xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86IndirectThunks.cpp (revision 035dd78d30ba28a3dc15c05ec85ad10127165677)
1 //==- X86IndirectThunks.cpp - Construct indirect call/jump thunks for x86  --=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Pass that injects an MI thunk that is used to lower indirect calls in a way
11 /// that prevents speculation on some x86 processors and can be used to mitigate
12 /// security vulnerabilities due to targeted speculative execution and side
13 /// channels such as CVE-2017-5715.
14 ///
15 /// Currently supported thunks include:
16 /// - Retpoline -- A RET-implemented trampoline that lowers indirect calls
17 /// - LVI Thunk -- A CALL/JMP-implemented thunk that forces load serialization
18 ///   before making an indirect call/jump
19 ///
20 /// Note that the reason that this is implemented as a MachineFunctionPass and
21 /// not a ModulePass is that ModulePasses at this point in the LLVM X86 pipeline
22 /// serialize all transformations, which can consume lots of memory.
23 ///
24 /// TODO(chandlerc): All of this code could use better comments and
25 /// documentation.
26 ///
27 //===----------------------------------------------------------------------===//
28 
29 #include "X86.h"
30 #include "X86InstrBuilder.h"
31 #include "X86Subtarget.h"
32 #include "llvm/CodeGen/IndirectThunks.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetMachine.h"
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "x86-retpoline-thunks"
50 
51 static const char RetpolineNamePrefix[] = "__llvm_retpoline_";
52 static const char R11RetpolineName[] = "__llvm_retpoline_r11";
53 static const char EAXRetpolineName[] = "__llvm_retpoline_eax";
54 static const char ECXRetpolineName[] = "__llvm_retpoline_ecx";
55 static const char EDXRetpolineName[] = "__llvm_retpoline_edx";
56 static const char EDIRetpolineName[] = "__llvm_retpoline_edi";
57 
58 static const char LVIThunkNamePrefix[] = "__llvm_lvi_thunk_";
59 static const char R11LVIThunkName[] = "__llvm_lvi_thunk_r11";
60 
61 namespace {
62 struct RetpolineThunkInserter : ThunkInserter<RetpolineThunkInserter> {
63   const char *getThunkPrefix() { return RetpolineNamePrefix; }
64   bool mayUseThunk(const MachineFunction &MF) {
65     const auto &STI = MF.getSubtarget<X86Subtarget>();
66     return (STI.useRetpolineIndirectCalls() ||
67             STI.useRetpolineIndirectBranches()) &&
68            !STI.useRetpolineExternalThunk();
69   }
70   void insertThunks(MachineModuleInfo &MMI);
71   void populateThunk(MachineFunction &MF);
72 };
73 
74 struct LVIThunkInserter : ThunkInserter<LVIThunkInserter> {
75   const char *getThunkPrefix() { return LVIThunkNamePrefix; }
76   bool mayUseThunk(const MachineFunction &MF) {
77     return MF.getSubtarget<X86Subtarget>().useLVIControlFlowIntegrity();
78   }
79   void insertThunks(MachineModuleInfo &MMI) {
80     createThunkFunction(MMI, R11LVIThunkName);
81   }
82   void populateThunk(MachineFunction &MF) {
83     assert (MF.size() == 1);
84     MachineBasicBlock *Entry = &MF.front();
85     Entry->clear();
86 
87     // This code mitigates LVI by replacing each indirect call/jump with a
88     // direct call/jump to a thunk that looks like:
89     // ```
90     // lfence
91     // jmpq *%r11
92     // ```
93     // This ensures that if the value in register %r11 was loaded from memory,
94     // then the value in %r11 is (architecturally) correct prior to the jump.
95     const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
96     BuildMI(&MF.front(), DebugLoc(), TII->get(X86::LFENCE));
97     BuildMI(&MF.front(), DebugLoc(), TII->get(X86::JMP64r)).addReg(X86::R11);
98     MF.front().addLiveIn(X86::R11);
99   }
100 };
101 
102 class X86IndirectThunks : public MachineFunctionPass {
103 public:
104   static char ID;
105 
106   X86IndirectThunks() : MachineFunctionPass(ID) {}
107 
108   StringRef getPassName() const override { return "X86 Indirect Thunks"; }
109 
110   bool doInitialization(Module &M) override;
111   bool runOnMachineFunction(MachineFunction &MF) override;
112 
113 private:
114   std::tuple<RetpolineThunkInserter, LVIThunkInserter> TIs;
115 
116   // FIXME: When LLVM moves to C++17, these can become folds
117   template <typename... ThunkInserterT>
118   static void initTIs(Module &M,
119                       std::tuple<ThunkInserterT...> &ThunkInserters) {
120     (void)std::initializer_list<int>{
121         (std::get<ThunkInserterT>(ThunkInserters).init(M), 0)...};
122   }
123   template <typename... ThunkInserterT>
124   static bool runTIs(MachineModuleInfo &MMI, MachineFunction &MF,
125                      std::tuple<ThunkInserterT...> &ThunkInserters) {
126     bool Modified = false;
127     (void)std::initializer_list<int>{
128         Modified |= std::get<ThunkInserterT>(ThunkInserters).run(MMI, MF)...};
129     return Modified;
130   }
131 };
132 
133 } // end anonymous namespace
134 
135 void RetpolineThunkInserter::insertThunks(MachineModuleInfo &MMI) {
136   if (MMI.getTarget().getTargetTriple().getArch() == Triple::x86_64)
137     createThunkFunction(MMI, R11RetpolineName);
138   else
139     for (StringRef Name : {EAXRetpolineName, ECXRetpolineName, EDXRetpolineName,
140                            EDIRetpolineName})
141       createThunkFunction(MMI, Name);
142 }
143 
144 void RetpolineThunkInserter::populateThunk(MachineFunction &MF) {
145   bool Is64Bit = MF.getTarget().getTargetTriple().getArch() == Triple::x86_64;
146   Register ThunkReg;
147   if (Is64Bit) {
148     assert(MF.getName() == "__llvm_retpoline_r11" &&
149            "Should only have an r11 thunk on 64-bit targets");
150 
151     // __llvm_retpoline_r11:
152     //   callq .Lr11_call_target
153     // .Lr11_capture_spec:
154     //   pause
155     //   lfence
156     //   jmp .Lr11_capture_spec
157     // .align 16
158     // .Lr11_call_target:
159     //   movq %r11, (%rsp)
160     //   retq
161     ThunkReg = X86::R11;
162   } else {
163     // For 32-bit targets we need to emit a collection of thunks for various
164     // possible scratch registers as well as a fallback that uses EDI, which is
165     // normally callee saved.
