//===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the SampleProfileProber transformation. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/SampleProfileProbe.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/EHUtils.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/PseudoProbe.h" #include "llvm/ProfileData/SampleProf.h" #include "llvm/Support/CRC.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include #include using namespace llvm; #define DEBUG_TYPE "pseudo-probe" STATISTIC(ArtificialDbgLine, "Number of probes that have an artificial debug line"); static cl::opt VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden, cl::desc("Do pseudo probe verification")); static cl::list VerifyPseudoProbeFuncList( "verify-pseudo-probe-funcs", cl::Hidden, cl::desc("The option to specify the name of the functions to verify.")); static cl::opt UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden, cl::desc("Update pseudo probe distribution factor")); static uint64_t getCallStackHash(const DILocation *DIL) { uint64_t Hash = 0; const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr; while (InlinedAt) { Hash ^= MD5Hash(std::to_string(InlinedAt->getLine())); Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn())); auto Name = InlinedAt->getSubprogramLinkageName(); Hash ^= MD5Hash(Name); InlinedAt = InlinedAt->getInlinedAt(); } return Hash; } static uint64_t computeCallStackHash(const Instruction &Inst) { return getCallStackHash(Inst.getDebugLoc()); } bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) { // Skip function declaration. if (F->isDeclaration()) return false; // Skip function that will not be emitted into object file. The prevailing // defintion will be verified instead. if (F->hasAvailableExternallyLinkage()) return false; // Do a name matching. static std::unordered_set VerifyFuncNames( VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end()); return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str()); } void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) { if (VerifyPseudoProbe) { PIC.registerAfterPassCallback( [this](StringRef P, Any IR, const PreservedAnalyses &) { this->runAfterPass(P, IR); }); } } // Callback to run after each transformation for the new pass manager. void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) { std::string Banner = "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n"; dbgs() << Banner; if (const auto **M = llvm::any_cast(&IR)) runAfterPass(*M); else if (const auto **F = llvm::any_cast(&IR)) runAfterPass(*F); else if (const auto **C = llvm::any_cast(&IR)) runAfterPass(*C); else if (const auto **L = llvm::any_cast(&IR)) runAfterPass(*L); else llvm_unreachable("Unknown IR unit"); } void PseudoProbeVerifier::runAfterPass(const Module *M) { for (const Function &F : *M) runAfterPass(&F); } void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) { for (const LazyCallGraph::Node &N : *C) runAfterPass(&N.getFunction()); } void PseudoProbeVerifier::runAfterPass(const Function *F) { if (!shouldVerifyFunction(F)) return; ProbeFactorMap ProbeFactors; for (const auto &BB : *F) collectProbeFactors(&BB, ProbeFactors); verifyProbeFactors(F, ProbeFactors); } void PseudoProbeVerifier::runAfterPass(const Loop *L) { const Function *F = L->getHeader()->getParent(); runAfterPass(F); } void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block, ProbeFactorMap &ProbeFactors) { for (const auto &I : *Block) { if (std::optional Probe = extractProbe(I)) { uint64_t Hash = computeCallStackHash(I); ProbeFactors[{Probe->Id, Hash}] += Probe->Factor; } } } void PseudoProbeVerifier::verifyProbeFactors( const Function *F, const ProbeFactorMap &ProbeFactors) { bool BannerPrinted = false; auto &PrevProbeFactors = FunctionProbeFactors[F->getName()]; for (const auto &I : ProbeFactors) { float CurProbeFactor = I.second; if (PrevProbeFactors.count(I.first)) { float PrevProbeFactor = PrevProbeFactors[I.first]; if (std::abs(CurProbeFactor - PrevProbeFactor) > DistributionFactorVariance) { if (!BannerPrinted) { dbgs() << "Function " << F->getName() << ":\n"; BannerPrinted = true; } dbgs() << "Probe " << I.first.first << "\tprevious