//===- AddressSanitizer.cpp - memory error detector -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address basic correctness // checker. // Details of the algorithm: // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm // // FIXME: This sanitizer does not yet handle scalable vectors // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/StackSafetyAnalysis.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Comdat.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include #include #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "asan" static const uint64_t kDefaultShadowScale = 3; static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; static const uint64_t kDynamicShadowSentinel = std::numeric_limits::max(); static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; static const uint64_t kEmscriptenShadowOffset = 0; // The shadow memory space is dynamically allocated. static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; static const size_t kMinStackMallocSize = 1 << 6; // 64B static const size_t kMaxStackMallocSize = 1 << 16; // 64K static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; const char kAsanModuleCtorName[] = "asan.module_ctor"; const char kAsanModuleDtorName[] = "asan.module_dtor"; static const uint64_t kAsanCtorAndDtorPriority = 1; // On Emscripten, the system needs more than one priorities for constructors. static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; const char kAsanReportErrorTemplate[] = "__asan_report_"; const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; const char kAsanUnregisterImageGlobalsName[] = "__asan_unregister_image_globals"; const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; const char kAsanInitName[] = "__asan_init"; const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; static const int kMaxAsanStackMallocSizeClass = 10; const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; const char kAsanStackMallocAlwaysNameTemplate[] = "__asan_stack_malloc_always_"; const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; const char kAsanGenPrefix[] = "___asan_gen_"; const char kODRGenPrefix[] = "__odr_asan_gen_"; const char kSanCovGenPrefix[] = "__sancov_gen_"; const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; // ASan version script has __asan_* wildcard. Triple underscore prevents a // linker (gold) warning about attempting to export a local symbol. const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; const char kAsanOptionDetectUseAfterReturn[] = "__asan_option_detect_stack_use_after_return"; const char kAsanShadowMemoryDynamicAddress[] = "__asan_shadow_memory_dynamic_address"; const char kAsanAllocaPoison[] = "__asan_alloca_poison"; const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; // Accesses sizes are powers of two: 1, 2, 4, 8, 16. static const size_t kNumberOfAccessSizes = 5; static const uint64_t kAllocaRzSize = 32; // ASanAccessInfo implementation constants. constexpr size_t kCompileKernelShift = 0; constexpr size_t kCompileKernelMask = 0x1; constexpr size_t kAccessSizeIndexShift = 1; constexpr size_t kAccessSizeIndexMask = 0xf; constexpr size_t kIsWriteShift = 5; constexpr size_t kIsWriteMask = 0x1; // Command-line flags. static cl::opt ClEnableKasan( "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), cl::Hidden, cl::init(false)); static cl::opt ClRecover( "asan-recover", cl::desc("Enable recovery mode (continue-after-error)."), cl::Hidden, cl::init(false)); static cl::opt ClInsertVersionCheck( "asan-guard-against-version-mismatch", cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden, cl::init(true)); // This flag may need to be replaced with -f[no-]asan-reads. static cl::opt ClInstrumentReads("asan-instrument-reads", cl::desc("instrument read instructions"), cl::Hidden, cl::init(true)); static cl::opt ClInstrumentWrites( "asan-instrument-writes", cl::desc("instrument write instructions"), cl::Hidden, cl::init(true)); static cl::opt ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false), cl::Hidden, cl::desc("Use Stack Safety analysis results"), cl::Optional); static cl::opt ClInstrumentAtomics( "asan-instrument-atomics", cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, cl::init(true)); static cl::opt ClInstrumentByval("asan-instrument-byval", cl::desc("instrument byval call arguments"), cl::Hidden, cl::init(true)); static cl::opt ClAlwaysSlowPath( "asan-always-slow-path", cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, cl::init(false)); static cl::opt ClForceDynamicShadow( "asan-force-dynamic-shadow", cl::desc("Load shadow address into a local variable for each function"), cl::Hidden, cl::init(false)); static cl::opt ClWithIfunc("asan-with-ifunc", cl::desc("Access dynamic shadow through an ifunc global on " "platforms that support this"), cl::Hidden, cl::init(true)); static cl::opt ClWithIfuncSuppressRemat( "asan-with-ifunc-suppress-remat", cl::desc("Suppress rematerialization of dynamic shadow address by passing " "it through inline asm in prologue."), cl::Hidden, cl::init(true)); // This flag limits the number of instructions to be instrumented // in any given BB. Normally, this should be set to unlimited (INT_MAX), // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary // set it to 10000. static cl::opt ClMaxInsnsToInstrumentPerBB( "asan-max-ins-per-bb", cl::init(10000), cl::desc("maximal number of instructions to instrument in any given BB"), cl::Hidden); // This flag may need to be replaced with -f[no]asan-stack. static cl::opt ClStack("asan-stack", cl::desc("Handle stack memory"), cl::Hidden, cl::init(true)); static cl::opt ClMaxInlinePoisoningSize( "asan-max-inline-poisoning-size", cl::desc( "Inline shadow poisoning for blocks up to the given size in bytes."), cl::Hidden, cl::init(64)); static cl::opt ClUseAfterReturn( "asan-use-after-return", cl::desc("Sets the mode of detection for stack-use-after-return."), cl::values( clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", "Never detect stack use after return."), clEnumValN( AsanDetectStackUseAfterReturnMode::Runtime, "runtime", "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", "Always detect stack use after return.")), cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); static cl::opt ClRedzoneByvalArgs("asan-redzone-byval-args", cl::desc("Create redzones for byval " "arguments (extra copy " "required)"), cl::Hidden, cl::init(true)); static cl::opt ClUseAfterScope("asan-use-after-scope", cl::desc("Check stack-use-after-scope"), cl::Hidden, cl::init(false)); // This flag may need to be replaced with -f[no]asan-globals. static cl::opt ClGlobals("asan-globals", cl::desc("Handle global objects"), cl::Hidden, cl::init(true)); static cl::opt ClInitializers("asan-initialization-order", cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(true)); static cl::opt ClInvalidPointerPairs( "asan-detect-invalid-pointer-pair", cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, cl::init(false)); static cl::opt ClInvalidPointerCmp( "asan-detect-invalid-pointer-cmp", cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, cl::init(false)); static cl::opt ClInvalidPointerSub( "asan-detect-invalid-pointer-sub", cl::desc("Instrument - operations with pointer operands"), cl::Hidden, cl::init(false)); static cl::opt ClRealignStack( "asan-realign-stack", cl::desc("Realign stack to the value of this flag (power of two)"), cl::Hidden, cl::init(32)); static cl::opt ClInstrumentationWithCallsThreshold( "asan-instrumentation-with-call-threshold", cl::desc( "If the function being instrumented contains more than " "this number of memory accesses, use callbacks instead of " "inline checks (-1 means never use callbacks)."), cl::Hidden, cl::init(7000)); static cl::opt ClMemoryAccessCallbackPrefix( "asan-memory-access-callback-prefix", cl::desc("Prefix for memory access callbacks"), cl::Hidden, cl::init("__asan_")); static cl::opt ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", cl::desc("instrument dynamic allocas"), cl::Hidden, cl::init(true)); static cl::opt ClSkipPromotableAllocas( "asan-skip-promotable-allocas", cl::desc("Do not instrument promotable allocas"), cl::Hidden, cl::init(true)); // These flags allow to change the shadow mapping. // The shadow mapping looks like // Shadow = (Mem >> scale) + offset static cl::opt ClMappingScale("asan-mapping-scale", cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0)); static cl::opt ClMappingOffset("asan-mapping-offset", cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden, cl::init(0)); // Optimization flags. Not user visible, used mostly for testing // and benchmarking the tool. static cl::opt ClOpt("asan-opt", cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true)); static cl::opt ClOptimizeCallbacks("asan-optimize-callbacks", cl::desc("Optimize callbacks"), cl::Hidden, cl::init(false)); static cl::opt ClOptSameTemp( "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), cl::Hidden, cl::init(true)); static cl::opt ClOptGlobals("asan-opt-globals", cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true)); static cl::opt ClOptStack( "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), cl::Hidden, cl::init(false)); static cl::opt ClDynamicAllocaStack( "asan-stack-dynamic-alloca", cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, cl::init(true)); static cl::opt ClForceExperiment( "asan-force-experiment", cl::desc("Force optimization experiment (for testing)"), cl::Hidden, cl::init(0)); static cl::opt ClUsePrivateAlias("asan-use-private-alias", cl::desc("Use private aliases for global variables"), cl::Hidden, cl::init(false)); static cl::opt ClUseOdrIndicator("asan-use-odr-indicator", cl::desc("Use odr indicators to improve ODR reporting"), cl::Hidden, cl::init(false)); static cl::opt ClUseGlobalsGC("asan-globals-live-support", cl::desc("Use linker features to support dead " "code stripping of globals"), cl::Hidden, cl::init(true)); // This is on by default even though there is a bug in gold: // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 static cl::opt ClWithComdat("asan-with-comdat", cl::desc("Place ASan constructors in comdat sections"), cl::Hidden, cl::init(true)); static cl::opt ClOverrideDestructorKind( "asan-destructor-kind", cl::desc("Sets the ASan destructor kind. The default is to use the value " "provided to the pass constructor"), cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), clEnumValN(AsanDtorKind::Global, "global", "Use global destructors")), cl::init(AsanDtorKind::Invalid), cl::Hidden); // Debug flags. static cl::opt ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, cl::init(0)); static cl::opt ClDebugStack("asan-debug-stack", cl::desc("debug stack"), cl::Hidden, cl::init(0)); static cl::opt ClDebugFunc("asan-debug-func", cl::Hidden, cl::desc("Debug func")); static cl::opt ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), cl::Hidden, cl::init(-1)); static cl::opt ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), cl::Hidden, cl::init(-1)); STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); STATISTIC(NumOptimizedAccessesToGlobalVar, "Number of optimized accesses to global vars"); STATISTIC(NumOptimizedAccessesToStackVar, "Number of optimized accesses to stack vars"); namespace { /// This struct defines the shadow mapping using the rule: /// shadow = (mem >> Scale) ADD-or-OR Offset. /// If InGlobal is true, then /// extern char __asan_shadow[]; /// shadow = (mem >> Scale) + &__asan_shadow struct ShadowMapping { int Scale; uint64_t Offset; bool OrShadowOffset; bool InGlobal; }; } // end anonymous namespace static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, bool IsKasan) { bool IsAndroid = TargetTriple.isAndroid(); bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); bool IsMacOS = TargetTriple.isMacOSX(); bool IsFreeBSD = TargetTriple.isOSFreeBSD(); bool IsNetBSD = TargetTriple.isOSNetBSD(); bool IsPS4CPU = TargetTriple.isPS4CPU(); bool IsLinux = TargetTriple.isOSLinux(); bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || TargetTriple.getArch() == Triple::ppc64le; bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; bool IsMIPS32 = TargetTriple.isMIPS32(); bool IsMIPS64 = TargetTriple.isMIPS64(); bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; bool IsWindows = TargetTriple.isOSWindows(); bool IsFuchsia = TargetTriple.isOSFuchsia(); bool IsEmscripten = TargetTriple.isOSEmscripten(); bool IsAMDGPU = TargetTriple.isAMDGPU(); ShadowMapping Mapping; Mapping.Scale = kDefaultShadowScale; if (ClMappingScale.getNumOccurrences() > 0) { Mapping.Scale = ClMappingScale; } if (LongSize == 32) { if (IsAndroid) Mapping.Offset = kDynamicShadowSentinel; else if (IsMIPS32) Mapping.Offset = kMIPS32_ShadowOffset32; else if (IsFreeBSD) Mapping.Offset = kFreeBSD_ShadowOffset32; else if (IsNetBSD) Mapping.Offset = kNetBSD_ShadowOffset32; else if (IsIOS) Mapping.Offset = kDynamicShadowSentinel; else if (IsWindows) Mapping.Offset = kWindowsShadowOffset32; else if (IsEmscripten) Mapping.Offset = kEmscriptenShadowOffset; else Mapping.Offset = kDefaultShadowOffset32; } else { // LongSize == 64 // Fuchsia is always PIE, which means that the beginning of the address // space is always available. if (IsFuchsia) Mapping.Offset = 0; else if (IsPPC64) Mapping.Offset = kPPC64_ShadowOffset64; else if (IsSystemZ) Mapping.Offset = kSystemZ_ShadowOffset64; else if (IsFreeBSD && !IsMIPS64) { if (IsKasan) Mapping.Offset = kFreeBSDKasan_ShadowOffset64; else Mapping.Offset = kFreeBSD_ShadowOffset64; } else if (IsNetBSD) { if (IsKasan) Mapping.Offset = kNetBSDKasan_ShadowOffset64; else Mapping.Offset = kNetBSD_ShadowOffset64; } else if (IsPS4CPU) Mapping.Offset = kPS4CPU_ShadowOffset64; else if (IsLinux && IsX86_64) { if (IsKasan) Mapping.Offset = kLinuxKasan_ShadowOffset64; else Mapping.Offset = (kSmallX86_64ShadowOffsetBase & (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); } else if (IsWindows && IsX86_64) { Mapping.Offset = kWindowsShadowOffset64; } else if (IsMIPS64) Mapping.Offset = kMIPS64_ShadowOffset64; else if (IsIOS) Mapping.Offset = kDynamicShadowSentinel; else if (IsMacOS && IsAArch64) Mapping.Offset = kDynamicShadowSentinel; else if (IsAArch64) Mapping.Offset = kAArch64_ShadowOffset64; else if (IsRISCV64) Mapping.Offset = kRISCV64_ShadowOffset64; else if (IsAMDGPU) Mapping.Offset = (kSmallX86_64ShadowOffsetBase & (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); else Mapping.Offset = kDefaultShadowOffset64; } if (ClForceDynamicShadow) { Mapping.Offset = kDynamicShadowSentinel; } if (ClMappingOffset.getNumOccurrences() > 0) { Mapping.Offset = ClMappingOffset; } // OR-ing shadow offset if more efficient (at least on x86) if the offset // is a power of two, but on ppc64 we have to use add since the shadow // offset is not necessary 1/8-th of the address space. On SystemZ, // we could OR the constant in a single instruction, but it's more // efficient to load it once and use indexed addressing. Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && !IsRISCV64 && !(Mapping.Offset & (Mapping.Offset - 1)) && Mapping.Offset != kDynamicShadowSentinel; bool IsAndroidWithIfuncSupport = IsAndroid && !TargetTriple.isAndroidVersionLT(21); Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; return Mapping; } namespace llvm { void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, bool IsKasan, uint64_t *ShadowBase, int *MappingScale, bool *OrShadowOffset) { auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); *ShadowBase = Mapping.Offset; *MappingScale = Mapping.Scale; *OrShadowOffset = Mapping.OrShadowOffset; } ASanAccessInfo::ASanAccessInfo(int32_t Packed) : Packed(Packed), AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, uint8_t AccessSizeIndex) : Packed((IsWrite << kIsWriteShift) + (CompileKernel << kCompileKernelShift) + (AccessSizeIndex << kAccessSizeIndexShift)), AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), CompileKernel(CompileKernel) {} } // namespace llvm static uint64_t getRedzoneSizeForScale(int MappingScale) { // Redzone used for stack and globals is at least 32 bytes. // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. return std::max(32U, 1U << MappingScale); } static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { if (TargetTriple.isOSEmscripten()) { return kAsanEmscriptenCtorAndDtorPriority; } else { return kAsanCtorAndDtorPriority; } } namespace { /// Module analysis for getting various metadata about the module. class ASanGlobalsMetadataWrapperPass : public ModulePass { public: static char ID; ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { initializeASanGlobalsMetadataWrapperPassPass( *PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override { GlobalsMD = GlobalsMetadata(M); return false; } StringRef getPassName() const override { return "ASanGlobalsMetadataWrapperPass"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } private: GlobalsMetadata GlobalsMD; }; char ASanGlobalsMetadataWrapperPass::ID = 0; /// AddressSanitizer: instrument the code in module to find memory bugs. struct AddressSanitizer { AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, const StackSafetyGlobalInfo *SSGI, bool CompileKernel = false, bool Recover = false, bool UseAfterScope = false, AsanDetectStackUseAfterReturnMode UseAfterReturn = AsanDetectStackUseAfterReturnMode::Runtime) : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel), Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), UseAfterScope(UseAfterScope || ClUseAfterScope), UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn : UseAfterReturn), GlobalsMD(*GlobalsMD), SSGI(SSGI) { C = &(M.getContext()); LongSize = M.getDataLayout().getPointerSizeInBits(); IntptrTy = Type::getIntNTy(*C, LongSize); Int8PtrTy = Type::getInt8PtrTy(*C); Int32Ty = Type::getInt32Ty(*C); TargetTriple = Triple(M.getTargetTriple()); Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); } uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { uint64_t ArraySize = 1; if (AI.isArrayAllocation()) { const ConstantInt *CI = dyn_cast(AI.getArraySize()); assert(CI && "non-constant array size"); ArraySize = CI->getZExtValue(); } Type *Ty = AI.getAllocatedType(); uint64_t SizeInBytes = AI.getModule()->getDataLayout().getTypeAllocSize(Ty); return SizeInBytes * ArraySize; } /// Check if we want (and can) handle this alloca. bool isInterestingAlloca(const AllocaInst &AI); bool ignoreAccess(Instruction *Inst, Value *Ptr); void getInterestingMemoryOperands( Instruction *I, SmallVectorImpl &Interesting); void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, InterestingMemoryOperand &O, bool UseCalls, const DataLayout &DL); void instrumentPointerComparisonOrSubtraction(Instruction *I); void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp); Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, bool IsWrite, Value *SizeArgument); void instrumentUnusualSizeOrAlignment(Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp); Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, Value *ShadowValue, uint32_t TypeSize); Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument, uint32_t Exp); void instrumentMemIntrinsic(MemIntrinsic *MI); Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); bool suppressInstrumentationSiteForDebug(int &Instrumented); bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); bool maybeInsertAsanInitAtFunctionEntry(Function &F); bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); void markEscapedLocalAllocas(Function &F); private: friend struct FunctionStackPoisoner; void initializeCallbacks(Module &M); bool LooksLikeCodeInBug11395(Instruction *I); bool GlobalIsLinkerInitialized(GlobalVariable *G); bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, uint64_t TypeSize) const; /// Helper to cleanup per-function state. struct FunctionStateRAII { AddressSanitizer *Pass; FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { assert(Pass->ProcessedAllocas.empty() && "last pass forgot to clear cache"); assert(!Pass->LocalDynamicShadow); } ~FunctionStateRAII() { Pass->LocalDynamicShadow = nullptr; Pass->ProcessedAllocas.clear(); } }; LLVMContext *C; Triple TargetTriple; int LongSize; bool CompileKernel; bool Recover; bool UseAfterScope; AsanDetectStackUseAfterReturnMode UseAfterReturn; Type *IntptrTy; Type *Int8PtrTy; Type *Int32Ty; ShadowMapping Mapping; FunctionCallee AsanHandleNoReturnFunc; FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; Constant *AsanShadowGlobal; // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; // These arrays is indexed by AccessIsWrite and Experiment. FunctionCallee AsanErrorCallbackSized[2][2]; FunctionCallee AsanMemoryAccessCallbackSized[2][2]; FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; Value *LocalDynamicShadow = nullptr; const GlobalsMetadata &GlobalsMD; const StackSafetyGlobalInfo *SSGI; DenseMap ProcessedAllocas; FunctionCallee AMDGPUAddressShared; FunctionCallee AMDGPUAddressPrivate; }; class AddressSanitizerLegacyPass : public FunctionPass { public: static char ID; explicit AddressSanitizerLegacyPass( bool CompileKernel = false, bool Recover = false, bool UseAfterScope = false, AsanDetectStackUseAfterReturnMode UseAfterReturn = AsanDetectStackUseAfterReturnMode::Runtime) : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) { initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "AddressSanitizerFunctionPass"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); if (ClUseStackSafety) AU.addRequired(); AU.addRequired(); } bool runOnFunction(Function &F) override { GlobalsMetadata &GlobalsMD = getAnalysis().getGlobalsMD(); const StackSafetyGlobalInfo *const SSGI = ClUseStackSafety ? &getAnalysis().getResult() : nullptr; const TargetLibraryInfo *TLI = &getAnalysis().getTLI(F); AddressSanitizer ASan(*F.getParent(), &GlobalsMD, SSGI, CompileKernel, Recover, UseAfterScope, UseAfterReturn); return ASan.instrumentFunction(F, TLI); } private: bool CompileKernel; bool Recover; bool UseAfterScope; AsanDetectStackUseAfterReturnMode UseAfterReturn; }; class ModuleAddressSanitizer { public: ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, bool CompileKernel = false, bool Recover = false, bool UseGlobalsGC = true, bool UseOdrIndicator = false, AsanDtorKind DestructorKind = AsanDtorKind::Global) : GlobalsMD(*GlobalsMD), CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel), Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), // Enable aliases as they should have no downside with ODR indicators. UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), // Not a typo: ClWithComdat is almost completely pointless without // ClUseGlobalsGC (because then it only works on modules without // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; // and both suffer from gold PR19002 for which UseGlobalsGC constructor // argument is designed as workaround. Therefore, disable both // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to // do globals-gc. UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), DestructorKind(DestructorKind) { C = &(M.getContext()); int LongSize = M.getDataLayout().getPointerSizeInBits(); IntptrTy = Type::getIntNTy(*C, LongSize); TargetTriple = Triple(M.getTargetTriple()); Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); if (ClOverrideDestructorKind != AsanDtorKind::Invalid) this->DestructorKind = ClOverrideDestructorKind; assert(this->DestructorKind != AsanDtorKind::Invalid); } bool instrumentModule(Module &); private: void initializeCallbacks(Module &M); bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, ArrayRef ExtendedGlobals, ArrayRef MetadataInitializers); void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, ArrayRef ExtendedGlobals, ArrayRef MetadataInitializers, const std::string &UniqueModuleId); void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, ArrayRef ExtendedGlobals, ArrayRef MetadataInitializers); void InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, ArrayRef ExtendedGlobals, ArrayRef MetadataInitializers); GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, StringRef OriginalName); void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix); Instruction *CreateAsanModuleDtor(Module &M); const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; bool shouldInstrumentGlobal(GlobalVariable *G) const; bool ShouldUseMachOGlobalsSection() const; StringRef getGlobalMetadataSection() const; void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); uint64_t getMinRedzoneSizeForGlobal() const { return getRedzoneSizeForScale(Mapping.Scale); } uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; int GetAsanVersion(const Module &M) const; const GlobalsMetadata &GlobalsMD; bool CompileKernel; bool Recover; bool UseGlobalsGC; bool UsePrivateAlias; bool UseOdrIndicator; bool UseCtorComdat; AsanDtorKind DestructorKind; Type *IntptrTy; LLVMContext *C; Triple TargetTriple; ShadowMapping Mapping; FunctionCallee AsanPoisonGlobals; FunctionCallee AsanUnpoisonGlobals; FunctionCallee AsanRegisterGlobals; FunctionCallee AsanUnregisterGlobals; FunctionCallee AsanRegisterImageGlobals; FunctionCallee AsanUnregisterImageGlobals; FunctionCallee AsanRegisterElfGlobals; FunctionCallee AsanUnregisterElfGlobals; Function *AsanCtorFunction = nullptr; Function *AsanDtorFunction = nullptr; }; class ModuleAddressSanitizerLegacyPass : public ModulePass { public: static char ID; explicit ModuleAddressSanitizerLegacyPass( bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true, bool UseOdrIndicator = false, AsanDtorKind DestructorKind = AsanDtorKind::Global) : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) { initializeModuleAddressSanitizerLegacyPassPass( *PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "ModuleAddressSanitizer"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); } bool runOnModule(Module &M) override { GlobalsMetadata &GlobalsMD = getAnalysis().getGlobalsMD(); ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, UseGlobalGC, UseOdrIndicator, DestructorKind); return ASanModule.instrumentModule(M); } private: bool CompileKernel; bool Recover; bool UseGlobalGC; bool UseOdrIndicator; AsanDtorKind DestructorKind; }; // Stack poisoning does not play well with exception handling. // When an exception is thrown, we essentially bypass the code // that unpoisones the stack. This is why the run-time library has // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire // stack in the interceptor. This however does not work inside the // actual function which catches the exception. Most likely because the // compiler hoists the load of the shadow value somewhere too high. // This causes asan to report a non-existing bug on 453.povray. // It sounds like an LLVM bug. struct FunctionStackPoisoner : public InstVisitor { Function &F; AddressSanitizer &ASan; DIBuilder DIB; LLVMContext *C; Type *IntptrTy; Type *IntptrPtrTy; ShadowMapping Mapping; SmallVector AllocaVec; SmallVector StaticAllocasToMoveUp; SmallVector RetVec; FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; FunctionCallee AsanSetShadowFunc[0x100] = {}; FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; // Stores a place and arguments of poisoning/unpoisoning call for alloca. struct AllocaPoisonCall { IntrinsicInst *InsBefore; AllocaInst *AI; uint64_t Size; bool DoPoison; }; SmallVector DynamicAllocaPoisonCallVec; SmallVector StaticAllocaPoisonCallVec; bool HasUntracedLifetimeIntrinsic = false; SmallVector DynamicAllocaVec; SmallVector StackRestoreVec; AllocaInst *DynamicAllocaLayout = nullptr; IntrinsicInst *LocalEscapeCall = nullptr; bool HasInlineAsm = false; bool HasReturnsTwiceCall = false; bool PoisonStack; FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), C(ASan.C), IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), PoisonStack(ClStack && !