1//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the X86 jump, return, call, and related instructions. 10// 11//===----------------------------------------------------------------------===// 12 13//===----------------------------------------------------------------------===// 14// Control Flow Instructions. 15// 16 17// Return instructions. 18// 19// The X86retglue return instructions are variadic because we may add ST0 and 20// ST1 arguments when returning values on the x87 stack. 21let isTerminator = 1, isReturn = 1, isBarrier = 1, 22 hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in { 23 def RET32 : I <0xC3, RawFrm, (outs), (ins variable_ops), 24 "ret{l}", []>, OpSize32, Requires<[Not64BitMode]>; 25 def RET64 : I <0xC3, RawFrm, (outs), (ins variable_ops), 26 "ret{q}", []>, OpSize32, Requires<[In64BitMode]>; 27 def RET16 : I <0xC3, RawFrm, (outs), (ins), 28 "ret{w}", []>, OpSize16; 29 def RETI32 : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops), 30 "ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>; 31 def RETI64 : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops), 32 "ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>; 33 def RETI16 : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt), 34 "ret{w}\t$amt", []>, OpSize16; 35 def LRET32 : I <0xCB, RawFrm, (outs), (ins), 36 "{l}ret{l|f}", []>, OpSize32; 37 def LRET64 : RI <0xCB, RawFrm, (outs), (ins), 38 "{l}ret{|f}q", []>, Requires<[In64BitMode]>; 39 def LRET16 : I <0xCB, RawFrm, (outs), (ins), 40 "{l}ret{w|f}", []>, OpSize16; 41 def LRETI32 : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt), 42 "{l}ret{l|f}\t$amt", []>, OpSize32; 43 def LRETI64 : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt), 44 "{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>; 45 def LRETI16 : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt), 46 "{l}ret{w|f}\t$amt", []>, OpSize16; 47 48 // The machine return from interrupt instruction, but sometimes we need to 49 // perform a post-epilogue stack adjustment. Codegen emits the pseudo form 50 // which expands to include an SP adjustment if necessary. 51 def IRET16 : I <0xcf, RawFrm, (outs), (ins), "iret{w}", []>, 52 OpSize16; 53 def IRET32 : I <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32; 54 def IRET64 : RI <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>; 55 let isCodeGenOnly = 1 in 56 def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>; 57 def RET : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retglue timm:$adj)]>; 58} 59 60// Unconditional branches. 61let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in { 62 def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst), 63 "jmp\t$dst", [(br bb:$dst)]>; 64 let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in { 65 def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst), 66 "jmp\t$dst", []>, OpSize16; 67 def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst), 68 "jmp\t$dst", []>, OpSize32; 69 } 70} 71 72// Conditional Branches. 73let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump], 74 isCodeGenOnly = 1, ForceDisassemble = 1 in { 75 def JCC_1 : Ii8PCRel <0x70, AddCCFrm, (outs), 76 (ins brtarget8:$dst, ccode:$cond), 77 "j${cond}\t$dst", 78 [(X86brcond bb:$dst, timm:$cond, EFLAGS)]>; 79 let hasSideEffects = 0 in { 80 def JCC_2 : Ii16PCRel<0x80, AddCCFrm, (outs), 81 (ins brtarget16:$dst, ccode:$cond), 82 "j${cond}\t$dst", 83 []>, OpSize16, TB; 84 def JCC_4 : Ii32PCRel<0x80, AddCCFrm, (outs), 85 (ins brtarget32:$dst, ccode:$cond), 86 "j${cond}\t$dst", 87 []>, TB, OpSize32; 88 } 89} 90 91// jcx/jecx/jrcx instructions. 92let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in { 93 // These are the 32-bit versions of this instruction for the asmparser. In 94 // 32-bit mode, the address size prefix is jcxz and the unprefixed version is 95 // jecxz. 