : "";
2619 
2620   if (!ELFUniqueModuleId.empty()) {
2621     InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2622     *CtorComdat = true;
2623   } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2624     InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2625   } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2626     InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2627   } else {
2628     InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2629   }
2630 
2631   // Create calls for poisoning before initializers run and unpoisoning after.
2632   if (HasDynamicallyInitializedGlobals)
2633     createInitializerPoisonCalls(M, ModuleName);
2634 
2635   LLVM_DEBUG(dbgs() << M);
2636   return true;
2637 }
2638 
2639 uint64_t
2640 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2641   constexpr uint64_t kMaxRZ = 1 << 18;
2642   const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2643 
2644   uint64_t RZ = 0;
2645   if (SizeInBytes <= MinRZ / 2) {
2646     // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
2647     // at least 32 bytes, optimize when SizeInBytes is less than or equal to
2648     // half of MinRZ.
2649     RZ = MinRZ - SizeInBytes;
2650   } else {
2651     // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2652     RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ));
2653 
2654     // Round up to multiple of MinRZ.
2655     if (SizeInBytes % MinRZ)
2656       RZ += MinRZ - (SizeInBytes % MinRZ);
2657   }
2658 
2659   assert((RZ + SizeInBytes) % MinRZ == 0);
2660 
2661   return RZ;
2662 }
2663 
2664 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2665   int LongSize = M.getDataLayout().getPointerSizeInBits();
2666   bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2667   int Version = 8;
2668   // 32-bit Android is one version ahead because of the switch to dynamic
2669   // shadow.
2670   Version += (LongSize == 32 && isAndroid);
2671   return Version;
2672 }
2673 
2674 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2675   initializeCallbacks(M);
2676 
2677   // Create a module constructor. A destructor is created lazily because not all
2678   // platforms, and not all modules need it.
2679   if (CompileKernel) {
2680     // The kernel always builds with its own runtime, and therefore does not
2681     // need the init and version check calls.
2682     AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2683   } else {
2684     std::string AsanVersion = std::to_string(GetAsanVersion(M));
2685     std::string VersionCheckName =
2686         ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2687     std::tie(AsanCtorFunction, std::ignore) =
2688         createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
2689                                             kAsanInitName, /*InitArgTypes=*/{},
2690                                             /*InitArgs=*/{}, VersionCheckName);
2691   }
2692 
2693   bool CtorComdat = true;
2694   if (ClGlobals) {
2695     IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2696     InstrumentGlobals(IRB, M, &CtorComdat);
2697   }
2698 
2699   const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2700 
2701   // Put the constructor and destructor in comdat if both
2702   // (1) global instrumentation is not TU-specific
2703   // (2) target is ELF.
2704   if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2705     AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2706     appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2707     if (AsanDtorFunction) {
2708       AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2709       appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2710     }
2711   } else {
2712     appendToGlobalCtors(M, AsanCtorFunction, Priority);
2713     if (AsanDtorFunction)
2714       appendToGlobalDtors(M, AsanDtorFunction, Priority);
2715   }
2716 
2717   return true;
2718 }
2719 
2720 void AddressSanitizer::initializeCallbacks(Module &M) {
2721   IRBuilder<> IRB(*C);
2722   // Create __asan_report* callbacks.
2723   // IsWrite, TypeSize and Exp are encoded in the function name.
2724   for (int Exp = 0; Exp < 2; Exp++) {
2725     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2726       const std::string TypeStr = AccessIsWrite ? "store" : "load";
2727       const std::string ExpStr = Exp ? "exp_" : "";
2728       const std::string EndingStr = Recover ? "_noabort" : "";
2729 
2730       SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2731       SmallVector<Type *, 2> Args1{1, IntptrTy};
2732       if (Exp) {
2733         Type *ExpType = Type::getInt32Ty(*C);
2734         Args2.push_back(ExpType);
2735         Args1.push_back(ExpType);
2736       }
2737       AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2738           kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2739           FunctionType::get(IRB.getVoidTy(), Args2, false));
2740 
2741       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2742           ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2743           FunctionType::get(IRB.getVoidTy(), Args2, false));
2744 
2745       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2746            AccessSizeIndex++) {
2747         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2748         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2749             M.getOrInsertFunction(
2750                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2751                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2752 
2753         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2754             M.getOrInsertFunction(
2755                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2756                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2757       }
2758     }
2759   }
2760 
2761   const std::string MemIntrinCallbackPrefix =
2762       CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2763   AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2764                                       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2765                                       IRB.getInt8PtrTy(), IntptrTy);
2766   AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2767                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2768                                      IRB.getInt8PtrTy(), IntptrTy);
2769   AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2770                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2771                                      IRB.getInt32Ty(), IntptrTy);
2772 
2773   AsanHandleNoReturnFunc =
2774       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2775 
2776   AsanPtrCmpFunction =
2777       M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2778   AsanPtrSubFunction =
2779       M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2780   if (Mapping.InGlobal)
2781     AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2782                                            ArrayType::get(IRB.getInt8Ty(), 0));
2783 
2784   AMDGPUAddressShared = M.getOrInsertFunction(
2785       kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2786   AMDGPUAddressPrivate = M.getOrInsertFunction(
2787       kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2788 }
2789 
2790 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2791   // For each NSObject descendant having a +load method, this method is invoked
2792   // by the ObjC runtime before any of the static constructors is called.
