1 //===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileProber transformation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/IPO/SampleProfileProbe.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/BlockFrequencyInfo.h" 16 #include "llvm/Analysis/EHUtils.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DiagnosticInfo.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/MDBuilder.h" 26 #include "llvm/IR/PseudoProbe.h" 27 #include "llvm/ProfileData/SampleProf.h" 28 #include "llvm/Support/CRC.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Transforms/Instrumentation.h" 32 #include "llvm/Transforms/Utils/ModuleUtils.h" 33 #include <unordered_set> 34 #include <vector> 35 36 using namespace llvm; 37 #define DEBUG_TYPE "pseudo-probe" 38 39 STATISTIC(ArtificialDbgLine, 40 "Number of probes that have an artificial debug line"); 41 42 static cl::opt<bool> 43 VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden, 44 cl::desc("Do pseudo probe verification")); 45 46 static cl::list<std::string> VerifyPseudoProbeFuncList( 47 "verify-pseudo-probe-funcs", cl::Hidden, 48 cl::desc("The option to specify the name of the functions to verify.")); 49 50 static cl::opt<bool> 51 UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden, 52 cl::desc("Update pseudo probe distribution factor")); 53 54 static uint64_t getCallStackHash(const DILocation *DIL) { 55 uint64_t Hash = 0; 56 const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr; 57 while (InlinedAt) { 58 Hash ^= MD5Hash(std::to_string(InlinedAt->getLine())); 59 Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn())); 60 auto Name = InlinedAt->getSubprogramLinkageName(); 61 Hash ^= MD5Hash(Name); 62 InlinedAt = InlinedAt->getInlinedAt(); 63 } 64 return Hash; 65 } 66 67 static uint64_t computeCallStackHash(const Instruction &Inst) { 68 return getCallStackHash(Inst.getDebugLoc()); 69 } 70 71 bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) { 72 // Skip function declaration. 73 if (F->isDeclaration()) 74 return false; 75 // Skip function that will not be emitted into object file. The prevailing 76 // defintion will be verified instead. 77 if (F->hasAvailableExternallyLinkage()) 78 return false; 79 // Do a name matching. 80 static std::unordered_set<std::string> VerifyFuncNames( 81 VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end()); 82 return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str()); 83 } 84 85 void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) { 86 if (VerifyPseudoProbe) { 87 PIC.registerAfterPassCallback( 88 [this](StringRef P, Any IR, const PreservedAnalyses &) { 89 this->runAfterPass(P, IR); 90 }); 91 } 92 } 93 94 // Callback to run after each transformation for the new pass manager. 95 void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) { 96 std::string Banner = 97 "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n"; 98 dbgs() << Banner; 99 if (const auto **M = llvm::any_cast<const Module *>(&IR)) 100 runAfterPass(*M); 101 else if (const auto **F = llvm::any_cast<const Function *>(&IR)) 102 runAfterPass(*F); 103 else if (const auto **C = llvm::any_cast<const LazyCallGraph::SCC *>(&IR)) 104 runAfterPass(*C); 105 else if (const auto **L = llvm::any_cast<const Loop *>(&IR)) 106 runAfterPass(*L); 107 else 108 llvm_unreachable("Unknown IR unit"); 109 } 110 111 void PseudoProbeVerifier::runAfterPass(const Module *M) { 112 for (const Function &F : *M) 113 runAfterPass(&F); 114 } 115 116 void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) { 117 for (const LazyCallGraph::Node &N : *C) 118 runAfterPass(&N.getFunction()); 119 } 120 121 void PseudoProbeVerifier::runAfterPass(const