1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrInfo.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/CodeGen/LivePhysRegs.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/WinEHFuncInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCObjectFileInfo.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Target/TargetOptions.h" 37 #include <cstdlib> 38 39 #define DEBUG_TYPE "x86-fl" 40 41 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 42 STATISTIC(NumFrameExtraProbe, 43 "Number of extra stack probes generated in prologue"); 44 45 using namespace llvm; 46 47 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 48 MaybeAlign StackAlignOverride) 49 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 50 STI.is64Bit() ? -8 : -4), 51 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 52 // Cache a bunch of frame-related predicates for this subtarget. 53 SlotSize = TRI->getSlotSize(); 54 Is64Bit = STI.is64Bit(); 55 IsLP64 = STI.isTarget64BitLP64(); 56 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 57 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 58 StackPtr = TRI->getStackRegister(); 59 } 60 61 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 62 return !MF.getFrameInfo().hasVarSizedObjects() && 63 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 64 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 65 } 66 67 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 68 /// call frame pseudos can be simplified. Having a FP, as in the default 69 /// implementation, is not sufficient here since we can't always use it. 70 /// Use a more nuanced condition. 71 bool 72 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 73 return hasReservedCallFrame(MF) || 74 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 75 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 76 TRI->hasBasePointer(MF); 77 } 78 79 // needsFrameIndexResolution - Do we need to perform FI resolution for 80 // this function. Normally, this is required only when the function 81 // has any stack objects. However, FI resolution actually has another job, 82 // not apparent from the title - it resolves callframesetup/destroy 83 // that were not simplified earlier. 84 // So, this is required for x86 functions that have push sequences even 85 // when there are no stack objects. 86 bool 87 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 88 return MF.getFrameInfo().hasStackObjects() || 89 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 90 } 91 92 /// hasFP - Return true if the specified function should have a dedicated frame 93 /// pointer register. This is true if the function has variable sized allocas 94 /// or if frame pointer elimination is disabled. 95 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 96 const MachineFrameInfo &MFI = MF.getFrameInfo(); 97 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 98 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 99 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 100 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 101 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 102 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 103 MFI.hasStackMap() || MFI.hasPatchPoint() || 104 (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment())); 105 } 106 107 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 108 if (IsLP64) { 109 if (isInt<8>(Imm)) 110 return X86::SUB64ri8; 111 return X86::SUB64ri32; 112 } else { 113 if (isInt<8>(Imm)) 114 return X86::SUB32ri8; 115 return X86::SUB32ri; 116 } 117 } 118 119 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 120 if (IsLP64) { 121 if (isInt<8>(Imm)) 122 return X86::ADD64ri8; 123 return X86::ADD64ri32; 124 } else { 125 if (isInt<8>(Imm)) 126 return X86::ADD32ri8; 127 return X86::ADD32ri; 128 } 129 } 130 131 static unsigned getSUBrrOpcode(bool IsLP64) { 132 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 133 } 134 135 static unsigned getADDrrOpcode(bool IsLP64) { 136 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 137 } 138 139 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 140 if (IsLP64) { 141 if (isInt<8>(Imm)) 142 return X86::AND64ri8; 143 return X86::AND64ri32; 144 } 145 if (isInt<8>(Imm)) 146 return X86::AND32ri8; 147 return X86::AND32ri; 148 } 149 150 static unsigned getLEArOpcode(bool IsLP64) { 151 return IsLP64 ? X86::LEA64r : X86::LEA32r; 152 } 153 154 static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) { 155 if (Use64BitReg) { 156 if (isUInt<32>(Imm)) 157 return X86::MOV32ri64; 158 if (isInt<32>(Imm)) 159 return X86::MOV64ri32; 160 return X86::MOV64ri; 161 } 162 return X86::MOV32ri; 163 } 164 165 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 166 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 167 unsigned Reg = RegMask.PhysReg; 168 169 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 170 Reg == X86::AH || Reg == X86::AL) 171 return true; 172 } 173 174 return false; 175 } 176 177 /// Check if the flags need to be preserved before the terminators. 178 /// This would be the case, if the eflags is live-in of the region 179 /// composed by the terminators or live-out of that region, without 180 /// being defined by a terminator. 181 static bool 182 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 183 for (const MachineInstr &MI : MBB.terminators()) { 184 bool BreakNext = false; 185 for (const MachineOperand &MO : MI.operands()) { 186 if (!MO.isReg()) 187 continue; 188 Register Reg = MO.getReg(); 189 if (Reg != X86::EFLAGS) 190 continue; 191 192 // This terminator needs an eflags that is not defined 193 // by a previous another terminator: 194 // EFLAGS is live-in of the region composed by the terminators. 195 if (!MO.isDef()) 196 return true; 197 // This terminator defines the eflags, i.e., we don't need to preserve it. 198 // However, we still need to check this specific terminator does not 199 // read a live-in value. 200 BreakNext = true; 201 } 202 // We found a definition of the eflags, no need to preserve them. 203 if (BreakNext) 204 return false; 205 } 206 207 // None of the terminators use or define the eflags. 208 // Check if they are live-out, that would imply we need to preserve them. 209 for (const MachineBasicBlock *Succ : MBB.successors()) 210 if (Succ->isLiveIn(X86::EFLAGS)) 211 return true; 212 213 return false; 214 } 215 216 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 217 /// stack pointer by a constant value. 218 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 219 MachineBasicBlock::iterator &MBBI, 220 const DebugLoc &DL, 221 int64_t NumBytes, bool InEpilogue) const { 222 bool isSub = NumBytes < 0; 223 uint64_t Offset = isSub ? -NumBytes : NumBytes; 224 MachineInstr::MIFlag Flag = 225 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 226 227 uint64_t Chunk = (1LL << 31) - 1; 228 229 MachineFunction &MF = *MBB.getParent(); 230 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 231 const X86TargetLowering &TLI = *STI.getTargetLowering(); 232 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 233 234 // It's ok to not take into account large chunks when probing, as the 235 // allocation is split in smaller chunks anyway. 236 if (EmitInlineStackProbe && !InEpilogue) { 237 238 // This pseudo-instruction is going to be expanded, potentially using a 239 // loop, by inlineStackProbe(). 240 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 241 return; 242 } else if (Offset > Chunk) { 243 // Rather than emit a long series of instructions for large offsets, 244 // load the offset into a register and do one sub/add 245 unsigned Reg = 0; 246 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 247 248 if (isSub && !isEAXLiveIn(MBB)) 249 Reg = Rax; 250 else 251 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 252 253 unsigned AddSubRROpc = 254 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 255 if (Reg) { 256 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg) 257 .addImm(Offset) 258 .setMIFlag(Flag); 259 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 260 .addReg(StackPtr) 261 .addReg(Reg); 262 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 263 return; 264 } else if (Offset > 8 * Chunk) { 265 // If we would need more than 8 add or sub instructions (a >16GB stack 266 // frame), it's worth spilling RAX to materialize this immediate. 267 // pushq %rax 268 // movabsq +-$Offset+-SlotSize, %rax 269 // addq %rsp, %rax 270 // xchg %rax, (%rsp) 271 // movq (%rsp), %rsp 272 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 273 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 274 .addReg(Rax, RegState::Kill) 275 .setMIFlag(Flag); 276 // Subtract is not commutative, so negate the offset and always use add. 277 // Subtract 8 less and add 8 more to account for the PUSH we just did. 278 if (isSub) 279 Offset = -(Offset - SlotSize); 280 else 281 Offset = Offset + SlotSize; 282 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax) 283 .addImm(Offset) 284 .setMIFlag(Flag); 285 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 286 .addReg(Rax) 287 .addReg(StackPtr); 288 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 289 // Exchange the new SP in RAX with the top of the stack. 290 addRegOffset( 291 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 292 StackPtr, false, 0); 293 // Load new SP from the top of the stack into RSP. 294 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 295 StackPtr, false, 0); 296 return; 297 } 298 } 299 300 while (Offset) { 301 uint64_t ThisVal = std::min(Offset, Chunk); 302 if (ThisVal == SlotSize) { 303 // Use push / pop for slot sized adjustments as a size optimization. We 304 // need to find a dead register when using pop. 305 unsigned Reg = isSub 306 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 307 : TRI->findDeadCallerSavedReg(MBB, MBBI); 308 if (Reg) { 309 unsigned Opc = isSub 310 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 311 : (Is64Bit ? X86::POP64r : X86::POP32r); 312 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 313 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 314 .setMIFlag(Flag); 315 Offset -= ThisVal; 316 continue; 317 } 318 } 319 320 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 321 .setMIFlag(Flag); 322 323 Offset -= ThisVal; 324 } 325 } 326 327 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 328 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 329 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 330 assert(Offset != 0 && "zero offset stack adjustment requested"); 331 332 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 333 // is tricky. 334 bool UseLEA; 335 if (!InEpilogue) { 336 // Check if inserting the prologue at the beginning 337 // of MBB would require to use LEA operations. 338 // We need to use LEA operations if EFLAGS is live in, because 339 // it means an instruction will read it before it gets defined. 340 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 341 } else { 342 // If we can use LEA for SP but we shouldn't, check that none 343 // of the terminators uses the eflags. Otherwise we will insert 344 // a ADD that will redefine the eflags and break the condition. 345 // Alternatively, we could move the ADD, but this may not be possible 346 // and is an optimization anyway. 347 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 348 if (UseLEA && !STI.useLeaForSP()) 349 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 350 // If that assert breaks, that means we do not do the right thing 351 // in canUseAsEpilogue. 352 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 353 "We shouldn't have allowed this insertion point"); 354 } 355 356 MachineInstrBuilder MI; 357 if (UseLEA) { 358 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 359 TII.get(getLEArOpcode(Uses64BitFramePtr)), 360 StackPtr), 361 StackPtr, false, Offset); 362 } else { 363 bool IsSub = Offset < 0; 364 uint64_t AbsOffset = IsSub ? -Offset : Offset; 365 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 366 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 367 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 368 .addReg(StackPtr) 369 .addImm(AbsOffset); 370 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 371 } 372 return MI; 373 } 374 375 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 376 MachineBasicBlock::iterator &MBBI, 377 bool doMergeWithPrevious) const { 378 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 379 (!doMergeWithPrevious && MBBI == MBB.end())) 380 return 0; 381 382 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 383 384 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 385 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 386 // instruction, and that there are no DBG_VALUE or other instructions between 387 // ADD/SUB/LEA and its corresponding CFI instruction. 388 /* TODO: Add support for the case where there are multiple CFI instructions 389 below the ADD/SUB/LEA, e.g.: 390 ... 391 add 392 cfi_def_cfa_offset 393 cfi_offset 394 ... 395 */ 396 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 397 PI = std::prev(PI); 398 399 unsigned Opc = PI->getOpcode(); 400 int Offset = 0; 401 402 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 403 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 404 PI->getOperand(0).getReg() == StackPtr){ 405 assert(PI->getOperand(1).getReg() == StackPtr); 406 Offset = PI->getOperand(2).getImm(); 407 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 408 PI->getOperand(0).getReg() == StackPtr && 409 PI->getOperand(1).getReg() == StackPtr && 410 PI->getOperand(2).getImm() == 1 && 411 PI->getOperand(3).getReg() == X86::NoRegister && 412 PI->getOperand(5).getReg() == X86::NoRegister) { 413 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 414 Offset = PI->getOperand(4).getImm(); 415 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 416 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 417 PI->getOperand(0).getReg() == StackPtr) { 418 assert(PI->getOperand(1).getReg() == StackPtr); 419 Offset = -PI->getOperand(2).getImm(); 420 } else 421 return 0; 422 423 PI = MBB.erase(PI); 424 if (PI != MBB.end() && PI->isCFIInstruction()) { 425 auto CIs = MBB.getParent()->getFrameInstructions(); 426 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 427 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 428 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 429 PI = MBB.erase(PI); 430 } 431 if (!doMergeWithPrevious) 432 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 433 434 return Offset; 435 } 436 437 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 438 MachineBasicBlock::iterator MBBI, 439 const DebugLoc &DL, 440 const MCCFIInstruction &CFIInst, 441 MachineInstr::MIFlag Flag) const { 442 MachineFunction &MF = *MBB.getParent(); 443 unsigned CFIIndex = MF.addFrameInst(CFIInst); 444 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 445 .addCFIIndex(CFIIndex) 446 .setMIFlag(Flag); 447 } 448 449 /// Emits Dwarf Info specifying offsets of callee saved registers and 450 /// frame pointer. This is called only when basic block sections are enabled. 451 void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA( 452 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 453 MachineFunction &MF = *MBB.getParent(); 454 if (!hasFP(MF)) { 455 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 456 return; 457 } 458 const MachineModuleInfo &MMI = MF.getMMI(); 459 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 460 const Register FramePtr = TRI->getFrameRegister(MF); 461 const Register MachineFramePtr = 462 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 463 : FramePtr; 464 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 465 // Offset = space for return address + size of the frame pointer itself. 466 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 467 BuildCFI(MBB, MBBI, DebugLoc{}, 468 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 469 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 470 } 471 472 void X86FrameLowering::emitCalleeSavedFrameMoves( 473 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 474 const DebugLoc &DL, bool IsPrologue) const { 475 MachineFunction &MF = *MBB.getParent(); 476 MachineFrameInfo &MFI = MF.getFrameInfo(); 477 MachineModuleInfo &MMI = MF.getMMI(); 478 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 479 480 // Add callee saved registers to move list. 481 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 482 483 // Calculate offsets. 484 for (const CalleeSavedInfo &I : CSI) { 485 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 486 Register Reg = I.getReg(); 487 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 488 489 if (IsPrologue) { 490 BuildCFI(MBB, MBBI, DL, 491 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 492 } else { 493 BuildCFI(MBB, MBBI, DL, 494 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 495 } 496 } 497 } 498 499 void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, 500 MachineBasicBlock &MBB) const { 501 const MachineFunction &MF = *MBB.getParent(); 502 503 // Insertion point. 504 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 505 506 // Fake a debug loc. 507 DebugLoc DL; 508 if (MBBI != MBB.end()) 509 DL = MBBI->getDebugLoc(); 510 511 // Zero out FP stack if referenced. Do this outside of the loop below so that 512 // it's done only once. 513 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); 514 for (MCRegister Reg : RegsToZero.set_bits()) { 515 if (!X86::RFP80RegClass.contains(Reg)) 516 continue; 517 518 unsigned NumFPRegs = ST.is64Bit() ? 8 : 7; 519 for (unsigned i = 0; i != NumFPRegs; ++i) 520 BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0)); 521 522 for (unsigned i = 0; i != NumFPRegs; ++i) 523 BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0); 524 break; 525 } 526 527 // For GPRs, we only care to clear out the 32-bit register. 