factor " << format("%0.2f", PrevProbeFactor) << "\tcurrent factor " << format("%0.2f", CurProbeFactor) << "\n"; } } // Update PrevProbeFactors[I.first] = I.second; } } SampleProfileProber::SampleProfileProber(Function &Func, const std::string &CurModuleUniqueId) : F(&Func), CurModuleUniqueId(CurModuleUniqueId) { BlockProbeIds.clear(); CallProbeIds.clear(); LastProbeId = (uint32_t)PseudoProbeReservedId::Last; computeProbeIdForBlocks(); computeProbeIdForCallsites(); computeCFGHash(); } // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index // value of each BB in the CFG. The higher 32 bits record the number of edges // preceded by the number of indirect calls. // This is derived from FuncPGOInstrumentation::computeCFGHash(). void SampleProfileProber::computeCFGHash() { std::vector Indexes; JamCRC JC; for (auto &BB : *F) { for (BasicBlock *Succ : successors(&BB)) { auto Index = getBlockId(Succ); for (int J = 0; J < 4; J++) Indexes.push_back((uint8_t)(Index >> (J * 8))); } } JC.update(Indexes); FunctionHash = (uint64_t)CallProbeIds.size() << 48 | (uint64_t)Indexes.size() << 32 | JC.getCRC(); // Reserve bit 60-63 for other information purpose. FunctionHash &= 0x0FFFFFFFFFFFFFFF; assert(FunctionHash && "Function checksum should not be zero"); LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName() << ":\n" << " CRC = " << JC.getCRC() << ", Edges = " << Indexes.size() << ", ICSites = " << CallProbeIds.size() << ", Hash = " << FunctionHash << "\n"); } void SampleProfileProber::computeProbeIdForBlocks() { DenseSet KnownColdBlocks; computeEHOnlyBlocks(*F, KnownColdBlocks); // Insert pseudo probe to non-cold blocks only. This will reduce IR size as // well as the binary size while retaining the profile quality. for (auto &BB : *F) { ++LastProbeId; if (!KnownColdBlocks.contains(&BB)) BlockProbeIds[&BB] = LastProbeId; } } void SampleProfileProber::computeProbeIdForCallsites() { LLVMContext &Ctx = F->getContext(); Module *M = F->getParent(); for (auto &BB : *F) { for (auto &I : BB) { if (!isa(I)) continue; if (isa(&I)) continue; // The current implementation uses the lower 16 bits of the discriminator // so anything larger than 0xFFFF will be ignored. if (LastProbeId >= 0xFFFF) { std::string Msg = "Pseudo instrumentation incomplete for " + std::string(F->getName()) + " because it's too large"; Ctx.diagnose( DiagnosticInfoSampleProfile(M->getName().data(), Msg, DS_Warning)); return; } CallProbeIds[&I] = ++LastProbeId; } } } uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const { auto I = BlockProbeIds.find(const_cast(BB)); return I == BlockProbeIds.end() ? 0 : I->second; } uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const { auto Iter = CallProbeIds.find(const_cast(Call)); return Iter == CallProbeIds.end() ? 0 : Iter->second; } void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) { Module *M = F.getParent(); MDBuilder MDB(F.getContext()); // Since the GUID from probe desc and inline stack are computed seperately, we // need to make sure their names are consistent, so here also use the name // from debug info. StringRef FName = F.getName(); if (auto *SP = F.getSubprogram()) { FName = SP->getLinkageName(); if (FName.empty()) FName = SP->getName(); } uint64_t Guid = Function::getGUID(FName); // Assign an artificial debug line to a probe that doesn't come with a real // line. A probe not having a debug line will get an incomplete inline // context. This will cause samples collected on the probe to be counted // into the base profile instead of a context profile. The line number // itself is not important though. auto AssignDebugLoc = [&](Instruction *I) { assert((isa(I) || isa(I)) && "Expecting pseudo probe or call instructions"); if (!I->getDebugLoc()) { if (auto *SP = F.getSubprogram()) { auto DIL = DILocation::get(SP->getContext(), 0, 0, SP); I->setDebugLoc(DIL); ArtificialDbgLine++; LLVM_DEBUG({ dbgs() << "\nIn Function " << F.getName() << " Probe gets an artificial debug line\n"; I->dump(); }); } } }; // Probe basic blocks. for (auto &I : BlockProbeIds) { BasicBlock *BB = I.first; uint32_t Index = I.second; // Insert a probe before an instruction with a valid debug line number