Function *F) { 122 if (!shouldVerifyFunction(F)) 123 return; 124 ProbeFactorMap ProbeFactors; 125 for (const auto &BB : *F) 126 collectProbeFactors(&BB, ProbeFactors); 127 verifyProbeFactors(F, ProbeFactors); 128 } 129 130 void PseudoProbeVerifier::runAfterPass(const Loop *L) { 131 const Function *F = L->getHeader()->getParent(); 132 runAfterPass(F); 133 } 134 135 void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block, 136 ProbeFactorMap &ProbeFactors) { 137 for (const auto &I : *Block) { 138 if (std::optional<PseudoProbe> Probe = extractProbe(I)) { 139 uint64_t Hash = computeCallStackHash(I); 140 ProbeFactors[{Probe->Id, Hash}] += Probe->Factor; 141 } 142 } 143 } 144 145 void PseudoProbeVerifier::verifyProbeFactors( 146 const Function *F, const ProbeFactorMap &ProbeFactors) { 147 bool BannerPrinted = false; 148 auto &PrevProbeFactors = FunctionProbeFactors[F->getName()]; 149 for (const auto &I : ProbeFactors) { 150 float CurProbeFactor = I.second; 151 if (PrevProbeFactors.count(I.first)) { 152 float PrevProbeFactor = PrevProbeFactors[I.first]; 153 if (std::abs(CurProbeFactor - PrevProbeFactor) > 154 DistributionFactorVariance) { 155 if (!BannerPrinted) { 156 dbgs() << "Function " << F->getName() << ":\n"; 157 BannerPrinted = true; 158 } 159 dbgs() << "Probe " << I.first.first << "\tprevious factor " 160 << format("%0.2f", PrevProbeFactor) << "\tcurrent factor " 161 << format("%0.2f", CurProbeFactor) << "\n"; 162 } 163 } 164 165 // Update 166 PrevProbeFactors[I.first] = I.second; 167 } 168 } 169 170 SampleProfileProber::SampleProfileProber(Function &Func, 171 const std::string &CurModuleUniqueId) 172 : F(&Func), CurModuleUniqueId(CurModuleUniqueId) { 173 BlockProbeIds.clear(); 174 CallProbeIds.clear(); 175 LastProbeId = (uint32_t)PseudoProbeReservedId::Last; 176 computeProbeIdForBlocks(); 177 computeProbeIdForCallsites(); 178 computeCFGHash(); 179 } 180 181 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index 182 // value of each BB in the CFG. The higher 32 bits record the number of edges 183 // preceded by the number of indirect calls. 184 // This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash(). 185 void SampleProfileProber::computeCFGHash() { 186 std::vector<uint8_t> Indexes; 187 JamCRC JC; 188 for (auto &BB : *F) { 189 for (BasicBlock *Succ : successors(&BB)) { 190 auto Index = getBlockId(Succ); 191 for (int J = 0; J < 4; J++) 192 Indexes.push_back((uint8_t)(Index >> (J * 8))); 193 } 194 } 195 196 JC.update(Indexes); 197 198 FunctionHash = (uint64_t)CallProbeIds.size() << 48 | 199 (uint64_t)Indexes.size() << 32 | JC.getCRC(); 200 // Reserve bit 60-63 for other information purpose. 201 FunctionHash &= 0x0FFFFFFFFFFFFFFF; 202 assert(FunctionHash && "Function checksum should not be zero"); 203 LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName() 204 << ":\n" 205 << " CRC = " << JC.getCRC() << ", Edges = " 206 << Indexes.size() << ", ICSites = " << CallProbeIds.size() 207 << ", Hash = " << FunctionHash << "\n"); 208 } 209 210 void SampleProfileProber::computeProbeIdForBlocks() { 211 DenseSet<BasicBlock *> KnownColdBlocks; 212 computeEHOnlyBlocks(*F, KnownColdBlocks); 213 // Insert pseudo probe to non-cold blocks only. This will reduce IR size as 214 // well as the binary size while retaining the profile quality. 215 for (auto &BB : *F) { 216 ++LastProbeId; 217 if (!KnownColdBlocks.contains(&BB)) 218 BlockProbeIds[&BB] = LastProbeId; 219 } 220 } 221 222 void SampleProfileProber::computeProbeIdForCallsites() { 223 LLVMContext &Ctx = F->getContext(); 224 Module *M = F->getParent(); 225 226 for (auto &BB : *F) { 227 for (auto &I : BB) { 228 if (!isa<CallBase>(I)) 229 continue; 230 if (isa<IntrinsicInst>(&I)) 231 continue; 232 233 // The current implementation uses the lower 16 bits of the discriminator 234 // so anything larger than 0xFFFF will be ignored. 