528 BitVector GPRsToZero(TRI->getNumRegs()); 529 for (MCRegister Reg : RegsToZero.set_bits()) 530 if (TRI->isGeneralPurposeRegister(MF, Reg)) { 531 GPRsToZero.set(getX86SubSuperRegisterOrZero(Reg, 32)); 532 RegsToZero.reset(Reg); 533 } 534 535 for (MCRegister Reg : GPRsToZero.set_bits()) 536 BuildMI(MBB, MBBI, DL, TII.get(X86::XOR32rr), Reg) 537 .addReg(Reg, RegState::Undef) 538 .addReg(Reg, RegState::Undef); 539 540 // Zero out registers. 541 for (MCRegister Reg : RegsToZero.set_bits()) { 542 if (ST.hasMMX() && X86::VR64RegClass.contains(Reg)) 543 // FIXME: Ignore MMX registers? 544 continue; 545 546 unsigned XorOp; 547 if (X86::VR128RegClass.contains(Reg)) { 548 // XMM# 549 if (!ST.hasSSE1()) 550 continue; 551 XorOp = X86::PXORrr; 552 } else if (X86::VR256RegClass.contains(Reg)) { 553 // YMM# 554 if (!ST.hasAVX()) 555 continue; 556 XorOp = X86::VPXORrr; 557 } else if (X86::VR512RegClass.contains(Reg)) { 558 // ZMM# 559 if (!ST.hasAVX512()) 560 continue; 561 XorOp = X86::VPXORYrr; 562 } else if (X86::VK1RegClass.contains(Reg) || 563 X86::VK2RegClass.contains(Reg) || 564 X86::VK4RegClass.contains(Reg) || 565 X86::VK8RegClass.contains(Reg) || 566 X86::VK16RegClass.contains(Reg)) { 567 if (!ST.hasVLX()) 568 continue; 569 XorOp = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr; 570 } else { 571 continue; 572 } 573 574 BuildMI(MBB, MBBI, DL, TII.get(XorOp), Reg) 575 .addReg(Reg, RegState::Undef) 576 .addReg(Reg, RegState::Undef); 577 } 578 } 579 580 void X86FrameLowering::emitStackProbe( 581 MachineFunction &MF, MachineBasicBlock &MBB, 582 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 583 Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 584 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 585 if (STI.isTargetWindowsCoreCLR()) { 586 if (InProlog) { 587 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 588 .addImm(0 /* no explicit stack size */); 589 } else { 590 emitStackProbeInline(MF, MBB, MBBI, DL, false); 591 } 592 } else { 593 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum); 594 } 595 } 596 597 bool X86FrameLowering::stackProbeFunctionModifiesSP() const { 598 return STI.isOSWindows() && !STI.isTargetWin64(); 599 } 600 601 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 602 MachineBasicBlock &PrologMBB) const { 603 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 604 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 605 }); 606 if (Where != PrologMBB.end()) { 607 DebugLoc DL = PrologMBB.findDebugLoc(Where); 608 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 609 Where->eraseFromParent(); 610 } 611 } 612 613 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 614 MachineBasicBlock &MBB, 615 MachineBasicBlock::iterator MBBI, 616 const DebugLoc &DL, 617 bool InProlog) const { 618 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 619 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 620 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 621 else 622 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 623 } 624 625 void X86FrameLowering::emitStackProbeInlineGeneric( 626 MachineFunction &MF, MachineBasicBlock &MBB, 627 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 628 MachineInstr &AllocWithProbe = *MBBI; 629 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 630 631 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 632 const X86TargetLowering &TLI = *STI.getTargetLowering(); 633 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 634 "different expansion expected for CoreCLR 64 bit"); 635 636 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 637 uint64_t ProbeChunk = StackProbeSize * 8; 638 639 uint64_t MaxAlign = 640 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 641 642 // Synthesize a loop or unroll it, depending on the number of iterations. 643 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 644 // between the unaligned rsp and current rsp. 645 if (Offset > ProbeChunk) { 646 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 647 MaxAlign % StackProbeSize); 648 } else { 649 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 650 MaxAlign % StackProbeSize); 651 } 652 } 653 654 void X86FrameLowering::emitStackProbeInlineGenericBlock( 655 MachineFunction &MF, MachineBasicBlock &MBB, 656 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 657 uint64_t AlignOffset) const { 658 659 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 660 const bool HasFP = hasFP(MF); 661 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 662 const X86TargetLowering &TLI = *STI.getTargetLowering(); 663 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 664 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 665 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 666 667 uint64_t CurrentOffset = 0; 668 669 assert(AlignOffset < StackProbeSize); 670 671 // If the offset is so small it fits within a page, there's nothing to do. 672 if (StackProbeSize < Offset + AlignOffset) { 673 674 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 675 .addReg(StackPtr) 676 .addImm(StackProbeSize - AlignOffset) 677 .setMIFlag(MachineInstr::FrameSetup); 678 if (!HasFP && NeedsDwarfCFI) { 679 BuildCFI(MBB, MBBI, DL, 680 MCCFIInstruction::createAdjustCfaOffset( 681 nullptr, StackProbeSize - AlignOffset)); 682 } 683 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 684 685 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 686 .setMIFlag(MachineInstr::FrameSetup), 687 StackPtr, false, 0) 688 .addImm(0) 689 .setMIFlag(MachineInstr::FrameSetup); 690 NumFrameExtraProbe++; 691 CurrentOffset = StackProbeSize - AlignOffset; 692 } 693 694 // For the next N - 1 pages, just probe. I tried to take advantage of 695 // natural probes but it implies much more logic and there was very few 696 // interesting natural probes to interleave. 697 while (CurrentOffset + StackProbeSize < Offset) { 698 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 699 .addReg(StackPtr) 700 .addImm(StackProbeSize) 701 .setMIFlag(MachineInstr::FrameSetup); 702 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 703 704 if (!HasFP && NeedsDwarfCFI) { 705 BuildCFI( 706 MBB, MBBI, DL, 707 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 708 } 709 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 710 .setMIFlag(MachineInstr::FrameSetup), 711 StackPtr, false, 0) 712 .addImm(0) 713 .setMIFlag(MachineInstr::FrameSetup); 714 NumFrameExtraProbe++; 715 CurrentOffset += StackProbeSize; 716 } 717 718 // No need to probe the tail, it is smaller than a Page. 719 uint64_t ChunkSize = Offset - CurrentOffset; 720 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 721 .addReg(StackPtr) 722 .addImm(ChunkSize) 723 .setMIFlag(MachineInstr::FrameSetup); 724 // No need to adjust Dwarf CFA offset here, the last position of the stack has 725 // been defined 726 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 727 } 728 729 void X86FrameLowering::emitStackProbeInlineGenericLoop( 730 MachineFunction &MF, MachineBasicBlock &MBB, 731 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 732 uint64_t AlignOffset) const { 733 assert(Offset && "null offset"); 734 735 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 736 const bool HasFP = hasFP(MF); 737 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 738 const X86TargetLowering &TLI = *STI.getTargetLowering(); 739 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 740 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 741 742 if (AlignOffset) { 743 if (AlignOffset < StackProbeSize) { 744 // Perform a first smaller allocation followed by a probe. 745 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset); 746 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr) 747 .addReg(StackPtr) 748 .addImm(AlignOffset) 749 .setMIFlag(MachineInstr::FrameSetup); 750 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 751 752 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 753 .setMIFlag(MachineInstr::FrameSetup), 754 StackPtr, false, 0) 755 .addImm(0) 756 .setMIFlag(MachineInstr::FrameSetup); 757 NumFrameExtraProbe++; 758 Offset -= AlignOffset; 759 } 760 } 761 762 // Synthesize a loop 763 NumFrameLoopProbe++; 764 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 765 766 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 767 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 768 769 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 770 MF.insert(MBBIter, testMBB); 771 MF.insert(MBBIter, tailMBB); 772 773 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 774 : Is64Bit ? X86::R11D 775 : X86::EAX; 776 777 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 778 .addReg(StackPtr) 779 .setMIFlag(MachineInstr::FrameSetup); 780 781 // save loop bound 782 { 783 const unsigned BoundOffset = alignDown(Offset, StackProbeSize); 784 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, BoundOffset); 785 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 786 .addReg(FinalStackProbed) 787 .addImm(BoundOffset) 788 .setMIFlag(MachineInstr::FrameSetup); 789 790 // while in the loop, use loop-invariant reg for CFI, 791 // instead of the stack pointer, which changes during the loop 792 if (!HasFP && NeedsDwarfCFI) { 793 // x32 uses the same DWARF register numbers as x86-64, 794 // so there isn't a register number for r11d, we must use r11 instead 795 const Register DwarfFinalStackProbed = 796 STI.isTarget64BitILP32() 797 ? Register(getX86SubSuperRegister(FinalStackProbed, 64)) 798 : FinalStackProbed; 799 800 BuildCFI(MBB, MBBI, DL, 801 MCCFIInstruction::createDefCfaRegister( 802 nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true))); 803 BuildCFI(MBB, MBBI, DL, 804 MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset)); 805 } 806 } 807 808 // allocate a page 809 { 810 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 811 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr) 812 .addReg(StackPtr) 813 .addImm(StackProbeSize) 814 .setMIFlag(MachineInstr::FrameSetup); 815 } 816 817 // touch the page 818 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 819 .setMIFlag(MachineInstr::FrameSetup), 820 StackPtr, false, 0) 821 .addImm(0) 822 .setMIFlag(MachineInstr::FrameSetup); 823 824 // cmp with stack pointer bound 825 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 826 .addReg(StackPtr) 827 .addReg(FinalStackProbed) 828 .setMIFlag(MachineInstr::FrameSetup); 829 830 // jump 831 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 832 .addMBB(testMBB) 833 .addImm(X86::COND_NE) 834 .setMIFlag(MachineInstr::FrameSetup); 835 testMBB->addSuccessor(testMBB); 836 testMBB->addSuccessor(tailMBB); 837 838 // BB management 839 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 840 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 841 MBB.addSuccessor(testMBB); 842 843 // handle tail 844 const unsigned TailOffset = Offset % StackProbeSize; 845 MachineBasicBlock::iterator TailMBBIter = tailMBB->begin(); 846 if (TailOffset) { 847 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); 848 BuildMI(*tailMBB, TailMBBIter, DL, TII.get(Opc), StackPtr) 849 .addReg(StackPtr) 850 .addImm(TailOffset) 851 .setMIFlag(MachineInstr::FrameSetup); 852 } 853 854 // after the loop, switch back to stack pointer for CFI 855 if (!HasFP && NeedsDwarfCFI) { 856 // x32 uses the same DWARF register numbers as x86-64, 857 // so there isn't a register number for esp, we must use rsp instead 858 const Register DwarfStackPtr = 859 STI.isTarget64BitILP32() 860 ? Register(getX86SubSuperRegister(StackPtr, 64)) 861 : Register(StackPtr); 862 863 BuildCFI(*tailMBB, TailMBBIter, DL, 864 MCCFIInstruction::createDefCfaRegister( 865 nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true))); 866 } 867 868 // Update Live In information 869 recomputeLiveIns(*testMBB); 870 recomputeLiveIns(*tailMBB); 871 } 872 873 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 874 MachineFunction &MF, MachineBasicBlock &MBB, 875 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 876 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 877 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 878 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 879 const TargetInstrInfo &TII = *STI.getInstrInfo(); 880 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 881 882 // RAX contains the number of bytes of desired stack adjustment. 883 // The handling here assumes this value has already been updated so as to 884 // maintain stack alignment. 885 // 886 // We need to exit with RSP modified by this amount and execute suitable 887 // page touches to notify the OS that we're growing the stack responsibly. 888 // All stack probing must be done without modifying RSP. 889 // 890 // MBB: 891 // SizeReg = RAX; 892 // ZeroReg = 0 893 // CopyReg = RSP 894 // Flags, TestReg = CopyReg - SizeReg 895 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 896 // LimitReg = gs magic thread env access 897 // if FinalReg >= LimitReg goto ContinueMBB 898 // RoundBB: 899 // RoundReg = page address of FinalReg 900 // LoopMBB: 901 // LoopReg = PHI(LimitReg,ProbeReg) 902 // ProbeReg = LoopReg - PageSize 903 // [ProbeReg] = 0 904 // if (ProbeReg > RoundReg) goto LoopMBB 905 // ContinueMBB: 906 // RSP = RSP - RAX 907 // [rest of original MBB] 908 909 // Set up the new basic blocks 910 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 911 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 912 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 913 914 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 915 MF.insert(MBBIter, RoundMBB); 916 MF.insert(MBBIter, LoopMBB); 917 MF.insert(MBBIter, ContinueMBB); 918 919 // Split MBB and move the tail portion down to ContinueMBB. 920 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 921 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 922 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 923 924 // Some useful constants 925 const int64_t ThreadEnvironmentStackLimit = 0x10; 926 const int64_t PageSize = 0x1000; 927 const int64_t PageMask = ~(PageSize - 1); 928 929 // Registers we need. For the normal case we use virtual 930 // registers. For the prolog expansion we use RAX, RCX and RDX. 931 MachineRegisterInfo &MRI = MF.getRegInfo(); 932 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 933 const Register SizeReg = InProlog ? X86::RAX 934 : MRI.createVirtualRegister(RegClass), 935 ZeroReg = InProlog ? X86::RCX 936 : MRI.createVirtualRegister(RegClass), 937 CopyReg = InProlog ? X86::RDX 938 : MRI.createVirtualRegister(RegClass), 939 TestReg = InProlog ? X86::RDX 940 : MRI.createVirtualRegister(RegClass), 941 FinalReg = InProlog ? X86::RDX 942 : MRI.createVirtualRegister(RegClass), 943 RoundedReg = InProlog ? X86::RDX 944 : MRI.createVirtualRegister(RegClass), 945 LimitReg = InProlog ? X86::RCX 946 : MRI.createVirtualRegister(RegClass), 947 JoinReg = InProlog ? X86::RCX 948 : MRI.createVirtualRegister(RegClass), 949 ProbeReg = InProlog ? X86::RCX 950 : MRI.createVirtualRegister(RegClass); 951 952 // SP-relative offsets where we can save RCX and RDX. 953 int64_t RCXShadowSlot = 0; 954 int64_t RDXShadowSlot = 0; 955 956 // If inlining in the prolog, save RCX and RDX. 957 if (InProlog) { 958 // Compute the offsets. We need to account for things already 959 // pushed onto the stack at this point: return address, frame 960 // pointer (if used), and callee saves. 961 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 962 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 963 const bool HasFP = hasFP(MF); 964 965 // Check if we need to spill RCX and/or RDX. 966 // Here we assume that no earlier prologue instruction changes RCX and/or 967 // RDX, so checking the block live-ins is enough. 968 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 969 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 970 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 971 // Assign the initial slot to both registers, then change RDX's slot if both 972 // need to be spilled. 973 if (IsRCXLiveIn) 974 RCXShadowSlot = InitSlot; 975 if (IsRDXLiveIn) 976 RDXShadowSlot = InitSlot; 977 if (IsRDXLiveIn && IsRCXLiveIn) 978 RDXShadowSlot += 8; 979 // Emit the saves if needed. 980 if (IsRCXLiveIn) 981 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 982 RCXShadowSlot) 983 .addReg(X86::RCX); 984 if (IsRDXLiveIn) 985 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 986 RDXShadowSlot) 987 .addReg(X86::RDX); 988 } else { 989 // Not in the prolog. Copy RAX to a virtual reg. 990 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 991 } 992 993 // Add code to MBB to check for overflow and set the new target stack pointer 994 // to zero if so. 995 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 996 .addReg(ZeroReg, RegState::Undef) 997 .addReg(ZeroReg, RegState::Undef); 998 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 999 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 1000 .addReg(CopyReg) 1001 .addReg(SizeReg); 1002 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 1003 .addReg(TestReg) 1004 .addReg(ZeroReg) 1005 .addImm(X86::COND_B); 1006 1007 // FinalReg now holds final stack pointer value, or zero if 1008 // allocation would overflow. Compare against the current stack 1009 // limit from the thread environment block. Note this limit is the 1010 // lowest touched page on the stack, not the point at which the OS 1011 // will cause an overflow exception, so this is just an optimization 1012 // to avoid unnecessarily touching pages that are below the current 1013 // SP but already committed to the stack by the OS. 1014 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 1015 .addReg(0) 1016 .addImm(1) 1017 .addReg(0) 1018 .addImm(ThreadEnvironmentStackLimit) 1019 .addReg(X86::GS); 1020 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 1021 // Jump if the desired stack pointer is at or above the stack limit. 