xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86IndirectThunks.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //==- X86IndirectThunks.cpp - Construct indirect call/jump thunks for x86  --=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Pass that injects an MI thunk that is used to lower indirect calls in a way
11 /// that prevents speculation on some x86 processors and can be used to mitigate
12 /// security vulnerabilities due to targeted speculative execution and side
13 /// channels such as CVE-2017-5715.
14 ///
15 /// Currently supported thunks include:
16 /// - Retpoline -- A RET-implemented trampoline that lowers indirect calls
17 /// - LVI Thunk -- A CALL/JMP-implemented thunk that forces load serialization
18 ///   before making an indirect call/jump
19 ///
20 /// Note that the reason that this is implemented as a MachineFunctionPass and
21 /// not a ModulePass is that ModulePasses at this point in the LLVM X86 pipeline
22 /// serialize all transformations, which can consume lots of memory.
23 ///
24 /// TODO(chandlerc): All of this code could use better comments and
25 /// documentation.
26 ///
27 //===----------------------------------------------------------------------===//
28 
29 #include "X86.h"
30 #include "X86InstrBuilder.h"
31 #include "X86Subtarget.h"
32 #include "llvm/CodeGen/IndirectThunks.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetMachine.h"
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "x86-retpoline-thunks"
50 
51 static const char RetpolineNamePrefix[] = "__llvm_retpoline_";
52 static const char R11RetpolineName[] = "__llvm_retpoline_r11";
53 static const char EAXRetpolineName[] = "__llvm_retpoline_eax";
54 static const char ECXRetpolineName[] = "__llvm_retpoline_ecx";
55 static const char EDXRetpolineName[] = "__llvm_retpoline_edx";
56 static const char EDIRetpolineName[] = "__llvm_retpoline_edi";
57 
58 static const char LVIThunkNamePrefix[] = "__llvm_lvi_thunk_";
59 static const char R11LVIThunkName[] = "__llvm_lvi_thunk_r11";
60 
61 namespace {
62 struct RetpolineThunkInserter : ThunkInserter<RetpolineThunkInserter> {
getThunkPrefix__anon40fda1900111::RetpolineThunkInserter63   const char *getThunkPrefix() { return RetpolineNamePrefix; }
mayUseThunk__anon40fda1900111::RetpolineThunkInserter64   bool mayUseThunk(const MachineFunction &MF) {
65     const auto &STI = MF.getSubtarget<X86Subtarget>();
66     return (STI.useRetpolineIndirectCalls() ||
67             STI.useRetpolineIndirectBranches()) &&
68            !STI.useRetpolineExternalThunk();
69   }
70   bool insertThunks(MachineModuleInfo &MMI, MachineFunction &MF,
71                     bool ExistingThunks);
72   void populateThunk(MachineFunction &MF);
73 };
74 
75 struct LVIThunkInserter : ThunkInserter<LVIThunkInserter> {
getThunkPrefix__anon40fda1900111::LVIThunkInserter76   const char *getThunkPrefix() { return LVIThunkNamePrefix; }
mayUseThunk__anon40fda1900111::LVIThunkInserter77   bool mayUseThunk(const MachineFunction &MF) {
78     return MF.getSubtarget<X86Subtarget>().useLVIControlFlowIntegrity();
79   }
insertThunks__anon40fda1900111::LVIThunkInserter80   bool insertThunks(MachineModuleInfo &MMI, MachineFunction &MF,
81                     bool ExistingThunks) {
82     if (ExistingThunks)
83       return false;
84     createThunkFunction(MMI, R11LVIThunkName);
85     return true;
86   }
populateThunk__anon40fda1900111::LVIThunkInserter87   void populateThunk(MachineFunction &MF) {
88     assert (MF.size() == 1);
89     MachineBasicBlock *Entry = &MF.front();
90     Entry->clear();
91 
92     // This code mitigates LVI by replacing each indirect call/jump with a
93     // direct call/jump to a thunk that looks like:
94     // ```
95     // lfence
96     // jmpq *%r11
97     // ```
98     // This ensures that if the value in register %r11 was loaded from memory,
99     // then the value in %r11 is (architecturally) correct prior to the jump.
