xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrControl.td (revision e1c4c8dd8d2d10b6104f06856a77bd5b4813a801)
1//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the X86 jump, return, call, and related instructions.
10//
11//===----------------------------------------------------------------------===//
12
13//===----------------------------------------------------------------------===//
14//  Control Flow Instructions.
15//
16
17// Return instructions.
18//
19// The X86retglue return instructions are variadic because we may add ST0 and
20// ST1 arguments when returning values on the x87 stack.
21let isTerminator = 1, isReturn = 1, isBarrier = 1,
22    hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
23  def RET32  : I   <0xC3, RawFrm, (outs), (ins variable_ops),
24                    "ret{l}", []>, OpSize32, Requires<[Not64BitMode]>;
25  def RET64  : I   <0xC3, RawFrm, (outs), (ins variable_ops),
26                    "ret{q}", []>, OpSize32, Requires<[In64BitMode]>;
27  def RET16  : I   <0xC3, RawFrm, (outs), (ins),
28                    "ret{w}", []>, OpSize16;
29  def RETI32 : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
30                    "ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>;
31  def RETI64 : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
32                    "ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>;
33  def RETI16 : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
34                    "ret{w}\t$amt", []>, OpSize16;
35  def LRET32 : I   <0xCB, RawFrm, (outs), (ins),
36                    "{l}ret{l|f}", []>, OpSize32;
37  def LRET64 : RI  <0xCB, RawFrm, (outs), (ins),
38                    "{l}ret{|f}q", []>, Requires<[In64BitMode]>;
39  def LRET16 : I   <0xCB, RawFrm, (outs), (ins),
40                    "{l}ret{w|f}", []>, OpSize16;
41  def LRETI32 : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
42                     "{l}ret{l|f}\t$amt", []>, OpSize32;
43  def LRETI64 : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
44                      "{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>;
45  def LRETI16 : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
46                     "{l}ret{w|f}\t$amt", []>, OpSize16;
47
48  // The machine return from interrupt instruction, but sometimes we need to
49  // perform a post-epilogue stack adjustment. Codegen emits the pseudo form
50  // which expands to include an SP adjustment if necessary.
51  def IRET16 : I   <0xcf, RawFrm, (outs), (ins), "iret{w}", []>,
52               OpSize16;
53  def IRET32 : I   <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32;
54  def IRET64 : RI  <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>;
55  let isCodeGenOnly = 1 in
56  def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>;
57  def RET  : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retglue timm:$adj)]>;
58}
59
60// Unconditional branches.
61let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
62  def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
63                       "jmp\t$dst", [(br bb:$dst)]>;
64  let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
65    def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst),
66                          "jmp\t$dst", []>, OpSize16;
67    def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst),
68                          "jmp\t$dst", []>, OpSize32;
69  }
70}
71
72// Conditional Branches.
73let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump],
74    isCodeGenOnly = 1, ForceDisassemble = 1 in {
75  def JCC_1 : Ii8PCRel <0x70, AddCCFrm, (outs),
76                        (ins brtarget8:$dst, ccode:$cond),
77                        "j${cond}\t$dst",
78                        [(X86brcond bb:$dst, timm:$cond, EFLAGS)]>;
79  let hasSideEffects = 0 in {
80    def JCC_2 : Ii16PCRel<0x80, AddCCFrm, (outs),
81                          (ins brtarget16:$dst, ccode:$cond),
82                          "j${cond}\t$dst",
83                          []>, OpSize16, TB;
84    def JCC_4 : Ii32PCRel<0x80, AddCCFrm, (outs),
85                          (ins brtarget32:$dst, ccode:$cond),
86                          "j${cond}\t$dst",
87                          []>, TB, OpSize32;
88  }
89}
90
91// jcx/jecx/jrcx instructions.
92let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
93  // These are the 32-bit versions of this instruction for the asmparser.  In
94  // 32-bit mode, the address size prefix is jcxz and the unprefixed version is
95  // jecxz.