1022 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 1023 1024 // Add code to roundMBB to round the final stack pointer to a page boundary. 1025 RoundMBB->addLiveIn(FinalReg); 1026 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 1027 .addReg(FinalReg) 1028 .addImm(PageMask); 1029 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 1030 1031 // LimitReg now holds the current stack limit, RoundedReg page-rounded 1032 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 1033 // and probe until we reach RoundedReg. 1034 if (!InProlog) { 1035 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 1036 .addReg(LimitReg) 1037 .addMBB(RoundMBB) 1038 .addReg(ProbeReg) 1039 .addMBB(LoopMBB); 1040 } 1041 1042 LoopMBB->addLiveIn(JoinReg); 1043 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 1044 false, -PageSize); 1045 1046 // Probe by storing a byte onto the stack. 1047 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 1048 .addReg(ProbeReg) 1049 .addImm(1) 1050 .addReg(0) 1051 .addImm(0) 1052 .addReg(0) 1053 .addImm(0); 1054 1055 LoopMBB->addLiveIn(RoundedReg); 1056 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 1057 .addReg(RoundedReg) 1058 .addReg(ProbeReg); 1059 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 1060 1061 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 1062 1063 // If in prolog, restore RDX and RCX. 1064 if (InProlog) { 1065 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 1066 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1067 TII.get(X86::MOV64rm), X86::RCX), 1068 X86::RSP, false, RCXShadowSlot); 1069 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 1070 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1071 TII.get(X86::MOV64rm), X86::RDX), 1072 X86::RSP, false, RDXShadowSlot); 1073 } 1074 1075 // Now that the probing is done, add code to continueMBB to update 1076 // the stack pointer for real. 1077 ContinueMBB->addLiveIn(SizeReg); 1078 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 1079 .addReg(X86::RSP) 1080 .addReg(SizeReg); 1081 1082 // Add the control flow edges we need. 1083 MBB.addSuccessor(ContinueMBB); 1084 MBB.addSuccessor(RoundMBB); 1085 RoundMBB->addSuccessor(LoopMBB); 1086 LoopMBB->addSuccessor(ContinueMBB); 1087 LoopMBB->addSuccessor(LoopMBB); 1088 1089 // Mark all the instructions added to the prolog as frame setup. 1090 if (InProlog) { 1091 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 1092 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 1093 } 1094 for (MachineInstr &MI : *RoundMBB) { 1095 MI.setFlag(MachineInstr::FrameSetup); 1096 } 1097 for (MachineInstr &MI : *LoopMBB) { 1098 MI.setFlag(MachineInstr::FrameSetup); 1099 } 1100 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 1101 CMBBI != ContinueMBBI; ++CMBBI) { 1102 CMBBI->setFlag(MachineInstr::FrameSetup); 1103 } 1104 } 1105 } 1106 1107 void X86FrameLowering::emitStackProbeCall( 1108 MachineFunction &MF, MachineBasicBlock &MBB, 1109 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 1110 Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 1111 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 1112 1113 // FIXME: Add indirect thunk support and remove this. 1114 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 1115 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 1116 "code model and indirect thunks not yet implemented."); 1117 1118 unsigned CallOp; 1119 if (Is64Bit) 1120 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 1121 else 1122 CallOp = X86::CALLpcrel32; 1123 1124 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 1125 1126 MachineInstrBuilder CI; 1127 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 1128 1129 // All current stack probes take AX and SP as input, clobber flags, and 1130 // preserve all registers. x86_64 probes leave RSP unmodified. 1131 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1132 // For the large code model, we have to call through a register. Use R11, 1133 // as it is scratch in all supported calling conventions. 1134 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1135 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1136 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1137 } else { 1138 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1139 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1140 } 1141 1142 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1143 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1144 CI.addReg(AX, RegState::Implicit) 1145 .addReg(SP, RegState::Implicit) 1146 .addReg(AX, RegState::Define | RegState::Implicit) 1147 .addReg(SP, RegState::Define | RegState::Implicit) 1148 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1149 1150 MachineInstr *ModInst = CI; 1151 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1152 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1153 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1154 // themselves. They also does not clobber %rax so we can reuse it when 1155 // adjusting %rsp. 1156 // All other platforms do not specify a particular ABI for the stack probe 1157 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1158 ModInst = 1159 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1160 .addReg(SP) 1161 .addReg(AX); 1162 } 1163 1164 // DebugInfo variable locations -- if there's an instruction number for the 1165 // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that 1166 // modifies SP. 1167 if (InstrNum) { 1168 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1169 // Label destination operand of the subtract. 1170 MF.makeDebugValueSubstitution(*InstrNum, 1171 {ModInst->getDebugInstrNum(), 0}); 1172 } else { 1173 // Label the call. The operand number is the penultimate operand, zero 1174 // based. 1175 unsigned SPDefOperand = ModInst->getNumOperands() - 2; 1176 MF.makeDebugValueSubstitution( 1177 *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand}); 1178 } 1179 } 1180 1181 if (InProlog) { 1182 // Apply the frame setup flag to all inserted instrs. 1183 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1184 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1185 } 1186 } 1187 1188 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1189 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1190 // and might require smaller successive adjustments. 1191 const uint64_t Win64MaxSEHOffset = 128; 1192 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1193 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1194 return SEHFrameOffset & -16; 1195 } 1196 1197 // If we're forcing a stack realignment we can't rely on just the frame 1198 // info, we need to know the ABI stack alignment as well in case we 1199 // have a call out. Otherwise just make sure we have some alignment - we'll 1200 // go with the minimum SlotSize. 1201 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1202 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1203 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1204 Align StackAlign = getStackAlign(); 1205 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1206 if (MFI.hasCalls()) 1207 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1208 else if (MaxAlign < SlotSize) 1209 MaxAlign = Align(SlotSize); 1210 } 1211 return MaxAlign.value(); 1212 } 1213 1214 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1215 MachineBasicBlock::iterator MBBI, 1216 const DebugLoc &DL, unsigned Reg, 1217 uint64_t MaxAlign) const { 1218 uint64_t Val = -MaxAlign; 1219 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1220 1221 MachineFunction &MF = *MBB.getParent(); 1222 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1223 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1224 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1225 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1226 1227 // We want to make sure that (in worst case) less than StackProbeSize bytes 1228 // are not probed after the AND. This assumption is used in 1229 // emitStackProbeInlineGeneric. 1230 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1231 { 1232 NumFrameLoopProbe++; 1233 MachineBasicBlock *entryMBB = 1234 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1235 MachineBasicBlock *headMBB = 1236 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1237 MachineBasicBlock *bodyMBB = 1238 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1239 MachineBasicBlock *footMBB = 1240 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1241 1242 MachineFunction::iterator MBBIter = MBB.getIterator(); 1243 MF.insert(MBBIter, entryMBB); 1244 MF.insert(MBBIter, headMBB); 1245 MF.insert(MBBIter, bodyMBB); 1246 MF.insert(MBBIter, footMBB); 1247 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1248 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1249 : Is64Bit ? X86::R11D 1250 : X86::EAX; 1251 1252 // Setup entry block 1253 { 1254 1255 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1256 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1257 .addReg(StackPtr) 1258 .setMIFlag(MachineInstr::FrameSetup); 1259 MachineInstr *MI = 1260 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1261 .addReg(FinalStackProbed) 1262 .addImm(Val) 1263 .setMIFlag(MachineInstr::FrameSetup); 1264 1265 // The EFLAGS implicit def is dead. 1266 MI->getOperand(3).setIsDead(); 1267 1268 BuildMI(entryMBB, DL, 1269 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1270 .addReg(FinalStackProbed) 1271 .addReg(StackPtr) 1272 .setMIFlag(MachineInstr::FrameSetup); 1273 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1274 .addMBB(&MBB) 1275 .addImm(X86::COND_E) 1276 .setMIFlag(MachineInstr::FrameSetup); 1277 entryMBB->addSuccessor(headMBB); 1278 entryMBB->addSuccessor(&MBB); 1279 } 1280 1281 // Loop entry block 1282 1283 { 1284 const unsigned SUBOpc = 1285 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1286 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1287 .addReg(StackPtr) 1288 .addImm(StackProbeSize) 1289 .setMIFlag(MachineInstr::FrameSetup); 1290 1291 BuildMI(headMBB, DL, 1292 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1293 .addReg(FinalStackProbed) 1294 .addReg(StackPtr) 1295 .setMIFlag(MachineInstr::FrameSetup); 1296 1297 // jump 1298 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1299 .addMBB(footMBB) 1300 .addImm(X86::COND_B) 1301 .setMIFlag(MachineInstr::FrameSetup); 1302 1303 headMBB->addSuccessor(bodyMBB); 1304 headMBB->addSuccessor(footMBB); 1305 } 1306 1307 // setup loop body 1308 { 1309 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1310 .setMIFlag(MachineInstr::FrameSetup), 1311 StackPtr, false, 0) 1312 .addImm(0) 1313 .setMIFlag(MachineInstr::FrameSetup); 1314 1315 const unsigned SUBOpc = 1316 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1317 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1318 .addReg(StackPtr) 1319 .addImm(StackProbeSize) 1320 .setMIFlag(MachineInstr::FrameSetup); 1321 1322 // cmp with stack pointer bound 1323 BuildMI(bodyMBB, DL, 1324 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1325 .addReg(FinalStackProbed) 1326 .addReg(StackPtr) 1327 .setMIFlag(MachineInstr::FrameSetup); 1328 1329 // jump 1330 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1331 .addMBB(bodyMBB) 1332 .addImm(X86::COND_B) 1333 .setMIFlag(MachineInstr::FrameSetup); 1334 bodyMBB->addSuccessor(bodyMBB); 1335 bodyMBB->addSuccessor(footMBB); 1336 } 1337 1338 // setup loop footer 1339 { 1340 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1341 .addReg(FinalStackProbed) 1342 .setMIFlag(MachineInstr::FrameSetup); 1343 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1344 .setMIFlag(MachineInstr::FrameSetup), 1345 StackPtr, false, 0) 1346 .addImm(0) 1347 .setMIFlag(MachineInstr::FrameSetup); 1348 footMBB->addSuccessor(&MBB); 1349 } 1350 1351 recomputeLiveIns(*headMBB); 1352 recomputeLiveIns(*bodyMBB); 1353 recomputeLiveIns(*footMBB); 1354 recomputeLiveIns(MBB); 1355 } 1356 } else { 1357 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1358 .addReg(Reg) 1359 .addImm(Val) 1360 .setMIFlag(MachineInstr::FrameSetup); 1361 1362 // The EFLAGS implicit def is dead. 1363 MI->getOperand(3).setIsDead(); 1364 } 1365 } 1366 1367 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1368 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1369 // clobbered by any interrupt handler. 1370 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1371 "MF used frame lowering for wrong subtarget"); 1372 const Function &Fn = MF.getFunction(); 1373 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1374 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1375 } 1376 1377 /// Return true if we need to use the restricted Windows x64 prologue and 1378 /// epilogue code patterns that can be described with WinCFI (.seh_* 1379 /// directives). 1380 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1381 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1382 } 1383 1384 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1385 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1386 } 1387 1388 /// emitPrologue - Push callee-saved registers onto the stack, which 1389 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1390 /// space for local variables. Also emit labels used by the exception handler to 1391 /// generate the exception handling frames. 1392 1393 /* 1394 Here's a gist of what gets emitted: 1395 1396 ; Establish frame pointer, if needed 1397 [if needs FP] 1398 push %rbp 1399 .cfi_def_cfa_offset 16 1400 .cfi_offset %rbp, -16 1401 .seh_pushreg %rpb 1402 mov %rsp, %rbp 1403 .cfi_def_cfa_register %rbp 1404 1405 ; Spill general-purpose registers 1406 [for all callee-saved GPRs] 1407 pushq %<reg> 1408 [if not needs FP] 1409 .cfi_def_cfa_offset (offset from RETADDR) 1410 .seh_pushreg %<reg> 1411 1412 ; If the required stack alignment > default stack alignment 1413 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1414 ; of unknown size in the stack frame. 1415 [if stack needs re-alignment] 1416 and $MASK, %rsp 1417 1418 ; Allocate space for locals 1419 [if target is Windows and allocated space > 4096 bytes] 1420 ; Windows needs special care for allocations larger 1421 ; than one page. 1422 mov $NNN, %rax 1423 call ___chkstk_ms/___chkstk 1424 sub %rax, %rsp 1425 [else] 1426 sub $NNN, %rsp 1427 1428 [if needs FP] 1429 .seh_stackalloc (size of XMM spill slots) 1430 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1431 [else] 1432 .seh_stackalloc NNN 1433 1434 ; Spill XMMs 1435 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1436 ; they may get spilled on any platform, if the current function 1437 ; calls @llvm.eh.unwind.init 1438 [if needs FP] 1439 [for all callee-saved XMM registers] 1440 movaps %<xmm reg>, -MMM(%rbp) 1441 [for all callee-saved XMM registers] 1442 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1443 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1444 [else] 1445 [for all callee-saved XMM registers] 1446 movaps %<xmm reg>, KKK(%rsp) 1447 [for all callee-saved XMM registers] 1448 .seh_savexmm %<xmm reg>, KKK 1449 1450 .seh_endprologue 1451 1452 [if needs base pointer] 1453 mov %rsp, %rbx 1454 [if needs to restore base pointer] 1455 mov %rsp, -MMM(%rbp) 1456 1457 ; Emit CFI info 1458 [if needs FP] 1459 [for all callee-saved registers] 1460 .cfi_offset %<reg>, (offset from %rbp) 1461 [else] 1462 .cfi_def_cfa_offset (offset from RETADDR) 1463 [for all callee-saved registers] 1464 .cfi_offset %<reg>, (offset from %rsp) 1465 1466 Notes: 1467 - .seh directives are emitted only for Windows 64 ABI 1468 - .cv_fpo directives are emitted on win32 when emitting CodeView 1469 - .cfi directives are emitted for all other ABIs 1470 - for 32-bit code, substitute %e?? registers for %r?? 1471 */ 1472 1473 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1474 MachineBasicBlock &MBB) const { 1475 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1476 "MF used frame lowering for wrong subtarget"); 1477 MachineBasicBlock::iterator MBBI = MBB.begin(); 1478 MachineFrameInfo &MFI = MF.getFrameInfo(); 1479 const Function &Fn = MF.getFunction(); 1480 MachineModuleInfo &MMI = MF.getMMI(); 1481 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1482 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1483 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1484 bool IsFunclet = MBB.isEHFuncletEntry(); 1485 EHPersonality Personality = EHPersonality::Unknown; 1486 if (Fn.hasPersonalityFn()) 1487 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1488 bool FnHasClrFunclet = 1489 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1490 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1491 bool HasFP = hasFP(MF); 1492 bool IsWin64Prologue = isWin64Prologue(MF); 1493 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1494 // FIXME: Emit FPO data for EH funclets. 1495 bool NeedsWinFPO = 1496 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1497 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1498 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1499 Register FramePtr = TRI->getFrameRegister(MF); 1500 const Register MachineFramePtr = 1501 STI.isTarget64BitILP32() 1502 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1503 Register BasePtr = TRI->getBaseRegister(); 1504 bool HasWinCFI = false; 1505 1506 // Debug location must be unknown since the first debug location is used 1507 // to determine the end of the prologue. 