2793   // Therefore we need to instrument such methods with a call to __asan_init
2794   // at the beginning in order to initialize our runtime before any access to
2795   // the shadow memory.
2796   // We cannot just ignore these methods, because they may call other
2797   // instrumented functions.
2798   if (F.getName().find(" load]") != std::string::npos) {
2799     FunctionCallee AsanInitFunction =
2800         declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2801     IRBuilder<> IRB(&F.front(), F.front().begin());
2802     IRB.CreateCall(AsanInitFunction, {});
2803     return true;
2804   }
2805   return false;
2806 }
2807 
2808 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2809   // Generate code only when dynamic addressing is needed.
2810   if (Mapping.Offset != kDynamicShadowSentinel)
2811     return false;
2812 
2813   IRBuilder<> IRB(&F.front().front());
2814   if (Mapping.InGlobal) {
2815     if (ClWithIfuncSuppressRemat) {
2816       // An empty inline asm with input reg == output reg.
2817       // An opaque pointer-to-int cast, basically.
2818       InlineAsm *Asm = InlineAsm::get(
2819           FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2820           StringRef(""), StringRef("=r,0"),
2821           /*hasSideEffects=*/false);
2822       LocalDynamicShadow =
2823           IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2824     } else {
2825       LocalDynamicShadow =
2826           IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2827     }
2828   } else {
2829     Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2830         kAsanShadowMemoryDynamicAddress, IntptrTy);
2831     LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2832   }
2833   return true;
2834 }
2835 
2836 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2837   // Find the one possible call to llvm.localescape and pre-mark allocas passed
2838   // to it as uninteresting. This assumes we haven't started processing allocas
2839   // yet. This check is done up front because iterating the use list in
2840   // isInterestingAlloca would be algorithmically slower.
2841   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2842 
2843   // Try to get the declaration of llvm.localescape. If it's not in the module,
2844   // we can exit early.
2845   if (!F.getParent()->getFunction("llvm.localescape")) return;
2846 
2847   // Look for a call to llvm.localescape call in the entry block. It can't be in
2848   // any other block.
2849   for (Instruction &I : F.getEntryBlock()) {
2850     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2851     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2852       // We found a call. Mark all the allocas passed in as uninteresting.
2853       for (Value *Arg : II->args()) {
2854         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2855         assert(AI && AI->isStaticAlloca() &&
2856                "non-static alloca arg to localescape");
2857         ProcessedAllocas[AI] = false;
2858       }
2859       break;
2860     }
2861   }
2862 }
2863 
2864 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2865   bool ShouldInstrument =
2866       ClDebugMin < 0 || ClDebugMax < 0 ||
2867       (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2868   Instrumented++;
2869   return !ShouldInstrument;
2870 }
2871 
2872 bool AddressSanitizer::instrumentFunction(Function &F,
2873                                           const TargetLibraryInfo *TLI) {
2874   if (F.empty())
2875     return false;
2876   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2877   if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2878   if (F.getName().startswith("__asan_")) return false;
2879 
2880   bool FunctionModified = false;
2881 
2882   // If needed, insert __asan_init before checking for SanitizeAddress attr.
2883   // This function needs to be called even if the function body is not
2884   // instrumented.
2885   if (maybeInsertAsanInitAtFunctionEntry(F))
2886     FunctionModified = true;
2887 
2888   // Leave if the function doesn't need instrumentation.
2889   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2890 
2891   LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2892 
2893   initializeCallbacks(*F.getParent());
2894 
2895   FunctionStateRAII CleanupObj(this);
2896 
2897   FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2898 
2899   // We can't instrument allocas used with llvm.localescape. Only static allocas
2900   // can be passed to that intrinsic.
2901   markEscapedLocalAllocas(F);
2902 
2903   // We want to instrument every address only once per basic block (unless there
2904   // are calls between uses).
2905   SmallPtrSet<Value *, 16> TempsToInstrument;
2906   SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2907   SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2908   SmallVector<Instruction *, 8> NoReturnCalls;
2909   SmallVector<BasicBlock *, 16> AllBlocks;
2910   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2911   int NumAllocas = 0;
2912 
2913   // Fill the set of memory operations to instrument.
