//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of TargetFrameLowering class. // //===----------------------------------------------------------------------===// #include "X86FrameLowering.h" #include "MCTargetDesc/X86MCTargetDesc.h" #include "X86InstrBuilder.h" #include "X86InstrInfo.h" #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetOptions.h" #include #define DEBUG_TYPE "x86-fl" STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); STATISTIC(NumFrameExtraProbe, "Number of extra stack probes generated in prologue"); using namespace llvm; X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, MaybeAlign StackAlignOverride) : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), STI.is64Bit() ? -8 : -4), STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { // Cache a bunch of frame-related predicates for this subtarget. SlotSize = TRI->getSlotSize(); Is64Bit = STI.is64Bit(); IsLP64 = STI.isTarget64BitLP64(); // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); StackPtr = TRI->getStackRegister(); } bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { return !MF.getFrameInfo().hasVarSizedObjects() && !MF.getInfo()->getHasPushSequences() && !MF.getInfo()->hasPreallocatedCall(); } /// canSimplifyCallFramePseudos - If there is a reserved call frame, the /// call frame pseudos can be simplified. Having a FP, as in the default /// implementation, is not sufficient here since we can't always use it. /// Use a more nuanced condition. bool X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { return hasReservedCallFrame(MF) || MF.getInfo()->hasPreallocatedCall() || (hasFP(MF) && !TRI->hasStackRealignment(MF)) || TRI->hasBasePointer(MF); } // needsFrameIndexResolution - Do we need to perform FI resolution for // this function. Normally, this is required only when the function // has any stack objects. However, FI resolution actually has another job, // not apparent from the title - it resolves callframesetup/destroy // that were not simplified earlier. // So, this is required for x86 functions that have push sequences even // when there are no stack objects. bool X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { return MF.getFrameInfo().hasStackObjects() || MF.getInfo()->getHasPushSequences(); } /// hasFP - Return true if the specified function should have a dedicated frame /// pointer register. This is true if the function has variable sized allocas /// or if frame pointer elimination is disabled. bool X86FrameLowering::hasFP(const MachineFunction &MF) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); return (MF.getTarget().Options.DisableFramePointerElim(MF) || TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || MF.getInfo()->getForceFramePointer() || MF.getInfo()->hasPreallocatedCall() || MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || MFI.hasStackMap() || MFI.hasPatchPoint() || (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment())); } static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { if (IsLP64) { if (isInt<8>(Imm)) return X86::SUB64ri8; return X86::SUB64ri32; } else { if (isInt<8>(Imm)) return X86::SUB32ri8; return X86::SUB32ri; } } static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { if (IsLP64) { if (isInt<8>(Imm)) return X86::ADD64ri8; return X86::ADD64ri32; } else { if (isInt<8>(Imm)) return X86::ADD32ri8; return X86::ADD32ri; } } static unsigned getSUBrrOpcode(bool IsLP64) { return IsLP64 ? X86::SUB64rr : X86::SUB32rr; } static unsigned getADDrrOpcode(bool IsLP64) { return IsLP64 ? X86::ADD64rr : X86::ADD32rr; } static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { if (IsLP64) { if (isInt<8>(Imm)) return X86::AND64ri8; return X86::AND64ri32; } if (isInt<8>(Imm)) return X86::AND32ri8; return X86::AND32ri; } static unsigned getLEArOpcode(bool IsLP64) { return IsLP64 ? X86::LEA64r : X86::LEA32r; } static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) { if (Use64BitReg) { if (isUInt<32>(Imm)) return X86::MOV32ri64; if (isInt<32>(Imm)) return X86::MOV64ri32; return X86::MOV64ri; } return X86::MOV32ri; } static bool isEAXLiveIn(MachineBasicBlock &MBB) { for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { unsigned Reg = RegMask.PhysReg; if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || Reg == X86::AH || Reg == X86::AL) return true; } return false; } /// Check if the flags need to be preserved before the terminators. /// This would be the case, if the eflags is live-in of the region /// composed by the terminators or live-out of that region, without /// being defined by a terminator. static bool flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { for (const MachineInstr &MI : MBB.terminators()) { bool BreakNext = false; for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (Reg != X86::EFLAGS) continue; // This terminator needs an eflags that is not defined // by a previous another terminator: // EFLAGS is live-in of the region composed by the terminators. if (!MO.isDef()) return true; // This terminator defines the eflags, i.e., we don't need to preserve it. // However, we still need to check this specific terminator does not // read a live-in value. BreakNext = true; } // We found a definition of the eflags, no need to preserve them. if (BreakNext) return false; } // None of the terminators use or