235 if (LastProbeId >= 0xFFFF) { 236 std::string Msg = "Pseudo instrumentation incomplete for " + 237 std::string(F->getName()) + " because it's too large"; 238 Ctx.diagnose( 239 DiagnosticInfoSampleProfile(M->getName().data(), Msg, DS_Warning)); 240 return; 241 } 242 243 CallProbeIds[&I] = ++LastProbeId; 244 } 245 } 246 } 247 248 uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const { 249 auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB)); 250 return I == BlockProbeIds.end() ? 0 : I->second; 251 } 252 253 uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const { 254 auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call)); 255 return Iter == CallProbeIds.end() ? 0 : Iter->second; 256 } 257 258 void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) { 259 Module *M = F.getParent(); 260 MDBuilder MDB(F.getContext()); 261 // Since the GUID from probe desc and inline stack are computed seperately, we 262 // need to make sure their names are consistent, so here also use the name 263 // from debug info. 264 StringRef FName = F.getName(); 265 if (auto *SP = F.getSubprogram()) { 266 FName = SP->getLinkageName(); 267 if (FName.empty()) 268 FName = SP->getName(); 269 } 270 uint64_t Guid = Function::getGUID(FName); 271 272 // Assign an artificial debug line to a probe that doesn't come with a real 273 // line. A probe not having a debug line will get an incomplete inline 274 // context. This will cause samples collected on the probe to be counted 275 // into the base profile instead of a context profile. The line number 276 // itself is not important though. 277 auto AssignDebugLoc = [&](Instruction *I) { 278 assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) && 279 "Expecting pseudo probe or call instructions"); 280 if (!I->getDebugLoc()) { 281 if (auto *SP = F.getSubprogram()) { 282 auto DIL = DILocation::get(SP->getContext(), 0, 0, SP); 283 I->setDebugLoc(DIL); 284 ArtificialDbgLine++; 285 LLVM_DEBUG({ 286 dbgs() << "\nIn Function " << F.getName() 287 << " Probe gets an artificial debug line\n"; 288 I->dump(); 289 }); 290 } 291 } 292 }; 293 294 // Probe basic blocks. 295 for (auto &I : BlockProbeIds) { 296 BasicBlock *BB = I.first; 297 uint32_t Index = I.second; 298 // Insert a probe before an instruction with a valid debug line number which 299 // will be assigned to the probe. The line number will be used later to 300 // model the inline context when the probe is inlined into other functions. 301 // Debug instructions, phi nodes and lifetime markers do not have an valid 302 // line number. Real instructions generated by optimizations may not come 303 // with a line number either. 304 auto HasValidDbgLine = [](Instruction *J) { 305 return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) && 306 !J->isLifetimeStartOrEnd() && J->getDebugLoc(); 307 }; 308 309 Instruction *J = &*BB->getFirstInsertionPt(); 310 while (J != BB->getTerminator() && !HasValidDbgLine(J)) { 311 J = J->getNextNode(); 312 } 313 314 IRBuilder<> Builder(J); 315 assert(Builder.GetInsertPoint() != BB->end() && 316 "Cannot get the probing point"); 317 Function *ProbeFn = 318 llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe); 319 Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index), 320 Builder.getInt32(0), 321 Builder.getInt64(PseudoProbeFullDistributionFactor)}; 322 auto *Probe = Builder.CreateCall(ProbeFn, Args); 323 AssignDebugLoc(Probe); 324 // Reset the dwarf discriminator if the debug location comes with any. The 325 // discriminator field may be used by FS-AFDO later in the pipeline. 