2914   for (auto &BB : F) {
2915     AllBlocks.push_back(&BB);
2916     TempsToInstrument.clear();
2917     int NumInsnsPerBB = 0;
2918     for (auto &Inst : BB) {
2919       if (LooksLikeCodeInBug11395(&Inst)) return false;
2920       SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
2921       getInterestingMemoryOperands(&Inst, InterestingOperands);
2922 
2923       if (!InterestingOperands.empty()) {
2924         for (auto &Operand : InterestingOperands) {
2925           if (ClOpt && ClOptSameTemp) {
2926             Value *Ptr = Operand.getPtr();
2927             // If we have a mask, skip instrumentation if we've already
2928             // instrumented the full object. But don't add to TempsToInstrument
2929             // because we might get another load/store with a different mask.
2930             if (Operand.MaybeMask) {
2931               if (TempsToInstrument.count(Ptr))
2932                 continue; // We've seen this (whole) temp in the current BB.
2933             } else {
2934               if (!TempsToInstrument.insert(Ptr).second)
2935                 continue; // We've seen this temp in the current BB.
2936             }
2937           }
2938           OperandsToInstrument.push_back(Operand);
2939           NumInsnsPerBB++;
2940         }
2941       } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2942                   isInterestingPointerComparison(&Inst)) ||
2943                  ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2944                   isInterestingPointerSubtraction(&Inst))) {
2945         PointerComparisonsOrSubtracts.push_back(&Inst);
2946       } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
2947         // ok, take it.
2948         IntrinToInstrument.push_back(MI);
2949         NumInsnsPerBB++;
2950       } else {
2951         if (isa<AllocaInst>(Inst)) NumAllocas++;
2952         if (auto *CB = dyn_cast<CallBase>(&Inst)) {
2953           // A call inside BB.
2954           TempsToInstrument.clear();
2955           if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize"))
2956             NoReturnCalls.push_back(CB);
2957         }
2958         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2959           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2960       }
2961       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2962     }
2963   }
2964 
2965   bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 &&
2966                    OperandsToInstrument.size() + IntrinToInstrument.size() >
2967                        (unsigned)ClInstrumentationWithCallsThreshold);
2968   const DataLayout &DL = F.getParent()->getDataLayout();
2969   ObjectSizeOpts ObjSizeOpts;
2970   ObjSizeOpts.RoundToAlign = true;
2971   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2972 
2973   // Instrument.
2974   int NumInstrumented = 0;
2975   for (auto &Operand : OperandsToInstrument) {
2976     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2977       instrumentMop(ObjSizeVis, Operand, UseCalls,
2978                     F.getParent()->getDataLayout());
2979     FunctionModified = true;
2980   }
2981   for (auto Inst : IntrinToInstrument) {
2982     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2983       instrumentMemIntrinsic(Inst);
2984     FunctionModified = true;
2985   }
2986 
2987   FunctionStackPoisoner FSP(F, *this);
2988   bool ChangedStack = FSP.runOnFunction();
2989 
2990   // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2991   // See e.g. https://github.com/google/sanitizers/issues/37
2992   for (auto CI : NoReturnCalls) {
2993     IRBuilder<> IRB(CI);
2994     IRB.CreateCall(AsanHandleNoReturnFunc, {});
2995   }
2996 
2997   for (auto Inst : PointerComparisonsOrSubtracts) {
2998     instrumentPointerComparisonOrSubtraction(Inst);
2999     FunctionModified = true;
3000   }
3001 
3002   if (ChangedStack || !NoReturnCalls.empty())
3003     FunctionModified = true;
3004 
3005   LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
3006                     << F << "\n");
3007 
3008   return FunctionModified;
3009 }
3010 
3011 // Workaround for bug 11395: we don't want to instrument stack in functions
3012 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
3013 // FIXME: remove once the bug 11395 is fixed.
3014 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
3015   if (LongSize != 32) return false;
3016   CallInst *CI = dyn_cast<CallInst>(I);
3017   if (!CI || !CI->isInlineAsm()) return false;
3018   if (CI->arg_size() <= 5)
3019     return false;
3020   // We have inline assembly with quite a few arguments.