96 let Uses = [CX] in 97 def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), 98 "jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>; 99 let Uses = [ECX] in 100 def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), 101 "jecxz\t$dst", []>, AdSize32; 102 103 let Uses = [RCX] in 104 def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), 105 "jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>; 106} 107 108// Indirect branches 109let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 110 def JMP16r : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst", 111 [(brind GR16:$dst)]>, Requires<[Not64BitMode]>, 112 OpSize16, Sched<[WriteJump]>; 113 def JMP16m : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst", 114 [(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>, 115 OpSize16, Sched<[WriteJumpLd]>; 116 117 def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst", 118 [(brind GR32:$dst)]>, Requires<[Not64BitMode]>, 119 OpSize32, Sched<[WriteJump]>; 120 def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst", 121 [(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>, 122 OpSize32, Sched<[WriteJumpLd]>; 123 124 def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst", 125 [(brind GR64:$dst)]>, Requires<[In64BitMode]>, 126 Sched<[WriteJump]>; 127 def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst", 128 [(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>, 129 Sched<[WriteJumpLd]>; 130 131 // Win64 wants indirect jumps leaving the function to have a REX_W prefix. 132 // These are switched from TAILJMPr/m64_REX in MCInstLower. 133 let isCodeGenOnly = 1, hasREX_W = 1 in { 134 def JMP64r_REX : I<0xFF, MRM4r, (outs), (ins GR64:$dst), 135 "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJump]>; 136 let mayLoad = 1 in 137 def JMP64m_REX : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), 138 "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJumpLd]>; 139 140 } 141 142 // Non-tracking jumps for IBT, use with caution. 143 let isCodeGenOnly = 1 in { 144 def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst", 145 [(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>, 146 OpSize16, Sched<[WriteJump]>, NOTRACK; 147 148 def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst", 149 [(X86NoTrackBrind (loadi16 addr : $dst))]>, 150 Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>, 151 NOTRACK; 152 153 def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst", 154 [(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>, 155 OpSize32, Sched<[WriteJump]>, NOTRACK; 156 def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst", 157 [(X86NoTrackBrind (loadi32 addr : $dst))]>, 158 Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>, 159 NOTRACK; 160 161 def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst", 162 [(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>, 163 Sched<[WriteJump]>, NOTRACK; 164 def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst", 165 [(X86NoTrackBrind(loadi64 addr : $dst))]>, 166 Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK; 167 } 168 169 let Predicates = [Not64BitMode], AsmVariantName = "att" in { 170 def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs), 171 (ins i32imm:$off, i16imm:$seg), 172 "ljmp{l}\t$seg, $off", []>, 173 OpSize32, Sched<[WriteJump]>; 174 def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs), 175 (ins i16imm:$off, i16imm:$seg), 176 "ljmp{w}\t$seg, $off", []>, 177 OpSize16, Sched<[WriteJump]>; 178 } 179 let mayLoad = 1 in { 180 def FARJMP64m : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst), 181 "ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>; 182 183 def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst), 184 "{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>; 185 let AsmVariantName = "att" in 186 def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst), 187 "ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>; 188 } 189} 190 191def JMPABS64i : Ii64<0xA1, RawFrm, (outs), (ins i64imm:$dst), "jmpabs\t$dst", []>, 192 ExplicitREX2Prefix, Requires<[In64BitMode]>, Sched<[WriteJumpLd]>; 193 194// Loop instructions 195let isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in { 196def LOOP : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>; 197def LOOPE : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>; 198def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>; 199} 200 201//===----------------------------------------------------------------------===// 202// Call Instructions... 203// 204let isCall = 1 in 205 // All calls clobber the non-callee saved registers. ESP is marked as 206 // a use to prevent stack-pointer assignments that appear immediately 207 // before calls from potentially appearing dead. Uses for argument 208 // registers are added manually. 