define the eflags. // Check if they are live-out, that would imply we need to preserve them. for (const MachineBasicBlock *Succ : MBB.successors()) if (Succ->isLiveIn(X86::EFLAGS)) return true; return false; } /// emitSPUpdate - Emit a series of instructions to increment / decrement the /// stack pointer by a constant value. void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const DebugLoc &DL, int64_t NumBytes, bool InEpilogue) const { bool isSub = NumBytes < 0; uint64_t Offset = isSub ? -NumBytes : NumBytes; MachineInstr::MIFlag Flag = isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; uint64_t Chunk = (1LL << 31) - 1; MachineFunction &MF = *MBB.getParent(); const X86Subtarget &STI = MF.getSubtarget(); const X86TargetLowering &TLI = *STI.getTargetLowering(); const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); // It's ok to not take into account large chunks when probing, as the // allocation is split in smaller chunks anyway. if (EmitInlineStackProbe && !InEpilogue) { // This pseudo-instruction is going to be expanded, potentially using a // loop, by inlineStackProbe(). BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); return; } else if (Offset > Chunk) { // Rather than emit a long series of instructions for large offsets, // load the offset into a register and do one sub/add unsigned Reg = 0; unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); if (isSub && !isEAXLiveIn(MBB)) Reg = Rax; else Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); unsigned AddSubRROpc = isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); if (Reg) { BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg) .addImm(Offset) .setMIFlag(Flag); MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) .addReg(StackPtr) .addReg(Reg); MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. return; } else if (Offset > 8 * Chunk) { // If we would need more than 8 add or sub instructions (a >16GB stack // frame), it's worth spilling RAX to materialize this immediate. // pushq %rax // movabsq +-$Offset+-SlotSize, %rax // addq %rsp, %rax // xchg %rax, (%rsp) // movq (%rsp), %rsp assert(Is64Bit && "can't have 32-bit 16GB stack frame"); BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) .addReg(Rax, RegState::Kill) .setMIFlag(Flag); // Subtract is not commutative, so negate the offset and always use add. // Subtract 8 less and add 8 more to account for the PUSH we just did. if (isSub) Offset = -(Offset - SlotSize); else Offset = Offset + SlotSize; BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax) .addImm(Offset) .setMIFlag(Flag); MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) .addReg(Rax) .addReg(StackPtr); MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. // Exchange the new SP in RAX with the top of the stack. addRegOffset( BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), StackPtr, false, 0); // Load new SP from the top of the stack into RSP. addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), StackPtr, false, 0); return; } } while (Offset) { uint64_t ThisVal = std::min(Offset, Chunk); if (ThisVal == SlotSize) { // Use push / pop for slot sized adjustments as a size optimization. We // need to find a dead register when using pop. unsigned Reg = isSub ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) : TRI->findDeadCallerSavedReg(MBB, MBBI); if (Reg) { unsigned Opc = isSub ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) : (Is64Bit ? X86::POP64r : X86::POP32r); BuildMI(MBB, MBBI, DL, TII.get(Opc)) .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) .setMIFlag(Flag); Offset -= ThisVal; continue; } } BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) .setMIFlag(Flag); Offset -= ThisVal; } } MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { assert(Offset != 0 && "zero offset stack adjustment requested"); // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue // is tricky. bool UseLEA; if (!InEpilogue) { // Check if inserting the prologue at the beginning // of MBB would require to use LEA operations. // We need to use LEA operations if EFLAGS is live in, because // it means an instruction will read it before it gets defined. UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); } else { // If we can use LEA for SP but we shouldn't, check that none // of the terminators uses the eflags. Otherwise we will insert // a ADD that will redefine the eflags and break the condition. // Alternatively, we could move the ADD, but this may not be possible // and is an optimization anyway. UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); if (UseLEA && !STI.useLeaForSP()) UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); // If that assert breaks, that means we do not do the right thing // in canUseAsEpilogue. assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && "We shouldn't have allowed this insertion point"); } MachineInstrBuilder MI; if (UseLEA) { MI = addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(getLEArOpcode(Uses64BitFramePtr)), StackPtr), StackPtr, false, Offset); } else { bool IsSub = Offset < 0; uint64_t AbsOffset = IsSub ? -Offset : Offset; const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) : getADDriOpcode(Uses64BitFramePtr, AbsOffset); MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) .addReg(StackPtr) .addImm(AbsOffset); MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. } return