3021   return true;
3022 }
3023 
3024 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
3025   IRBuilder<> IRB(*C);
3026   if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ||
3027       ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3028     const char *MallocNameTemplate =
3029         ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always
3030             ? kAsanStackMallocAlwaysNameTemplate
3031             : kAsanStackMallocNameTemplate;
3032     for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) {
3033       std::string Suffix = itostr(Index);
3034       AsanStackMallocFunc[Index] = M.getOrInsertFunction(
3035           MallocNameTemplate + Suffix, IntptrTy, IntptrTy);
3036       AsanStackFreeFunc[Index] =
3037           M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
3038                                 IRB.getVoidTy(), IntptrTy, IntptrTy);
3039     }
3040   }
3041   if (ASan.UseAfterScope) {
3042     AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
3043         kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
3044     AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
3045         kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
3046   }
3047 
3048   for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
3049     std::ostringstream Name;
3050     Name << kAsanSetShadowPrefix;
3051     Name << std::setw(2) << std::setfill('0') << std::hex << Val;
3052     AsanSetShadowFunc[Val] =
3053         M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
3054   }
3055 
3056   AsanAllocaPoisonFunc = M.getOrInsertFunction(
3057       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3058   AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
3059       kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3060 }
3061 
3062 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
3063                                                ArrayRef<uint8_t> ShadowBytes,
3064                                                size_t Begin, size_t End,
3065                                                IRBuilder<> &IRB,
3066                                                Value *ShadowBase) {
3067   if (Begin >= End)
3068     return;
3069 
3070   const size_t LargestStoreSizeInBytes =
3071       std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
3072 
3073   const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
3074 
3075   // Poison given range in shadow using larges store size with out leading and
3076   // trailing zeros in ShadowMask. Zeros never change, so they need neither
3077   // poisoning nor up-poisoning. Still we don't mind if some of them get into a
3078   // middle of a store.
3079   for (size_t i = Begin; i < End;) {
3080     if (!ShadowMask[i]) {
3081       assert(!ShadowBytes[i]);
3082       ++i;
3083       continue;
3084     }
3085 
3086     size_t StoreSizeInBytes = LargestStoreSizeInBytes;
3087     // Fit store size into the range.
3088     while (StoreSizeInBytes > End - i)
3089       StoreSizeInBytes /= 2;
3090 
3091     // Minimize store size by trimming trailing zeros.
3092     for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
3093       while (j <= StoreSizeInBytes / 2)
3094         StoreSizeInBytes /= 2;
3095     }
3096 
3097     uint64_t Val = 0;
3098     for (size_t j = 0; j < StoreSizeInBytes; j++) {
3099       if (IsLittleEndian)
3100         Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
3101       else
3102         Val = (Val << 8) | ShadowBytes[i + j];
3103     }
3104 
3105     Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
3106     Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
3107     IRB.CreateAlignedStore(
3108         Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()),
3109         Align(1));
3110 
3111     i += StoreSizeInBytes;
3112   }
3113 }
3114 
3115 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3116                                          ArrayRef<uint8_t> ShadowBytes,
3117                                          IRBuilder<> &IRB, Value *ShadowBase) {
3118   copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
3119 }
3120 
3121 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3122                                          ArrayRef<uint8_t> ShadowBytes,
3123                                          size_t Begin, size_t End,
3124                                          IRBuilder<> &IRB, Value *ShadowBase) {
3125   assert(ShadowMask.size() == ShadowBytes.size());
3126   size_t Done = Begin;
3127   for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
3128     if (!ShadowMask[i]) {
3129       assert(!ShadowBytes[i]);
3130       continue;
3131     }
3132     uint8_t Val = ShadowBytes[i];
3133     if (!AsanSetShadowFunc[Val])
3134       continue;
3135 
3136     // Skip same values.
