xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86IndirectThunks.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //==- X86IndirectThunks.cpp - Construct indirect call/jump thunks for x86  --=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Pass that injects an MI thunk that is used to lower indirect calls in a way
11 /// that prevents speculation on some x86 processors and can be used to mitigate
12 /// security vulnerabilities due to targeted speculative execution and side
13 /// channels such as CVE-2017-5715.
14 ///
15 /// Currently supported thunks include:
16 /// - Retpoline -- A RET-implemented trampoline that lowers indirect calls
17 /// - LVI Thunk -- A CALL/JMP-implemented thunk that forces load serialization
18 ///   before making an indirect call/jump
19 ///
20 /// Note that the reason that this is implemented as a MachineFunctionPass and
21 /// not a ModulePass is that ModulePasses at this point in the LLVM X86 pipeline
22 /// serialize all transformations, which can consume lots of memory.
23 ///
24 /// TODO(chandlerc): All of this code could use better comments and
25 /// documentation.
26 ///
27 //===----------------------------------------------------------------------===//
28 
29 #include "X86.h"
30 #include "X86InstrBuilder.h"
31 #include "X86Subtarget.h"
32 #include "llvm/CodeGen/IndirectThunks.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetMachine.h"
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "x86-retpoline-thunks"
50 
51 static const char RetpolineNamePrefix[] = "__llvm_retpoline_";
52 static const char R11RetpolineName[] = "__llvm_retpoline_r11";
53 static const char EAXRetpolineName[] = "__llvm_retpoline_eax";
54 static const char ECXRetpolineName[] = "__llvm_retpoline_ecx";
55 static const char EDXRetpolineName[] = "__llvm_retpoline_edx";
56 static const char EDIRetpolineName[] = "__llvm_retpoline_edi";
57 
58 static const char LVIThunkNamePrefix[] = "__llvm_lvi_thunk_";
59 static const char R11LVIThunkName[] = "__llvm_lvi_thunk_r11";
60 
61 namespace {
62 struct RetpolineThunkInserter : ThunkInserter<RetpolineThunkInserter> {
63   const char *getThunkPrefix() { return RetpolineNamePrefix; }
64   bool mayUseThunk(const MachineFunction &MF, bool InsertedThunks) {
65     if (InsertedThunks)
66       return false;
67     const auto &STI = MF.getSubtarget<X86Subtarget>();
68     return (STI.useRetpolineIndirectCalls() ||
69             STI.useRetpolineIndirectBranches()) &&
70            !STI.useRetpolineExternalThunk();
71   }
72   bool insertThunks(MachineModuleInfo &MMI, MachineFunction &MF);
73   void populateThunk(MachineFunction &MF);
74 };
75 
76 struct LVIThunkInserter : ThunkInserter<LVIThunkInserter> {
77   const char *getThunkPrefix() { return LVIThunkNamePrefix; }
78   bool mayUseThunk(const MachineFunction &MF, bool InsertedThunks) {
79     if (InsertedThunks)
80       return false;
81     return MF.getSubtarget<X86Subtarget>().useLVIControlFlowIntegrity();
82   }
83   bool insertThunks(MachineModuleInfo &MMI, MachineFunction &MF) {
84     createThunkFunction(MMI, R11LVIThunkName);
85     return true;
86   }
87   void populateThunk(MachineFunction &MF) {
88     assert (MF.size() == 1);
89     MachineBasicBlock *Entry = &MF.front();
90     Entry->clear();
91 
92     // This code mitigates LVI by replacing each indirect call/jump with a
93     // direct call/jump to a thunk that looks like:
94     // ```
95     // lfence
96     // jmpq *%r11
97     // ```
98     // This ensures that if the value in register %r11 was loaded from memory,
99     // then the value in %r11 is (architecturally) correct prior to the jump.
100     const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
101     BuildMI(&MF.front(), DebugLoc(), TII->get(X86::LFENCE));
102     BuildMI(&MF.front(), DebugLoc(), TII->get(X86::JMP64r)).addReg(X86::R11);
103     MF.front().addLiveIn(X86::R11);
104   }
105 };
106 
107 class X86IndirectThunks : public MachineFunctionPass {
108 public:
109   static char ID;
110 
111   X86IndirectThunks() : MachineFunctionPass(ID) {}
112 
113   StringRef getPassName() const override { return "X86 Indirect Thunks"; }
114 
115   bool doInitialization(Module &M) override;
116   bool runOnMachineFunction(MachineFunction &MF) override;
117 
118 private:
119   std::tuple<RetpolineThunkInserter, LVIThunkInserter> TIs;
120 
121   // FIXME: When LLVM moves to C++17, these can become folds
122   template <typename... ThunkInserterT>
123   static void initTIs(Module &M,
124                       std::tuple<ThunkInserterT...> &ThunkInserters) {
125     (void)std::initializer_list<int>{
126         (std::get<ThunkInserterT>(ThunkInserters).init(M), 0)...};
127   }
128   template <typename... ThunkInserterT>
129   static bool runTIs(MachineModuleInfo &MMI, MachineFunction &MF,
130                      std::tuple<ThunkInserterT...> &ThunkInserters) {
131     bool Modified = false;
132     (void)std::initializer_list<int>{
133         Modified |= std::get<ThunkInserterT>(ThunkInserters).run(MMI, MF)...};
134     return Modified;
135   }
136 };
137 
138 } // end anonymous namespace
139 
140 bool RetpolineThunkInserter::insertThunks(MachineModuleInfo &MMI,
141                                           MachineFunction &MF) {
142   if (MMI.getTarget().getTargetTriple().getArch() == Triple::x86_64)
143     createThunkFunction(MMI, R11RetpolineName);
144   else
145     for (StringRef Name : {EAXRetpolineName, ECXRetpolineName, EDXRetpolineName,
146                            EDIRetpolineName})
147       createThunkFunction(MMI, Name);
148   return true;
149 }
150 
151 void RetpolineThunkInserter::populateThunk(MachineFunction &MF) {
152   bool Is64Bit = MF.getTarget().getTargetTriple().getArch() == Triple::x86_64;
153   Register ThunkReg;
154   if (Is64Bit) {
155     assert(MF.getName() == "__llvm_retpoline_r11" &&
156            "Should only have an r11 thunk on 64-bit targets");
157 
158     // __llvm_retpoline_r11:
159     //   callq .Lr11_call_target
160     // .Lr11_capture_spec:
161     //   pause
162     //   lfence
163     //   jmp .Lr11_capture_spec
164     // .align 16
165     // .Lr11_call_target:
166     //   movq %r11, (%rsp)
167     //   retq
168     ThunkReg = X86::R11;
169   } else {
170     // For 32-bit targets we need to emit a collection of thunks for various
171     // possible scratch registers as well as a fallback that uses EDI, which is
172     // normally callee saved.