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} bool runOnFunction() { if (!PoisonStack) return false; if (ClRedzoneByvalArgs) copyArgsPassedByValToAllocas(); // Collect alloca, ret, lifetime instructions etc. for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; initializeCallbacks(*F.getParent()); if (HasUntracedLifetimeIntrinsic) { // If there are lifetime intrinsics which couldn't be traced back to an // alloca, we may not know exactly when a variable enters scope, and // therefore should "fail safe" by not poisoning them. StaticAllocaPoisonCallVec.clear(); DynamicAllocaPoisonCallVec.clear(); } processDynamicAllocas(); processStaticAllocas(); if (ClDebugStack) { LLVM_DEBUG(dbgs() << F); } return true; } // Arguments marked with the "byval" attribute are implicitly copied without // using an alloca instruction. To produce redzones for those arguments, we // copy them a second time into memory allocated with an alloca instruction. void copyArgsPassedByValToAllocas(); // Finds all Alloca instructions and puts // poisoned red zones around all of them. // Then unpoison everything back before the function returns. void processStaticAllocas(); void processDynamicAllocas(); void createDynamicAllocasInitStorage(); // ----------------------- Visitors. /// Collect all Ret instructions, or the musttail call instruction if it /// precedes the return instruction. void visitReturnInst(ReturnInst &RI) { if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) RetVec.push_back(CI); else RetVec.push_back(&RI); } /// Collect all Resume instructions. void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } /// Collect all CatchReturnInst instructions. void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, Value *SavedStack) { IRBuilder<> IRB(InstBefore); Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we // need to adjust extracted SP to compute the address of the most recent // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for // this purpose. if (!isa(InstBefore)) { Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, {IntptrTy}); Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), DynamicAreaOffset); } IRB.CreateCall( AsanAllocasUnpoisonFunc, {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); } // Unpoison dynamic allocas redzones. void unpoisonDynamicAllocas() { for (Instruction *Ret : RetVec) unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); for (Instruction *StackRestoreInst : StackRestoreVec) unpoisonDynamicAllocasBeforeInst(StackRestoreInst, StackRestoreInst->getOperand(0)); } // Deploy and poison redzones around dynamic alloca call. To do this, we // should replace this call with another one with changed parameters and // replace all its uses with new address, so // addr = alloca type, old_size, align // is replaced by // new_size = (old_size + additional_size) * sizeof(type) // tmp = alloca i8, new_size, max(align, 32) // addr = tmp + 32 (first 32 bytes are for the left redzone). // Additional_size is added to make new memory allocation contain not only // requested memory, but also left, partial and right redzones. void handleDynamicAllocaCall(AllocaInst *AI); /// Collect Alloca instructions we want (and can) handle. void visitAllocaInst(AllocaInst &AI) { if (!ASan.isInterestingAlloca(AI)) { if (AI.isStaticAlloca()) { // Skip over allocas that are present *before* the first instrumented // alloca, we don't want to move those around. if (AllocaVec.empty()) return; StaticAllocasToMoveUp.push_back(&AI); } return; } if (!AI.isStaticAlloca()) DynamicAllocaVec.push_back(&AI); else AllocaVec.push_back(&AI); } /// Collect lifetime intrinsic calls to check for use-after-scope /// errors. void visitIntrinsicInst(IntrinsicInst &II) { Intrinsic::ID ID = II.getIntrinsicID(); if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); if (ID == Intrinsic::localescape) LocalEscapeCall = &II; if (!ASan.UseAfterScope) return; if (!II.isLifetimeStartOrEnd()) return; // Found lifetime intrinsic, add ASan instrumentation if necessary. auto *Size = cast(II.getArgOperand(0)); // If size argument is undefined, don't do anything. if (Size->isMinusOne()) return; // Check that size doesn't saturate uint64_t and can // be stored in IntptrTy. const uint64_t SizeValue = Size->getValue().getLimitedValue(); if (SizeValue == ~0ULL || !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) return; // Find alloca instruction that corresponds to llvm.lifetime argument. // Currently we can only handle lifetime markers pointing to the // beginning of the alloca. AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); if (!AI) { HasUntracedLifetimeIntrinsic = true; return; } // We're interested only in allocas we can handle. if (!ASan.isInterestingAlloca(*AI)) return; bool DoPoison = (ID == Intrinsic::lifetime_end); AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; if (AI->isStaticAlloca()) StaticAllocaPoisonCallVec.push_back(APC); else if (ClInstrumentDynamicAllocas) DynamicAllocaPoisonCallVec.push_back(APC); } void visitCallBase(CallBase &CB) { if (CallInst *CI = dyn_cast(&CB)) { HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; HasReturnsTwiceCall |= CI->canReturnTwice(); } } // ---------------------- Helpers. void initializeCallbacks(Module &M); // Copies bytes from ShadowBytes into shadow memory for indexes where // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. void copyToShadow(ArrayRef ShadowMask, ArrayRef ShadowBytes, IRBuilder<> &IRB, Value *ShadowBase); void copyToShadow(ArrayRef ShadowMask, ArrayRef ShadowBytes, size_t Begin, size_t End, IRBuilder<> &IRB, Value *ShadowBase); void copyToShadowInline(ArrayRef ShadowMask, ArrayRef ShadowBytes, size_t Begin, size_t End, IRBuilder<> &IRB, Value *ShadowBase); void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic); PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, Instruction *ThenTerm, Value *ValueIfFalse); }; } // end anonymous namespace void LocationMetadata::parse(MDNode *MDN) { assert(MDN->getNumOperands() == 3); MDString *DIFilename = cast(MDN->getOperand(0)); Filename = DIFilename->getString(); LineNo = mdconst::extract(MDN->getOperand(1))->getLimitedValue(); ColumnNo = mdconst::extract(MDN->getOperand(2))->getLimitedValue(); } // FIXME: It would be cleaner to instead attach relevant metadata to the globals // we want to sanitize instead and reading this metadata on each pass over a // function instead of reading module level metadata at first. GlobalsMetadata::GlobalsMetadata(Module &M) { NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); if (!Globals) return; for (auto MDN : Globals->operands()) { // Metadata node contains the global and the fields of "Entry". assert(MDN->getNumOperands() == 5); auto *V = mdconst::extract_or_null(MDN->getOperand(0)); // The optimizer may optimize away a global entirely. if (!V) continue; auto *StrippedV = V->stripPointerCasts(); auto *GV = dyn_cast(StrippedV); if (!GV) continue; // We can already have an entry for GV if it was merged with another // global. Entry &E = Entries[GV]; if (auto *Loc = cast_or_null(MDN->getOperand(1))) E.SourceLoc.parse(Loc); if (auto *Name = cast_or_null(MDN->getOperand(2))) E.Name = Name->getString(); ConstantInt *IsDynInit = mdconst::extract(MDN->getOperand(3)); E.IsDynInit |= IsDynInit->isOne(); ConstantInt *IsExcluded = mdconst::extract(MDN->getOperand(4)); E.IsExcluded |= IsExcluded->isOne(); } } AnalysisKey ASanGlobalsMetadataAnalysis::Key; GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, ModuleAnalysisManager &AM) { return GlobalsMetadata(M); } PreservedAnalyses AddressSanitizerPass::run(Function &F, AnalysisManager &AM) { auto &MAMProxy = AM.getResult(F); Module &M = *F.getParent(); if (auto *R = MAMProxy.getCachedResult(M)) { const TargetLibraryInfo *TLI = &AM.getResult(F); AddressSanitizer Sanitizer(M, R, nullptr, Options.CompileKernel, Options.Recover, Options.UseAfterScope, Options.UseAfterReturn); if (Sanitizer.instrumentFunction(F, TLI)) return PreservedAnalyses::none(); return PreservedAnalyses::all(); } report_fatal_error( "The ASanGlobalsMetadataAnalysis is required to run before " "AddressSanitizer can run"); return PreservedAnalyses::all(); } void AddressSanitizerPass::printPipeline( raw_ostream &OS, function_ref MapClassName2PassName) { static_cast *>(this)->printPipeline( OS, MapClassName2PassName); OS << "<"; if (Options.CompileKernel) OS << "kernel"; OS << ">"; } void ModuleAddressSanitizerPass::printPipeline( raw_ostream &OS, function_ref MapClassName2PassName) { static_cast *>(this)->printPipeline( OS, MapClassName2PassName); OS << "<"; if (Options.CompileKernel) OS << "kernel"; OS << ">"; } ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( const AddressSanitizerOptions &Options, bool UseGlobalGC, bool UseOdrIndicator, AsanDtorKind DestructorKind) : Options(Options), UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, ModuleAnalysisManager &MAM) { GlobalsMetadata &GlobalsMD = MAM.getResult(M); ModuleAddressSanitizer ModuleSanitizer(M, &GlobalsMD, Options.CompileKernel, Options.Recover, UseGlobalGC, UseOdrIndicator, DestructorKind); bool Modified = false; auto &FAM = MAM.getResult(M).getManager(); const StackSafetyGlobalInfo *const SSGI = ClUseStackSafety ? &MAM.getResult(M) : nullptr; for (Function &F : M) { AddressSanitizer FunctionSanitizer( M, &GlobalsMD, SSGI, Options.CompileKernel, Options.Recover, Options.UseAfterScope, Options.UseAfterReturn); const TargetLibraryInfo &TLI = FAM.getResult(F); Modified |= FunctionSanitizer.instrumentFunction(F, &TLI); } Modified |= ModuleSanitizer.instrumentModule(M); return Modified ? PreservedAnalyses::none() : PreservedAnalyses::all(); } INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", "Read metadata to mark which globals should be instrumented " "when running ASan.", false, true) char AddressSanitizerLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN( AddressSanitizerLegacyPass, "asan", "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, false) INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) INITIALIZE_PASS_DEPENDENCY(StackSafetyGlobalInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END( AddressSanitizerLegacyPass, "asan", "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, false) FunctionPass *llvm::createAddressSanitizerFunctionPass( bool CompileKernel, bool Recover, bool UseAfterScope, AsanDetectStackUseAfterReturnMode UseAfterReturn) { assert(!CompileKernel || Recover); return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope, UseAfterReturn); } char ModuleAddressSanitizerLegacyPass::ID = 0; INITIALIZE_PASS( ModuleAddressSanitizerLegacyPass, "asan-module", "AddressSanitizer: detects use-after-free and out-of-bounds bugs." "ModulePass", false, false) ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator, AsanDtorKind Destructor) { assert(!CompileKernel || Recover); return new ModuleAddressSanitizerLegacyPass( CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor); } static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { size_t Res = countTrailingZeros(TypeSize / 8); assert(Res < kNumberOfAccessSizes); return Res; } /// Create a global describing a source location. static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, LocationMetadata MD) { Constant *LocData[] = { createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), }; auto LocStruct = ConstantStruct::getAnon(LocData); auto GV = new GlobalVariable(M, LocStruct->getType(), true, GlobalValue::PrivateLinkage, LocStruct, kAsanGenPrefix); GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); return GV; } /// Check if \p G has been created by a trusted compiler pass. static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { // Do not instrument @llvm.global_ctors, @llvm.used, etc. if (G->getName().startswith("llvm.")) return true; // Do not instrument asan globals. if (G->getName().startswith(kAsanGenPrefix) || G->getName().startswith(kSanCovGenPrefix) || G->getName().startswith(kODRGenPrefix)) return true; // Do not instrument gcov counter arrays. if (G->getName() == "__llvm_gcov_ctr") return true; return false; } static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { Type *PtrTy = cast(Addr->getType()->getScalarType()); unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); if (AddrSpace == 3 || AddrSpace == 5) return true; return false; } Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { // Shadow >> scale Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); if (Mapping.Offset == 0) return Shadow; // (Shadow >> scale) | offset Value *ShadowBase; if (LocalDynamicShadow) ShadowBase = LocalDynamicShadow; else ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); if (Mapping.OrShadowOffset) return IRB.CreateOr(Shadow, ShadowBase); else return IRB.CreateAdd(Shadow, ShadowBase); } // Instrument memset/memmove/memcpy void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { IRBuilder<> IRB(MI); if (isa(MI)) { IRB.CreateCall( isa(MI) ? AsanMemmove : AsanMemcpy, {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); } else if (isa(MI)) { IRB.CreateCall( AsanMemset, {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); } MI->eraseFromParent(); } /// Check if we want (and can) handle this alloca. bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) return PreviouslySeenAllocaInfo->getSecond(); bool IsInteresting = (AI.getAllocatedType()->isSized() && // alloca() may be called with 0 size, ignore it. ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && // We are only interested in allocas not promotable to registers. // Promotable allocas are common under -O0. (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && // inalloca allocas are not treated as static, and we don't want // dynamic alloca instrumentation for them as well. !AI.isUsedWithInAlloca() && // swifterror allocas are register promoted by ISel !AI.isSwiftError()); ProcessedAllocas[&AI] = IsInteresting; return IsInteresting; } bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { // Instrument acesses from different address spaces only for AMDGPU. Type *PtrTy = cast(Ptr->getType()->getScalarType()); if (PtrTy->getPointerAddressSpace() != 0 && !