96  let Uses = [CX] in
97    def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
98                        "jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>;
99  let Uses = [ECX] in
100    def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
101                        "jecxz\t$dst", []>, AdSize32;
102
103  let Uses = [RCX] in
104    def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
105                         "jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>;
106}
107
108// Indirect branches
109let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
110  def JMP16r     : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst",
111                     [(brind GR16:$dst)]>, Requires<[Not64BitMode]>,
112                     OpSize16, Sched<[WriteJump]>;
113  def JMP16m     : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst",
114                     [(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>,
115                     OpSize16, Sched<[WriteJumpLd]>;
116
117  def JMP32r     : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
118                     [(brind GR32:$dst)]>, Requires<[Not64BitMode]>,
119                     OpSize32, Sched<[WriteJump]>;
120  def JMP32m     : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
121                     [(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>,
122                     OpSize32, Sched<[WriteJumpLd]>;
123
124  def JMP64r     : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
125                     [(brind GR64:$dst)]>, Requires<[In64BitMode]>,
126                     Sched<[WriteJump]>;
127  def JMP64m     : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
128                     [(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>,
129                     Sched<[WriteJumpLd]>;
130
131  // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
132  // These are switched from TAILJMPr/m64_REX in MCInstLower.
133  let isCodeGenOnly = 1, hasREX_W = 1 in {
134    def JMP64r_REX : I<0xFF, MRM4r, (outs), (ins GR64:$dst),
135                       "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJump]>;
136    let mayLoad = 1 in
137    def JMP64m_REX : I<0xFF, MRM4m, (outs), (ins i64mem:$dst),
138                       "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJumpLd]>;
139
140  }
141
142  // Non-tracking jumps for IBT, use with caution.
143  let isCodeGenOnly = 1 in {
144    def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst",
145                      [(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>,
146                      OpSize16, Sched<[WriteJump]>, NOTRACK;
147
148    def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst",
149                      [(X86NoTrackBrind (loadi16 addr : $dst))]>,
150                      Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>,
151                      NOTRACK;
152
153    def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst",
154                      [(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>,
155                      OpSize32, Sched<[WriteJump]>, NOTRACK;
156    def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst",
157                      [(X86NoTrackBrind (loadi32 addr : $dst))]>,
158                      Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>,
159                      NOTRACK;
160
161    def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst",
162                      [(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>,
163                      Sched<[WriteJump]>, NOTRACK;
164    def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst",
165                      [(X86NoTrackBrind(loadi64 addr : $dst))]>,
166                      Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK;
167  }
168
169  let Predicates = [Not64BitMode], AsmVariantName = "att" in {
170    def FARJMP16i  : Iseg16<0xEA, RawFrmImm16, (outs),
171                            (ins i16imm:$off, i16imm:$seg),
172                            "ljmp{w}\t$seg, $off", []>,
173                            OpSize16, Sched<[WriteJump]>;
174    def FARJMP32i  : Iseg32<0xEA, RawFrmImm16, (outs),
175                            (ins i32imm:$off, i16imm:$seg),
176                            "ljmp{l}\t$seg, $off", []>,
177                            OpSize32, Sched<[WriteJump]>;
178  }
179  let mayLoad = 1 in {
180    def FARJMP64m  : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
181                        "ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>;
182
183    let AsmVariantName = "att" in
184    def FARJMP16m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
185                       "ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
186    def FARJMP32m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
187                       "{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
188  }
189}
190
191def JMPABS64i : Ii64<0xA1, RawFrm, (outs), (ins i64imm:$dst), "jmpabs\t$dst", []>,
192                ExplicitREX2Prefix, Requires<[In64BitMode]>, Sched<[WriteJumpLd]>;
193
194// Loop instructions
195let isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
196def LOOP   : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>;
197def LOOPE  : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>;
198def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>;
199}
200
201//===----------------------------------------------------------------------===//
202//  Call Instructions...
203//
204let isCall = 1 in
205  // All calls clobber the non-callee saved registers. ESP is marked as
206  // a use to prevent stack-pointer assignments that appear immediately
207  // before calls from potentially appearing dead. Uses for argument
208  // registers are added manually.
209  let Uses = [ESP, SSP] in {
210    def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
211                           (outs), (ins i32imm_brtarget:$dst),
212                           "call{l}\t$dst", []>, OpSize32,
213                      Requires<[Not64BitMode]>, Sched<[WriteJump]>;
214    let hasSideEffects = 0 in
215      def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
216                             (outs), (ins i16imm_brtarget:$dst),
217                             "call{w}\t$dst", []>, OpSize16,
218                        Requires<[Not64BitMode]>, Sched<[WriteJump]>;
219    def CALL16r     : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
220                        "call{w}\t{*}$dst", [(X86call GR16:$dst)]>,
221                      OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
222    def CALL16m     : I<0xFF, MRM2m, (outs), (ins i16mem:$dst),
223                        "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>,
224                        OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
225                        Sched<[WriteJumpLd]>;
226    def CALL32r     : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
227                        "call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32,
228                        Requires<[Not64BitMode,NotUseIndirectThunkCalls]>,
229                        Sched<[WriteJump]>;
230    def CALL32m     : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
231                        "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>,
232                        OpSize32,
233                        Requires<[Not64BitMode,FavorMemIndirectCall,
234                                  NotUseIndirectThunkCalls]>,
235                        Sched<[WriteJumpLd]>;
236
237    // Non-tracking calls for IBT, use with caution.