209 let Uses = [ESP, SSP] in { 210 def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm, 211 (outs), (ins i32imm_brtarget:$dst), 212 "call{l}\t$dst", []>, OpSize32, 213 Requires<[Not64BitMode]>, Sched<[WriteJump]>; 214 let hasSideEffects = 0 in 215 def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm, 216 (outs), (ins i16imm_brtarget:$dst), 217 "call{w}\t$dst", []>, OpSize16, 218 Requires<[Not64BitMode]>, Sched<[WriteJump]>; 219 def CALL16r : I<0xFF, MRM2r, (outs), (ins GR16:$dst), 220 "call{w}\t{*}$dst", [(X86call GR16:$dst)]>, 221 OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>; 222 def CALL16m : I<0xFF, MRM2m, (outs), (ins i16mem:$dst), 223 "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>, 224 OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>, 225 Sched<[WriteJumpLd]>; 226 def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst), 227 "call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32, 228 Requires<[Not64BitMode,NotUseIndirectThunkCalls]>, 229 Sched<[WriteJump]>; 230 def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst), 231 "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>, 232 OpSize32, 233 Requires<[Not64BitMode,FavorMemIndirectCall, 234 NotUseIndirectThunkCalls]>, 235 Sched<[WriteJumpLd]>; 236 237 // Non-tracking calls for IBT, use with caution. 238 let isCodeGenOnly = 1 in { 239 def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst), 240 "call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>, 241 OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK; 242 def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst), 243 "call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>, 244 OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>, 245 Sched<[WriteJumpLd]>, NOTRACK; 246 def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst), 247 "call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>, 248 OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK; 249 def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst), 250 "call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>, 251 OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>, 252 Sched<[WriteJumpLd]>, NOTRACK; 253 } 254 255 let Predicates = [Not64BitMode], AsmVariantName = "att" in { 256 def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs), 257 (ins i32imm:$off, i16imm:$seg), 258 "lcall{l}\t$seg, $off", []>, 259 OpSize32, Sched<[WriteJump]>; 260 def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs), 261 (ins i16imm:$off, i16imm:$seg), 262 "lcall{w}\t$seg, $off", []>, 263 OpSize16, Sched<[WriteJump]>; 264 } 265 266 let mayLoad = 1 in { 267 def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst), 268 "{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>; 269 def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst), 270 "lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>; 271 } 272 } 273 274 275// Tail call stuff. 276let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, 277 isCodeGenOnly = 1, Uses = [ESP, SSP] in { 278 def TCRETURNdi : PseudoI<(outs), (ins i32imm_brtarget:$dst, i32imm:$offset), 279 []>, Sched<[WriteJump]>; 280 def TCRETURNri : PseudoI<(outs), (ins ptr_rc_tailcall:$dst, i32imm:$offset), 281 []>, Sched<[WriteJump]>; 282 let mayLoad = 1 in 283 def TCRETURNmi : PseudoI<(outs), (ins i32mem_TC:$dst, i32imm:$offset), 284 []>, Sched<[WriteJumpLd]>; 285 286 def TAILJMPd : PseudoI<(outs), (ins i32imm_brtarget:$dst), 287 []>, Sched<[WriteJump]>; 288 289 def TAILJMPr : PseudoI<(outs), (ins ptr_rc_tailcall:$dst), 290 []>, Sched<[WriteJump]>; 291 let mayLoad = 1 in 292 def TAILJMPm : PseudoI<(outs), (ins i32mem_TC:$dst), 293 []>, Sched<[WriteJumpLd]>; 294} 295 296// Conditional tail calls are similar to the above, but they are branches 297// rather than barriers, and they use EFLAGS. 298let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1, 299 isCodeGenOnly = 1, SchedRW = [WriteJump] in 300 let Uses = [ESP, EFLAGS, SSP] in { 301 def TCRETURNdicc : PseudoI<(outs), 302 (ins i32imm_brtarget:$dst, i32imm:$offset, i32imm:$cond), 303 []>; 304 305 // This gets substituted to a conditional jump instruction in MC lowering. 306 def TAILJMPd_CC : PseudoI<(outs), (ins i32imm_brtarget:$dst, i32imm:$cond), []>; 307} 308 309 310//===----------------------------------------------------------------------===// 311// Call Instructions... 312// 313 314// RSP is marked as a use to prevent stack-pointer assignments that appear 315// immediately before calls from potentially appearing dead. Uses for argument 316// registers are added manually. 