MI; } int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, bool doMergeWithPrevious) const { if ((doMergeWithPrevious && MBBI == MBB.begin()) || (!doMergeWithPrevious && MBBI == MBB.end())) return 0; MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; PI = skipDebugInstructionsBackward(PI, MBB.begin()); // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI // instruction, and that there are no DBG_VALUE or other instructions between // ADD/SUB/LEA and its corresponding CFI instruction. /* TODO: Add support for the case where there are multiple CFI instructions below the ADD/SUB/LEA, e.g.: ... add cfi_def_cfa_offset cfi_offset ... */ if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) PI = std::prev(PI); unsigned Opc = PI->getOpcode(); int Offset = 0; if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && PI->getOperand(0).getReg() == StackPtr){ assert(PI->getOperand(1).getReg() == StackPtr); Offset = PI->getOperand(2).getImm(); } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && PI->getOperand(0).getReg() == StackPtr && PI->getOperand(1).getReg() == StackPtr && PI->getOperand(2).getImm() == 1 && PI->getOperand(3).getReg() == X86::NoRegister && PI->getOperand(5).getReg() == X86::NoRegister) { // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. Offset = PI->getOperand(4).getImm(); } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && PI->getOperand(0).getReg() == StackPtr) { assert(PI->getOperand(1).getReg() == StackPtr); Offset = -PI->getOperand(2).getImm(); } else return 0; PI = MBB.erase(PI); if (PI != MBB.end() && PI->isCFIInstruction()) { auto CIs = MBB.getParent()->getFrameInstructions(); MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) PI = MBB.erase(PI); } if (!doMergeWithPrevious) MBBI = skipDebugInstructionsForward(PI, MBB.end()); return Offset; } void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, const MCCFIInstruction &CFIInst, MachineInstr::MIFlag Flag) const { MachineFunction &MF = *MBB.getParent(); unsigned CFIIndex = MF.addFrameInst(CFIInst); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlag(Flag); } /// Emits Dwarf Info specifying offsets of callee saved registers and /// frame pointer. This is called only when basic block sections are enabled. void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { MachineFunction &MF = *MBB.getParent(); if (!hasFP(MF)) { emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); return; } const MachineModuleInfo &MMI = MF.getMMI(); const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); const Register FramePtr = TRI->getFrameRegister(MF); const Register MachineFramePtr = STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); // Offset = space for return address + size of the frame pointer itself. unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); BuildCFI(MBB, MBBI, DebugLoc{}, MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); } void X86FrameLowering::emitCalleeSavedFrameMoves( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool IsPrologue) const { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = MF.getFrameInfo(); MachineModuleInfo &MMI = MF.getMMI(); const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); // Add callee saved registers to move list. const std::vector &CSI = MFI.getCalleeSavedInfo(); // Calculate offsets. for (const CalleeSavedInfo &I : CSI) { int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); Register Reg = I.getReg(); unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); if (IsPrologue) { BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); } else { BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createRestore(nullptr, DwarfReg)); } } } void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, MachineBasicBlock &MBB) const { const MachineFunction &MF = *MBB.getParent(); // Insertion point. MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); // Fake a debug loc. DebugLoc DL; if (MBBI != MBB.end()) DL = MBBI->getDebugLoc(); // Zero out FP stack if referenced. Do this outside of the loop below so that // it's done only once. const X86Subtarget &ST = MF.getSubtarget(); for (MCRegister Reg : RegsToZero.set_bits()) { if (!X86::RFP80RegClass.contains(Reg)) continue; unsigned NumFPRegs = ST.is64Bit() ? 8 : 7; for (unsigned i = 0; i != NumFPRegs; ++i) BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0)); for (unsigned i = 0; i != NumFPRegs; ++i) BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0); break; } // For GPRs, we only care to clear out the 32-bit register. BitVector GPRsToZero(TRI->getNumRegs()); for (MCRegister Reg : RegsToZero.set_bits()) if (TRI->isGeneralPurposeRegister(MF, Reg)) { GPRsToZero.set(getX86SubSuperRegisterOrZero(Reg, 32)); RegsToZero.reset(Reg); } for (MCRegister Reg : GPRsToZero.set_bits()) BuildMI(MBB, MBBI, DL, TII.get(X86::XOR32rr), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); // Zero out registers. for (MCRegister Reg : RegsToZero.set_bits()) { if (ST.hasMMX() && X86::VR64RegClass.contains(Reg)) // FIXME: Ignore MMX registers? continue; unsigned XorOp; if (X86::VR128RegClass.contains(Reg)) { // XMM# if (!ST.hasSSE1()) continue; XorOp = X86::PXORrr; } else if (X86::VR256RegClass.contains(Reg)) { // YMM# if (!ST.hasAVX()) continue; XorOp = X86::VPXORrr; } else if (X86::VR512RegClass.contains(Reg)) { // ZMM# if (!ST.hasAVX512()) continue; XorOp = X86::VPXORYrr; } else if (X86::VK1RegClass.contains(Reg) || X86::VK2RegClass.contains(Reg) || X86::VK4RegClass.contains(Reg) || X86::VK8RegClass.contains(Reg) || X86::VK16RegClass.contains(Reg)) { if (!ST.hasVLX()) continue; XorOp = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr; } else { continue; } BuildMI(MBB, MBBI, DL, TII.get(XorOp), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); } } void X86FrameLowering::emitStackProbe( MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, Optional InstrNum) const { const X86Subtarget &STI = MF.getSubtarget(); if (STI.isTargetWindowsCoreCLR()) { if (InProlog) { BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) .addImm(0 /* no explicit stack size */); } else { emitStackProbeInline(MF, MBB, MBBI, DL, false); } } else { emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum); } } bool X86FrameLowering::stackProbeFunctionModifiesSP() const { return STI.isOSWindows() && !STI.isTargetWin64(); } void X86FrameLowering::inlineStackProbe(MachineFunction &MF, MachineBasicBlock &PrologMBB) const { auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { return MI.getOpcode() == X86::STACKALLOC_W_PROBING; }); if (Where != PrologMBB.end()) { DebugLoc DL = PrologMBB.findDebugLoc(Where); emitStackProbeInline(MF, PrologMBB, Where, DL, true); Where->eraseFromParent(); } } void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { const X86Subtarget &STI = MF.getSubtarget(); if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); else emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); } void X86FrameLowering::emitStackProbeInlineGeneric( MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { MachineInstr &AllocWithProbe = *MBBI; uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); const X86Subtarget &STI = MF.getSubtarget(); const X86TargetLowering &TLI = *STI.getTargetLowering(); assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && "different expansion expected for CoreCLR 64 bit"); const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); uint64_t ProbeChunk = StackProbeSize * 8; uint64_t MaxAlign = TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; // Synthesize a loop or unroll it, depending on the number of iterations. // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left // between the unaligned rsp and current rsp. if (Offset > ProbeChunk) { emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, MaxAlign % StackProbeSize); } else { emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, MaxAlign % StackProbeSize); } } void X86FrameLowering::emitStackProbeInlineGenericBlock( MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, uint64_t AlignOffset) const { const bool NeedsDwarfCFI = needsDwarfCFI(MF); const bool HasFP = hasFP(MF); const X86Subtarget &STI = MF.getSubtarget(); const X86TargetLowering &TLI = *STI.getTargetLowering(); const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); uint64_t CurrentOffset = 0; assert(AlignOffset < StackProbeSize); // If the offset is so small it fits within a page, there's nothing to do. if (StackProbeSize < Offset + AlignOffset) { MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) .addReg(StackPtr) .addImm(StackProbeSize - AlignOffset) .setMIFlag(MachineInstr::FrameSetup); if (!HasFP && NeedsDwarfCFI) { BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createAdjustCfaOffset( nullptr, StackProbeSize - AlignOffset)); } MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) .setMIFlag(MachineInstr::FrameSetup), StackPtr, false, 0) .addImm(0) .setMIFlag(MachineInstr::FrameSetup); NumFrameExtraProbe++; CurrentOffset = StackProbeSize - AlignOffset; } // For the next N - 1 pages, just probe. I tried to take advantage of // natural probes but it implies much more logic and there was very few // interesting natural probes to interleave. while (CurrentOffset + StackProbeSize < Offset) { MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) .addReg(StackPtr) .addImm(StackProbeSize) .setMIFlag(MachineInstr::FrameSetup); MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. if (!HasFP && NeedsDwarfCFI) { BuildCFI( MBB, MBBI, DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); } addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) .setMIFlag(MachineInstr::FrameSetup), StackPtr, false, 0) .addImm(0) .setMIFlag(MachineInstr::FrameSetup); NumFrameExtraProbe++; CurrentOffset += StackProbeSize; } // No need to probe the tail, it is smaller than a Page. uint64_t ChunkSize = Offset - CurrentOffset; MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) .addReg(StackPtr) .addImm(ChunkSize) .setMIFlag(MachineInstr::FrameSetup); // No need to adjust Dwarf CFA offset here, the last position of the stack has // been defined MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. } void X86FrameLowering::emitStackProbeInlineGenericLoop( MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, uint64_t AlignOffset) const { assert(Offset && "null offset"); const bool NeedsDwarfCFI = needsDwarfCFI(MF); const bool HasFP = hasFP(MF); const X86Subtarget &STI = MF.getSubtarget(); const X86TargetLowering &TLI = *STI.getTargetLowering(); const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); if (AlignOffset) { if (AlignOffset < StackProbeSize) { // Perform a first smaller allocation followed by a probe. const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset); MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr) .addReg(StackPtr) .addImm(AlignOffset) .setMIFlag(MachineInstr::FrameSetup); MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) .setMIFlag(MachineInstr::FrameSetup), StackPtr, false, 0) .addImm(0) .setMIFlag(MachineInstr::FrameSetup); NumFrameExtraProbe++; Offset -= AlignOffset; } } // Synthesize a loop NumFrameLoopProbe++; const BasicBlock *LLVM_BB = MBB.getBasicBlock(); MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator MBBIter = ++MBB.getIterator(); MF.insert(MBBIter, testMBB); MF.insert(MBBIter, tailMBB); Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : Is64Bit ? X86::R11D : X86::EAX; BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) .addReg(StackPtr) .setMIFlag(MachineInstr::FrameSetup); // save loop bound { const unsigned BoundOffset = alignDown(Offset, StackProbeSize); const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, BoundOffset); BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) .addReg(FinalStackProbed) .addImm(BoundOffset) .setMIFlag(MachineInstr::FrameSetup); // while in the loop, use loop-invariant reg for CFI, // instead of the stack pointer, which changes during the loop if (!HasFP && NeedsDwarfCFI) { // x32 uses the same DWARF register numbers as x86-64, // so there isn't a register number for r11d, we must use r11 instead const Register DwarfFinalStackProbed = STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FinalStackProbed, 64)) : FinalStackProbed; BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true))); BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset)); } } // allocate a page { const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr) .addReg(StackPtr) .addImm(StackProbeSize) .setMIFlag(MachineInstr::FrameSetup); } // touch the page addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) .setMIFlag(MachineInstr::FrameSetup), StackPtr, false, 0) .addImm(0) .setMIFlag(MachineInstr::FrameSetup); // cmp with stack pointer bound BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) .addReg(StackPtr) .addReg(FinalStackProbed) .setMIFlag(MachineInstr::FrameSetup); // jump BuildMI(testMBB, DL, TII.get(X86::JCC_1)) .addMBB(testMBB) .addImm(X86::COND_NE) .setMIFlag(MachineInstr::FrameSetup); testMBB->addSuccessor(testMBB); testMBB->addSuccessor(tailMBB); // BB management tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); MBB.addSuccessor(testMBB); // handle tail const unsigned TailOffset = Offset % StackProbeSize; MachineBasicBlock::iterator TailMBBIter = tailMBB->begin(); if (TailOffset) { const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); BuildMI(*tailMBB, TailMBBIter, DL, TII.get(Opc), StackPtr) .addReg(StackPtr) .addImm(TailOffset) .setMIFlag(MachineInstr::FrameSetup); } // after the loop, switch back to stack pointer for CFI if (!HasFP && NeedsDwarfCFI) { // x32 uses the same DWARF register numbers as x86-64, // so there isn't a register number for esp, we must use rsp instead const Register DwarfStackPtr = STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(StackPtr, 64)) : Register(StackPtr); BuildCFI(*tailMBB, TailMBBIter, DL, MCCFIInstruction::createDefCfaRegister( nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true))); } // Update Live In information recomputeLiveIns(*testMBB); recomputeLiveIns(*tailMBB); } void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { const X86Subtarget &STI = MF.getSubtarget(); assert(STI.is64Bit() && "different expansion needed for 32 bit"); assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); const TargetInstrInfo &TII = *STI.getInstrInfo(); const BasicBlock *LLVM_BB = MBB.getBasicBlock(); // RAX contains the number of bytes of desired stack adjustment. // The handling here assumes this value has already been updated so as to // maintain stack alignment. // // We need to exit with RSP modified by this amount and execute suitable // page touches to notify the OS that we're growing the stack responsibly. // All stack probing must be done without modifying RSP. // // MBB: // SizeReg = RAX; // ZeroReg = 0 // CopyReg = RSP // Flags, TestReg = CopyReg - SizeReg // FinalReg = !Flags.Ovf ? TestReg : ZeroReg // LimitReg = gs magic thread env access // if FinalReg >= LimitReg goto ContinueMBB // RoundBB: // RoundReg = page address of FinalReg // LoopMBB: // LoopReg = PHI(LimitReg,ProbeReg) // ProbeReg = LoopReg - PageSize // [ProbeReg] = 0 // if (ProbeReg > RoundReg) goto LoopMBB // ContinueMBB: // RSP = RSP - RAX // [rest of original MBB] // Set up the new basic blocks MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); MF.insert(MBBIter, RoundMBB); MF.insert(MBBIter, LoopMBB); MF.insert(MBBIter, ContinueMBB); // Split MBB and move the tail portion down to ContinueMBB. MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); // Some useful constants const int64_t ThreadEnvironmentStackLimit = 0x10; const int64_t PageSize = 0x1000; const int64_t PageMask = ~(PageSize - 1); // Registers we need. For the normal case we use virtual // registers. For the prolog expansion