238    let isCodeGenOnly = 1 in {
239      def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst),
240                        "call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>,
241                        OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
242      def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst),
243                        "call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>,
244                        OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
245                        Sched<[WriteJumpLd]>, NOTRACK;
246      def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst),
247                        "call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>,
248                        OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
249      def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst),
250                        "call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>,
251                        OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>,
252                        Sched<[WriteJumpLd]>, NOTRACK;
253    }
254
255    let Predicates = [Not64BitMode], AsmVariantName = "att" in {
256      def FARCALL16i  : Iseg16<0x9A, RawFrmImm16, (outs),
257                               (ins i16imm:$off, i16imm:$seg),
258                               "lcall{w}\t$seg, $off", []>,
259                               OpSize16, Sched<[WriteJump]>;
260      def FARCALL32i  : Iseg32<0x9A, RawFrmImm16, (outs),
261                               (ins i32imm:$off, i16imm:$seg),
262                               "lcall{l}\t$seg, $off", []>,
263                               OpSize32, Sched<[WriteJump]>;
264    }
265
266    let mayLoad = 1 in {
267      def FARCALL16m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
268                          "lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
269      def FARCALL32m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
270                          "{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
271    }
272  }
273
274
275// Tail call stuff.
276let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
277    isCodeGenOnly = 1, Uses = [ESP, SSP] in {
278  def TCRETURNdi : PseudoI<(outs), (ins i32imm_brtarget:$dst, i32imm:$offset),
279                           []>, Sched<[WriteJump]>;
280  def TCRETURNri : PseudoI<(outs), (ins ptr_rc_tailcall:$dst, i32imm:$offset),
281                           []>, Sched<[WriteJump]>;
282  let mayLoad = 1 in
283  def TCRETURNmi : PseudoI<(outs), (ins i32mem_TC:$dst, i32imm:$offset),
284                           []>, Sched<[WriteJumpLd]>;
285
286  def TAILJMPd : PseudoI<(outs), (ins i32imm_brtarget:$dst),
287                         []>, Sched<[WriteJump]>;
288
289  def TAILJMPr : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
290                         []>, Sched<[WriteJump]>;
291  let mayLoad = 1 in
292  def TAILJMPm : PseudoI<(outs), (ins i32mem_TC:$dst),
293                         []>, Sched<[WriteJumpLd]>;
294}
295
296// Conditional tail calls are similar to the above, but they are branches
297// rather than barriers, and they use EFLAGS.
298let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
299    isCodeGenOnly = 1, SchedRW = [WriteJump] in
300  let Uses = [ESP, EFLAGS, SSP] in {
301  def TCRETURNdicc : PseudoI<(outs),
302                     (ins i32imm_brtarget:$dst, i32imm:$offset, i32imm:$cond),
303                     []>;
304
305  // This gets substituted to a conditional jump instruction in MC lowering.
306  def TAILJMPd_CC : PseudoI<(outs), (ins i32imm_brtarget:$dst, i32imm:$cond), []>;
307}
308
309
310//===----------------------------------------------------------------------===//
311//  Call Instructions...
312//
313
314// RSP is marked as a use to prevent stack-pointer assignments that appear
315// immediately before calls from potentially appearing dead. Uses for argument
316// registers are added manually.
317let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
318  // NOTE: this pattern doesn't match "X86call imm", because we do not know
319  // that the offset between an arbitrary immediate and the call will fit in
320  // the 32-bit pcrel field that we have.
321  def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
322                        (outs), (ins i64i32imm_brtarget:$dst),
323                        "call{q}\t$dst", []>, OpSize32,
324                      Requires<[In64BitMode]>;
325  def CALL64r       : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
326                        "call{q}\t{*}$dst", [(X86call GR64:$dst)]>,
327                      Requires<[In64BitMode,NotUseIndirectThunkCalls]>;
328  def CALL64m       : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
329                        "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>,
330                      Requires<[In64BitMode,FavorMemIndirectCall,
331                                NotUseIndirectThunkCalls]>;
332
333  // Non-tracking calls for IBT, use with caution.