1508 DebugLoc DL; 1509 1510 // Space reserved for stack-based arguments when making a (ABI-guaranteed) 1511 // tail call. 1512 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 1513 if (TailCallArgReserveSize && IsWin64Prologue) 1514 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1515 1516 const bool EmitStackProbeCall = 1517 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1518 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1519 1520 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1521 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1522 case SwiftAsyncFramePointerMode::DeploymentBased: 1523 if (STI.swiftAsyncContextIsDynamicallySet()) { 1524 // The special symbol below is absolute and has a *value* suitable to be 1525 // combined with the frame pointer directly. 1526 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) 1527 .addUse(MachineFramePtr) 1528 .addUse(X86::RIP) 1529 .addImm(1) 1530 .addUse(X86::NoRegister) 1531 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1532 X86II::MO_GOTPCREL) 1533 .addUse(X86::NoRegister); 1534 break; 1535 } 1536 LLVM_FALLTHROUGH; 1537 1538 case SwiftAsyncFramePointerMode::Always: 1539 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) 1540 .addUse(MachineFramePtr) 1541 .addImm(60) 1542 .setMIFlag(MachineInstr::FrameSetup); 1543 break; 1544 1545 case SwiftAsyncFramePointerMode::Never: 1546 break; 1547 } 1548 } 1549 1550 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1551 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1552 // stack alignment. 1553 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1554 Fn.arg_size() == 2) { 1555 StackSize += 8; 1556 MFI.setStackSize(StackSize); 1557 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1558 } 1559 1560 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1561 // function, and use up to 128 bytes of stack space, don't have a frame 1562 // pointer, calls, or dynamic alloca then we do not need to adjust the 1563 // stack pointer (we fit in the Red Zone). We also check that we don't 1564 // push and pop from the stack. 1565 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1566 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1567 !MFI.adjustsStack() && // No calls. 1568 !EmitStackProbeCall && // No stack probes. 1569 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1570 !MF.shouldSplitStack()) { // Regular stack 1571 uint64_t MinSize = 1572 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); 1573 if (HasFP) MinSize += SlotSize; 1574 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1575 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1576 MFI.setStackSize(StackSize); 1577 } 1578 1579 // Insert stack pointer adjustment for later moving of return addr. Only 1580 // applies to tail call optimized functions where the callee argument stack 1581 // size is bigger than the callers. 1582 if (TailCallArgReserveSize != 0) { 1583 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, 1584 /*InEpilogue=*/false) 1585 .setMIFlag(MachineInstr::FrameSetup); 1586 } 1587 1588 // Mapping for machine moves: 1589 // 1590 // DST: VirtualFP AND 1591 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1592 // ELSE => DW_CFA_def_cfa 1593 // 1594 // SRC: VirtualFP AND 1595 // DST: Register => DW_CFA_def_cfa_register 1596 // 1597 // ELSE 1598 // OFFSET < 0 => DW_CFA_offset_extended_sf 1599 // REG < 64 => DW_CFA_offset + Reg 1600 // ELSE => DW_CFA_offset_extended 1601 1602 uint64_t NumBytes = 0; 1603 int stackGrowth = -SlotSize; 1604 1605 // Find the funclet establisher parameter 1606 Register Establisher = X86::NoRegister; 1607 if (IsClrFunclet) 1608 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1609 else if (IsFunclet) 1610 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1611 1612 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1613 // Immediately spill establisher into the home slot. 1614 // The runtime cares about this. 1615 // MOV64mr %rdx, 16(%rsp) 1616 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1617 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1618 .addReg(Establisher) 1619 .setMIFlag(MachineInstr::FrameSetup); 1620 MBB.addLiveIn(Establisher); 1621 } 1622 1623 if (HasFP) { 1624 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1625 1626 // Calculate required stack adjustment. 1627 uint64_t FrameSize = StackSize - SlotSize; 1628 // If required, include space for extra hidden slot for stashing base pointer. 1629 if (X86FI->getRestoreBasePointer()) 1630 FrameSize += SlotSize; 1631 1632 NumBytes = FrameSize - 1633 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1634 1635 // Callee-saved registers are pushed on stack before the stack is realigned. 1636 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1637 NumBytes = alignTo(NumBytes, MaxAlign); 1638 1639 // Save EBP/RBP into the appropriate stack slot. 1640 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1641 .addReg(MachineFramePtr, RegState::Kill) 1642 .setMIFlag(MachineInstr::FrameSetup); 1643 1644 if (NeedsDwarfCFI) { 1645 // Mark the place where EBP/RBP was saved. 1646 // Define the current CFA rule to use the provided offset. 1647 assert(StackSize); 1648 BuildCFI(MBB, MBBI, DL, 1649 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth), 1650 MachineInstr::FrameSetup); 1651 1652 // Change the rule for the FramePtr to be an "offset" rule. 1653 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1654 BuildCFI(MBB, MBBI, DL, 1655 MCCFIInstruction::createOffset(nullptr, DwarfFramePtr, 1656 2 * stackGrowth), 1657 MachineInstr::FrameSetup); 1658 } 1659 1660 if (NeedsWinCFI) { 1661 HasWinCFI = true; 1662 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1663 .addImm(FramePtr) 1664 .setMIFlag(MachineInstr::FrameSetup); 1665 } 1666 1667 if (!IsFunclet) { 1668 if (X86FI->hasSwiftAsyncContext()) { 1669 const auto &Attrs = MF.getFunction().getAttributes(); 1670 1671 // Before we update the live frame pointer we have to ensure there's a 1672 // valid (or null) asynchronous context in its slot just before FP in 1673 // the frame record, so store it now. 1674 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1675 // We have an initial context in r14, store it just before the frame 1676 // pointer. 1677 MBB.addLiveIn(X86::R14); 1678 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1679 .addReg(X86::R14) 1680 .setMIFlag(MachineInstr::FrameSetup); 1681 } else { 1682 // No initial context, store null so that there's no pointer that 1683 // could be misused. 1684 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8)) 1685 .addImm(0) 1686 .setMIFlag(MachineInstr::FrameSetup); 1687 } 1688 1689 if (NeedsWinCFI) { 1690 HasWinCFI = true; 1691 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1692 .addImm(X86::R14) 1693 .setMIFlag(MachineInstr::FrameSetup); 1694 } 1695 1696 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1697 .addUse(X86::RSP) 1698 .addImm(1) 1699 .addUse(X86::NoRegister) 1700 .addImm(8) 1701 .addUse(X86::NoRegister) 1702 .setMIFlag(MachineInstr::FrameSetup); 1703 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP) 1704 .addUse(X86::RSP) 1705 .addImm(8) 1706 .setMIFlag(MachineInstr::FrameSetup); 1707 } 1708 1709 if (!IsWin64Prologue && !IsFunclet) { 1710 // Update EBP with the new base value. 1711 if (!X86FI->hasSwiftAsyncContext()) 1712 BuildMI(MBB, MBBI, DL, 1713 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1714 FramePtr) 1715 .addReg(StackPtr) 1716 .setMIFlag(MachineInstr::FrameSetup); 1717 1718 if (NeedsDwarfCFI) { 1719 // Mark effective beginning of when frame pointer becomes valid. 1720 // Define the current CFA to use the EBP/RBP register. 1721 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1722 BuildCFI( 1723 MBB, MBBI, DL, 1724 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr), 1725 MachineInstr::FrameSetup); 1726 } 1727 1728 if (NeedsWinFPO) { 1729 // .cv_fpo_setframe $FramePtr 1730 HasWinCFI = true; 1731 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1732 .addImm(FramePtr) 1733 .addImm(0) 1734 .setMIFlag(MachineInstr::FrameSetup); 1735 } 1736 } 1737 } 1738 } else { 1739 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1740 NumBytes = StackSize - 1741 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1742 } 1743 1744 // Update the offset adjustment, which is mainly used by codeview to translate 1745 // from ESP to VFRAME relative local variable offsets. 1746 if (!IsFunclet) { 1747 if (HasFP && TRI->hasStackRealignment(MF)) 1748 MFI.setOffsetAdjustment(-NumBytes); 1749 else 1750 MFI.setOffsetAdjustment(-StackSize); 1751 } 1752 1753 // For EH funclets, only allocate enough space for outgoing calls. Save the 1754 // NumBytes value that we would've used for the parent frame. 1755 unsigned ParentFrameNumBytes = NumBytes; 1756 if (IsFunclet) 1757 NumBytes = getWinEHFuncletFrameSize(MF); 1758 1759 // Skip the callee-saved push instructions. 1760 bool PushedRegs = false; 1761 int StackOffset = 2 * stackGrowth; 1762 1763 while (MBBI != MBB.end() && 1764 MBBI->getFlag(MachineInstr::FrameSetup) && 1765 (MBBI->getOpcode() == X86::PUSH32r || 1766 MBBI->getOpcode() == X86::PUSH64r)) { 1767 PushedRegs = true; 1768 Register Reg = MBBI->getOperand(0).getReg(); 1769 ++MBBI; 1770 1771 if (!HasFP && NeedsDwarfCFI) { 1772 // Mark callee-saved push instruction. 1773 // Define the current CFA rule to use the provided offset. 1774 assert(StackSize); 1775 BuildCFI(MBB, MBBI, DL, 1776 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset), 1777 MachineInstr::FrameSetup); 1778 StackOffset += stackGrowth; 1779 } 1780 1781 if (NeedsWinCFI) { 1782 HasWinCFI = true; 1783 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1784 .addImm(Reg) 1785 .setMIFlag(MachineInstr::FrameSetup); 1786 } 1787 } 1788 1789 // Realign stack after we pushed callee-saved registers (so that we'll be 1790 // able to calculate their offsets from the frame pointer). 1791 // Don't do this for Win64, it needs to realign the stack after the prologue. 1792 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) { 1793 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1794 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1795 1796 if (NeedsWinCFI) { 1797 HasWinCFI = true; 1798 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1799 .addImm(MaxAlign) 1800 .setMIFlag(MachineInstr::FrameSetup); 1801 } 1802 } 1803 1804 // If there is an SUB32ri of ESP immediately before this instruction, merge 1805 // the two. This can be the case when tail call elimination is enabled and 1806 // the callee has more arguments then the caller. 1807 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1808 1809 // Adjust stack pointer: ESP -= numbytes. 1810 1811 // Windows and cygwin/mingw require a prologue helper routine when allocating 1812 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1813 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1814 // stack and adjust the stack pointer in one go. The 64-bit version of 1815 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1816 // responsible for adjusting the stack pointer. Touching the stack at 4K 1817 // increments is necessary to ensure that the guard pages used by the OS 1818 // virtual memory manager are allocated in correct sequence. 1819 uint64_t AlignedNumBytes = NumBytes; 1820 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1821 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1822 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1823 assert(!X86FI->getUsesRedZone() && 1824 "The Red Zone is not accounted for in stack probes"); 1825 1826 // Check whether EAX is livein for this block. 1827 bool isEAXAlive = isEAXLiveIn(MBB); 1828 1829 if (isEAXAlive) { 1830 if (Is64Bit) { 1831 // Save RAX 1832 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1833 .addReg(X86::RAX, RegState::Kill) 1834 .setMIFlag(MachineInstr::FrameSetup); 1835 } else { 1836 // Save EAX 1837 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1838 .addReg(X86::EAX, RegState::Kill) 1839 .setMIFlag(MachineInstr::FrameSetup); 1840 } 1841 } 1842 1843 if (Is64Bit) { 1844 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1845 // Function prologue is responsible for adjusting the stack pointer. 1846 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1847 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX) 1848 .addImm(Alloc) 1849 .setMIFlag(MachineInstr::FrameSetup); 1850 } else { 1851 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1852 // We'll also use 4 already allocated bytes for EAX. 1853 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1854 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1855 .setMIFlag(MachineInstr::FrameSetup); 1856 } 1857 1858 // Call __chkstk, __chkstk_ms, or __alloca. 1859 emitStackProbe(MF, MBB, MBBI, DL, true); 1860 1861 if (isEAXAlive) { 1862 // Restore RAX/EAX 1863 MachineInstr *MI; 1864 if (Is64Bit) 1865 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1866 StackPtr, false, NumBytes - 8); 1867 else 1868 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1869 StackPtr, false, NumBytes - 4); 1870 MI->setFlag(MachineInstr::FrameSetup); 1871 MBB.insert(MBBI, MI); 1872 } 1873 } else if (NumBytes) { 1874 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1875 } 1876 1877 if (NeedsWinCFI && NumBytes) { 1878 HasWinCFI = true; 1879 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1880 .addImm(NumBytes) 1881 .setMIFlag(MachineInstr::FrameSetup); 1882 } 1883 1884 int SEHFrameOffset = 0; 1885 unsigned SPOrEstablisher; 1886 if (IsFunclet) { 1887 if (IsClrFunclet) { 1888 // The establisher parameter passed to a CLR funclet is actually a pointer 1889 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1890 // to find the root function establisher frame by loading the PSPSym from 1891 // the intermediate frame. 1892 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1893 MachinePointerInfo NoInfo; 1894 MBB.addLiveIn(Establisher); 1895 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1896 Establisher, false, PSPSlotOffset) 1897 .addMemOperand(MF.getMachineMemOperand( 1898 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1899 ; 1900 // Save the root establisher back into the current funclet's (mostly 1901 // empty) frame, in case a sub-funclet or the GC needs it. 1902 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1903 false, PSPSlotOffset) 1904 .addReg(Establisher) 1905 .addMemOperand(MF.getMachineMemOperand( 1906 NoInfo, 1907 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1908 SlotSize, Align(SlotSize))); 1909 } 1910 SPOrEstablisher = Establisher; 1911 } else { 1912 SPOrEstablisher = StackPtr; 1913 } 1914 1915 if (IsWin64Prologue && HasFP) { 1916 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1917 // this calculation on the incoming establisher, which holds the value of 1918 // RSP from the parent frame at the end of the prologue. 1919 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1920 if (SEHFrameOffset) 1921 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1922 SPOrEstablisher, false, SEHFrameOffset); 1923 else 1924 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1925 .addReg(SPOrEstablisher); 1926 1927 // If this is not a funclet, emit the CFI describing our frame pointer. 1928 if (NeedsWinCFI && !IsFunclet) { 1929 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1930 HasWinCFI = true; 1931 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1932 .addImm(FramePtr) 1933 .addImm(SEHFrameOffset) 1934 .setMIFlag(MachineInstr::FrameSetup); 1935 if (isAsynchronousEHPersonality(Personality)) 1936 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1937 } 1938 } else if (IsFunclet && STI.is32Bit()) { 1939 // Reset EBP / ESI to something good for funclets. 1940 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1941 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1942 // into the registration node so that the runtime will restore it for us. 1943 if (!MBB.isCleanupFuncletEntry()) { 1944 assert(Personality == EHPersonality::MSVC_CXX); 1945 Register FrameReg; 1946 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1947 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 1948 // ESP is the first field, so no extra displacement is needed. 1949 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1950 false, EHRegOffset) 1951 .addReg(X86::ESP); 1952 } 1953 } 1954 1955 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1956 const MachineInstr &FrameInstr = *MBBI; 1957 ++MBBI; 1958 1959 if (NeedsWinCFI) { 1960 int FI; 1961 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1962 if (X86::FR64RegClass.contains(Reg)) { 1963 int Offset; 1964 Register IgnoredFrameReg; 1965 if (IsWin64Prologue && IsFunclet) 1966 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1967 else 1968 Offset = 1969 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 1970 SEHFrameOffset; 1971 1972 HasWinCFI = true; 1973 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1974 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1975 .addImm(Reg) 1976 .addImm(Offset) 1977 .setMIFlag(MachineInstr::FrameSetup); 1978 } 1979 } 1980 } 1981 } 1982 1983 if (NeedsWinCFI && HasWinCFI) 1984 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1985 .setMIFlag(MachineInstr::FrameSetup); 1986 1987 if (FnHasClrFunclet && !IsFunclet) { 1988 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1989 // immediately after the prolog) into the PSPSlot so that funclets 1990 // and the GC can recover it. 1991 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1992 auto PSPInfo = MachinePointerInfo::getFixedStack( 1993 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1994 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1995 PSPSlotOffset) 1996 .addReg(StackPtr) 1997 .addMemOperand(MF.getMachineMemOperand( 1998 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1999 SlotSize, Align(SlotSize))); 2000 } 2001 2002 // Realign stack after we spilled callee-saved registers (so that we'll be 2003 // able to calculate their offsets from the frame pointer). 2004 // Win64 requires aligning the stack after the prologue. 