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) return true; // Ignore swifterror addresses. // swifterror memory addresses are mem2reg promoted by instruction // selection. As such they cannot have regular uses like an instrumentation // function and it makes no sense to track them as memory. if (Ptr->isSwiftError()) return true; // Treat memory accesses to promotable allocas as non-interesting since they // will not cause memory violations. This greatly speeds up the instrumented // executable at -O0. if (auto AI = dyn_cast_or_null(Ptr)) if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) return true; if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) && findAllocaForValue(Ptr)) return true; return false; } void AddressSanitizer::getInterestingMemoryOperands( Instruction *I, SmallVectorImpl &Interesting) { // Skip memory accesses inserted by another instrumentation. if (I->hasMetadata("nosanitize")) return; // Do not instrument the load fetching the dynamic shadow address. if (LocalDynamicShadow == I) return; if (LoadInst *LI = dyn_cast(I)) { if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand())) return; Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, LI->getType(), LI->getAlign()); } else if (StoreInst *SI = dyn_cast(I)) { if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand())) return; Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, SI->getValueOperand()->getType(), SI->getAlign()); } else if (AtomicRMWInst *RMW = dyn_cast(I)) { if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand())) return; Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, RMW->getValOperand()->getType(), None); } else if (AtomicCmpXchgInst *XCHG = dyn_cast(I)) { if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand())) return; Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, XCHG->getCompareOperand()->getType(), None); } else if (auto CI = dyn_cast(I)) { if (CI->getIntrinsicID() == Intrinsic::masked_load || CI->getIntrinsicID() == Intrinsic::masked_store) { bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_store; // Masked store has an initial operand for the value. unsigned OpOffset = IsWrite ? 1 : 0; if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) return; auto BasePtr = CI->getOperand(OpOffset); if (ignoreAccess(I, BasePtr)) return; Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); MaybeAlign Alignment = Align(1); // Otherwise no alignment guarantees. We probably got Undef. if (auto *Op = dyn_cast(CI->getOperand(1 + OpOffset))) Alignment = Op->getMaybeAlignValue(); Value *Mask = CI->getOperand(2 + OpOffset); Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); } else { for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || ignoreAccess(I, CI->getArgOperand(ArgNo))) continue; Type *Ty = CI->getParamByValType(ArgNo); Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); } } } } static bool isPointerOperand(Value *V) { return V->getType()->isPointerTy() || isa(V); } // This is a rough heuristic; it may cause both false positives and // false negatives. The proper implementation requires cooperation with // the frontend. static bool isInterestingPointerComparison(Instruction *I) { if (ICmpInst *Cmp = dyn_cast(I)) { if (!Cmp->isRelational()) return false; } else { return false; } return isPointerOperand(I->getOperand(0)) && isPointerOperand(I->getOperand(1)); } // This is a rough heuristic; it may cause both false positives and // false negatives. The proper implementation requires cooperation with // the frontend. static bool isInterestingPointerSubtraction(Instruction *I) { if (BinaryOperator *BO = dyn_cast(I)) { if (BO->getOpcode() != Instruction::Sub) return false; } else { return false; } return isPointerOperand(I->getOperand(0)) && isPointerOperand(I->getOperand(1)); } bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { // If a global variable does not have dynamic initialization we don't // have to instrument it. However, if a global does not have initializer // at all, we assume it has dynamic initializer (in other TU). // // FIXME: Metadata should be attched directly to the global directly instead // of being added to llvm.asan.globals. return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; } void AddressSanitizer::instrumentPointerComparisonOrSubtraction( Instruction *I) { IRBuilder<> IRB(I); FunctionCallee F = isa(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; for (Value *&i : Param) { if (i->getType()->isPointerTy()) i = IRB.CreatePointerCast(i, IntptrTy); } IRB.CreateCall(F, Param); } static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, Instruction *InsertBefore, Value *Addr, MaybeAlign Alignment, unsigned Granularity, uint32_t TypeSize, bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check // if the data is properly aligned. if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || TypeSize == 128) && (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, nullptr, UseCalls, Exp); Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, IsWrite, nullptr, UseCalls, Exp); } static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, const DataLayout &DL, Type *IntptrTy, Value *Mask, Instruction *I, Value *Addr, MaybeAlign Alignment, unsigned Granularity, Type *OpType, bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { auto *VTy = cast(OpType); uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); unsigned Num = VTy->getNumElements(); auto Zero = ConstantInt::get(IntptrTy, 0); for (unsigned Idx = 0; Idx < Num; ++Idx) { Value *InstrumentedAddress = nullptr; Instruction *InsertBefore = I; if (auto *Vector = dyn_cast(Mask)) { // dyn_cast as we might get UndefValue if (auto *Masked = dyn_cast(Vector->getOperand(Idx))) { if (Masked->isZero()) // Mask is constant false, so no instrumentation needed. continue; // If we have a true or undef value, fall through to doInstrumentAddress // with InsertBefore == I } } else { IRBuilder<> IRB(I); Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); InsertBefore = ThenTerm; } IRBuilder<> IRB(InsertBefore); InstrumentedAddress = IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, Granularity, ElemTypeSize, IsWrite, SizeArgument, UseCalls, Exp); } } void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, InterestingMemoryOperand &O, bool UseCalls, const DataLayout &DL) { Value *Addr = O.getPtr(); // Optimization experiments. // The experiments can be used to evaluate potential optimizations that remove // instrumentation (assess false negatives). Instead of completely removing // some instrumentation, you set Exp to a non-zero value (mask of optimization // experiments that want to remove instrumentation of this instruction). // If Exp is non-zero, this pass will emit special calls into runtime // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls // make runtime terminate the program in a special way (with a different // exit status). Then you run the new compiler on a buggy corpus, collect // the special terminations (ideally, you don't see them at all -- no false // negatives) and make the decision on the optimization. uint32_t Exp = ClForceExperiment; if (ClOpt && ClOptGlobals) { // If initialization order checking is disabled, a simple access to a // dynamically initialized global is always valid. GlobalVariable *G = dyn_cast(getUnderlyingObject(Addr)); if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { NumOptimizedAccessesToGlobalVar++; return; } } if (ClOpt && ClOptStack) { // A direct inbounds access to a stack variable is always valid. if (isa(getUnderlyingObject(Addr)) && isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { NumOptimizedAccessesToStackVar++; return; } } if (O.IsWrite) NumInstrumentedWrites++; else NumInstrumentedReads++; unsigned Granularity = 1 << Mapping.Scale; if (O.MaybeMask) { instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), Addr, O.Alignment, Granularity, O.OpType, O.IsWrite, nullptr, UseCalls, Exp); } else { doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, Exp); } } Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, Value *Addr, bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument, uint32_t Exp) { IRBuilder<> IRB(InsertBefore); Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); CallInst *Call = nullptr; if (SizeArgument) { if (Exp == 0) Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], {Addr, SizeArgument}); else Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], {Addr, SizeArgument, ExpVal}); } else { if (Exp == 0) Call = IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); else Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], {Addr, ExpVal}); } Call->setCannotMerge(); return Call; } Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, Value *ShadowValue, uint32_t TypeSize) { size_t Granularity = static_cast(1) << Mapping.Scale; // Addr & (Granularity - 1) Value *LastAccessedByte = IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); // (Addr & (Granularity - 1)) + size - 1 if (TypeSize / 8 > 1) LastAccessedByte = IRB.CreateAdd( LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); // (uint8_t) ((Addr & (Granularity-1)) + size - 1) LastAccessedByte = IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); } Instruction *AddressSanitizer::instrumentAMDGPUAddress( Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { // Do not instrument unsupported addrspaces. if (isUnsupportedAMDGPUAddrspace(Addr)) return nullptr; Type *PtrTy = cast(Addr->getType()->getScalarType()); // Follow host instrumentation for global and constant addresses. if (PtrTy->getPointerAddressSpace() != 0) return InsertBefore; // Instrument generic addresses in supported addressspaces. IRBuilder<> IRB(InsertBefore); Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate); Value *AddrSpaceZeroLanding = SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); InsertBefore = cast(AddrSpaceZeroLanding); return InsertBefore; } void AddressSanitizer::instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { if (TargetTriple.isAMDGPU()) { InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, TypeSize, IsWrite, SizeArgument); if (!InsertBefore) return; } IRBuilder<> IRB(InsertBefore); size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); if (UseCalls && ClOptimizeCallbacks) { const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); Module *M = IRB.GetInsertBlock()->getParent()->getParent(); IRB.CreateCall( Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), {IRB.CreatePointerCast(Addr, Int8PtrTy), ConstantInt::get(Int32Ty, AccessInfo.Packed)}); return; } Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); if (UseCalls) { if (Exp == 0) IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], AddrLong); else IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); return; } Type *ShadowTy = IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); Value *ShadowPtr = memToShadow(AddrLong, IRB); Value *CmpVal = Constant::getNullValue(ShadowTy); Value *ShadowValue = IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); size_t Granularity = 1ULL << Mapping.Scale; Instruction *CrashTerm = nullptr; if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { // We use branch weights for the slow path check, to indicate that the slow // path is rarely taken. This seems to be the case for SPEC benchmarks. Instruction *CheckTerm = SplitBlockAndInsertIfThen( Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); assert(cast(CheckTerm)->isUnconditional()); BasicBlock *NextBB = CheckTerm->getSuccessor(0); IRB.SetInsertPoint(CheckTerm); Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); if (Recover) { CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); } else { BasicBlock *CrashBlock = BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); CrashTerm = new UnreachableInst(*C, CrashBlock); BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); ReplaceInstWithInst(CheckTerm, NewTerm); } } else { CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); } Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument, Exp); Crash->setDebugLoc(OrigIns->getDebugLoc()); } // Instrument unusual size or unusual alignment. // We can not do it with a single check, so we do 1-byte check for the first // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able // to report the actual access size. void AddressSanitizer::instrumentUnusualSizeOrAlignment( Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { IRBuilder<> IRB(InsertBefore); Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); if (UseCalls) { if (Exp == 0) IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], {AddrLong, Size}); else IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); } else { Value *LastByte = IRB.CreateIntToPtr( IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), Addr->getType()); instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); } } void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName) { // Set up the arguments to our poison/unpoison functions. IRBuilder<> IRB(&GlobalInit.front(), GlobalInit.front().getFirstInsertionPt()); // Add a call to poison all external globals before the given function starts. Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); // Add calls to unpoison all globals before each return instruction. for (auto &BB : GlobalInit.getBasicBlockList()) if (ReturnInst *RI = dyn_cast(BB.getTerminator())) CallInst::Create(AsanUnpoisonGlobals, "", RI); } void ModuleAddressSanitizer::createInitializerPoisonCalls( Module &M, GlobalValue *ModuleName) { GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); if (!GV) return; ConstantArray *CA = dyn_cast(GV->getInitializer()); if (!CA) return; for (Use &OP : CA->operands()) { if (isa(OP)) continue; ConstantStruct *CS = cast(OP); // Must have a function or null ptr. if (Function *F = dyn_cast(CS->getOperand(1))) { if (F->getName() == kAsanModuleCtorName) continue; auto *Priority = cast(CS->getOperand(0)); // Don't instrument CTORs that will run before asan.module_ctor. if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) continue; poisonOneInitializer(*F, ModuleName); } } } const GlobalVariable * ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { // In case this function should be expanded to include rules that do not just // apply when CompileKernel is true, either guard all existing rules with an // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules // should also apply to user space. assert(CompileKernel && "Only expecting to be called when compiling kernel"); const Constant *C = GA.getAliasee(); // When compiling the kernel, globals that are aliased by symbols prefixed // by "__" are special and cannot be padded with a redzone. if (GA.getName().startswith("__")) return dyn_cast(C->stripPointerCastsAndAliases()); return nullptr; } bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { Type *Ty = G->getValueType(); LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); // FIXME: Metadata should be attched directly to the global directly instead // of being added to llvm.asan.globals. if (GlobalsMD.get(G).IsExcluded) return false; if (!Ty->isSized()) return false; if (!G->hasInitializer()) return false; // Globals in address space 1 and 4 are supported for AMDGPU. if (G->getAddressSpace() && !