326 if (auto DIL = Probe->getDebugLoc()) { 327 if (DIL->getDiscriminator()) { 328 DIL = DIL->cloneWithDiscriminator(0); 329 Probe->setDebugLoc(DIL); 330 } 331 } 332 } 333 334 // Probe both direct calls and indirect calls. Direct calls are probed so that 335 // their probe ID can be used as an call site identifier to represent a 336 // calling context. 337 for (auto &I : CallProbeIds) { 338 auto *Call = I.first; 339 uint32_t Index = I.second; 340 uint32_t Type = cast<CallBase>(Call)->getCalledFunction() 341 ? (uint32_t)PseudoProbeType::DirectCall 342 : (uint32_t)PseudoProbeType::IndirectCall; 343 AssignDebugLoc(Call); 344 if (auto DIL = Call->getDebugLoc()) { 345 // Levarge the 32-bit discriminator field of debug data to store the ID 346 // and type of a callsite probe. This gets rid of the dependency on 347 // plumbing a customized metadata through the codegen pipeline. 348 uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData( 349 Index, Type, 0, 350 PseudoProbeDwarfDiscriminator::FullDistributionFactor); 351 DIL = DIL->cloneWithDiscriminator(V); 352 Call->setDebugLoc(DIL); 353 } 354 } 355 356 // Create module-level metadata that contains function info necessary to 357 // synthesize probe-based sample counts, which are 358 // - FunctionGUID 359 // - FunctionHash. 360 // - FunctionName 361 auto Hash = getFunctionHash(); 362 auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, FName); 363 auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName); 364 assert(NMD && "llvm.pseudo_probe_desc should be pre-created"); 365 NMD->addOperand(MD); 366 } 367 368 PreservedAnalyses SampleProfileProbePass::run(Module &M, 369 ModuleAnalysisManager &AM) { 370 auto ModuleId = getUniqueModuleId(&M); 371 // Create the pseudo probe desc metadata beforehand. 372 // Note that modules with only data but no functions will require this to 373 // be set up so that they will be known as probed later. 374 M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName); 375 376 for (auto &F : M) { 377 if (F.isDeclaration()) 378 continue; 379 SampleProfileProber ProbeManager(F, ModuleId); 380 ProbeManager.instrumentOneFunc(F, TM); 381 } 382 383 return PreservedAnalyses::none(); 384 } 385 386 void PseudoProbeUpdatePass::runOnFunction(Function &F, 387 FunctionAnalysisManager &FAM) { 388 BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); 389 auto BBProfileCount = [&BFI](BasicBlock *BB) { 390 return BFI.getBlockProfileCount(BB).value_or(0); 391 }; 392 393 // Collect the sum of execution weight for each probe. 394 ProbeFactorMap ProbeFactors; 395 for (auto &Block : F) { 396 for (auto &I : Block) { 397 if (std::optional<PseudoProbe> Probe = extractProbe(I)) { 398 uint64_t Hash = computeCallStackHash(I); 399 ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block); 400 } 401 } 402 } 403 404 // Fix up over-counted probes. 405 for (auto &Block : F) { 406 for (auto &I : Block) { 407 if (std::optional<PseudoProbe> Probe = extractProbe(I)) { 408 uint64_t Hash = computeCallStackHash(I); 409 float Sum = ProbeFactors[{Probe->Id, Hash}]; 410 if (Sum != 0) 411 setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum); 412 } 413 } 414 } 415 } 416 417 PreservedAnalyses PseudoProbeUpdatePass::run(Module &M, 418 ModuleAnalysisManager &AM) { 419 if (UpdatePseudoProbe) { 420 for (auto &F : M) { 421 if (F.isDeclaration()) 422 continue; 423 FunctionAnalysisManager &FAM = 424 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 425 runOnFunction(F, FAM); 426 } 427 } 428 return PreservedAnalyses::none(); 429 } 430