2005 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 2006 assert(HasFP && "There should be a frame pointer if stack is realigned."); 2007 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 2008 } 2009 2010 // We already dealt with stack realignment and funclets above. 2011 if (IsFunclet && STI.is32Bit()) 2012 return; 2013 2014 // If we need a base pointer, set it up here. It's whatever the value 2015 // of the stack pointer is at this point. Any variable size objects 2016 // will be allocated after this, so we can still use the base pointer 2017 // to reference locals. 2018 if (TRI->hasBasePointer(MF)) { 2019 // Update the base pointer with the current stack pointer. 2020 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 2021 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 2022 .addReg(SPOrEstablisher) 2023 .setMIFlag(MachineInstr::FrameSetup); 2024 if (X86FI->getRestoreBasePointer()) { 2025 // Stash value of base pointer. Saving RSP instead of EBP shortens 2026 // dependence chain. Used by SjLj EH. 2027 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2028 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 2029 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 2030 .addReg(SPOrEstablisher) 2031 .setMIFlag(MachineInstr::FrameSetup); 2032 } 2033 2034 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 2035 // Stash the value of the frame pointer relative to the base pointer for 2036 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 2037 // it recovers the frame pointer from the base pointer rather than the 2038 // other way around. 2039 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2040 Register UsedReg; 2041 int Offset = 2042 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 2043 .getFixed(); 2044 assert(UsedReg == BasePtr); 2045 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 2046 .addReg(FramePtr) 2047 .setMIFlag(MachineInstr::FrameSetup); 2048 } 2049 } 2050 2051 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 2052 // Mark end of stack pointer adjustment. 2053 if (!HasFP && NumBytes) { 2054 // Define the current CFA rule to use the provided offset. 2055 assert(StackSize); 2056 BuildCFI( 2057 MBB, MBBI, DL, 2058 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth), 2059 MachineInstr::FrameSetup); 2060 } 2061 2062 // Emit DWARF info specifying the offsets of the callee-saved registers. 2063 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 2064 } 2065 2066 // X86 Interrupt handling function cannot assume anything about the direction 2067 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 2068 // in each prologue of interrupt handler function. 2069 // 2070 // FIXME: Create "cld" instruction only in these cases: 2071 // 1. The interrupt handling function uses any of the "rep" instructions. 2072 // 2. Interrupt handling function calls another function. 2073 // 2074 if (Fn.getCallingConv() == CallingConv::X86_INTR) 2075 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 2076 .setMIFlag(MachineInstr::FrameSetup); 2077 2078 // At this point we know if the function has WinCFI or not. 2079 MF.setHasWinCFI(HasWinCFI); 2080 } 2081 2082 bool X86FrameLowering::canUseLEAForSPInEpilogue( 2083 const MachineFunction &MF) const { 2084 // We can't use LEA instructions for adjusting the stack pointer if we don't 2085 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 2086 // to deallocate the stack. 2087 // This means that we can use LEA for SP in two situations: 2088 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 2089 // 2. We *have* a frame pointer which means we are permitted to use LEA. 2090 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 2091 } 2092 2093 static bool isFuncletReturnInstr(MachineInstr &MI) { 2094 switch (MI.getOpcode()) { 2095 case X86::CATCHRET: 2096 case X86::CLEANUPRET: 2097 return true; 2098 default: 2099 return false; 2100 } 2101 llvm_unreachable("impossible"); 2102 } 2103 2104 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 2105 // stack. It holds a pointer to the bottom of the root function frame. The 2106 // establisher frame pointer passed to a nested funclet may point to the 2107 // (mostly empty) frame of its parent funclet, but it will need to find 2108 // the frame of the root function to access locals. To facilitate this, 2109 // every funclet copies the pointer to the bottom of the root function 2110 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 2111 // same offset for the PSPSym in the root function frame that's used in the 2112 // funclets' frames allows each funclet to dynamically accept any ancestor 2113 // frame as its establisher argument (the runtime doesn't guarantee the 2114 // immediate parent for some reason lost to history), and also allows the GC, 2115 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 2116 // frame with only a single offset reported for the entire method. 2117 unsigned 2118 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 2119 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 2120 Register SPReg; 2121 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 2122 /*IgnoreSPUpdates*/ true) 2123 .getFixed(); 2124 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 2125 return static_cast<unsigned>(Offset); 2126 } 2127 2128 unsigned 2129 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 2130 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2131 // This is the size of the pushed CSRs. 2132 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2133 // This is the size of callee saved XMMs. 2134 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2135 unsigned XMMSize = WinEHXMMSlotInfo.size() * 2136 TRI->getSpillSize(X86::VR128RegClass); 2137 // This is the amount of stack a funclet needs to allocate. 2138 unsigned UsedSize; 2139 EHPersonality Personality = 2140 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 2141 if (Personality == EHPersonality::CoreCLR) { 2142 // CLR funclets need to hold enough space to include the PSPSym, at the 2143 // same offset from the stack pointer (immediately after the prolog) as it 2144 // resides at in the main function. 2145 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 2146 } else { 2147 // Other funclets just need enough stack for outgoing call arguments. 2148 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 2149 } 2150 // RBP is not included in the callee saved register block. After pushing RBP, 2151 // everything is 16 byte aligned. Everything we allocate before an outgoing 2152 // call must also be 16 byte aligned. 2153 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 2154 // Subtract out the size of the callee saved registers. This is how much stack 2155 // each funclet will allocate. 2156 return FrameSizeMinusRBP + XMMSize - CSSize; 2157 } 2158 2159 static bool isTailCallOpcode(unsigned Opc) { 2160 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2161 Opc == X86::TCRETURNmi || 2162 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 2163 Opc == X86::TCRETURNmi64; 2164 } 2165 2166 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2167 MachineBasicBlock &MBB) const { 2168 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2169 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2170 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2171 MachineBasicBlock::iterator MBBI = Terminator; 2172 DebugLoc DL; 2173 if (MBBI != MBB.end()) 2174 DL = MBBI->getDebugLoc(); 2175 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2176 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2177 Register FramePtr = TRI->getFrameRegister(MF); 2178 Register MachineFramePtr = 2179 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2180 2181 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2182 bool NeedsWin64CFI = 2183 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2184 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2185 2186 // Get the number of bytes to allocate from the FrameInfo. 2187 uint64_t StackSize = MFI.getStackSize(); 2188 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2189 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2190 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 2191 bool HasFP = hasFP(MF); 2192 uint64_t NumBytes = 0; 2193 2194 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2195 !MF.getTarget().getTargetTriple().isOSWindows()) && 2196 MF.needsFrameMoves(); 2197 2198 if (IsFunclet) { 2199 assert(HasFP && "EH funclets without FP not yet implemented"); 2200 NumBytes = getWinEHFuncletFrameSize(MF); 2201 } else if (HasFP) { 2202 // Calculate required stack adjustment. 2203 uint64_t FrameSize = StackSize - SlotSize; 2204 NumBytes = FrameSize - CSSize - TailCallArgReserveSize; 2205 2206 // Callee-saved registers were pushed on stack before the stack was 2207 // realigned. 2208 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2209 NumBytes = alignTo(FrameSize, MaxAlign); 2210 } else { 2211 NumBytes = StackSize - CSSize - TailCallArgReserveSize; 2212 } 2213 uint64_t SEHStackAllocAmt = NumBytes; 2214 2215 // AfterPop is the position to insert .cfi_restore. 2216 MachineBasicBlock::iterator AfterPop = MBBI; 2217 if (HasFP) { 2218 if (X86FI->hasSwiftAsyncContext()) { 2219 // Discard the context. 2220 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2221 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); 2222 } 2223 // Pop EBP. 2224 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2225 MachineFramePtr) 2226 .setMIFlag(MachineInstr::FrameDestroy); 2227 2228 // We need to reset FP to its untagged state on return. Bit 60 is currently 2229 // used to show the presence of an extended frame. 2230 if (X86FI->hasSwiftAsyncContext()) { 2231 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), 2232 MachineFramePtr) 2233 .addUse(MachineFramePtr) 2234 .addImm(60) 2235 .setMIFlag(MachineInstr::FrameDestroy); 2236 } 2237 2238 if (NeedsDwarfCFI) { 2239 unsigned DwarfStackPtr = 2240 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2241 BuildCFI(MBB, MBBI, DL, 2242 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize), 2243 MachineInstr::FrameDestroy); 2244 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2245 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2246 BuildCFI(MBB, AfterPop, DL, 2247 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr), 2248 MachineInstr::FrameDestroy); 2249 --MBBI; 2250 --AfterPop; 2251 } 2252 --MBBI; 2253 } 2254 } 2255 2256 MachineBasicBlock::iterator FirstCSPop = MBBI; 2257 // Skip the callee-saved pop instructions. 2258 while (MBBI != MBB.begin()) { 2259 MachineBasicBlock::iterator PI = std::prev(MBBI); 2260 unsigned Opc = PI->getOpcode(); 2261 2262 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2263 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2264 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2265 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2266 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy))) 2267 break; 2268 FirstCSPop = PI; 2269 } 2270 2271 --MBBI; 2272 } 2273 MBBI = FirstCSPop; 2274 2275 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2276 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2277 2278 if (MBBI != MBB.end()) 2279 DL = MBBI->getDebugLoc(); 2280 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2281 // instruction, merge the two instructions. 2282 if (NumBytes || MFI.hasVarSizedObjects()) 2283 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2284 2285 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2286 // slot before popping them off! Same applies for the case, when stack was 2287 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2288 // will not do realignment or dynamic stack allocation. 2289 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2290 !IsFunclet) { 2291 if (TRI->hasStackRealignment(MF)) 2292 MBBI = FirstCSPop; 2293 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2294 uint64_t LEAAmount = 2295 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2296 2297 if (X86FI->hasSwiftAsyncContext()) 2298 LEAAmount -= 16; 2299 2300 // There are only two legal forms of epilogue: 2301 // - add SEHAllocationSize, %rsp 2302 // - lea SEHAllocationSize(%FramePtr), %rsp 2303 // 2304 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2305 // However, we may use this sequence if we have a frame pointer because the 2306 // effects of the prologue can safely be undone. 2307 if (LEAAmount != 0) { 2308 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2309 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2310 FramePtr, false, LEAAmount); 2311 --MBBI; 2312 } else { 2313 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2314 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2315 .addReg(FramePtr); 2316 --MBBI; 2317 } 2318 } else if (NumBytes) { 2319 // Adjust stack pointer back: ESP += numbytes. 2320 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2321 if (!HasFP && NeedsDwarfCFI) { 2322 // Define the current CFA rule to use the provided offset. 2323 BuildCFI(MBB, MBBI, DL, 2324 MCCFIInstruction::cfiDefCfaOffset( 2325 nullptr, CSSize + TailCallArgReserveSize + SlotSize), 2326 MachineInstr::FrameDestroy); 2327 } 2328 --MBBI; 2329 } 2330 2331 // Windows unwinder will not invoke function's exception handler if IP is 2332 // either in prologue or in epilogue. This behavior causes a problem when a 2333 // call immediately precedes an epilogue, because the return address points 2334 // into the epilogue. To cope with that, we insert an epilogue marker here, 2335 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2336 // final emitted code. 2337 if (NeedsWin64CFI && MF.hasWinCFI()) 2338 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2339 2340 if (!HasFP && NeedsDwarfCFI) { 2341 MBBI = FirstCSPop; 2342 int64_t Offset = -CSSize - SlotSize; 2343 // Mark callee-saved pop instruction. 2344 // Define the current CFA rule to use the provided offset. 2345 while (MBBI != MBB.end()) { 2346 MachineBasicBlock::iterator PI = MBBI; 2347 unsigned Opc = PI->getOpcode(); 2348 ++MBBI; 2349 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2350 Offset += SlotSize; 2351 BuildCFI(MBB, MBBI, DL, 2352 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset), 2353 MachineInstr::FrameDestroy); 2354 } 2355 } 2356 } 2357 2358 // Emit DWARF info specifying the restores of the callee-saved registers. 2359 // For epilogue with return inside or being other block without successor, 2360 // no need to generate .cfi_restore for callee-saved registers. 2361 if (NeedsDwarfCFI && !MBB.succ_empty()) 2362 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2363 2364 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2365 // Add the return addr area delta back since we are not tail calling. 2366 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2367 assert(Offset >= 0 && "TCDelta should never be positive"); 2368 if (Offset) { 2369 // Check for possible merge with preceding ADD instruction. 2370 Offset += mergeSPUpdates(MBB, Terminator, true); 2371 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2372 } 2373 } 2374 2375 // Emit tilerelease for AMX kernel. 2376 if (X86FI->hasVirtualTileReg()) 2377 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2378 } 2379 2380 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2381 int FI, 2382 Register &FrameReg) const { 2383 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2384 2385 bool IsFixed = MFI.isFixedObjectIndex(FI); 2386 // We can't calculate offset from frame pointer if the stack is realigned, 2387 // so enforce usage of stack/base pointer. The base pointer is used when we 2388 // have dynamic allocas in addition to dynamic realignment. 2389 if (TRI->hasBasePointer(MF)) 2390 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2391 else if (TRI->hasStackRealignment(MF)) 2392 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2393 else 2394 FrameReg = TRI->getFrameRegister(MF); 2395 2396 // Offset will hold the offset from the stack pointer at function entry to the 2397 // object. 2398 // We need to factor in additional offsets applied during the prologue to the 2399 // frame, base, and stack pointer depending on which is used. 2400 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2401 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2402 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2403 uint64_t StackSize = MFI.getStackSize(); 2404 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2405 int64_t FPDelta = 0; 2406 2407 // In an x86 interrupt, remove the offset we added to account for the return 2408 // address from any stack object allocated in the caller's frame. Interrupts 2409 // do not have a standard return address. Fixed objects in the current frame, 2410 // such as SSE register spills, should not get this treatment. 2411 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2412 Offset >= 0) { 2413 Offset += getOffsetOfLocalArea(); 2414 } 2415 2416 if (IsWin64Prologue) { 2417 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2418 2419 // Calculate required stack adjustment. 2420 uint64_t FrameSize = StackSize - SlotSize; 2421 // If required, include space for extra hidden slot for stashing base pointer. 2422 if (X86FI->getRestoreBasePointer()) 2423 FrameSize += SlotSize; 2424 uint64_t NumBytes = FrameSize - CSSize; 2425 2426 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2427 if (FI && FI == X86FI->getFAIndex()) 2428 return StackOffset::getFixed(-SEHFrameOffset); 2429 2430 // FPDelta is the offset from the "traditional" FP location of the old base 2431 // pointer followed by return address and the location required by the 2432 // restricted Win64 prologue. 2433 // Add FPDelta to all offsets below that go through the frame pointer. 