3137     for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
3138     }
3139 
3140     if (j - i >= ClMaxInlinePoisoningSize) {
3141       copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
3142       IRB.CreateCall(AsanSetShadowFunc[Val],
3143                      {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
3144                       ConstantInt::get(IntptrTy, j - i)});
3145       Done = j;
3146     }
3147   }
3148 
3149   copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
3150 }
3151 
3152 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
3153 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
3154 static int StackMallocSizeClass(uint64_t LocalStackSize) {
3155   assert(LocalStackSize <= kMaxStackMallocSize);
3156   uint64_t MaxSize = kMinStackMallocSize;
3157   for (int i = 0;; i++, MaxSize *= 2)
3158     if (LocalStackSize <= MaxSize) return i;
3159   llvm_unreachable("impossible LocalStackSize");
3160 }
3161 
3162 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
3163   Instruction *CopyInsertPoint = &F.front().front();
3164   if (CopyInsertPoint == ASan.LocalDynamicShadow) {
3165     // Insert after the dynamic shadow location is determined
3166     CopyInsertPoint = CopyInsertPoint->getNextNode();
3167     assert(CopyInsertPoint);
3168   }
3169   IRBuilder<> IRB(CopyInsertPoint);
3170   const DataLayout &DL = F.getParent()->getDataLayout();
3171   for (Argument &Arg : F.args()) {
3172     if (Arg.hasByValAttr()) {
3173       Type *Ty = Arg.getParamByValType();
3174       const Align Alignment =
3175           DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
3176 
3177       AllocaInst *AI = IRB.CreateAlloca(
3178           Ty, nullptr,
3179           (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
3180               ".byval");
3181       AI->setAlignment(Alignment);
3182       Arg.replaceAllUsesWith(AI);
3183 
3184       uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3185       IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
3186     }
3187   }
3188 }
3189 
3190 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3191                                           Value *ValueIfTrue,
3192                                           Instruction *ThenTerm,
3193                                           Value *ValueIfFalse) {
3194   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3195   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3196   PHI->addIncoming(ValueIfFalse, CondBlock);
3197   BasicBlock *ThenBlock = ThenTerm->getParent();
3198   PHI->addIncoming(ValueIfTrue, ThenBlock);
3199   return PHI;
3200 }
3201 
3202 Value *FunctionStackPoisoner::createAllocaForLayout(
3203     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3204   AllocaInst *Alloca;
3205   if (Dynamic) {
3206     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3207                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3208                               "MyAlloca");
3209   } else {
3210     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3211                               nullptr, "MyAlloca");
3212     assert(Alloca->isStaticAlloca());
3213   }
3214   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
3215   uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack));
3216   Alloca->setAlignment(Align(FrameAlignment));
3217   return IRB.CreatePointerCast(Alloca, IntptrTy);
3218 }
3219 
3220 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3221   BasicBlock &FirstBB = *F.begin();
3222   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3223   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3224   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3225   DynamicAllocaLayout->setAlignment(Align(32));
3226 }
3227 
3228 void FunctionStackPoisoner::processDynamicAllocas() {
3229   if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
3230     assert(DynamicAllocaPoisonCallVec.empty());
3231     return;
3232   }
3233 
3234   // Insert poison calls for lifetime intrinsics for dynamic allocas.
3235   for (const auto &APC : DynamicAllocaPoisonCallVec) {
3236     assert(APC.InsBefore);
3237     assert(APC.AI);
3238     assert(ASan.isInterestingAlloca(*APC.AI));
3239     assert(!APC.AI->isStaticAlloca());
3240 
3241     IRBuilder<> IRB(APC.InsBefore);
3242     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3243     // Dynamic allocas will be unpoisoned unconditionally below in
3244     // unpoisonDynamicAllocas.
3245     // Flag that we need unpoison static allocas.
3246   }
3247 
3248   // Handle dynamic allocas.
3249   createDynamicAllocasInitStorage();
3250   for (auto &AI : DynamicAllocaVec)
3251     handleDynamicAllocaCall(AI);
3252   unpoisonDynamicAllocas();
3253 }
3254 
3255 /// Collect instructions in the entry block after \p InsBefore which initialize
3256 /// permanent storage for a function argument. These instructions must remain in
3257 /// the entry block so that uninitialized values do not appear in backtraces. An
3258 /// added benefit is that this conserves spill slots. This does not move stores
3259 /// before instrumented / "interesting" allocas.
3260 static void findStoresToUninstrumentedArgAllocas(
3261     AddressSanitizer &ASan, Instruction &InsBefore,
3262     SmallVectorImpl<Instruction *> &InitInsts) {
3263   Instruction *Start = InsBefore.getNextNonDebugInstruction();
3264   for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3265     // Argument initialization looks like:
3266     // 1) store <Argument>, <Alloca> OR
3267     // 2) <CastArgument> = cast <Argument> to ...
3268     //    store <CastArgument> to <Alloca>
3269     // Do not consider any other kind of instruction.
3270     //
3271     // Note: This covers all known cases, but may not be exhaustive. An
3272     // alternative to pattern-matching stores is to DFS over all Argument uses:
3273     // this might be more general, but is probably much more complicated.
3274     if (isa<AllocaInst>(It) || isa<CastInst>(It))
3275       continue;
3276     if (auto *Store = dyn_cast<StoreInst>(It)) {
3277       // The store destination must be an alloca that isn't interesting for
3278       // ASan to instrument. These are moved up before InsBefore, and they're
3279       // not interesting because allocas for arguments can be mem2reg'd.
3280       auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3281       if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3282         continue;
3283 
3284       Value *Val = Store->getValueOperand();
3285       bool IsDirectArgInit = isa<Argument>(Val);
3286       bool IsArgInitViaCast =
3287           isa<CastInst>(Val) &&
3288           isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3289           // Check that the cast appears directly before the store. Otherwise
3290           // moving the cast before InsBefore may break the IR.