317let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in { 318 // NOTE: this pattern doesn't match "X86call imm", because we do not know 319 // that the offset between an arbitrary immediate and the call will fit in 320 // the 32-bit pcrel field that we have. 321 def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm, 322 (outs), (ins i64i32imm_brtarget:$dst), 323 "call{q}\t$dst", []>, OpSize32, 324 Requires<[In64BitMode]>; 325 def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst), 326 "call{q}\t{*}$dst", [(X86call GR64:$dst)]>, 327 Requires<[In64BitMode,NotUseIndirectThunkCalls]>; 328 def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst), 329 "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>, 330 Requires<[In64BitMode,FavorMemIndirectCall, 331 NotUseIndirectThunkCalls]>; 332 333 // Non-tracking calls for IBT, use with caution. 334 let isCodeGenOnly = 1 in { 335 def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst), 336 "call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>, 337 Requires<[In64BitMode]>, NOTRACK; 338 def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst), 339 "call{q}\t{*}$dst", 340 [(X86NoTrackCall(loadi64 addr : $dst))]>, 341 Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK; 342 } 343 344 let mayLoad = 1 in 345 def FARCALL64m : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst), 346 "lcall{q}\t{*}$dst", []>; 347} 348 349let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, 350 isCodeGenOnly = 1, Uses = [RSP, SSP] in { 351 def TCRETURNdi64 : PseudoI<(outs), 352 (ins i64i32imm_brtarget:$dst, i32imm:$offset), 353 []>, Sched<[WriteJump]>; 354 def TCRETURNri64 : PseudoI<(outs), 355 (ins ptr_rc_tailcall:$dst, i32imm:$offset), 356 []>, Sched<[WriteJump]>; 357 let mayLoad = 1 in 358 def TCRETURNmi64 : PseudoI<(outs), 359 (ins i64mem_TC:$dst, i32imm:$offset), 360 []>, Sched<[WriteJumpLd]>; 361 362 def TAILJMPd64 : PseudoI<(outs), (ins i64i32imm_brtarget:$dst), 363 []>, Sched<[WriteJump]>; 364 365 def TAILJMPr64 : PseudoI<(outs), (ins ptr_rc_tailcall:$dst), 366 []>, Sched<[WriteJump]>; 367 368 let mayLoad = 1 in 369 def TAILJMPm64 : PseudoI<(outs), (ins i64mem_TC:$dst), 370 []>, Sched<[WriteJumpLd]>; 371 372 // Win64 wants indirect jumps leaving the function to have a REX_W prefix. 373 let hasREX_W = 1 in { 374 def TAILJMPr64_REX : PseudoI<(outs), (ins ptr_rc_tailcall:$dst), 375 []>, Sched<[WriteJump]>; 376 377 let mayLoad = 1 in 378 def TAILJMPm64_REX : PseudoI<(outs), (ins i64mem_TC:$dst), 379 []>, Sched<[WriteJumpLd]>; 380 } 381} 382 383let isPseudo = 1, isCall = 1, isCodeGenOnly = 1, 384 Uses = [RSP, SSP], 385 usesCustomInserter = 1, 386 SchedRW = [WriteJump] in { 387 def INDIRECT_THUNK_CALL32 : 388 PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>, 389 Requires<[Not64BitMode,UseIndirectThunkCalls]>; 390 391 def INDIRECT_THUNK_CALL64 : 392 PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>, 393 Requires<[In64BitMode,UseIndirectThunkCalls]>; 394 395 // Indirect thunk variant of indirect tail calls. 396 let isTerminator = 1, isReturn = 1, isBarrier = 1 in { 397 def INDIRECT_THUNK_TCRETURN64 : 398 PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>; 399 def INDIRECT_THUNK_TCRETURN32 : 400 PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>; 401 } 402} 403 404let isPseudo = 1, isCall = 1, isCodeGenOnly = 1, 405 Uses = [RSP, SSP], 406 SchedRW = [WriteJump] in { 407 def CALL64m_RVMARKER : 408 PseudoI<(outs), (ins i64imm:$rvfunc, i64mem:$dst), [(X86call_rvmarker tglobaladdr:$rvfunc, (loadi64 addr:$dst))]>, 409 Requires<[In64BitMode]>; 410 411 def CALL64r_RVMARKER : 412 PseudoI<(outs), (ins i64imm:$rvfunc, GR64:$dst), [(X86call_rvmarker tglobaladdr:$rvfunc, GR64:$dst)]>, 413 Requires<[In64BitMode]>; 414 415 def CALL64pcrel32_RVMARKER : 416 PseudoI<(outs), (ins i64imm:$rvfunc, i64i32imm_brtarget:$dst), []>, 417 Requires<[In64BitMode]>; 418} 419 420// Conditional tail calls are similar to the above, but they are branches 421// rather than barriers, and they use EFLAGS. 422let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1, 423 isCodeGenOnly = 1, SchedRW = [WriteJump] in 424 let Uses = [RSP, EFLAGS, SSP] in { 425 def TCRETURNdi64cc : PseudoI<(outs), 426 (ins i64i32imm_brtarget:$dst, i32imm:$offset, 427 i32imm:$cond), []>; 428 429 // This gets substituted to a conditional jump instruction in MC lowering. 430 def TAILJMPd64_CC : PseudoI<(outs), 431 (ins i64i32imm_brtarget:$dst, i32imm:$cond), []>; 432} 433