2434 FPDelta = FrameSize - SEHFrameOffset; 2435 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2436 "FPDelta isn't aligned per the Win64 ABI!"); 2437 } 2438 2439 if (FrameReg == TRI->getFramePtr()) { 2440 // Skip saved EBP/RBP 2441 Offset += SlotSize; 2442 2443 // Account for restricted Windows prologue. 2444 Offset += FPDelta; 2445 2446 // Skip the RETADDR move area 2447 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2448 if (TailCallReturnAddrDelta < 0) 2449 Offset -= TailCallReturnAddrDelta; 2450 2451 return StackOffset::getFixed(Offset); 2452 } 2453 2454 // FrameReg is either the stack pointer or a base pointer. But the base is 2455 // located at the end of the statically known StackSize so the distinction 2456 // doesn't really matter. 2457 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) 2458 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2459 return StackOffset::getFixed(Offset + StackSize); 2460 } 2461 2462 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2463 Register &FrameReg) const { 2464 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2465 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2466 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2467 const auto it = WinEHXMMSlotInfo.find(FI); 2468 2469 if (it == WinEHXMMSlotInfo.end()) 2470 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2471 2472 FrameReg = TRI->getStackRegister(); 2473 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2474 it->second; 2475 } 2476 2477 StackOffset 2478 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2479 Register &FrameReg, 2480 int Adjustment) const { 2481 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2482 FrameReg = TRI->getStackRegister(); 2483 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2484 getOffsetOfLocalArea() + Adjustment); 2485 } 2486 2487 StackOffset 2488 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2489 int FI, Register &FrameReg, 2490 bool IgnoreSPUpdates) const { 2491 2492 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2493 // Does not include any dynamic realign. 2494 const uint64_t StackSize = MFI.getStackSize(); 2495 // LLVM arranges the stack as follows: 2496 // ... 2497 // ARG2 2498 // ARG1 2499 // RETADDR 2500 // PUSH RBP <-- RBP points here 2501 // PUSH CSRs 2502 // ~~~~~~~ <-- possible stack realignment (non-win64) 2503 // ... 2504 // STACK OBJECTS 2505 // ... <-- RSP after prologue points here 2506 // ~~~~~~~ <-- possible stack realignment (win64) 2507 // 2508 // if (hasVarSizedObjects()): 2509 // ... <-- "base pointer" (ESI/RBX) points here 2510 // DYNAMIC ALLOCAS 2511 // ... <-- RSP points here 2512 // 2513 // Case 1: In the simple case of no stack realignment and no dynamic 2514 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2515 // with fixed offsets from RSP. 2516 // 2517 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2518 // stack objects are addressed with RBP and regular stack objects with RSP. 2519 // 2520 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2521 // to address stack arguments for outgoing calls and nothing else. The "base 2522 // pointer" points to local variables, and RBP points to fixed objects. 2523 // 2524 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2525 // answer we give is relative to the SP after the prologue, and not the 2526 // SP in the middle of the function. 2527 2528 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2529 !STI.isTargetWin64()) 2530 return getFrameIndexReference(MF, FI, FrameReg); 2531 2532 // If !hasReservedCallFrame the function might have SP adjustement in the 2533 // body. So, even though the offset is statically known, it depends on where 2534 // we are in the function. 2535 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2536 return getFrameIndexReference(MF, FI, FrameReg); 2537 2538 // We don't handle tail calls, and shouldn't be seeing them either. 2539 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2540 "we don't handle this case!"); 2541 2542 // This is how the math works out: 2543 // 2544 // %rsp grows (i.e. gets lower) left to right. Each box below is 2545 // one word (eight bytes). Obj0 is the stack slot we're trying to 2546 // get to. 2547 // 2548 // ---------------------------------- 2549 // | BP | Obj0 | Obj1 | ... | ObjN | 2550 // ---------------------------------- 2551 // ^ ^ ^ ^ 2552 // A B C E 2553 // 2554 // A is the incoming stack pointer. 2555 // (B - A) is the local area offset (-8 for x86-64) [1] 2556 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2557 // 2558 // |(E - B)| is the StackSize (absolute value, positive). For a 2559 // stack that grown down, this works out to be (B - E). [3] 2560 // 2561 // E is also the value of %rsp after stack has been set up, and we 2562 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2563 // (C - E) == (C - A) - (B - A) + (B - E) 2564 // { Using [1], [2] and [3] above } 2565 // == getObjectOffset - LocalAreaOffset + StackSize 2566 2567 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2568 } 2569 2570 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2571 MachineFunction &MF, const TargetRegisterInfo *TRI, 2572 std::vector<CalleeSavedInfo> &CSI) const { 2573 MachineFrameInfo &MFI = MF.getFrameInfo(); 2574 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2575 2576 unsigned CalleeSavedFrameSize = 0; 2577 unsigned XMMCalleeSavedFrameSize = 0; 2578 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2579 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2580 2581 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2582 2583 if (TailCallReturnAddrDelta < 0) { 2584 // create RETURNADDR area 2585 // arg 2586 // arg 2587 // RETADDR 2588 // { ... 2589 // RETADDR area 2590 // ... 2591 // } 2592 // [EBP] 2593 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2594 TailCallReturnAddrDelta - SlotSize, true); 2595 } 2596 2597 // Spill the BasePtr if it's used. 2598 if (this->TRI->hasBasePointer(MF)) { 2599 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2600 if (MF.hasEHFunclets()) { 2601 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2602 X86FI->setHasSEHFramePtrSave(true); 2603 X86FI->setSEHFramePtrSaveIndex(FI); 2604 } 2605 } 2606 2607 if (hasFP(MF)) { 2608 // emitPrologue always spills frame register the first thing. 2609 SpillSlotOffset -= SlotSize; 2610 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2611 2612 // The async context lives directly before the frame pointer, and we 2613 // allocate a second slot to preserve stack alignment. 2614 if (X86FI->hasSwiftAsyncContext()) { 2615 SpillSlotOffset -= SlotSize; 2616 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2617 SpillSlotOffset -= SlotSize; 2618 } 2619 2620 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2621 // the frame register, we can delete it from CSI list and not have to worry 2622 // about avoiding it later. 2623 Register FPReg = TRI->getFrameRegister(MF); 2624 for (unsigned i = 0; i < CSI.size(); ++i) { 2625 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2626 CSI.erase(CSI.begin() + i); 2627 break; 2628 } 2629 } 2630 } 2631 2632 // Assign slots for GPRs. It increases frame size. 2633 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2634 Register Reg = I.getReg(); 2635 2636 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2637 continue; 2638 2639 SpillSlotOffset -= SlotSize; 2640 CalleeSavedFrameSize += SlotSize; 2641 2642 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2643 I.setFrameIdx(SlotIndex); 2644 } 2645 2646 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2647 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2648 2649 // Assign slots for XMMs. 2650 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2651 Register Reg = I.getReg(); 2652 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2653 continue; 2654 2655 // If this is k-register make sure we lookup via the largest legal type. 2656 MVT VT = MVT::Other; 2657 if (X86::VK16RegClass.contains(Reg)) 2658 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2659 2660 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2661 unsigned Size = TRI->getSpillSize(*RC); 2662 Align Alignment = TRI->getSpillAlign(*RC); 2663 // ensure alignment 2664 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2665 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2666 2667 // spill into slot 2668 SpillSlotOffset -= Size; 2669 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2670 I.setFrameIdx(SlotIndex); 2671 MFI.ensureMaxAlignment(Alignment); 2672 2673 // Save the start offset and size of XMM in stack frame for funclets. 2674 if (X86::VR128RegClass.contains(Reg)) { 2675 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2676 XMMCalleeSavedFrameSize += Size; 2677 } 2678 } 2679 2680 return true; 2681 } 2682 2683 bool X86FrameLowering::spillCalleeSavedRegisters( 2684 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2685 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2686 DebugLoc DL = MBB.findDebugLoc(MI); 2687 2688 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2689 // for us, and there are no XMM CSRs on Win32. 2690 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2691 return true; 2692 2693 // Push GPRs. It increases frame size. 2694 const MachineFunction &MF = *MBB.getParent(); 2695 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2696 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2697 Register Reg = I.getReg(); 2698 2699 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2700 continue; 2701 2702 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2703 bool isLiveIn = MRI.isLiveIn(Reg); 2704 if (!isLiveIn) 2705 MBB.addLiveIn(Reg); 2706 2707 // Decide whether we can add a kill flag to the use. 2708 bool CanKill = !isLiveIn; 2709 // Check if any subregister is live-in 2710 if (CanKill) { 2711 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2712 if (MRI.isLiveIn(*AReg)) { 2713 CanKill = false; 2714 break; 2715 } 2716 } 2717 } 2718 2719 // Do not set a kill flag on values that are also marked as live-in. This 2720 // happens with the @llvm-returnaddress intrinsic and with arguments 2721 // passed in callee saved registers. 2722 // Omitting the kill flags is conservatively correct even if the live-in 2723 // is not used after all. 2724 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2725 .setMIFlag(MachineInstr::FrameSetup); 2726 } 2727 2728 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2729 // It can be done by spilling XMMs to stack frame. 2730 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2731 Register Reg = I.getReg(); 2732 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2733 continue; 2734 2735 // If this is k-register make sure we lookup via the largest legal type. 2736 MVT VT = MVT::Other; 2737 if (X86::VK16RegClass.contains(Reg)) 2738 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2739 2740 // Add the callee-saved register as live-in. It's killed at the spill. 2741 MBB.addLiveIn(Reg); 2742 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2743 2744 TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI); 2745 --MI; 2746 MI->setFlag(MachineInstr::FrameSetup); 2747 ++MI; 2748 } 2749 2750 return true; 2751 } 2752 2753 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2754 MachineBasicBlock::iterator MBBI, 2755 MachineInstr *CatchRet) const { 2756 // SEH shouldn't use catchret. 2757 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2758 MBB.getParent()->getFunction().getPersonalityFn())) && 2759 "SEH should not use CATCHRET"); 2760 const DebugLoc &DL = CatchRet->getDebugLoc(); 2761 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2762 2763 // Fill EAX/RAX with the address of the target block. 2764 if (STI.is64Bit()) { 2765 // LEA64r CatchRetTarget(%rip), %rax 2766 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2767 .addReg(X86::RIP) 2768 .addImm(0) 2769 .addReg(0) 2770 .addMBB(CatchRetTarget) 2771 .addReg(0); 2772 } else { 2773 // MOV32ri $CatchRetTarget, %eax 2774 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2775 .addMBB(CatchRetTarget); 2776 } 2777 2778 // Record that we've taken the address of CatchRetTarget and no longer just 2779 // reference it in a terminator. 2780 CatchRetTarget->setHasAddressTaken(); 2781 } 2782 2783 bool X86FrameLowering::restoreCalleeSavedRegisters( 2784 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2785 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2786 if (CSI.empty()) 2787 return false; 2788 2789 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2790 // Don't restore CSRs in 32-bit EH funclets. Matches 2791 // spillCalleeSavedRegisters. 2792 if (STI.is32Bit()) 2793 return true; 2794 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2795 // funclets. emitEpilogue transforms these to normal jumps. 2796 if (MI->getOpcode() == X86::CATCHRET) { 2797 const Function &F = MBB.getParent()->getFunction(); 2798 bool IsSEH = isAsynchronousEHPersonality( 2799 classifyEHPersonality(F.getPersonalityFn())); 2800 if (IsSEH) 2801 return true; 2802 } 2803 } 2804 2805 DebugLoc DL = MBB.findDebugLoc(MI); 2806 2807 // Reload XMMs from stack frame. 2808 for (const CalleeSavedInfo &I : CSI) { 2809 Register Reg = I.getReg(); 2810 if (X86::GR64RegClass.contains(Reg) || 2811 X86::GR32RegClass.contains(Reg)) 2812 continue; 2813 2814 // If this is k-register make sure we lookup via the largest legal type. 2815 MVT VT = MVT::Other; 2816 if (X86::VK16RegClass.contains(Reg)) 2817 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2818 2819 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2820 TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI); 2821 } 2822 2823 // POP GPRs. 2824 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2825 for (const CalleeSavedInfo &I : CSI) { 2826 Register Reg = I.getReg(); 2827 if (!X86::GR64RegClass.contains(Reg) && 2828 !X86::GR32RegClass.contains(Reg)) 2829 continue; 2830 2831 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2832 .setMIFlag(MachineInstr::FrameDestroy); 2833 } 2834 return true; 2835 } 2836 2837 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2838 BitVector &SavedRegs, 2839 RegScavenger *RS) const { 2840 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2841 2842 // Spill the BasePtr if it's used. 2843 if (TRI->hasBasePointer(MF)){ 2844 Register BasePtr = TRI->getBaseRegister(); 2845 if (STI.isTarget64BitILP32()) 2846 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2847 SavedRegs.set(BasePtr); 2848 } 2849 } 2850 2851 static bool 2852 HasNestArgument(const MachineFunction *MF) { 2853 const Function &F = MF->getFunction(); 2854 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2855 I != E; I++) { 2856 if (I->hasNestAttr() && !I->use_empty()) 2857 return true; 2858 } 2859 return false; 2860 } 2861 2862 /// GetScratchRegister - Get a temp register for performing work in the 2863 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2864 /// and the properties of the function either one or two registers will be 2865 /// needed. Set primary to true for the first register, false for the second. 2866 static unsigned 2867 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2868 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2869 2870 // Erlang stuff. 2871 if (CallingConvention == CallingConv::HiPE) { 2872 if (Is64Bit) 2873 return Primary ? X86::R14 : X86::R13; 2874 else 2875 return Primary ? X86::EBX : X86::EDI; 2876 } 2877 2878 if (Is64Bit) { 2879 if (IsLP64) 2880 return Primary ? X86::R11 : X86::R12; 2881 else 2882 return Primary ? X86::R11D : X86::R12D; 2883 } 2884 2885 bool IsNested = HasNestArgument(&MF); 2886 2887 if (CallingConvention == CallingConv::X86_FastCall || 2888 CallingConvention == CallingConv::Fast || 2889 CallingConvention == CallingConv::Tail) { 2890 if (IsNested) 2891 report_fatal_error("Segmented stacks does not support fastcall with " 2892 "nested function."); 2893 return Primary ? X86::EAX : X86::ECX; 2894 } 2895 if (IsNested) 2896 return Primary ? X86::EDX : X86::EAX; 2897 return Primary ? X86::ECX : X86::EAX; 2898 } 2899 2900 // The stack limit in the TCB is set to this many bytes above the actual stack 2901 // limit. 2902 static const uint64_t kSplitStackAvailable = 256; 2903 2904 void X86FrameLowering::adjustForSegmentedStacks( 2905 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2906 MachineFrameInfo &MFI = MF.getFrameInfo(); 2907 uint64_t StackSize; 2908 unsigned TlsReg, TlsOffset; 2909 DebugLoc DL; 2910 2911 // To support shrink-wrapping we would need to insert the new blocks 2912 // at the right place and update the branches to PrologueMBB. 2913 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2914 2915 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2916 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2917 "Scratch register is live-in"); 2918 2919 if (MF.getFunction().isVarArg()) 2920 report_fatal_error("Segmented stacks do not support vararg functions."); 2921 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2922 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2923 !STI.isTargetDragonFly()) 2924 report_fatal_error("Segmented stacks not supported on this platform."); 2925 2926 // Eventually StackSize will be calculated by a link-time pass; which will 2927 // also decide whether checking code needs to be injected into this particular 2928 // prologue. 2929 StackSize = MFI.getStackSize(); 2930 2931 if (!MFI.needsSplitStackProlog()) 2932 return; 2933 2934 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2935 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2936 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2937 bool IsNested = false; 2938 2939 // We need to know if the function has a nest argument only in 64 bit mode. 2940 if (Is64Bit) 2941 IsNested = HasNestArgument(&MF); 2942 2943 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2944 // allocMBB needs to be last (terminating) instruction. 