3291           Val == It->getPrevNonDebugInstruction();
3292       bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3293       if (!IsArgInit)
3294         continue;
3295 
3296       if (IsArgInitViaCast)
3297         InitInsts.push_back(cast<Instruction>(Val));
3298       InitInsts.push_back(Store);
3299       continue;
3300     }
3301 
3302     // Do not reorder past unknown instructions: argument initialization should
3303     // only involve casts and stores.
3304     return;
3305   }
3306 }
3307 
3308 void FunctionStackPoisoner::processStaticAllocas() {
3309   if (AllocaVec.empty()) {
3310     assert(StaticAllocaPoisonCallVec.empty());
3311     return;
3312   }
3313 
3314   int StackMallocIdx = -1;
3315   DebugLoc EntryDebugLocation;
3316   if (auto SP = F.getSubprogram())
3317     EntryDebugLocation =
3318         DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
3319 
3320   Instruction *InsBefore = AllocaVec[0];
3321   IRBuilder<> IRB(InsBefore);
3322 
3323   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3324   // debug info is broken, because only entry-block allocas are treated as
3325   // regular stack slots.
3326   auto InsBeforeB = InsBefore->getParent();
3327   assert(InsBeforeB == &F.getEntryBlock());
3328   for (auto *AI : StaticAllocasToMoveUp)
3329     if (AI->getParent() == InsBeforeB)
3330       AI->moveBefore(InsBefore);
3331 
3332   // Move stores of arguments into entry-block allocas as well. This prevents
3333   // extra stack slots from being generated (to house the argument values until
3334   // they can be stored into the allocas). This also prevents uninitialized
3335   // values from being shown in backtraces.
3336   SmallVector<Instruction *, 8> ArgInitInsts;
3337   findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3338   for (Instruction *ArgInitInst : ArgInitInsts)
3339     ArgInitInst->moveBefore(InsBefore);
3340 
3341   // If we have a call to llvm.localescape, keep it in the entry block.
3342   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3343 
3344   SmallVector<ASanStackVariableDescription, 16> SVD;
3345   SVD.reserve(AllocaVec.size());
3346   for (AllocaInst *AI : AllocaVec) {
3347     ASanStackVariableDescription D = {AI->getName().data(),
3348                                       ASan.getAllocaSizeInBytes(*AI),
3349                                       0,
3350                                       AI->getAlignment(),
3351                                       AI,
3352                                       0,
3353                                       0};
3354     SVD.push_back(D);
3355   }
3356 
3357   // Minimal header size (left redzone) is 4 pointers,
3358   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3359   uint64_t Granularity = 1ULL << Mapping.Scale;
3360   uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity);
3361   const ASanStackFrameLayout &L =
3362       ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3363 
3364   // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3365   DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3366   for (auto &Desc : SVD)
3367     AllocaToSVDMap[Desc.AI] = &Desc;
3368 
3369   // Update SVD with information from lifetime intrinsics.
3370   for (const auto &APC : StaticAllocaPoisonCallVec) {
3371     assert(APC.InsBefore);
3372     assert(APC.AI);
3373     assert(ASan.isInterestingAlloca(*APC.AI));
3374     assert(APC.AI->isStaticAlloca());
3375 
3376     ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3377     Desc.LifetimeSize = Desc.Size;
3378     if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3379       if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3380         if (LifetimeLoc->getFile() == FnLoc->getFile())
3381           if (unsigned Line = LifetimeLoc->getLine())
3382             Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3383       }
3384     }
3385   }
3386 
3387   auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3388   LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3389   uint64_t LocalStackSize = L.FrameSize;
3390   bool DoStackMalloc =
3391       ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never &&
3392       !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize;
3393   bool DoDynamicAlloca = ClDynamicAllocaStack;
3394   // Don't do dynamic alloca or stack malloc if:
3395   // 1) There is inline asm: too often it makes assumptions on which registers
3396   //    are available.
3397   // 2) There is a returns_twice call (typically setjmp), which is
3398   //    optimization-hostile, and doesn't play well with introduced indirect
3399   //    register-relative calculation of local variable addresses.