166     //   __llvm_retpoline_eax:
167     //         calll .Leax_call_target
168     //   .Leax_capture_spec:
169     //         pause
170     //         jmp .Leax_capture_spec
171     //   .align 16
172     //   .Leax_call_target:
173     //         movl %eax, (%esp)  # Clobber return addr
174     //         retl
175     //
176     //   __llvm_retpoline_ecx:
177     //   ... # Same setup
178     //         movl %ecx, (%esp)
179     //         retl
180     //
181     //   __llvm_retpoline_edx:
182     //   ... # Same setup
183     //         movl %edx, (%esp)
184     //         retl
185     //
186     //   __llvm_retpoline_edi:
187     //   ... # Same setup
188     //         movl %edi, (%esp)
189     //         retl
190     if (MF.getName() == EAXRetpolineName)
191       ThunkReg = X86::EAX;
192     else if (MF.getName() == ECXRetpolineName)
193       ThunkReg = X86::ECX;
194     else if (MF.getName() == EDXRetpolineName)
195       ThunkReg = X86::EDX;
196     else if (MF.getName() == EDIRetpolineName)
197       ThunkReg = X86::EDI;
198     else
199       llvm_unreachable("Invalid thunk name on x86-32!");
200   }
201 
202   const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
203   assert (MF.size() == 1);
204   MachineBasicBlock *Entry = &MF.front();
205   Entry->clear();
206 
207   MachineBasicBlock *CaptureSpec =
208       MF.CreateMachineBasicBlock(Entry->getBasicBlock());
209   MachineBasicBlock *CallTarget =
210       MF.CreateMachineBasicBlock(Entry->getBasicBlock());
211   MCSymbol *TargetSym = MF.getContext().createTempSymbol();
212   MF.push_back(CaptureSpec);
213   MF.push_back(CallTarget);
214 
215   const unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
216   const unsigned RetOpc = Is64Bit ? X86::RET64 : X86::RET32;
217 
218   Entry->addLiveIn(ThunkReg);
219   BuildMI(Entry, DebugLoc(), TII->get(CallOpc)).addSym(TargetSym);
220 
221   // The MIR verifier thinks that the CALL in the entry block will fall through
222   // to CaptureSpec, so mark it as the successor. Technically, CaptureTarget is
223   // the successor, but the MIR verifier doesn't know how to cope with that.
224   Entry->addSuccessor(CaptureSpec);
225 
226   // In the capture loop for speculation, we want to stop the processor from
227   // speculating as fast as possible. On Intel processors, the PAUSE instruction
228   // will block speculation without consuming any execution resources. On AMD
229   // processors, the PAUSE instruction is (essentially) a nop, so we also use an
230   // LFENCE instruction which they have advised will stop speculation as well
231   // with minimal resource utilization. We still end the capture with a jump to
232   // form an infinite loop to fully guarantee that no matter what implementation
233   // of the x86 ISA, speculating this code path never escapes.
234   BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::PAUSE));
235   BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::LFENCE));
236   BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::JMP_1)).addMBB(CaptureSpec);
237   CaptureSpec->setHasAddressTaken();
238   CaptureSpec->addSuccessor(CaptureSpec);
239 
240   CallTarget->addLiveIn(ThunkReg);
241   CallTarget->setHasAddressTaken();
242   CallTarget->setAlignment(Align(16));
243 
244   // Insert return address clobber
245   const unsigned MovOpc = Is64Bit ? X86::MOV64mr : X86::MOV32mr;
246   const Register SPReg = Is64Bit ? X86::RSP : X86::ESP;
247   addRegOffset(BuildMI(CallTarget, DebugLoc(), TII->get(MovOpc)), SPReg, false,
248                0)
249       .addReg(ThunkReg);
250 
251   CallTarget->back().setPreInstrSymbol(MF, TargetSym);
252   BuildMI(CallTarget, DebugLoc(), TII->get(RetOpc));
253 }
254 
255 FunctionPass *llvm::createX86IndirectThunksPass() {
256   return new X86IndirectThunks();
257 }
258 
259 char X86IndirectThunks::ID = 0;
260 
261 bool X86IndirectThunks::doInitialization(Module &M) {
262   initTIs(M, TIs);
263   return false;
264 }
265 
266 bool X86IndirectThunks::runOnMachineFunction(MachineFunction &MF) {
267   LLVM_DEBUG(dbgs() << getPassName() << '\n');
268   auto &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
269   return runTIs(MMI, MF, TIs);
270 }
271