2945 2946 for (const auto &LI : PrologueMBB.liveins()) { 2947 allocMBB->addLiveIn(LI); 2948 checkMBB->addLiveIn(LI); 2949 } 2950 2951 if (IsNested) 2952 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2953 2954 MF.push_front(allocMBB); 2955 MF.push_front(checkMBB); 2956 2957 // When the frame size is less than 256 we just compare the stack 2958 // boundary directly to the value of the stack pointer, per gcc. 2959 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2960 2961 // Read the limit off the current stacklet off the stack_guard location. 2962 if (Is64Bit) { 2963 if (STI.isTargetLinux()) { 2964 TlsReg = X86::FS; 2965 TlsOffset = IsLP64 ? 0x70 : 0x40; 2966 } else if (STI.isTargetDarwin()) { 2967 TlsReg = X86::GS; 2968 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2969 } else if (STI.isTargetWin64()) { 2970 TlsReg = X86::GS; 2971 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2972 } else if (STI.isTargetFreeBSD()) { 2973 TlsReg = X86::FS; 2974 TlsOffset = 0x18; 2975 } else if (STI.isTargetDragonFly()) { 2976 TlsReg = X86::FS; 2977 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2978 } else { 2979 report_fatal_error("Segmented stacks not supported on this platform."); 2980 } 2981 2982 if (CompareStackPointer) 2983 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2984 else 2985 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2986 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2987 2988 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2989 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2990 } else { 2991 if (STI.isTargetLinux()) { 2992 TlsReg = X86::GS; 2993 TlsOffset = 0x30; 2994 } else if (STI.isTargetDarwin()) { 2995 TlsReg = X86::GS; 2996 TlsOffset = 0x48 + 90*4; 2997 } else if (STI.isTargetWin32()) { 2998 TlsReg = X86::FS; 2999 TlsOffset = 0x14; // pvArbitrary, reserved for application use 3000 } else if (STI.isTargetDragonFly()) { 3001 TlsReg = X86::FS; 3002 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 3003 } else if (STI.isTargetFreeBSD()) { 3004 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 3005 } else { 3006 report_fatal_error("Segmented stacks not supported on this platform."); 3007 } 3008 3009 if (CompareStackPointer) 3010 ScratchReg = X86::ESP; 3011 else 3012 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 3013 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 3014 3015 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 3016 STI.isTargetDragonFly()) { 3017 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 3018 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 3019 } else if (STI.isTargetDarwin()) { 3020 3021 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 3022 unsigned ScratchReg2; 3023 bool SaveScratch2; 3024 if (CompareStackPointer) { 3025 // The primary scratch register is available for holding the TLS offset. 3026 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3027 SaveScratch2 = false; 3028 } else { 3029 // Need to use a second register to hold the TLS offset 3030 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 3031 3032 // Unfortunately, with fastcc the second scratch register may hold an 3033 // argument. 3034 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 3035 } 3036 3037 // If Scratch2 is live-in then it needs to be saved. 3038 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 3039 "Scratch register is live-in and not saved"); 3040 3041 if (SaveScratch2) 3042 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 3043 .addReg(ScratchReg2, RegState::Kill); 3044 3045 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 3046 .addImm(TlsOffset); 3047 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 3048 .addReg(ScratchReg) 3049 .addReg(ScratchReg2).addImm(1).addReg(0) 3050 .addImm(0) 3051 .addReg(TlsReg); 3052 3053 if (SaveScratch2) 3054 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 3055 } 3056 } 3057 3058 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 3059 // It jumps to normal execution of the function body. 3060 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 3061 3062 // On 32 bit we first push the arguments size and then the frame size. On 64 3063 // bit, we pass the stack frame size in r10 and the argument size in r11. 3064 if (Is64Bit) { 3065 // Functions with nested arguments use R10, so it needs to be saved across 3066 // the call to _morestack 3067 3068 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 3069 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 3070 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 3071 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 3072 3073 if (IsNested) 3074 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 3075 3076 BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10) 3077 .addImm(StackSize); 3078 BuildMI(allocMBB, DL, 3079 TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())), 3080 Reg11) 3081 .addImm(X86FI->getArgumentStackSize()); 3082 } else { 3083 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 3084 .addImm(X86FI->getArgumentStackSize()); 3085 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 3086 .addImm(StackSize); 3087 } 3088 3089 // __morestack is in libgcc 3090 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 3091 // Under the large code model, we cannot assume that __morestack lives 3092 // within 2^31 bytes of the call site, so we cannot use pc-relative 3093 // addressing. We cannot perform the call via a temporary register, 3094 // as the rax register may be used to store the static chain, and all 3095 // other suitable registers may be either callee-save or used for 3096 // parameter passing. We cannot use the stack at this point either 3097 // because __morestack manipulates the stack directly. 3098 // 3099 // To avoid these issues, perform an indirect call via a read-only memory 3100 // location containing the address. 3101 // 3102 // This solution is not perfect, as it assumes that the .rodata section 3103 // is laid out within 2^31 bytes of each function body, but this seems 3104 // to be sufficient for JIT. 3105 // FIXME: Add retpoline support and remove the error here.. 3106 if (STI.useIndirectThunkCalls()) 3107 report_fatal_error("Emitting morestack calls on 64-bit with the large " 3108 "code model and thunks not yet implemented."); 3109 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 3110 .addReg(X86::RIP) 3111 .addImm(0) 3112 .addReg(0) 3113 .addExternalSymbol("__morestack_addr") 3114 .addReg(0); 3115 } else { 3116 if (Is64Bit) 3117 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 3118 .addExternalSymbol("__morestack"); 3119 else 3120 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 3121 .addExternalSymbol("__morestack"); 3122 } 3123 3124 if (IsNested) 3125 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 3126 else 3127 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 3128 3129 allocMBB->addSuccessor(&PrologueMBB); 3130 3131 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 3132 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 3133 3134 #ifdef EXPENSIVE_CHECKS 3135 MF.verify(); 3136 #endif 3137 } 3138 3139 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 3140 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 3141 /// to fields it needs, through a named metadata node "hipe.literals" containing 3142 /// name-value pairs. 3143 static unsigned getHiPELiteral( 3144 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 3145 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 3146 MDNode *Node = HiPELiteralsMD->getOperand(i); 3147 if (Node->getNumOperands() != 2) continue; 3148 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3149 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3150 if (!NodeName || !NodeVal) continue; 3151 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3152 if (ValConst && NodeName->getString() == LiteralName) { 3153 return ValConst->getZExtValue(); 3154 } 3155 } 3156 3157 report_fatal_error("HiPE literal " + LiteralName 3158 + " required but not provided"); 3159 } 3160 3161 // Return true if there are no non-ehpad successors to MBB and there are no 3162 // non-meta instructions between MBBI and MBB.end(). 3163 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3164 MachineBasicBlock::const_iterator MBBI) { 3165 return llvm::all_of( 3166 MBB.successors(), 3167 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3168 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3169 return MI.isMetaInstruction(); 3170 }); 3171 } 3172 3173 /// Erlang programs may need a special prologue to handle the stack size they 3174 /// might need at runtime. That is because Erlang/OTP does not implement a C 3175 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3176 /// (for more information see Eric Stenman's Ph.D. thesis: 3177 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3178 /// 3179 /// CheckStack: 3180 /// temp0 = sp - MaxStack 3181 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3182 /// OldStart: 3183 /// ... 3184 /// IncStack: 3185 /// call inc_stack # doubles the stack space 3186 /// temp0 = sp - MaxStack 3187 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3188 void X86FrameLowering::adjustForHiPEPrologue( 3189 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3190 MachineFrameInfo &MFI = MF.getFrameInfo(); 3191 DebugLoc DL; 3192 3193 // To support shrink-wrapping we would need to insert the new blocks 3194 // at the right place and update the branches to PrologueMBB. 3195 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3196 3197 // HiPE-specific values 3198 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 3199 ->getNamedMetadata("hipe.literals"); 3200 if (!HiPELiteralsMD) 3201 report_fatal_error( 3202 "Can't generate HiPE prologue without runtime parameters"); 3203 const unsigned HipeLeafWords 3204 = getHiPELiteral(HiPELiteralsMD, 3205 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3206 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3207 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3208 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 3209 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 3210 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 3211 3212 assert(STI.isTargetLinux() && 3213 "HiPE prologue is only supported on Linux operating systems."); 3214 3215 // Compute the largest caller's frame that is needed to fit the callees' 3216 // frames. This 'MaxStack' is computed from: 3217 // 3218 // a) the fixed frame size, which is the space needed for all spilled temps, 3219 // b) outgoing on-stack parameter areas, and 3220 // c) the minimum stack space this function needs to make available for the 3221 // functions it calls (a tunable ABI property). 3222 if (MFI.hasCalls()) { 3223 unsigned MoreStackForCalls = 0; 3224 3225 for (auto &MBB : MF) { 3226 for (auto &MI : MBB) { 3227 if (!MI.isCall()) 3228 continue; 3229 3230 // Get callee operand. 3231 const MachineOperand &MO = MI.getOperand(0); 3232 3233 // Only take account of global function calls (no closures etc.). 3234 if (!MO.isGlobal()) 3235 continue; 3236 3237 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3238 if (!F) 3239 continue; 3240 3241 // Do not update 'MaxStack' for primitive and built-in functions 3242 // (encoded with names either starting with "erlang."/"bif_" or not 3243 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3244 // "_", such as the BIF "suspend_0") as they are executed on another 3245 // stack. 3246 if (F->getName().contains("erlang.") || F->getName().contains("bif_") || 3247 F->getName().find_first_of("._") == StringRef::npos) 3248 continue; 3249 3250 unsigned CalleeStkArity = 3251 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3252 if (HipeLeafWords - 1 > CalleeStkArity) 3253 MoreStackForCalls = std::max(MoreStackForCalls, 3254 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3255 } 3256 } 3257 MaxStack += MoreStackForCalls; 3258 } 3259 3260 // If the stack frame needed is larger than the guaranteed then runtime checks 3261 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3262 if (MaxStack > Guaranteed) { 3263 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3264 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3265 3266 for (const auto &LI : PrologueMBB.liveins()) { 3267 stackCheckMBB->addLiveIn(LI); 3268 incStackMBB->addLiveIn(LI); 3269 } 3270 3271 MF.push_front(incStackMBB); 3272 MF.push_front(stackCheckMBB); 3273 3274 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3275 unsigned LEAop, CMPop, CALLop; 3276 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3277 if (Is64Bit) { 3278 SPReg = X86::RSP; 3279 PReg = X86::RBP; 3280 LEAop = X86::LEA64r; 3281 CMPop = X86::CMP64rm; 3282 CALLop = X86::CALL64pcrel32; 3283 } else { 3284 SPReg = X86::ESP; 3285 PReg = X86::EBP; 3286 LEAop = X86::LEA32r; 3287 CMPop = X86::CMP32rm; 3288 CALLop = X86::CALLpcrel32; 3289 } 3290 3291 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3292 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3293 "HiPE prologue scratch register is live-in"); 3294 3295 // Create new MBB for StackCheck: 3296 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3297 SPReg, false, -MaxStack); 3298 // SPLimitOffset is in a fixed heap location (pointed by BP). 3299 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3300 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3301 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3302 3303 // Create new MBB for IncStack: 3304 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3305 addExternalSymbol("inc_stack_0"); 3306 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3307 SPReg, false, -MaxStack); 3308 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3309 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3310 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3311 3312 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3313 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3314 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3315 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3316 } 3317 #ifdef EXPENSIVE_CHECKS 3318 MF.verify(); 3319 #endif 3320 } 3321 3322 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3323 MachineBasicBlock::iterator MBBI, 3324 const DebugLoc &DL, 3325 int Offset) const { 3326 if (Offset <= 0) 3327 return false; 3328 3329 if (Offset % SlotSize) 3330 return false; 3331 3332 int NumPops = Offset / SlotSize; 3333 // This is only worth it if we have at most 2 pops. 3334 if (NumPops != 1 && NumPops != 2) 3335 return false; 3336 3337 // Handle only the trivial case where the adjustment directly follows 3338 // a call. This is the most common one, anyway. 3339 if (MBBI == MBB.begin()) 3340 return false; 3341 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3342 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3343 return false; 3344 3345 unsigned Regs[2]; 3346 unsigned FoundRegs = 0; 3347 3348 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3349 const MachineOperand &RegMask = Prev->getOperand(1); 3350 3351 auto &RegClass = 3352 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3353 // Try to find up to NumPops free registers. 3354 for (auto Candidate : RegClass) { 3355 // Poor man's liveness: 3356 // Since we're immediately after a call, any register that is clobbered 3357 // by the call and not defined by it can be considered dead. 3358 if (!RegMask.clobbersPhysReg(Candidate)) 3359 continue; 3360 3361 // Don't clobber reserved registers 3362 if (MRI.isReserved(Candidate)) 3363 continue; 3364 3365 bool IsDef = false; 3366 for (const MachineOperand &MO : Prev->implicit_operands()) { 3367 if (MO.isReg() && MO.isDef() && 3368 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3369 IsDef = true; 3370 break; 3371 } 3372 } 3373 3374 if (IsDef) 3375 continue; 3376 3377 Regs[FoundRegs++] = Candidate; 3378 if (FoundRegs == (unsigned)NumPops) 3379 break; 3380 } 3381 3382 if (FoundRegs == 0) 3383 return false; 3384 3385 // If we found only one free register, but need two, reuse the same one twice. 3386 while (FoundRegs < (unsigned)NumPops) 3387 Regs[FoundRegs++] = Regs[0]; 3388 3389 for (int i = 0; i < NumPops; ++i) 3390 BuildMI(MBB, MBBI, DL, 3391 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3392 3393 return true; 3394 } 3395 3396 MachineBasicBlock::iterator X86FrameLowering:: 3397 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3398 MachineBasicBlock::iterator I) const { 3399 bool reserveCallFrame = hasReservedCallFrame(MF); 3400 unsigned Opcode = I->getOpcode(); 3401 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3402 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3403 uint64_t Amount = TII.getFrameSize(*I); 3404 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3405 I = MBB.erase(I); 3406 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3407 3408 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3409 // typically because the function is marked noreturn (abort, throw, 3410 // assert_fail, etc). 3411 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3412 return I; 3413 3414 if (!reserveCallFrame) { 3415 // If the stack pointer can be changed after prologue, turn the 3416 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3417 // adjcallstackdown instruction into 'add ESP, <amt>' 3418 3419 // We need to keep the stack aligned properly. To do this, we round the 3420 // amount of space needed for the outgoing arguments up to the next 3421 // alignment boundary. 