which // will be assigned to the probe. The line number will be used later to // model the inline context when the probe is inlined into other functions. // Debug instructions, phi nodes and lifetime markers do not have an valid // line number. Real instructions generated by optimizations may not come // with a line number either. auto HasValidDbgLine = [](Instruction *J) { return !isa(J) && !isa(J) && !J->isLifetimeStartOrEnd() && J->getDebugLoc(); }; Instruction *J = &*BB->getFirstInsertionPt(); while (J != BB->getTerminator() && !HasValidDbgLine(J)) { J = J->getNextNode(); } IRBuilder<> Builder(J); assert(Builder.GetInsertPoint() != BB->end() && "Cannot get the probing point"); Function *ProbeFn = llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe); Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index), Builder.getInt32(0), Builder.getInt64(PseudoProbeFullDistributionFactor)}; auto *Probe = Builder.CreateCall(ProbeFn, Args); AssignDebugLoc(Probe); // Reset the dwarf discriminator if the debug location comes with any. The // discriminator field may be used by FS-AFDO later in the pipeline. if (auto DIL = Probe->getDebugLoc()) { if (DIL->getDiscriminator()) { DIL = DIL->cloneWithDiscriminator(0); Probe->setDebugLoc(DIL); } } } // Probe both direct calls and indirect calls. Direct calls are probed so that // their probe ID can be used as an call site identifier to represent a // calling context. for (auto &I : CallProbeIds) { auto *Call = I.first; uint32_t Index = I.second; uint32_t Type = cast(Call)->getCalledFunction() ? (uint32_t)PseudoProbeType::DirectCall : (uint32_t)PseudoProbeType::IndirectCall; AssignDebugLoc(Call); if (auto DIL = Call->getDebugLoc()) { // Levarge the 32-bit discriminator field of debug data to store the ID // and type of a callsite probe. This gets rid of the dependency on // plumbing a customized metadata through the codegen pipeline. uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData( Index, Type, 0, PseudoProbeDwarfDiscriminator::FullDistributionFactor); DIL = DIL->cloneWithDiscriminator(V); Call->setDebugLoc(DIL); } } // Create module-level metadata that contains function info necessary to // synthesize probe-based sample counts, which are // - FunctionGUID // - FunctionHash. // - FunctionName auto Hash = getFunctionHash(); auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, FName); auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName); assert(NMD && "llvm.pseudo_probe_desc should be pre-created"); NMD->addOperand(MD); } PreservedAnalyses SampleProfileProbePass::run(Module &M, ModuleAnalysisManager &AM) { auto ModuleId = getUniqueModuleId(&M); // Create the pseudo probe desc metadata beforehand. // Note that modules with only data but no functions will require this to // be set up so that they will be known as probed later. M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName); for (auto &F : M) { if (F.isDeclaration()) continue; SampleProfileProber ProbeManager(F, ModuleId); ProbeManager.instrumentOneFunc(F, TM); } return PreservedAnalyses::none(); } void PseudoProbeUpdatePass::runOnFunction(Function &F, FunctionAnalysisManager &FAM) { BlockFrequencyInfo &BFI = FAM.getResult(F); auto BBProfileCount = [&BFI](BasicBlock *BB) { return BFI.getBlockProfileCount(BB).value_or(0); }; // Collect the sum of execution weight for each probe. ProbeFactorMap ProbeFactors; for (auto &Block : F) { for (auto &I : Block) { if (std::optional Probe = extractProbe(I)) { uint64_t Hash = computeCallStackHash(I); ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block); } } } // Fix up over-counted probes. for (auto &Block : F) { for (auto &I : Block) { if (std::optional Probe = extractProbe(I)) { uint64_t Hash = computeCallStackHash(I); float Sum = ProbeFactors[{Probe->Id, Hash}]; if (Sum != 0) setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum); } } } } PreservedAnalyses PseudoProbeUpdatePass::run(Module &M, ModuleAnalysisManager &AM) { if (UpdatePseudoProbe) { for (auto &F : M) { if (F.isDeclaration()) continue; FunctionAnalysisManager &FAM = AM.getResult(M).getManager(); runOnFunction(F, FAM); } } return PreservedAnalyses::none(); }