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) return false; if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. // Two problems with thread-locals: // - The address of the main thread's copy can't be computed at link-time. // - Need to poison all copies, not just the main thread's one. if (G->isThreadLocal()) return false; // For now, just ignore this Global if the alignment is large. if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; // For non-COFF targets, only instrument globals known to be defined by this // TU. // FIXME: We can instrument comdat globals on ELF if we are using the // GC-friendly metadata scheme. if (!TargetTriple.isOSBinFormatCOFF()) { if (!G->hasExactDefinition() || G->hasComdat()) return false; } else { // On COFF, don't instrument non-ODR linkages. if (G->isInterposable()) return false; } // If a comdat is present, it must have a selection kind that implies ODR // semantics: no duplicates, any, or exact match. if (Comdat *C = G->getComdat()) { switch (C->getSelectionKind()) { case Comdat::Any: case Comdat::ExactMatch: case Comdat::NoDeduplicate: break; case Comdat::Largest: case Comdat::SameSize: return false; } } if (G->hasSection()) { // The kernel uses explicit sections for mostly special global variables // that we should not instrument. E.g. the kernel may rely on their layout // without redzones, or remove them at link time ("discard.*"), etc. if (CompileKernel) return false; StringRef Section = G->getSection(); // Globals from llvm.metadata aren't emitted, do not instrument them. if (Section == "llvm.metadata") return false; // Do not instrument globals from special LLVM sections. if (Section.contains("__llvm") || Section.contains("__LLVM")) return false; // Do not instrument function pointers to initialization and termination // routines: dynamic linker will not properly handle redzones. if (Section.startswith(".preinit_array") || Section.startswith(".init_array") || Section.startswith(".fini_array")) { return false; } // Do not instrument user-defined sections (with names resembling // valid C identifiers) if (TargetTriple.isOSBinFormatELF()) { if (llvm::all_of(Section, [](char c) { return llvm::isAlnum(c) || c == '_'; })) return false; } // On COFF, if the section name contains '$', it is highly likely that the // user is using section sorting to create an array of globals similar to // the way initialization callbacks are registered in .init_array and // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones // to such globals is counterproductive, because the intent is that they // will form an array, and out-of-bounds accesses are expected. // See https://github.com/google/sanitizers/issues/305 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " << *G << "\n"); return false; } if (TargetTriple.isOSBinFormatMachO()) { StringRef ParsedSegment, ParsedSection; unsigned TAA = 0, StubSize = 0; bool TAAParsed; cantFail(MCSectionMachO::ParseSectionSpecifier( Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); // Ignore the globals from the __OBJC section. The ObjC runtime assumes // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to // them. if (ParsedSegment == "__OBJC" || (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); return false; } // See https://github.com/google/sanitizers/issues/32 // Constant CFString instances are compiled in the following way: // -- the string buffer is emitted into // __TEXT,__cstring,cstring_literals // -- the constant NSConstantString structure referencing that buffer // is placed into __DATA,__cfstring // Therefore there's no point in placing redzones into __DATA,__cfstring. // Moreover, it causes the linker to crash on OS X 10.7 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); return false; } // The linker merges the contents of cstring_literals and removes the // trailing zeroes. if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); return false; } } } if (CompileKernel) { // Globals that prefixed by "__" are special and cannot be padded with a // redzone. if (G->getName().startswith("__")) return false; } return true; } // On Mach-O platforms, we emit global metadata in a separate section of the // binary in order to allow the linker to properly dead strip. This is only // supported on recent versions of ld64. bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { if (!TargetTriple.isOSBinFormatMachO()) return false; if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) return true; if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) return true; if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) return true; return false; } StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { switch (TargetTriple.getObjectFormat()) { case Triple::COFF: return ".ASAN$GL"; case Triple::ELF: return "asan_globals"; case Triple::MachO: return "__DATA,__asan_globals,regular"; case Triple::Wasm: case Triple::GOFF: case Triple::XCOFF: report_fatal_error( "ModuleAddressSanitizer not implemented for object file format"); case Triple::UnknownObjectFormat: break; } llvm_unreachable("unsupported object format"); } void ModuleAddressSanitizer::initializeCallbacks(Module &M) { IRBuilder<> IRB(*C); // Declare our poisoning and unpoisoning functions. AsanPoisonGlobals = M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); AsanUnpoisonGlobals = M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); // Declare functions that register/unregister globals. AsanRegisterGlobals = M.getOrInsertFunction( kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); AsanUnregisterGlobals = M.getOrInsertFunction( kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); // Declare the functions that find globals in a shared object and then invoke // the (un)register function on them. AsanRegisterImageGlobals = M.getOrInsertFunction( kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); AsanUnregisterImageGlobals = M.getOrInsertFunction( kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); AsanRegisterElfGlobals = M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, IntptrTy); AsanUnregisterElfGlobals = M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, IntptrTy); } // Put the metadata and the instrumented global in the same group. This ensures // that the metadata is discarded if the instrumented global is discarded. void ModuleAddressSanitizer::SetComdatForGlobalMetadata( GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { Module &M = *G->getParent(); Comdat *C = G->getComdat(); if (!C) { if (!G->hasName()) { // If G is unnamed, it must be internal. Give it an artificial name // so we can put it in a comdat. assert(G->hasLocalLinkage()); G->setName(Twine(kAsanGenPrefix) + "_anon_global"); } if (!InternalSuffix.empty() && G->hasLocalLinkage()) { std::string Name = std::string(G->getName()); Name += InternalSuffix; C = M.getOrInsertComdat(Name); } else { C = M.getOrInsertComdat(G->getName()); } // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private // linkage to internal linkage so that a symbol table entry is emitted. This // is necessary in order to create the comdat group. if (TargetTriple.isOSBinFormatCOFF()) { C->setSelectionKind(Comdat::NoDeduplicate); if (G->hasPrivateLinkage()) G->setLinkage(GlobalValue::InternalLinkage); } G->setComdat(C); } assert(G->hasComdat()); Metadata->setComdat(G->getComdat()); } // Create a separate metadata global and put it in the appropriate ASan // global registration section. GlobalVariable * ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, StringRef OriginalName) { auto Linkage = TargetTriple.isOSBinFormatMachO() ? GlobalVariable::InternalLinkage : GlobalVariable::PrivateLinkage; GlobalVariable *Metadata = new GlobalVariable( M, Initializer->getType(), false, Linkage, Initializer, Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); Metadata->setSection(getGlobalMetadataSection()); return Metadata; } Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { AsanDtorFunction = Function::createWithDefaultAttr( FunctionType::get(Type::getVoidTy(*C), false), GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); AsanDtorFunction->addFnAttr(Attribute::NoUnwind); // Ensure Dtor cannot be discarded, even if in a comdat. appendToUsed(M, {AsanDtorFunction}); BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); return ReturnInst::Create(*C, AsanDtorBB); } void ModuleAddressSanitizer::InstrumentGlobalsCOFF( IRBuilder<> &IRB, Module &M, ArrayRef ExtendedGlobals, ArrayRef MetadataInitializers) { assert(ExtendedGlobals.size() == MetadataInitializers.size()); auto &DL = M.getDataLayout(); SmallVector MetadataGlobals(ExtendedGlobals.size()); for (size_t i = 0; i < ExtendedGlobals.size(); i++) { Constant *Initializer = MetadataInitializers[i]; GlobalVariable *G = ExtendedGlobals[i]; GlobalVariable *Metadata = CreateMetadataGlobal(M, Initializer, G->getName()); MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); Metadata->setMetadata(LLVMContext::MD_associated, MD); MetadataGlobals[i] = Metadata; // The MSVC linker always inserts padding when linking incrementally. We // cope with that by aligning each struct to its size, which must be a power // of two. unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); assert(isPowerOf2_32(SizeOfGlobalStruct) && "global metadata will not be padded appropriately"); Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); SetComdatForGlobalMetadata(G, Metadata, ""); } // Update llvm.compiler.used, adding the new metadata globals. This is // needed so that during LTO these variables stay alive. if (!MetadataGlobals.empty()) appendToCompilerUsed(M, MetadataGlobals); } void ModuleAddressSanitizer::InstrumentGlobalsELF( IRBuilder<> &IRB, Module &M, ArrayRef ExtendedGlobals, ArrayRef MetadataInitializers, const std::string &UniqueModuleId) { assert(ExtendedGlobals.size() == MetadataInitializers.size()); // Putting globals in a comdat changes the semantic and potentially cause // false negative odr violations at link time. If odr indicators are used, we // keep the comdat sections, as link time odr violations will be dectected on // the odr indicator symbols. bool UseComdatForGlobalsGC = UseOdrIndicator; SmallVector MetadataGlobals(ExtendedGlobals.size()); for (size_t i = 0; i < ExtendedGlobals.size(); i++) { GlobalVariable *G = ExtendedGlobals[i]; GlobalVariable *Metadata = CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); Metadata->setMetadata(LLVMContext::MD_associated, MD); MetadataGlobals[i] = Metadata; if (UseComdatForGlobalsGC) SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); } // Update llvm.compiler.used, adding the new metadata globals. This is // needed so that during LTO these variables stay alive. if (!MetadataGlobals.empty()) appendToCompilerUsed(M, MetadataGlobals); // RegisteredFlag serves two purposes. First, we can pass it to dladdr() // to look up the loaded image that contains it. Second, we can store in it // whether registration has already occurred, to prevent duplicate // registration. // // Common linkage ensures that there is only one global per shared library. GlobalVariable *RegisteredFlag = new GlobalVariable( M, IntptrTy, false, GlobalVariable::CommonLinkage, ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); // Create start and stop symbols. GlobalVariable *StartELFMetadata = new GlobalVariable( M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, "__start_" + getGlobalMetadataSection()); StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); GlobalVariable *StopELFMetadata = new GlobalVariable( M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, "__stop_" + getGlobalMetadataSection()); StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); // Create a call to register the globals with the runtime. IRB.CreateCall(AsanRegisterElfGlobals, {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), IRB.CreatePointerCast(StartELFMetadata, IntptrTy), IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); // We also need to unregister globals at the end, e.g., when a shared library // gets closed. if (DestructorKind != AsanDtorKind::None) { IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); IrbDtor.CreateCall(AsanUnregisterElfGlobals, {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), IRB.CreatePointerCast(StartELFMetadata, IntptrTy), IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); } } void ModuleAddressSanitizer::InstrumentGlobalsMachO( IRBuilder<> &IRB, Module &M, ArrayRef ExtendedGlobals, ArrayRef MetadataInitializers) { assert(ExtendedGlobals.size() == MetadataInitializers.size()); // On recent Mach-O platforms, use a structure which binds the liveness of // the global variable to the metadata struct. Keep the list of "Liveness" GV // created to be added to llvm.compiler.used StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); SmallVector LivenessGlobals(ExtendedGlobals.size()); for (size_t i = 0; i < ExtendedGlobals.size(); i++) { Constant *Initializer = MetadataInitializers[i]; GlobalVariable *G = ExtendedGlobals[i]; GlobalVariable *Metadata = CreateMetadataGlobal(M, Initializer, G->getName()); // On recent Mach-O platforms, we emit the global metadata