3400   DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
3401   DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
3402 
3403   Value *StaticAlloca =
3404       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3405 
3406   Value *FakeStack;
3407   Value *LocalStackBase;
3408   Value *LocalStackBaseAlloca;
3409   uint8_t DIExprFlags = DIExpression::ApplyOffset;
3410 
3411   if (DoStackMalloc) {
3412     LocalStackBaseAlloca =
3413         IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3414     if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3415       // void *FakeStack = __asan_option_detect_stack_use_after_return
3416       //     ? __asan_stack_malloc_N(LocalStackSize)
3417       //     : nullptr;
3418       // void *LocalStackBase = (FakeStack) ? FakeStack :
3419       //                        alloca(LocalStackSize);
3420       Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3421           kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3422       Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3423           IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3424           Constant::getNullValue(IRB.getInt32Ty()));
3425       Instruction *Term =
3426           SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3427       IRBuilder<> IRBIf(Term);
3428       StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3429       assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3430       Value *FakeStackValue =
3431           IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3432                            ConstantInt::get(IntptrTy, LocalStackSize));
3433       IRB.SetInsertPoint(InsBefore);
3434       FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3435                             ConstantInt::get(IntptrTy, 0));
3436     } else {
3437       // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
3438       // void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
3439       // void *LocalStackBase = (FakeStack) ? FakeStack :
3440       //                        alloca(LocalStackSize);
3441       StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3442       FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3443                                  ConstantInt::get(IntptrTy, LocalStackSize));
3444     }
3445     Value *NoFakeStack =
3446         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3447     Instruction *Term =
3448         SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3449     IRBuilder<> IRBIf(Term);
3450     Value *AllocaValue =
3451         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3452 
3453     IRB.SetInsertPoint(InsBefore);
3454     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3455     IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3456     DIExprFlags |= DIExpression::DerefBefore;
3457   } else {
3458     // void *FakeStack = nullptr;
3459     // void *LocalStackBase = alloca(LocalStackSize);
3460     FakeStack = ConstantInt::get(IntptrTy, 0);
3461     LocalStackBase =
3462         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3463     LocalStackBaseAlloca = LocalStackBase;
3464   }
3465 
3466   // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3467   // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3468   // later passes and can result in dropped variable coverage in debug info.
3469   Value *LocalStackBaseAllocaPtr =
3470       isa<PtrToIntInst>(LocalStackBaseAlloca)
3471           ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3472           : LocalStackBaseAlloca;
3473   assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
3474          "Variable descriptions relative to ASan stack base will be dropped");
3475 
3476   // Replace Alloca instructions with base+offset.
3477   for (const auto &Desc : SVD) {
3478     AllocaInst *AI = Desc.AI;
3479     replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3480                       Desc.Offset);
3481     Value *NewAllocaPtr = IRB.CreateIntToPtr(
3482         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3483         AI->getType());
3484     AI->replaceAllUsesWith(NewAllocaPtr);
3485   }
3486 
3487   // The left-most redzone has enough space for at least 4 pointers.
3488   // Write the Magic value to redzone[0].
3489   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3490   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3491                   BasePlus0);
3492   // Write the frame description constant to redzone[1].
3493   Value *BasePlus1 = IRB.CreateIntToPtr(
3494       IRB.CreateAdd(LocalStackBase,
3495                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3496       IntptrPtrTy);
3497   GlobalVariable *StackDescriptionGlobal =
3498       createPrivateGlobalForString(*F.getParent(), DescriptionString,
3499                                    /*AllowMerging*/ true, kAsanGenPrefix);
3500   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3501   IRB.CreateStore(Description, BasePlus1);
3502   // Write the PC to redzone[2].
3503   Value *BasePlus2 = IRB.CreateIntToPtr(
3504       IRB.CreateAdd(LocalStackBase,
3505                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3506       IntptrPtrTy);
3507   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3508 
3509   const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3510 
3511   // Poison the stack red zones at the entry.
3512   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3513   // As mask we must use most poisoned case: red zones and after scope.
3514   // As bytes we can use either the same or just red zones only.
3515   copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3516 
3517   if (!StaticAllocaPoisonCallVec.empty()) {
3518     const auto &ShadowInScope = GetShadowBytes(SVD, L);
3519 
3520     // Poison static allocas near lifetime intrinsics.
3521     for (const auto &APC : StaticAllocaPoisonCallVec) {
3522       const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3523       assert(Desc.Offset % L.Granularity == 0);
3524       size_t Begin = Desc.Offset / L.Granularity;
3525       size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3526 
3527       IRBuilder<> IRB(APC.InsBefore);
3528       copyToShadow(ShadowAfterScope,
3529                    APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3530                    IRB, ShadowBase);
3531     }
3532   }
3533 
3534   SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3535   SmallVector<uint8_t, 64> ShadowAfterReturn;
3536 
3537   // (Un)poison the stack before all ret instructions.
3538   for (Instruction *Ret : RetVec) {
3539     IRBuilder<> IRBRet(Ret);
3540     // Mark the current frame as retired.
3541     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3542                        BasePlus0);
3543     if (DoStackMalloc) {
3544       assert(StackMallocIdx >= 0);
3545       // if FakeStack != 0  // LocalStackBase == FakeStack
3546       //     // In use-after-return mode, poison the whole stack frame.