100     const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
101     BuildMI(&MF.front(), DebugLoc(), TII->get(X86::LFENCE));
102     BuildMI(&MF.front(), DebugLoc(), TII->get(X86::JMP64r)).addReg(X86::R11);
103     MF.front().addLiveIn(X86::R11);
104   }
105 };
106 
107 class X86IndirectThunks
108     : public ThunkInserterPass<RetpolineThunkInserter, LVIThunkInserter> {
109 public:
110   static char ID;
111 
X86IndirectThunks()112   X86IndirectThunks() : ThunkInserterPass(ID) {}
113 
getPassName() const114   StringRef getPassName() const override { return "X86 Indirect Thunks"; }
115 };
116 
117 } // end anonymous namespace
118 
insertThunks(MachineModuleInfo & MMI,MachineFunction & MF,bool ExistingThunks)119 bool RetpolineThunkInserter::insertThunks(MachineModuleInfo &MMI,
120                                           MachineFunction &MF,
121                                           bool ExistingThunks) {
122   if (ExistingThunks)
123     return false;
124   if (MMI.getTarget().getTargetTriple().getArch() == Triple::x86_64)
125     createThunkFunction(MMI, R11RetpolineName);
126   else
127     for (StringRef Name : {EAXRetpolineName, ECXRetpolineName, EDXRetpolineName,
128                            EDIRetpolineName})
129       createThunkFunction(MMI, Name);
130   return true;
131 }
132 
populateThunk(MachineFunction & MF)133 void RetpolineThunkInserter::populateThunk(MachineFunction &MF) {
134   bool Is64Bit = MF.getTarget().getTargetTriple().getArch() == Triple::x86_64;
135   Register ThunkReg;
136   if (Is64Bit) {
137     assert(MF.getName() == "__llvm_retpoline_r11" &&
138            "Should only have an r11 thunk on 64-bit targets");
139 
140     // __llvm_retpoline_r11:
141     //   callq .Lr11_call_target
142     // .Lr11_capture_spec:
143     //   pause
144     //   lfence
145     //   jmp .Lr11_capture_spec
146     // .align 16
147     // .Lr11_call_target:
148     //   movq %r11, (%rsp)
149     //   retq
150     ThunkReg = X86::R11;
151   } else {
152     // For 32-bit targets we need to emit a collection of thunks for various
153     // possible scratch registers as well as a fallback that uses EDI, which is
154     // normally callee saved.
155     //   __llvm_retpoline_eax:
156     //         calll .Leax_call_target
157     //   .Leax_capture_spec:
158     //         pause
159     //         jmp .Leax_capture_spec
160     //   .align 16
161     //   .Leax_call_target:
162     //         movl %eax, (%esp)  # Clobber return addr
163     //         retl
164     //
165     //   __llvm_retpoline_ecx:
166     //   ... # Same setup
167     //         movl %ecx, (%esp)
168     //         retl
169     //
170     //   __llvm_retpoline_edx:
171     //   ... # Same setup
172     //         movl %edx, (%esp)
173     //         retl
174     //
175     //   __llvm_retpoline_edi:
176     //   ... # Same setup
177     //         movl %edi, (%esp)
178     //         retl
179     if (MF.getName() == EAXRetpolineName)
180       ThunkReg = X86::EAX;
181     else if (MF.getName() == ECXRetpolineName)
182       ThunkReg = X86::ECX;
183     else if (MF.getName() == EDXRetpolineName)
184       ThunkReg = X86::EDX;
185     else if (MF.getName() == EDIRetpolineName)
186       ThunkReg = X86::EDI;
187     else
188       llvm_unreachable("Invalid thunk name on x86-32!");
189   }
190 
191   const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
192   assert (MF.size() == 1);
193   MachineBasicBlock *Entry = &MF.front();
194   Entry->clear();
195 
196   MachineBasicBlock *CaptureSpec =
197       MF.CreateMachineBasicBlock(Entry->getBasicBlock());
198   MachineBasicBlock *CallTarget =
199       MF.CreateMachineBasicBlock(Entry->getBasicBlock());
200   MCSymbol *TargetSym = MF.getContext().createTempSymbol();
201   MF.push_back(CaptureSpec);
202   MF.push_back(CallTarget);
203 
204   const unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
205   const unsigned RetOpc = Is64Bit ? X86::RET64 : X86::RET32;
206 
207   Entry->addLiveIn(ThunkReg);
208   BuildMI(Entry, DebugLoc(), TII->get(CallOpc)).addSym(TargetSym);
209 
210   // The MIR verifier thinks that the CALL in the entry block will fall through
211   // to CaptureSpec, so mark it as the successor. Technically, CaptureTarget is
212   // the successor, but the MIR verifier doesn't know how to cope with that.
213   Entry->addSuccessor(CaptureSpec);
214 
215   // In the capture loop for speculation, we want to stop the processor from
216   // speculating as fast as possible. On Intel processors, the PAUSE instruction
217   // will block speculation without consuming any execution resources. On AMD
218   // processors, the PAUSE instruction is (essentially) a nop, so we also use an
219   // LFENCE instruction which they have advised will stop speculation as well
220   // with minimal resource utilization. We still end the capture with a jump to
221   // form an infinite loop to fully guarantee that no matter what implementation
222   // of the x86 ISA, speculating this code path never escapes.
223   BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::PAUSE));
224   BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::LFENCE));
225   BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::JMP_1)).addMBB(CaptureSpec);
226   CaptureSpec->setMachineBlockAddressTaken();
227   CaptureSpec->addSuccessor(CaptureSpec);
228 
229   CallTarget->addLiveIn(ThunkReg);
230   CallTarget->setMachineBlockAddressTaken();
231   CallTarget->setAlignment(Align(16));
232 
233   // Insert return address clobber
234   const unsigned MovOpc = Is64Bit ? X86::MOV64mr : X86::MOV32mr;
235   const Register SPReg = Is64Bit ? X86::RSP : X86::ESP;
236   addRegOffset(BuildMI(CallTarget, DebugLoc(), TII->get(MovOpc)), SPReg, false,
237                0)
238       .addReg(ThunkReg);
239 
240   CallTarget->back().setPreInstrSymbol(MF, TargetSym);
241   BuildMI(CallTarget, DebugLoc(), TII->get(RetOpc));
242 }
243 
createX86IndirectThunksPass()244 FunctionPass *llvm::createX86IndirectThunksPass() {
245   return new X86IndirectThunks();
246 }
247 
248 char X86IndirectThunks::ID = 0;
249