3422 Amount = alignTo(Amount, getStackAlign()); 3423 3424 const Function &F = MF.getFunction(); 3425 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3426 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3427 3428 // If we have any exception handlers in this function, and we adjust 3429 // the SP before calls, we may need to indicate this to the unwinder 3430 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3431 // Amount == 0, because the preceding function may have set a non-0 3432 // GNU_ARGS_SIZE. 3433 // TODO: We don't need to reset this between subsequent functions, 3434 // if it didn't change. 3435 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3436 3437 if (HasDwarfEHHandlers && !isDestroy && 3438 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3439 BuildCFI(MBB, InsertPos, DL, 3440 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3441 3442 if (Amount == 0) 3443 return I; 3444 3445 // Factor out the amount that gets handled inside the sequence 3446 // (Pushes of argument for frame setup, callee pops for frame destroy) 3447 Amount -= InternalAmt; 3448 3449 // TODO: This is needed only if we require precise CFA. 3450 // If this is a callee-pop calling convention, emit a CFA adjust for 3451 // the amount the callee popped. 3452 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3453 BuildCFI(MBB, InsertPos, DL, 3454 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3455 3456 // Add Amount to SP to destroy a frame, or subtract to setup. 3457 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3458 3459 if (StackAdjustment) { 3460 // Merge with any previous or following adjustment instruction. Note: the 3461 // instructions merged with here do not have CFI, so their stack 3462 // adjustments do not feed into CfaAdjustment. 3463 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3464 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3465 3466 if (StackAdjustment) { 3467 if (!(F.hasMinSize() && 3468 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3469 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3470 /*InEpilogue=*/false); 3471 } 3472 } 3473 3474 if (DwarfCFI && !hasFP(MF)) { 3475 // If we don't have FP, but need to generate unwind information, 3476 // we need to set the correct CFA offset after the stack adjustment. 3477 // How much we adjust the CFA offset depends on whether we're emitting 3478 // CFI only for EH purposes or for debugging. EH only requires the CFA 3479 // offset to be correct at each call site, while for debugging we want 3480 // it to be more precise. 3481 3482 int64_t CfaAdjustment = -StackAdjustment; 3483 // TODO: When not using precise CFA, we also need to adjust for the 3484 // InternalAmt here. 3485 if (CfaAdjustment) { 3486 BuildCFI(MBB, InsertPos, DL, 3487 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3488 CfaAdjustment)); 3489 } 3490 } 3491 3492 return I; 3493 } 3494 3495 if (InternalAmt) { 3496 MachineBasicBlock::iterator CI = I; 3497 MachineBasicBlock::iterator B = MBB.begin(); 3498 while (CI != B && !std::prev(CI)->isCall()) 3499 --CI; 3500 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3501 } 3502 3503 return I; 3504 } 3505 3506 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3507 assert(MBB.getParent() && "Block is not attached to a function!"); 3508 const MachineFunction &MF = *MBB.getParent(); 3509 if (!MBB.isLiveIn(X86::EFLAGS)) 3510 return true; 3511 3512 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3513 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3514 } 3515 3516 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3517 assert(MBB.getParent() && "Block is not attached to a function!"); 3518 3519 // Win64 has strict requirements in terms of epilogue and we are 3520 // not taking a chance at messing with them. 3521 // I.e., unless this block is already an exit block, we can't use 3522 // it as an epilogue. 3523 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3524 return false; 3525 3526 // Swift async context epilogue has a BTR instruction that clobbers parts of 3527 // EFLAGS. 3528 const MachineFunction &MF = *MBB.getParent(); 3529 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3530 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3531 3532 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3533 return true; 3534 3535 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3536 // clobbers the EFLAGS. Check that we do not need to preserve it, 3537 // otherwise, conservatively assume this is not 3538 // safe to insert the epilogue here. 3539 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3540 } 3541 3542 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3543 // If we may need to emit frameless compact unwind information, give 3544 // up as this is currently broken: PR25614. 3545 bool CompactUnwind = 3546 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != 3547 nullptr; 3548 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3549 !CompactUnwind) && 3550 // The lowering of segmented stack and HiPE only support entry 3551 // blocks as prologue blocks: PR26107. This limitation may be 3552 // lifted if we fix: 3553 // - adjustForSegmentedStacks 3554 // - adjustForHiPEPrologue 3555 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3556 !MF.shouldSplitStack(); 3557 } 3558 3559 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3560 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3561 const DebugLoc &DL, bool RestoreSP) const { 3562 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3563 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3564 assert(STI.is32Bit() && !Uses64BitFramePtr && 3565 "restoring EBP/ESI on non-32-bit target"); 3566 3567 MachineFunction &MF = *MBB.getParent(); 3568 Register FramePtr = TRI->getFrameRegister(MF); 3569 Register BasePtr = TRI->getBaseRegister(); 3570 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3571 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3572 MachineFrameInfo &MFI = MF.getFrameInfo(); 3573 3574 // FIXME: Don't set FrameSetup flag in catchret case. 3575 3576 int FI = FuncInfo.EHRegNodeFrameIndex; 3577 int EHRegSize = MFI.getObjectSize(FI); 3578 3579 if (RestoreSP) { 3580 // MOV32rm -EHRegSize(%ebp), %esp 3581 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3582 X86::EBP, true, -EHRegSize) 3583 .setMIFlag(MachineInstr::FrameSetup); 3584 } 3585 3586 Register UsedReg; 3587 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3588 int EndOffset = -EHRegOffset - EHRegSize; 3589 FuncInfo.EHRegNodeEndOffset = EndOffset; 3590 3591 if (UsedReg == FramePtr) { 3592 // ADD $offset, %ebp 3593 unsigned ADDri = getADDriOpcode(false, EndOffset); 3594 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3595 .addReg(FramePtr) 3596 .addImm(EndOffset) 3597 .setMIFlag(MachineInstr::FrameSetup) 3598 ->getOperand(3) 3599 .setIsDead(); 3600 assert(EndOffset >= 0 && 3601 "end of registration object above normal EBP position!"); 3602 } else if (UsedReg == BasePtr) { 3603 // LEA offset(%ebp), %esi 3604 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3605 FramePtr, false, EndOffset) 3606 .setMIFlag(MachineInstr::FrameSetup); 3607 // MOV32rm SavedEBPOffset(%esi), %ebp 3608 assert(X86FI->getHasSEHFramePtrSave()); 3609 int Offset = 3610 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3611 .getFixed(); 3612 assert(UsedReg == BasePtr); 3613 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3614 UsedReg, true, Offset) 3615 .setMIFlag(MachineInstr::FrameSetup); 3616 } else { 3617 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3618 } 3619 return MBBI; 3620 } 3621 3622 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3623 return TRI->getSlotSize(); 3624 } 3625 3626 Register 3627 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3628 return TRI->getDwarfRegNum(StackPtr, true); 3629 } 3630 3631 namespace { 3632 // Struct used by orderFrameObjects to help sort the stack objects. 3633 struct X86FrameSortingObject { 3634 bool IsValid = false; // true if we care about this Object. 3635 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3636 unsigned ObjectSize = 0; // Size of Object in bytes. 3637 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3638 unsigned ObjectNumUses = 0; // Object static number of uses. 3639 }; 3640 3641 // The comparison function we use for std::sort to order our local 3642 // stack symbols. The current algorithm is to use an estimated 3643 // "density". This takes into consideration the size and number of 3644 // uses each object has in order to roughly minimize code size. 3645 // So, for example, an object of size 16B that is referenced 5 times 3646 // will get higher priority than 4 4B objects referenced 1 time each. 3647 // It's not perfect and we may be able to squeeze a few more bytes out of 3648 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3649 // fringe end can have special consideration, given their size is less 3650 // important, etc.), but the algorithmic complexity grows too much to be 3651 // worth the extra gains we get. This gets us pretty close. 3652 // The final order leaves us with objects with highest priority going 3653 // at the end of our list. 3654 struct X86FrameSortingComparator { 3655 inline bool operator()(const X86FrameSortingObject &A, 3656 const X86FrameSortingObject &B) const { 3657 uint64_t DensityAScaled, DensityBScaled; 3658 3659 // For consistency in our comparison, all invalid objects are placed 3660 // at the end. This also allows us to stop walking when we hit the 3661 // first invalid item after it's all sorted. 3662 if (!A.IsValid) 3663 return false; 3664 if (!B.IsValid) 3665 return true; 3666 3667 // The density is calculated by doing : 3668 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3669 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3670 // Since this approach may cause inconsistencies in 3671 // the floating point <, >, == comparisons, depending on the floating 3672 // point model with which the compiler was built, we're going 3673 // to scale both sides by multiplying with 3674 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3675 // the division and, with it, the need for any floating point 3676 // arithmetic. 3677 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3678 static_cast<uint64_t>(B.ObjectSize); 3679 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3680 static_cast<uint64_t>(A.ObjectSize); 3681 3682 // If the two densities are equal, prioritize highest alignment 3683 // objects. This allows for similar alignment objects 3684 // to be packed together (given the same density). 3685 // There's room for improvement here, also, since we can pack 3686 // similar alignment (different density) objects next to each 3687 // other to save padding. This will also require further 3688 // complexity/iterations, and the overall gain isn't worth it, 3689 // in general. Something to keep in mind, though. 3690 if (DensityAScaled == DensityBScaled) 3691 return A.ObjectAlignment < B.ObjectAlignment; 3692 3693 return DensityAScaled < DensityBScaled; 3694 } 3695 }; 3696 } // namespace 3697 3698 // Order the symbols in the local stack. 3699 // We want to place the local stack objects in some sort of sensible order. 3700 // The heuristic we use is to try and pack them according to static number 3701 // of uses and size of object in order to minimize code size. 3702 void X86FrameLowering::orderFrameObjects( 3703 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3704 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3705 3706 // Don't waste time if there's nothing to do. 3707 if (ObjectsToAllocate.empty()) 3708 return; 3709 3710 // Create an array of all MFI objects. We won't need all of these 3711 // objects, but we're going to create a full array of them to make 3712 // it easier to index into when we're counting "uses" down below. 3713 // We want to be able to easily/cheaply access an object by simply 3714 // indexing into it, instead of having to search for it every time. 3715 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3716 3717 // Walk the objects we care about and mark them as such in our working 3718 // struct. 3719 for (auto &Obj : ObjectsToAllocate) { 3720 SortingObjects[Obj].IsValid = true; 3721 SortingObjects[Obj].ObjectIndex = Obj; 3722 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3723 // Set the size. 3724 int ObjectSize = MFI.getObjectSize(Obj); 3725 if (ObjectSize == 0) 3726 // Variable size. Just use 4. 3727 SortingObjects[Obj].ObjectSize = 4; 3728 else 3729 SortingObjects[Obj].ObjectSize = ObjectSize; 3730 } 3731 3732 // Count the number of uses for each object. 3733 for (auto &MBB : MF) { 3734 for (auto &MI : MBB) { 3735 if (MI.isDebugInstr()) 3736 continue; 3737 for (const MachineOperand &MO : MI.operands()) { 3738 // Check to see if it's a local stack symbol. 3739 if (!MO.isFI()) 3740 continue; 3741 int Index = MO.getIndex(); 3742 // Check to see if it falls within our range, and is tagged 3743 // to require ordering. 3744 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3745 SortingObjects[Index].IsValid) 3746 SortingObjects[Index].ObjectNumUses++; 3747 } 3748 } 3749 } 3750 3751 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3752 // info). 3753 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3754 3755 // Now modify the original list to represent the final order that 3756 // we want. The order will depend on whether we're going to access them 3757 // from the stack pointer or the frame pointer. For SP, the list should 3758 // end up with the END containing objects that we want with smaller offsets. 3759 // For FP, it should be flipped. 3760 int i = 0; 3761 for (auto &Obj : SortingObjects) { 3762 // All invalid items are sorted at the end, so it's safe to stop. 3763 if (!Obj.IsValid) 3764 break; 3765 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3766 } 3767 3768 // Flip it if we're accessing off of the FP. 3769 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 3770 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3771 } 3772 3773 3774 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3775 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3776 unsigned Offset = 16; 3777 // RBP is immediately pushed. 3778 Offset += SlotSize; 3779 // All callee-saved registers are then pushed. 3780 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3781 // Every funclet allocates enough stack space for the largest outgoing call. 3782 Offset += getWinEHFuncletFrameSize(MF); 3783 return Offset; 3784 } 3785 3786 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3787 MachineFunction &MF, RegScavenger *RS) const { 3788 // Mark the function as not having WinCFI. We will set it back to true in 3789 // emitPrologue if it gets called and emits CFI. 3790 MF.setHasWinCFI(false); 3791 3792 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 3793 // aligned. The format doesn't support misaligned stack adjustments. 3794 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 3795 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 3796 3797 // If this function isn't doing Win64-style C++ EH, we don't need to do 3798 // anything. 3799 if (STI.is64Bit() && MF.hasEHFunclets() && 3800 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 3801 EHPersonality::MSVC_CXX) { 3802 adjustFrameForMsvcCxxEh(MF); 3803 } 3804 } 3805 3806 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 3807 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3808 // relative to RSP after the prologue. Find the offset of the last fixed 3809 // object, so that we can allocate a slot immediately following it. If there 3810 // were no fixed objects, use offset -SlotSize, which is immediately after the 3811 // return address. Fixed objects have negative frame indices. 3812 MachineFrameInfo &MFI = MF.getFrameInfo(); 3813 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3814 int64_t MinFixedObjOffset = -SlotSize; 3815 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3816 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3817 3818 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3819 for (WinEHHandlerType &H : TBME.HandlerArray) { 3820 int FrameIndex = H.CatchObj.FrameIndex; 3821 if (FrameIndex != INT_MAX) { 3822 // Ensure alignment. 3823 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3824 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3825 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3826 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3827 } 3828 } 3829 } 3830 3831 // Ensure alignment. 3832 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3833 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3834 int UnwindHelpFI = 3835 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3836 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3837 3838 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3839 // other frame setup instructions. 3840 MachineBasicBlock &MBB = MF.front(); 3841 auto MBBI = MBB.begin(); 3842 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3843 ++MBBI; 3844 3845 DebugLoc DL = MBB.findDebugLoc(MBBI); 3846 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3847 UnwindHelpFI) 3848 .addImm(-2); 3849 } 3850 3851 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3852 MachineFunction &MF, RegScavenger *RS) const { 3853 if (STI.is32Bit() && MF.hasEHFunclets()) 3854 restoreWinEHStackPointersInParent(MF); 3855 } 3856 3857 void X86FrameLowering::restoreWinEHStackPointersInParent( 3858 MachineFunction &MF) const { 3859 // 32-bit functions have to restore stack pointers when control is transferred 3860 // back to the parent function. These blocks are identified as eh pads that 3861 // are not funclet entries. 3862 bool IsSEH = isAsynchronousEHPersonality( 3863 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3864 for (MachineBasicBlock &MBB : MF) { 3865 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3866 if (NeedsRestore) 3867 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3868 /*RestoreSP=*/IsSEH); 3869 } 3870 } 3871