3547       //     if StackMallocIdx <= 4
3548       //         // For small sizes inline the whole thing:
3549       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3550       //         **SavedFlagPtr(FakeStack) = 0
3551       //     else
3552       //         __asan_stack_free_N(FakeStack, LocalStackSize)
3553       // else
3554       //     <This is not a fake stack; unpoison the redzones>
3555       Value *Cmp =
3556           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3557       Instruction *ThenTerm, *ElseTerm;
3558       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3559 
3560       IRBuilder<> IRBPoison(ThenTerm);
3561       if (StackMallocIdx <= 4) {
3562         int ClassSize = kMinStackMallocSize << StackMallocIdx;
3563         ShadowAfterReturn.resize(ClassSize / L.Granularity,
3564                                  kAsanStackUseAfterReturnMagic);
3565         copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3566                      ShadowBase);
3567         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3568             FakeStack,
3569             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3570         Value *SavedFlagPtr = IRBPoison.CreateLoad(
3571             IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3572         IRBPoison.CreateStore(
3573             Constant::getNullValue(IRBPoison.getInt8Ty()),
3574             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3575       } else {
3576         // For larger frames call __asan_stack_free_*.
3577         IRBPoison.CreateCall(
3578             AsanStackFreeFunc[StackMallocIdx],
3579             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3580       }
3581 
3582       IRBuilder<> IRBElse(ElseTerm);
3583       copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3584     } else {
3585       copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3586     }
3587   }
3588 
3589   // We are done. Remove the old unused alloca instructions.
3590   for (auto AI : AllocaVec) AI->eraseFromParent();
3591 }
3592 
3593 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3594                                          IRBuilder<> &IRB, bool DoPoison) {
3595   // For now just insert the call to ASan runtime.
3596   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3597   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3598   IRB.CreateCall(
3599       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3600       {AddrArg, SizeArg});
3601 }
3602 
3603 // Handling llvm.lifetime intrinsics for a given %alloca:
3604 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3605 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3606 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3607 //     could be poisoned by previous llvm.lifetime.end instruction, as the
3608 //     variable may go in and out of scope several times, e.g. in loops).
3609 // (3) if we poisoned at least one %alloca in a function,
3610 //     unpoison the whole stack frame at function exit.
3611 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3612   IRBuilder<> IRB(AI);
3613 
3614   const uint64_t Alignment = std::max(kAllocaRzSize, AI->getAlignment());
3615   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3616 
3617   Value *Zero = Constant::getNullValue(IntptrTy);
3618   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3619   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3620 
3621   // Since we need to extend alloca with additional memory to locate
3622   // redzones, and OldSize is number of allocated blocks with
3623   // ElementSize size, get allocated memory size in bytes by
3624   // OldSize * ElementSize.
3625   const unsigned ElementSize =
3626       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3627   Value *OldSize =
3628       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3629                     ConstantInt::get(IntptrTy, ElementSize));
3630 
3631   // PartialSize = OldSize % 32
3632   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3633 
3634   // Misalign = kAllocaRzSize - PartialSize;
3635   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3636 
3637   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3638   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3639   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3640 
3641   // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3642   // Alignment is added to locate left redzone, PartialPadding for possible
3643   // partial redzone and kAllocaRzSize for right redzone respectively.
3644   Value *AdditionalChunkSize = IRB.CreateAdd(
3645       ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding);
3646 
3647   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3648 
3649   // Insert new alloca with new NewSize and Alignment params.
3650   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3651   NewAlloca->setAlignment(Align(Alignment));
3652 
3653   // NewAddress = Address + Alignment
3654   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3655                                     ConstantInt::get(IntptrTy, Alignment));
3656 
3657   // Insert __asan_alloca_poison call for new created alloca.
3658   IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3659 
3660   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3661   // for unpoisoning stuff.
3662   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3663 
3664   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3665 
3666   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3667   AI->replaceAllUsesWith(NewAddressPtr);
3668 
3669   // We are done. Erase old alloca from parent.
3670   AI->eraseFromParent();
3671 }
3672 
3673 // isSafeAccess returns true if Addr is always inbounds with respect to its
3674 // base object. For example, it is a field access or an array access with
3675 // constant inbounds index.
3676 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3677                                     Value *Addr, uint64_t TypeSize) const {
3678   SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3679   if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3680   uint64_t Size = SizeOffset.first.getZExtValue();
3681   int64_t Offset = SizeOffset.second.getSExtValue();
3682   // Three checks are required to ensure safety:
3683   // . Offset >= 0  (since the offset is given from the base ptr)
3684   // . Size >= Offset  (unsigned)
3685   // . Size - Offset >= NeededSize  (unsigned)
3686   return Offset >= 0 && Size >= uint64_t(Offset) &&
3687          Size - uint64_t(Offset) >= TypeSize / 8;
3688 }
3689