173     //   __llvm_retpoline_eax:
174     //         calll .Leax_call_target
175     //   .Leax_capture_spec:
176     //         pause
177     //         jmp .Leax_capture_spec
178     //   .align 16
179     //   .Leax_call_target:
180     //         movl %eax, (%esp)  # Clobber return addr
181     //         retl
182     //
183     //   __llvm_retpoline_ecx:
184     //   ... # Same setup
185     //         movl %ecx, (%esp)
186     //         retl
187     //
188     //   __llvm_retpoline_edx:
189     //   ... # Same setup
190     //         movl %edx, (%esp)
191     //         retl
192     //
193     //   __llvm_retpoline_edi:
194     //   ... # Same setup
195     //         movl %edi, (%esp)
196     //         retl
197     if (MF.getName() == EAXRetpolineName)
198       ThunkReg = X86::EAX;
199     else if (MF.getName() == ECXRetpolineName)
200       ThunkReg = X86::ECX;
201     else if (MF.getName() == EDXRetpolineName)
202       ThunkReg = X86::EDX;
203     else if (MF.getName() == EDIRetpolineName)
204       ThunkReg = X86::EDI;
205     else
206       llvm_unreachable("Invalid thunk name on x86-32!");
207   }
208 
209   const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
210   assert (MF.size() == 1);
211   MachineBasicBlock *Entry = &MF.front();
212   Entry->clear();
213 
214   MachineBasicBlock *CaptureSpec =
215       MF.CreateMachineBasicBlock(Entry->getBasicBlock());
216   MachineBasicBlock *CallTarget =
217       MF.CreateMachineBasicBlock(Entry->getBasicBlock());
218   MCSymbol *TargetSym = MF.getContext().createTempSymbol();
219   MF.push_back(CaptureSpec);
220   MF.push_back(CallTarget);
221 
222   const unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
223   const unsigned RetOpc = Is64Bit ? X86::RET64 : X86::RET32;
224 
225   Entry->addLiveIn(ThunkReg);
226   BuildMI(Entry, DebugLoc(), TII->get(CallOpc)).addSym(TargetSym);
227 
228   // The MIR verifier thinks that the CALL in the entry block will fall through
229   // to CaptureSpec, so mark it as the successor. Technically, CaptureTarget is
230   // the successor, but the MIR verifier doesn't know how to cope with that.
231   Entry->addSuccessor(CaptureSpec);
232 
233   // In the capture loop for speculation, we want to stop the processor from
234   // speculating as fast as possible. On Intel processors, the PAUSE instruction
235   // will block speculation without consuming any execution resources. On AMD
236   // processors, the PAUSE instruction is (essentially) a nop, so we also use an
237   // LFENCE instruction which they have advised will stop speculation as well
238   // with minimal resource utilization. We still end the capture with a jump to
239   // form an infinite loop to fully guarantee that no matter what implementation
240   // of the x86 ISA, speculating this code path never escapes.
241   BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::PAUSE));
242   BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::LFENCE));
243   BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::JMP_1)).addMBB(CaptureSpec);
244   CaptureSpec->setMachineBlockAddressTaken();
245   CaptureSpec->addSuccessor(CaptureSpec);
246 
247   CallTarget->addLiveIn(ThunkReg);
248   CallTarget->setMachineBlockAddressTaken();
249   CallTarget->setAlignment(Align(16));
250 
251   // Insert return address clobber
252   const unsigned MovOpc = Is64Bit ? X86::MOV64mr : X86::MOV32mr;
253   const Register SPReg = Is64Bit ? X86::RSP : X86::ESP;
254   addRegOffset(BuildMI(CallTarget, DebugLoc(), TII->get(MovOpc)), SPReg, false,
255                0)
256       .addReg(ThunkReg);
257 
258   CallTarget->back().setPreInstrSymbol(MF, TargetSym);
259   BuildMI(CallTarget, DebugLoc(), TII->get(RetOpc));
260 }
261 
262 FunctionPass *llvm::createX86IndirectThunksPass() {
263   return new X86IndirectThunks();
264 }
265 
266 char X86IndirectThunks::ID = 0;
267 
268 bool X86IndirectThunks::doInitialization(Module &M) {
269   initTIs(M, TIs);
270   return false;
271 }
272 
273 bool X86IndirectThunks::runOnMachineFunction(MachineFunction &MF) {
274   LLVM_DEBUG(dbgs() << getPassName() << '\n');
275   auto &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
276   return runTIs(MMI, MF, TIs);
277 }
278