in a way that // allows the linker to properly strip dead globals. auto LivenessBinder = ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), ConstantExpr::getPointerCast(Metadata, IntptrTy)); GlobalVariable *Liveness = new GlobalVariable( M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, Twine("__asan_binder_") + G->getName()); Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); LivenessGlobals[i] = Liveness; } // Update llvm.compiler.used, adding the new liveness globals. This is // needed so that during LTO these variables stay alive. The alternative // would be to have the linker handling the LTO symbols, but libLTO // current API does not expose access to the section for each symbol. if (!LivenessGlobals.empty()) appendToCompilerUsed(M, LivenessGlobals); // RegisteredFlag serves two purposes. First, we can pass it to dladdr() // to look up the loaded image that contains it. Second, we can store in it // whether registration has already occurred, to prevent duplicate // registration. // // common linkage ensures that there is only one global per shared library. GlobalVariable *RegisteredFlag = new GlobalVariable( M, IntptrTy, false, GlobalVariable::CommonLinkage, ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); IRB.CreateCall(AsanRegisterImageGlobals, {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); // We also need to unregister globals at the end, e.g., when a shared library // gets closed. if (DestructorKind != AsanDtorKind::None) { IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); IrbDtor.CreateCall(AsanUnregisterImageGlobals, {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); } } void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( IRBuilder<> &IRB, Module &M, ArrayRef ExtendedGlobals, ArrayRef MetadataInitializers) { assert(ExtendedGlobals.size() == MetadataInitializers.size()); unsigned N = ExtendedGlobals.size(); assert(N > 0); // On platforms that don't have a custom metadata section, we emit an array // of global metadata structures. ArrayType *ArrayOfGlobalStructTy = ArrayType::get(MetadataInitializers[0]->getType(), N); auto AllGlobals = new GlobalVariable( M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); if (Mapping.Scale > 3) AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); IRB.CreateCall(AsanRegisterGlobals, {IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, N)}); // We also need to unregister globals at the end, e.g., when a shared library // gets closed. if (DestructorKind != AsanDtorKind::None) { IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); IrbDtor.CreateCall(AsanUnregisterGlobals, {IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, N)}); } } // This function replaces all global variables with new variables that have // trailing redzones. It also creates a function that poisons // redzones and inserts this function into llvm.global_ctors. // Sets *CtorComdat to true if the global registration code emitted into the // asan constructor is comdat-compatible. bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat) { *CtorComdat = false; // Build set of globals that are aliased by some GA, where // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. SmallPtrSet AliasedGlobalExclusions; if (CompileKernel) { for (auto &GA : M.aliases()) { if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) AliasedGlobalExclusions.insert(GV); } } SmallVector GlobalsToChange; for (auto &G : M.globals()) { if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); } size_t n = GlobalsToChange.size(); if (n == 0) { *CtorComdat = true; return false; } auto &DL = M.getDataLayout(); // A global is described by a structure // size_t beg; // size_t size; // size_t size_with_redzone; // const char *name; // const char *module_name; // size_t has_dynamic_init; // void *source_location; // size_t odr_indicator; // We initialize an array of such structures and pass it to a run-time call. StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy); SmallVector NewGlobals(n); SmallVector Initializers(n); bool HasDynamicallyInitializedGlobals = false; // We shouldn't merge same module names, as this string serves as unique // module ID in runtime. GlobalVariable *ModuleName = createPrivateGlobalForString( M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); for (size_t i = 0; i < n; i++) { GlobalVariable *G = GlobalsToChange[i]; // FIXME: Metadata should be attched directly to the global directly instead // of being added to llvm.asan.globals. auto MD = GlobalsMD.get(G); StringRef NameForGlobal = G->getName(); // Create string holding the global name (use global name from metadata // if it's available, otherwise just write the name of global variable). GlobalVariable *Name = createPrivateGlobalForString( M, MD.Name.empty() ? NameForGlobal : MD.Name, /*AllowMerging*/ true, kAsanGenPrefix); Type *Ty = G->getValueType(); const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); StructType *NewTy = StructType::get(Ty, RightRedZoneTy); Constant *NewInitializer = ConstantStruct::get( NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); // Create a new global variable with enough space for a redzone. GlobalValue::LinkageTypes Linkage = G->getLinkage(); if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) Linkage = GlobalValue::InternalLinkage; GlobalVariable *NewGlobal = new GlobalVariable( M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, G->getThreadLocalMode(), G->getAddressSpace()); NewGlobal->copyAttributesFrom(G); NewGlobal->setComdat(G->getComdat()); NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); // Don't fold globals with redzones. ODR violation detector and redzone // poisoning implicitly creates a dependence on the global's address, so it // is no longer valid for it to be marked unnamed_addr. NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); // Move null-terminated C strings to "__asan_cstring" section on Darwin. if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && G->isConstant()) { auto Seq = dyn_cast(G->getInitializer()); if (Seq && Seq->isCString()) NewGlobal->setSection("__TEXT,__asan_cstring,regular"); } // Transfer the debug info and type metadata. The payload starts at offset // zero so we can copy the metadata over as is. NewGlobal->copyMetadata(G, 0); Value *Indices2[2]; Indices2[0] = IRB.getInt32(0); Indices2[1] = IRB.getInt32(0); G->replaceAllUsesWith( ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); NewGlobal->takeName(G); G->eraseFromParent(); NewGlobals[i] = NewGlobal; Constant *SourceLoc; if (!MD.SourceLoc.empty()) { auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); } else { SourceLoc = ConstantInt::get(IntptrTy, 0); } Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); GlobalValue *InstrumentedGlobal = NewGlobal; bool CanUsePrivateAliases = TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || TargetTriple.isOSBinFormatWasm(); if (CanUsePrivateAliases && UsePrivateAlias) { // Create local alias for NewGlobal to avoid crash on ODR between // instrumented and non-instrumented libraries. InstrumentedGlobal = GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); } // ODR should not happen for local linkage. if (NewGlobal->hasLocalLinkage()) { ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), IRB.getInt8PtrTy()); } else if (UseOdrIndicator) { // With local aliases, we need to provide another externally visible // symbol __odr_asan_XXX to detect ODR violation. auto *ODRIndicatorSym = new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, Constant::getNullValue(IRB.getInt8Ty()), kODRGenPrefix + NameForGlobal, nullptr, NewGlobal->getThreadLocalMode()); // Set meaningful attributes for indicator symbol. ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); ODRIndicatorSym->setAlignment(Align(1)); ODRIndicator = ODRIndicatorSym; } Constant *Initializer = ConstantStruct::get( GlobalStructTy, ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), ConstantInt::get(IntptrTy, SizeInBytes), ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), ConstantExpr::getPointerCast(Name, IntptrTy), ConstantExpr::getPointerCast(ModuleName, IntptrTy), ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); Initializers[i] = Initializer; } // Add instrumented globals to llvm.compiler.used list to avoid LTO from // ConstantMerge'ing them. SmallVector GlobalsToAddToUsedList; for (size_t i = 0; i < n; i++) { GlobalVariable *G = NewGlobals[i]; if (G->getName().empty()) continue; GlobalsToAddToUsedList.push_back(G); } appendToCompilerUsed(M, ArrayRef(GlobalsToAddToUsedList)); std::string ELFUniqueModuleId = (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) : ""; if (!ELFUniqueModuleId.empty()) { InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); *CtorComdat = true; } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); } else { InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); } // Create calls for poisoning before initializers run and unpoisoning after. if (HasDynamicallyInitializedGlobals) createInitializerPoisonCalls(M, ModuleName); LLVM_DEBUG(dbgs() << M); return true; } uint64_t ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { constexpr uint64_t kMaxRZ = 1 << 18; const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); uint64_t RZ = 0; if (SizeInBytes <= MinRZ / 2) { // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is // at least 32 bytes, optimize when SizeInBytes is less than or equal to // half of MinRZ. RZ = MinRZ - SizeInBytes; } else { // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); // Round up to multiple of MinRZ. if (SizeInBytes % MinRZ) RZ += MinRZ - (SizeInBytes % MinRZ); } assert((RZ + SizeInBytes) % MinRZ == 0); return RZ; } int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { int LongSize = M.getDataLayout().getPointerSizeInBits(); bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); int Version = 8; // 32-bit Android is one version ahead because of the switch to dynamic // shadow. Version += (LongSize == 32 && isAndroid); return Version; } bool ModuleAddressSanitizer::instrumentModule(Module &M) { initializeCallbacks(M); // Create a module constructor. A destructor is created lazily because not all // platforms, and not all modules need it. if (CompileKernel) { // The kernel always builds with its own runtime, and therefore does not // need the init and version check calls. AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); } else { std::string AsanVersion = std::to_string(GetAsanVersion(M)); std::string VersionCheckName = ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{}, /*InitArgs=*/{}, VersionCheckName); } bool CtorComdat = true; if (ClGlobals) { IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); InstrumentGlobals(IRB, M, &CtorComdat); } const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); // Put the constructor and destructor in comdat if both // (1) global instrumentation is not TU-specific // (2) target is ELF. if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); if (AsanDtorFunction) { AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); } } else { appendToGlobalCtors(M, AsanCtorFunction, Priority); if (AsanDtorFunction) appendToGlobalDtors(M, AsanDtorFunction, Priority); } return true; } void AddressSanitizer::initializeCallbacks(Module &M) { IRBuilder<> IRB(*C); // Create __asan_report* callbacks. // IsWrite, TypeSize and Exp are encoded in the function name. for (int Exp = 0; Exp < 2; Exp++) { for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { const std::string TypeStr = AccessIsWrite ? "store" : "load"; const std::string ExpStr = Exp ? "exp_" : ""; const std::string EndingStr = Recover ? "_noabort" : ""; SmallVector Args2 = {IntptrTy, IntptrTy}; SmallVector Args1{1, IntptrTy}; if (Exp) { Type *ExpType = Type::getInt32Ty(*C); Args2.push_back(ExpType); Args1.push_back(ExpType); } AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, FunctionType::get(IRB.getVoidTy(), Args2, false)); AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, FunctionType::get(IRB.getVoidTy(), Args2, false)); for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; AccessSizeIndex++) { const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = M.getOrInsertFunction( kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, FunctionType::get(IRB.getVoidTy(), Args1, false)); AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = M.getOrInsertFunction( ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, FunctionType::get(IRB.getVoidTy(), Args1, false)); } } } const std::string MemIntrinCallbackPrefix = CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy); AsanHandleNoReturnFunc = M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); AsanPtrCmpFunction = M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); AsanPtrSubFunction = M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); if (Mapping.InGlobal) AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", ArrayType::get(IRB.getInt8Ty(), 0)); AMDGPUAddressShared = M.getOrInsertFunction( kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); AMDGPUAddressPrivate = M.getOrInsertFunction( kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); } bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { // For each NSObject descendant having a +load method, this method is invoked // by the ObjC runtime before any of the static constructors is called. // Therefore we need to instrument such methods with a call to __asan_init // at the beginning in order to initialize our runtime before any access to // the shadow memory. // We cannot just ignore these methods, because they may call other // instrumented functions. if (F.getName().find(" load]") != std::string::npos) { FunctionCallee AsanInitFunction = declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); IRBuilder<> IRB(&F.front(), F.front().begin()); IRB.CreateCall(AsanInitFunction, {}); return true; } return false; } bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { // Generate code only when dynamic addressing is needed. if (Mapping.Offset != kDynamicShadowSentinel) return false; IRBuilder<> IRB(&F.front().front()); if (Mapping.InGlobal) { if (ClWithIfuncSuppressRemat) { // An empty inline asm with input reg == output reg. // An opaque pointer-to-int cast, basically. InlineAsm *Asm = InlineAsm::get( FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), StringRef(""), StringRef("=r,0"), /*hasSideEffects=*/false); LocalDynamicShadow = IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); } else { LocalDynamicShadow = IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); } } else { Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( kAsanShadowMemoryDynamicAddress, IntptrTy); LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); } return true; } void AddressSanitizer::markEscapedLocalAllocas(Function &F) { // Find the one possible call to llvm.localescape and pre-mark allocas passed // to it as uninteresting. This assumes we haven't started processing allocas // yet. This check is done up front because iterating the use list in // isInterestingAlloca would be algorithmically slower. assert(ProcessedAllocas.empty() && "must process localescape before allocas"); // Try to get the declaration of llvm.localescape. If it's not in the module, // we can exit early. if (!F.getParent()->getFunction("llvm.localescape")) return; // Look for a call to llvm.localescape call in the entry block. It can't be in // any other block. for (Instruction &I : F.getEntryBlock()) { IntrinsicInst *II = dyn_cast(&I); if (II && II->getIntrinsicID() == Intrinsic::localescape) { // We found a call. Mark all the allocas passed in as uninteresting. for (Value *Arg : II->args()) { AllocaInst *AI = dyn_cast(Arg->stripPointerCasts()); assert(AI && AI->isStaticAlloca() && "non-static alloca arg to localescape"); ProcessedAllocas[AI] = false; } break; } } } bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { bool ShouldInstrument = ClDebugMin < 0 || ClDebugMax < 0 || (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); Instrumented++; return !ShouldInstrument; } bool AddressSanitizer::instrumentFunction(Function &F, const TargetLibraryInfo *TLI) { if (F.empty()) return false; if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; if (F.getName().startswith("__asan_")) return false; bool FunctionModified = false; // If needed, insert __asan_init before checking for SanitizeAddress attr. // This function needs to be called even if the function body is not // instrumented. if (maybeInsertAsanInitAtFunctionEntry(F)) FunctionModified = true; // Leave if the function doesn't need instrumentation. if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); initializeCallbacks(*F.getParent()); FunctionStateRAII CleanupObj(this); FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); // We can't instrument allocas used with llvm.localescape. Only static allocas // can be passed to that intrinsic. markEscapedLocalAllocas(F); // We want to instrument every address only once per basic block (unless there // are calls between uses). SmallPtrSet TempsToInstrument; SmallVector OperandsToInstrument; SmallVector IntrinToInstrument; SmallVector NoReturnCalls; SmallVector AllBlocks; SmallVector PointerComparisonsOrSubtracts; int NumAllocas = 0; // Fill the set of memory operations to instrument. for (auto &BB : F) { AllBlocks.push_back(&BB); TempsToInstrument.clear(); int NumInsnsPerBB = 0; for (auto &Inst : BB) { if (LooksLikeCodeInBug11395(&Inst)) return false; SmallVector InterestingOperands; getInterestingMemoryOperands(&Inst, InterestingOperands); if (!InterestingOperands.empty()) { for (auto &Operand : InterestingOperands) { if (ClOpt && ClOptSameTemp) { Value *Ptr = Operand.getPtr(); // If we have a mask, skip instrumentation if we've already // instrumented the full object. But don't add to TempsToInstrument // because we might get another load/store with a different mask. if (Operand.MaybeMask) { if (TempsToInstrument.count(Ptr)) continue; // We've seen this (whole) temp in the current BB. } else { if (!TempsToInstrument.insert(Ptr).second) continue; // We've seen this temp in the current BB. } } OperandsToInstrument.push_back(Operand); NumInsnsPerBB++; } } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && isInterestingPointerComparison(&Inst)) || ((ClInvalidPointerPairs || ClInvalidPointerSub) && isInterestingPointerSubtraction(&Inst))) { PointerComparisonsOrSubtracts.push_back(&Inst); } else if (MemIntrinsic *MI = dyn_cast(&Inst)) { // ok, take it. IntrinToInstrument.push_back(MI); NumInsnsPerBB++; } else { if (isa(Inst)) NumAllocas++; if (auto *CB = dyn_cast(&Inst)) { // A call inside BB. TempsToInstrument.clear(); if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) NoReturnCalls.push_back(CB); } if (CallInst *CI = dyn_cast(&Inst)) maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); } if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; } } bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && OperandsToInstrument.size() + IntrinToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); const DataLayout &DL = F.getParent()->getDataLayout(); ObjectSizeOpts ObjSizeOpts; ObjSizeOpts.RoundToAlign = true; ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); // Instrument. int NumInstrumented = 0; for (auto &Operand : OperandsToInstrument) { if (!suppressInstrumentationSiteForDebug(NumInstrumented)) instrumentMop(ObjSizeVis, Operand, UseCalls, F.getParent()->getDataLayout()); FunctionModified = true; } for (auto Inst : IntrinToInstrument) { if (!suppressInstrumentationSiteForDebug(NumInstrumented)) instrumentMemIntrinsic(Inst); FunctionModified = true; } FunctionStackPoisoner FSP(F, *this); bool ChangedStack = FSP.runOnFunction(); // We must unpoison the stack before NoReturn calls (throw, _exit, etc). // See e.g. https://github.com/google/sanitizers/issues/37 for (auto CI : NoReturnCalls) { IRBuilder<> IRB(CI); IRB.CreateCall(AsanHandleNoReturnFunc, {}); } for (auto Inst : PointerComparisonsOrSubtracts) { instrumentPointerComparisonOrSubtraction(Inst); FunctionModified = true; } if (ChangedStack || !NoReturnCalls.empty()) FunctionModified = true; LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " << F << "\n"); return FunctionModified; } // Workaround for bug 11395: we don't want to instrument stack in functions // with large assembly blobs (32-bit only), otherwise reg alloc may crash. // FIXME: remove once the bug 11395 is fixed. bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { if (LongSize != 32) return false; CallInst *CI = dyn_cast(I); if (!CI || !CI->isInlineAsm()) return false; if (CI->arg_size() <= 5) return false; // We have inline assembly with quite a few arguments. return true; } void FunctionStackPoisoner::initializeCallbacks(Module &M) { IRBuilder<> IRB(*C); if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { const char *MallocNameTemplate = ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ? kAsanStackMallocAlwaysNameTemplate : kAsanStackMallocNameTemplate; for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { std::string Suffix = itostr(Index); AsanStackMallocFunc[Index] = M.getOrInsertFunction( MallocNameTemplate + Suffix, IntptrTy, IntptrTy); AsanStackFreeFunc[Index] = M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, IRB.getVoidTy(), IntptrTy, IntptrTy); } } if (ASan.UseAfterScope) { AsanPoisonStackMemoryFunc = M.getOrInsertFunction( kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); } for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { std::ostringstream Name; Name << kAsanSetShadowPrefix; Name << std::setw(2) << std::setfill('0') << std::hex << Val; AsanSetShadowFunc[Val] = M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); } AsanAllocaPoisonFunc = M.getOrInsertFunction( kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); AsanAllocasUnpoisonFunc = M.getOrInsertFunction( kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); } void FunctionStackPoisoner::copyToShadowInline(ArrayRef ShadowMask, ArrayRef ShadowBytes, size_t Begin, size_t End, IRBuilder<> &IRB, Value *ShadowBase) { if (Begin >= End) return; const size_t LargestStoreSizeInBytes = std::min(sizeof(uint64_t), ASan.LongSize / 8); const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); // Poison given range in shadow using larges store size with out leading and // trailing zeros in ShadowMask. Zeros never change, so they need neither // poisoning nor up-poisoning. Still we don't mind if some of them get into a // middle of a store. for (size_t i = Begin; i < End;) { if (!ShadowMask[i]) { assert(!ShadowBytes[i]); ++i; continue; } size_t StoreSizeInBytes = LargestStoreSizeInBytes; // Fit store size into the range. while (StoreSizeInBytes > End - i) StoreSizeInBytes /= 2; // Minimize store size by trimming trailing zeros. for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { while (j <= StoreSizeInBytes / 2) StoreSizeInBytes /= 2; } uint64_t Val = 0; for (size_t j = 0; j < StoreSizeInBytes; j++) { if (IsLittleEndian) Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); else Val = (Val << 8) | ShadowBytes[i + j]; } Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); IRB.CreateAlignedStore( Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), Align(1)); i += StoreSizeInBytes; } } void FunctionStackPoisoner::copyToShadow(ArrayRef ShadowMask, ArrayRef ShadowBytes, IRBuilder<> &IRB, Value *ShadowBase) { copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); } void FunctionStackPoisoner::copyToShadow(ArrayRef ShadowMask, ArrayRef ShadowBytes, size_t Begin, size_t End, IRBuilder<> &IRB, Value *ShadowBase) { assert(ShadowMask.size() == ShadowBytes.size()); size_t Done = Begin; for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { if (!ShadowMask[i]) { assert(!ShadowBytes[i]); continue; } uint8_t Val = ShadowBytes[i]; if (!AsanSetShadowFunc[Val]) continue; // Skip same values. for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { } if (j - i >= ClMaxInlinePoisoningSize) { copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); IRB.CreateCall(AsanSetShadowFunc[Val], {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), ConstantInt::get(IntptrTy, j - i)}); Done = j; } } copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); } // Fake stack allocator (asan_fake_stack.h) has 11 size classes // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass static int StackMallocSizeClass(uint64_t LocalStackSize) { assert(LocalStackSize <= kMaxStackMallocSize); uint64_t MaxSize = kMinStackMallocSize; for (int i = 0;; i++, MaxSize *= 2) if (LocalStackSize <= MaxSize) return i; llvm_unreachable("impossible LocalStackSize"); } void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { Instruction *CopyInsertPoint = &F.front().front(); if (CopyInsertPoint == ASan.LocalDynamicShadow) { // Insert after the dynamic shadow location is determined CopyInsertPoint = CopyInsertPoint->getNextNode(); assert(CopyInsertPoint); } IRBuilder<> IRB(CopyInsertPoint); const DataLayout &DL = F.getParent()->getDataLayout(); for (Argument &Arg : F.args()) { if (Arg.hasByValAttr()) { Type *Ty = Arg.getParamByValType(); const Align Alignment = DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); AllocaInst *AI = IRB.CreateAlloca( Ty, nullptr, (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + ".byval"); AI->setAlignment(Alignment); Arg.replaceAllUsesWith(AI); uint64_t AllocSize = DL.getTypeAllocSize(Ty); IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); } } } PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, Instruction *ThenTerm, Value *ValueIfFalse) { PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); BasicBlock *CondBlock = cast(Cond)->getParent(); PHI->addIncoming(ValueIfFalse, CondBlock); BasicBlock *ThenBlock = ThenTerm->getParent(); PHI->addIncoming(ValueIfTrue, ThenBlock); return PHI; } Value *FunctionStackPoisoner::createAllocaForLayout( IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { AllocaInst *Alloca; if (Dynamic) { Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), "MyAlloca"); } else { Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), nullptr, "MyAlloca"); assert(Alloca->isStaticAlloca()); } assert((ClRealignStack & (ClRealignStack - 1)) == 0); uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack)); Alloca->setAlignment(Align(FrameAlignment)); return IRB.CreatePointerCast(Alloca, IntptrTy); } void FunctionStackPoisoner::createDynamicAllocasInitStorage() { BasicBlock &FirstBB = *F.begin(); IRBuilder<> IRB(dyn_cast(FirstBB.begin())); DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); DynamicAllocaLayout->setAlignment(Align(32)); } void FunctionStackPoisoner::processDynamicAllocas() { if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { assert(DynamicAllocaPoisonCallVec.empty()); return; } // Insert poison calls for lifetime intrinsics for dynamic allocas. for (const auto &APC : DynamicAllocaPoisonCallVec) { assert(APC.InsBefore); assert(APC.AI); assert(ASan.isInterestingAlloca(*APC.AI)); assert(!APC.AI->isStaticAlloca()); IRBuilder<> IRB(APC.InsBefore); poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); // Dynamic allocas will be unpoisoned unconditionally below in // unpoisonDynamicAllocas. // Flag that we need unpoison static allocas. } // Handle dynamic allocas. createDynamicAllocasInitStorage(); for (auto &AI : DynamicAllocaVec) handleDynamicAllocaCall(AI); unpoisonDynamicAllocas(); } /// Collect instructions in the entry block after \p InsBefore which initialize /// permanent storage for a function argument. These instructions must remain in /// the entry block so that uninitialized values do not appear in backtraces. An /// added benefit is that this conserves spill slots. This does not move stores /// before instrumented / "interesting" allocas. static void findStoresToUninstrumentedArgAllocas( AddressSanitizer &ASan, Instruction &InsBefore, SmallVectorImpl &InitInsts) { Instruction *Start = InsBefore.getNextNonDebugInstruction(); for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { // Argument initialization looks like: // 1) store , OR // 