334  let isCodeGenOnly = 1 in {
335    def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst),
336                      "call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>,
337                      Requires<[In64BitMode]>, NOTRACK;
338    def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst),
339                       "call{q}\t{*}$dst",
340                       [(X86NoTrackCall(loadi64 addr : $dst))]>,
341                       Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK;
342  }
343
344  let mayLoad = 1 in
345  def FARCALL64m  : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
346                       "lcall{q}\t{*}$dst", []>;
347}
348
349let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
350    isCodeGenOnly = 1, Uses = [RSP, SSP] in {
351  def TCRETURNdi64   : PseudoI<(outs),
352                               (ins i64i32imm_brtarget:$dst, i32imm:$offset),
353                               []>, Sched<[WriteJump]>;
354  def TCRETURNri64   : PseudoI<(outs),
355                               (ins ptr_rc_tailcall:$dst, i32imm:$offset),
356                               []>, Sched<[WriteJump]>;
357  let mayLoad = 1 in
358  def TCRETURNmi64   : PseudoI<(outs),
359                               (ins i64mem_TC:$dst, i32imm:$offset),
360                               []>, Sched<[WriteJumpLd]>;
361
362  def TAILJMPd64 : PseudoI<(outs), (ins i64i32imm_brtarget:$dst),
363                           []>, Sched<[WriteJump]>;
364
365  def TAILJMPr64 : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
366                           []>, Sched<[WriteJump]>;
367
368  let mayLoad = 1 in
369  def TAILJMPm64 : PseudoI<(outs), (ins i64mem_TC:$dst),
370                           []>, Sched<[WriteJumpLd]>;
371
372  // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
373  let hasREX_W = 1 in {
374    def TAILJMPr64_REX : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
375                                 []>, Sched<[WriteJump]>;
376
377    let mayLoad = 1 in
378    def TAILJMPm64_REX : PseudoI<(outs), (ins i64mem_TC:$dst),
379                                 []>, Sched<[WriteJumpLd]>;
380  }
381}
382
383let isPseudo = 1, isCall = 1, isCodeGenOnly = 1,
384    Uses = [RSP, SSP],
385    usesCustomInserter = 1,
386    SchedRW = [WriteJump] in {
387  def INDIRECT_THUNK_CALL32 :
388    PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>,
389            Requires<[Not64BitMode,UseIndirectThunkCalls]>;
390
391  def INDIRECT_THUNK_CALL64 :
392    PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>,
393            Requires<[In64BitMode,UseIndirectThunkCalls]>;
394
395  // Indirect thunk variant of indirect tail calls.
396  let isTerminator = 1, isReturn = 1, isBarrier = 1 in {
397    def INDIRECT_THUNK_TCRETURN64 :
398      PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>;
399    def INDIRECT_THUNK_TCRETURN32 :
400      PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>;
401  }
402}
403
404let isPseudo = 1, isCall = 1, isCodeGenOnly = 1,
405    Uses = [RSP, SSP],
406    SchedRW = [WriteJump] in {
407  def CALL64m_RVMARKER :
408     PseudoI<(outs), (ins i64imm:$rvfunc, i64mem:$dst), [(X86call_rvmarker tglobaladdr:$rvfunc, (loadi64 addr:$dst))]>,
409             Requires<[In64BitMode]>;
410
411  def CALL64r_RVMARKER :
412    PseudoI<(outs), (ins i64imm:$rvfunc, GR64:$dst), [(X86call_rvmarker tglobaladdr:$rvfunc, GR64:$dst)]>,
413            Requires<[In64BitMode]>;
414
415  def CALL64pcrel32_RVMARKER :
416    PseudoI<(outs), (ins i64imm:$rvfunc, i64i32imm_brtarget:$dst), []>,
417            Requires<[In64BitMode]>;
418}
419
420// Conditional tail calls are similar to the above, but they are branches
421// rather than barriers, and they use EFLAGS.
422let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
423    isCodeGenOnly = 1, SchedRW = [WriteJump] in
424  let Uses = [RSP, EFLAGS, SSP] in {
425  def TCRETURNdi64cc : PseudoI<(outs),
426                           (ins i64i32imm_brtarget:$dst, i32imm:$offset,
427                            i32imm:$cond), []>;
428
429  // This gets substituted to a conditional jump instruction in MC lowering.
430  def TAILJMPd64_CC : PseudoI<(outs),
431                              (ins i64i32imm_brtarget:$dst, i32imm:$cond), []>;
432}
433