2) = cast to ... // store to // Do not consider any other kind of instruction. // // Note: This covers all known cases, but may not be exhaustive. An // alternative to pattern-matching stores is to DFS over all Argument uses: // this might be more general, but is probably much more complicated. if (isa(It) || isa(It)) continue; if (auto *Store = dyn_cast(It)) { // The store destination must be an alloca that isn't interesting for // ASan to instrument. These are moved up before InsBefore, and they're // not interesting because allocas for arguments can be mem2reg'd. auto *Alloca = dyn_cast(Store->getPointerOperand()); if (!Alloca || ASan.isInterestingAlloca(*Alloca)) continue; Value *Val = Store->getValueOperand(); bool IsDirectArgInit = isa(Val); bool IsArgInitViaCast = isa(Val) && isa(cast(Val)->getOperand(0)) && // Check that the cast appears directly before the store. Otherwise // moving the cast before InsBefore may break the IR. Val == It->getPrevNonDebugInstruction(); bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; if (!IsArgInit) continue; if (IsArgInitViaCast) InitInsts.push_back(cast(Val)); InitInsts.push_back(Store); continue; } // Do not reorder past unknown instructions: argument initialization should // only involve casts and stores. return; } } void FunctionStackPoisoner::processStaticAllocas() { if (AllocaVec.empty()) { assert(StaticAllocaPoisonCallVec.empty()); return; } int StackMallocIdx = -1; DebugLoc EntryDebugLocation; if (auto SP = F.getSubprogram()) EntryDebugLocation = DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); Instruction *InsBefore = AllocaVec[0]; IRBuilder<> IRB(InsBefore); // Make sure non-instrumented allocas stay in the entry block. Otherwise, // debug info is broken, because only entry-block allocas are treated as // regular stack slots. auto InsBeforeB = InsBefore->getParent(); assert(InsBeforeB == &F.getEntryBlock()); for (auto *AI : StaticAllocasToMoveUp) if (AI->getParent() == InsBeforeB) AI->moveBefore(InsBefore); // Move stores of arguments into entry-block allocas as well. This prevents // extra stack slots from being generated (to house the argument values until // they can be stored into the allocas). This also prevents uninitialized // values from being shown in backtraces. SmallVector ArgInitInsts; findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); for (Instruction *ArgInitInst : ArgInitInsts) ArgInitInst->moveBefore(InsBefore); // If we have a call to llvm.localescape, keep it in the entry block. if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); SmallVector SVD; SVD.reserve(AllocaVec.size()); for (AllocaInst *AI : AllocaVec) { ASanStackVariableDescription D = {AI->getName().data(), ASan.getAllocaSizeInBytes(*AI), 0, AI->getAlignment(), AI, 0, 0}; SVD.push_back(D); } // Minimal header size (left redzone) is 4 pointers, // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. uint64_t Granularity = 1ULL << Mapping.Scale; uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity); const ASanStackFrameLayout &L = ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); // Build AllocaToSVDMap for ASanStackVariableDescription lookup. DenseMap AllocaToSVDMap; for (auto &Desc : SVD) AllocaToSVDMap[Desc.AI] = &Desc; // Update SVD with information from lifetime intrinsics. for (const auto &APC : StaticAllocaPoisonCallVec) { assert(APC.InsBefore); assert(APC.AI); assert(ASan.isInterestingAlloca(*APC.AI)); assert(APC.AI->isStaticAlloca()); ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; Desc.LifetimeSize = Desc.Size; if (const DILocation *FnLoc = EntryDebugLocation.get()) { if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { if (LifetimeLoc->getFile() == FnLoc->getFile()) if (unsigned Line = LifetimeLoc->getLine()) Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); } } } auto DescriptionString = ComputeASanStackFrameDescription(SVD); LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); uint64_t LocalStackSize = L.FrameSize; bool DoStackMalloc = ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; bool DoDynamicAlloca = ClDynamicAllocaStack; // Don't do dynamic alloca or stack malloc if: // 1) There is inline asm: too often it makes assumptions on which registers // are available. // 2) There is a returns_twice call (typically setjmp), which is // optimization-hostile, and doesn't play well with introduced indirect // register-relative calculation of local variable addresses. DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; Value *StaticAlloca = DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); Value *FakeStack; Value *LocalStackBase; Value *LocalStackBaseAlloca; uint8_t DIExprFlags = DIExpression::ApplyOffset; if (DoStackMalloc) { LocalStackBaseAlloca = IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { // void *FakeStack = __asan_option_detect_stack_use_after_return // ? __asan_stack_malloc_N(LocalStackSize) // : nullptr; // void *LocalStackBase = (FakeStack) ? FakeStack : // alloca(LocalStackSize); Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), Constant::getNullValue(IRB.getInt32Ty())); Instruction *Term = SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); IRBuilder<> IRBIf(Term); StackMallocIdx = StackMallocSizeClass(LocalStackSize); assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); Value *FakeStackValue = IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], ConstantInt::get(IntptrTy, LocalStackSize)); IRB.SetInsertPoint(InsBefore); FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, ConstantInt::get(IntptrTy, 0)); } else { // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); // void *LocalStackBase = (FakeStack) ? FakeStack : // alloca(LocalStackSize); StackMallocIdx = StackMallocSizeClass(LocalStackSize); FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], ConstantInt::get(IntptrTy, LocalStackSize)); } Value *NoFakeStack = IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); Instruction *Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); IRBuilder<> IRBIf(Term); Value *AllocaValue = DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; IRB.SetInsertPoint(InsBefore); LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); DIExprFlags |= DIExpression::DerefBefore; } else { // void *FakeStack = nullptr; // void *LocalStackBase = alloca(LocalStackSize); FakeStack = ConstantInt::get(IntptrTy, 0); LocalStackBase = DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; LocalStackBaseAlloca = LocalStackBase; } // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse // later passes and can result in dropped variable coverage in debug info. Value *LocalStackBaseAllocaPtr = isa(LocalStackBaseAlloca) ? cast(LocalStackBaseAlloca)->getPointerOperand() : LocalStackBaseAlloca; assert(isa(LocalStackBaseAllocaPtr) && "Variable descriptions relative to ASan stack base will be dropped"); // Replace Alloca instructions with base+offset. for (const auto &Desc : SVD) { AllocaInst *AI = Desc.AI; replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, Desc.Offset); Value *NewAllocaPtr = IRB.CreateIntToPtr( IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), AI->getType()); AI->replaceAllUsesWith(NewAllocaPtr); } // The left-most redzone has enough space for at least 4 pointers. // Write the Magic value to redzone[0]. Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), BasePlus0); // Write the frame description constant to redzone[1]. Value *BasePlus1 = IRB.CreateIntToPtr( IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize / 8)), IntptrPtrTy); GlobalVariable *StackDescriptionGlobal = createPrivateGlobalForString(*F.getParent(), DescriptionString, /*AllowMerging*/ true, kAsanGenPrefix); Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); IRB.CreateStore(Description, BasePlus1); // Write the PC to redzone[2]. Value *BasePlus2 = IRB.CreateIntToPtr( IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), IntptrPtrTy); IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); // Poison the stack red zones at the entry. Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); // As mask we must use most poisoned case: red zones and after scope. // As bytes we can use either the same or just red zones only. copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); if (!StaticAllocaPoisonCallVec.empty()) { const auto &ShadowInScope = GetShadowBytes(SVD, L); // Poison static allocas near lifetime intrinsics. for (const auto &APC : StaticAllocaPoisonCallVec) { const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; assert(Desc.Offset % L.Granularity == 0); size_t Begin = Desc.Offset / L.Granularity; size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; IRBuilder<> IRB(APC.InsBefore); copyToShadow(ShadowAfterScope, APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, IRB, ShadowBase); } } SmallVector ShadowClean(ShadowAfterScope.size(), 0); SmallVector ShadowAfterReturn; // (Un)poison the stack before all ret instructions. for (Instruction *Ret : RetVec) { IRBuilder<> IRBRet(Ret); // Mark the current frame as retired. IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), BasePlus0); if (DoStackMalloc) { assert(StackMallocIdx >= 0); // if FakeStack != 0 // LocalStackBase == FakeStack // // In use-after-return mode, poison the whole stack frame. // if StackMallocIdx <= 4 // // For small sizes inline the whole thing: // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); // **SavedFlagPtr(FakeStack) = 0 // else // __asan_stack_free_N(FakeStack, LocalStackSize) // else // Value *Cmp = IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); Instruction *ThenTerm, *ElseTerm; SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); IRBuilder<> IRBPoison(ThenTerm); if (StackMallocIdx <= 4) { int ClassSize = kMinStackMallocSize << StackMallocIdx; ShadowAfterReturn.resize(ClassSize / L.Granularity, kAsanStackUseAfterReturnMagic); copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, ShadowBase); Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( FakeStack, ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); Value *SavedFlagPtr = IRBPoison.CreateLoad( IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); IRBPoison.CreateStore( Constant::getNullValue(IRBPoison.getInt8Ty()), IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); } else { // For larger frames call __asan_stack_free_*. IRBPoison.CreateCall( AsanStackFreeFunc[StackMallocIdx], {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); } IRBuilder<> IRBElse(ElseTerm); copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); } else { copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); } } // We are done. Remove the old unused alloca instructions. for (auto AI : AllocaVec) AI->eraseFromParent(); } void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison) { // For now just insert the call to ASan runtime. Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); Value *SizeArg = ConstantInt::get(IntptrTy, Size); IRB.CreateCall( DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, {AddrArg, SizeArg}); } // Handling llvm.lifetime intrinsics for a given %alloca: // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect // invalid accesses) and unpoison it for llvm.lifetime.start (the memory // could be poisoned by previous llvm.lifetime.end instruction, as the // variable may go in and out of scope several times, e.g. in loops). // (3) if we poisoned at least one %alloca in a function, // unpoison the whole stack frame at function exit. void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { IRBuilder<> IRB(AI); const uint64_t Alignment = std::max(kAllocaRzSize, AI->getAlignment()); const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; Value *Zero = Constant::getNullValue(IntptrTy); Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); // Since we need to extend alloca with additional memory to locate // redzones, and OldSize is number of allocated blocks with // ElementSize size, get allocated memory size in bytes by // OldSize * ElementSize. const unsigned ElementSize = F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); Value *OldSize = IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), ConstantInt::get(IntptrTy, ElementSize)); // PartialSize = OldSize % 32 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); // Misalign = kAllocaRzSize - PartialSize; Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize // Alignment is added to locate left redzone, PartialPadding for possible // partial redzone and kAllocaRzSize for right redzone respectively. Value *AdditionalChunkSize = IRB.CreateAdd( ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); // Insert new alloca with new NewSize and Alignment params. AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); NewAlloca->setAlignment(Align(Alignment)); // NewAddress = Address + Alignment Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), ConstantInt::get(IntptrTy, Alignment)); // Insert __asan_alloca_poison call for new created alloca. IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); // Store the last alloca's address to DynamicAllocaLayout. We'll need this // for unpoisoning stuff. IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. AI->replaceAllUsesWith(NewAddressPtr); // We are done. Erase old alloca from parent. AI->eraseFromParent(); } // isSafeAccess returns true if Addr is always inbounds with respect to its // base object. For example, it is a field access or an array access with // constant inbounds index. bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, uint64_t TypeSize) const { SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); if (!ObjSizeVis.bothKnown(SizeOffset)) return false; uint64_t Size = SizeOffset.first.getZExtValue(); int64_t Offset = SizeOffset.second.getSExtValue(); // Three checks are required to ensure safety: // . Offset >= 0 (since the offset is given from the base ptr) // . Size >= Offset (unsigned) // . Size - Offset >= NeededSize (unsigned) return Offset >= 0 && Size >= uint64_t(Offset) && Size - uint64_t(Offset) >= TypeSize / 8; }