we use RAX, RCX and RDX. MachineRegisterInfo &MRI = MF.getRegInfo(); const TargetRegisterClass *RegClass = &X86::GR64RegClass; const Register SizeReg = InProlog ? X86::RAX : MRI.createVirtualRegister(RegClass), ZeroReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass), CopyReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), TestReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), FinalReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), RoundedReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), LimitReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass), JoinReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass), ProbeReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass); // SP-relative offsets where we can save RCX and RDX. int64_t RCXShadowSlot = 0; int64_t RDXShadowSlot = 0; // If inlining in the prolog, save RCX and RDX. if (InProlog) { // Compute the offsets. We need to account for things already // pushed onto the stack at this point: return address, frame // pointer (if used), and callee saves. X86MachineFunctionInfo *X86FI = MF.getInfo(); const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); const bool HasFP = hasFP(MF); // Check if we need to spill RCX and/or RDX. // Here we assume that no earlier prologue instruction changes RCX and/or // RDX, so checking the block live-ins is enough. const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); // Assign the initial slot to both registers, then change RDX's slot if both // need to be spilled. if (IsRCXLiveIn) RCXShadowSlot = InitSlot; if (IsRDXLiveIn) RDXShadowSlot = InitSlot; if (IsRDXLiveIn && IsRCXLiveIn) RDXShadowSlot += 8; // Emit the saves if needed. if (IsRCXLiveIn) addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, RCXShadowSlot) .addReg(X86::RCX); if (IsRDXLiveIn) addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, RDXShadowSlot) .addReg(X86::RDX); } else { // Not in the prolog. Copy RAX to a virtual reg. BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); } // Add code to MBB to check for overflow and set the new target stack pointer // to zero if so. BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) .addReg(ZeroReg, RegState::Undef) .addReg(ZeroReg, RegState::Undef); BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) .addReg(CopyReg) .addReg(SizeReg); BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) .addReg(TestReg) .addReg(ZeroReg) .addImm(X86::COND_B); // FinalReg now holds final stack pointer value, or zero if // allocation would overflow. Compare against the current stack // limit from the thread environment block. Note this limit is the // lowest touched page on the stack, not the point at which the OS // will cause an overflow exception, so this is just an optimization // to avoid unnecessarily touching pages that are below the current // SP but already committed to the stack by the OS. BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) .addReg(0) .addImm(1) .addReg(0) .addImm(ThreadEnvironmentStackLimit) .addReg(X86::GS); BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); // Jump if the desired stack pointer is at or above the stack limit. BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); // Add code to roundMBB to round the final stack pointer to a page boundary. RoundMBB->addLiveIn(FinalReg); BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) .addReg(FinalReg) .addImm(PageMask); BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); // LimitReg now holds the current stack limit, RoundedReg page-rounded // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page // and probe until we reach RoundedReg. if (!InProlog) { BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) .addReg(LimitReg) .addMBB(RoundMBB) .addReg(ProbeReg) .addMBB(LoopMBB); } LoopMBB->addLiveIn(JoinReg); addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, false, -PageSize); // Probe by storing a byte onto the stack. BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) .addReg(ProbeReg) .addImm(1) .addReg(0) .addImm(0) .addReg(0) .addImm(0); LoopMBB->addLiveIn(RoundedReg); BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) .addReg(RoundedReg) .addReg(ProbeReg); BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); // If in prolog, restore RDX and RCX. if (InProlog) { if (RCXShadowSlot) // It means we spilled RCX in the prologue. addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm), X86::RCX), X86::RSP, false, RCXShadowSlot); if (RDXShadowSlot) // It means we spilled RDX in the prologue. addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm), X86::RDX), X86::RSP, false, RDXShadowSlot); } // Now that the probing is done, add code to continueMBB to update // the stack pointer for real. ContinueMBB->addLiveIn(SizeReg); BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) .addReg(X86::RSP) .addReg(SizeReg); // Add the control flow edges we need. MBB.addSuccessor(ContinueMBB); MBB.addSuccessor(RoundMBB); RoundMBB->addSuccessor(LoopMBB); LoopMBB->addSuccessor(ContinueMBB); LoopMBB->addSuccessor(LoopMBB); // Mark all the instructions added to the prolog as frame setup. if (InProlog) { for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { BeforeMBBI->setFlag(MachineInstr::FrameSetup); } for (MachineInstr &MI : *RoundMBB) { MI.setFlag(MachineInstr::FrameSetup); } for (MachineInstr &MI : *LoopMBB) { MI.setFlag(MachineInstr::FrameSetup); } for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); CMBBI != ContinueMBBI; ++CMBBI) { CMBBI->setFlag(MachineInstr::FrameSetup); } } } void X86FrameLowering::emitStackProbeCall( MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, Optional InstrNum) const { bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; // FIXME: Add indirect thunk support and remove this. if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) report_fatal_error("Emitting stack probe calls on 64-bit with the large " "code model and indirect thunks not yet implemented."); unsigned CallOp; if (Is64Bit) CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; else CallOp = X86::CALLpcrel32; StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); MachineInstrBuilder CI; MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); // All current stack probes take AX and SP as input, clobber flags, and // preserve all registers. x86_64 probes leave RSP unmodified. if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { // For the large code model, we have to call through a register. Use R11, // as it is scratch in all supported calling conventions. BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) .addExternalSymbol(MF.createExternalSymbolName(Symbol)); CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); } else { CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) .addExternalSymbol(MF.createExternalSymbolName(Symbol)); } unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; CI.addReg(AX, RegState::Implicit) .addReg(SP, RegState::Implicit) .addReg(AX, RegState::Define | RegState::Implicit) .addReg(SP, RegState::Define | RegState::Implicit) .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); MachineInstr *ModInst = CI; if (STI.isTargetWin64() || !STI.isOSWindows()) { // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp // themselves. They also does not clobber %rax so we can reuse it when // adjusting %rsp. // All other platforms do not specify a particular ABI for the stack probe // function, so we arbitrarily define it to not adjust %esp/%rsp itself. ModInst = BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) .addReg(SP) .addReg(AX); } // DebugInfo variable locations -- if there's an instruction number for the // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that // modifies SP. if (InstrNum) { if (STI.isTargetWin64() || !STI.isOSWindows()) { // Label destination operand of the subtract. MF.makeDebugValueSubstitution(*InstrNum, {ModInst->getDebugInstrNum(), 0}); } else { // Label the call. The operand number is the penultimate operand, zero // based. unsigned SPDefOperand = ModInst->getNumOperands() - 2; MF.makeDebugValueSubstitution( *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand}); } } if (InProlog) { // Apply the frame setup flag to all inserted instrs. for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) ExpansionMBBI->setFlag(MachineInstr::FrameSetup); } } static unsigned calculateSetFPREG(uint64_t SPAdjust) { // Win64 ABI has a less restrictive limitation of 240; 128 works equally well // and might require smaller successive adjustments. const uint64_t Win64MaxSEHOffset = 128; uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. return SEHFrameOffset & -16; } // If we're forcing a stack realignment we can't rely on just the frame // info, we need to know the ABI stack alignment as well in case we // have a call out. Otherwise just make sure we have some alignment - we'll // go with the minimum SlotSize. uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. Align StackAlign = getStackAlign(); if (MF.getFunction().hasFnAttribute("stackrealign")) { if (MFI.hasCalls()) MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; else if (MaxAlign < SlotSize) MaxAlign = Align(SlotSize); } return MaxAlign.value(); } void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, unsigned Reg, uint64_t MaxAlign) const { uint64_t Val = -MaxAlign; unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); MachineFunction &MF = *MBB.getParent(); const X86Subtarget &STI = MF.getSubtarget(); const X86TargetLowering &TLI = *STI.getTargetLowering(); const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); // We want to make sure that (in worst case) less than StackProbeSize bytes // are not probed after the AND. This assumption is used in // emitStackProbeInlineGeneric. if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { { NumFrameLoopProbe++; MachineBasicBlock *entryMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock()); MachineBasicBlock *headMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock()); MachineBasicBlock *bodyMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock()); MachineBasicBlock *footMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock()); MachineFunction::iterator MBBIter = MBB.getIterator(); MF.insert(MBBIter, entryMBB); MF.insert(MBBIter, headMBB); MF.insert(MBBIter, bodyMBB); MF.insert(MBBIter, footMBB); const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : Is64Bit ? X86::R11D : X86::EAX; // Setup entry block { entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) .addReg(StackPtr) .setMIFlag(MachineInstr::FrameSetup); MachineInstr *MI = BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) .addReg(FinalStackProbed) .addImm(Val) .setMIFlag(MachineInstr::FrameSetup); // The EFLAGS implicit def is dead. MI->getOperand(3).setIsDead(); BuildMI(entryMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) .addReg(FinalStackProbed) .addReg(StackPtr) .setMIFlag(MachineInstr::FrameSetup); BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) .addMBB(&MBB) .addImm(X86::COND_E) .setMIFlag(MachineInstr::FrameSetup); entryMBB->addSuccessor(headMBB); entryMBB->addSuccessor(&MBB); } // Loop entry block { const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) .addReg(StackPtr) .addImm(StackProbeSize) .setMIFlag(MachineInstr::FrameSetup); BuildMI(headMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) .addReg(FinalStackProbed) .addReg(StackPtr) .setMIFlag(MachineInstr::FrameSetup); // jump BuildMI(headMBB, DL, TII.get(X86::JCC_1)) .addMBB(footMBB) .addImm(X86::COND_B) .setMIFlag(MachineInstr::FrameSetup); headMBB->addSuccessor(bodyMBB); headMBB->addSuccessor(footMBB); } // setup loop body { addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) .setMIFlag(MachineInstr::FrameSetup), StackPtr, false, 0) .addImm(0) .setMIFlag(MachineInstr::FrameSetup); const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) .addReg(StackPtr) .addImm(StackProbeSize) .setMIFlag(MachineInstr::FrameSetup); // cmp with stack pointer bound BuildMI(bodyMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) .addReg(FinalStackProbed) .addReg(StackPtr) .setMIFlag(MachineInstr::FrameSetup); // jump BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) .addMBB(bodyMBB) .addImm(X86::COND_B) .setMIFlag(MachineInstr::FrameSetup); bodyMBB->addSuccessor(bodyMBB); bodyMBB->addSuccessor(footMBB); } // setup loop footer { BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) .addReg(FinalStackProbed) .setMIFlag(MachineInstr::FrameSetup); addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) .setMIFlag(MachineInstr::FrameSetup), StackPtr, false, 0) .addImm(0) .setMIFlag(MachineInstr::FrameSetup); footMBB->addSuccessor(&MBB); } recomputeLiveIns(*headMBB); recomputeLiveIns(*bodyMBB); recomputeLiveIns(*footMBB); recomputeLiveIns(MBB); } } else { MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) .addReg(Reg) .addImm(Val) .setMIFlag(MachineInstr::FrameSetup); // The EFLAGS implicit def is dead. MI->getOperand(3).setIsDead(); } } bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be // clobbered by any interrupt handler. assert(&STI == &MF.getSubtarget() && "MF used frame lowering for wrong subtarget"); const Function &Fn = MF.getFunction(); const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); } /// Return true if we need to use the restricted Windows x64 prologue and /// epilogue code patterns that can be described with WinCFI (.seh_* /// directives). bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); } bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { return !isWin64Prologue(MF) && MF.needsFrameMoves(); } /// emitPrologue - Push callee-saved registers onto the stack, which /// automatically adjust the stack pointer. Adjust the stack pointer to allocate /// space for local variables. Also emit labels used by the exception handler to /// generate the exception handling frames. /* Here's a gist of what gets emitted: ; Establish frame pointer, if needed [if needs FP] push %rbp .cfi_def_cfa_offset 16 .cfi_offset %rbp, -16 .seh_pushreg %rpb mov %rsp, %rbp .cfi_def_cfa_register %rbp ; Spill general-purpose registers [for all callee-saved GPRs] pushq % [if not needs FP] .cfi_def_cfa_offset (offset from RETADDR) .seh_pushreg % ; If the required stack alignment > default stack alignment ; rsp needs to be re-aligned. This creates a "re-alignment gap" ; of unknown size in the stack frame. [if stack needs re-alignment] and $MASK, %rsp ; Allocate space for locals [if target is Windows and allocated space > 4096 bytes] ; Windows needs special care for allocations larger ; than one page. mov $NNN, %rax call ___chkstk_ms/___chkstk sub %rax, %rsp [else] sub $NNN, %rsp [if needs FP] .seh_stackalloc (size of XMM spill slots) .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots [else] .seh_stackalloc NNN ; Spill XMMs ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, ; they may get spilled on any platform, if the current function ; calls @llvm.eh.unwind.init [if needs FP] [for all callee-saved XMM registers] movaps %, -MMM(%rbp) [for all callee-saved XMM registers] .seh_savexmm %, (-MMM + SEHFrameOffset) ; i.e. the offset relative to (%rbp - SEHFrameOffset) [else] [for all callee-saved XMM registers] movaps %, KKK(%rsp) [for all callee-saved XMM registers] .seh_savexmm %, KKK .seh_endprologue [if needs base pointer] mov %rsp, %rbx [if needs to restore base pointer] mov %rsp, -MMM(%rbp) ; Emit CFI info [if needs FP] [for all callee-saved registers] .cfi_offset %, (offset from %rbp) [else] .cfi_def_cfa_offset (offset from RETADDR) [for all callee-saved registers] .cfi_offset %, (offset from %rsp) Notes: - .seh directives are emitted only for Windows 64 ABI - .cv_fpo directives are emitted on win32 when emitting CodeView - .cfi directives are emitted for all other ABIs - for 32-bit code, substitute %e?? registers for %r?? */ void X86FrameLowering::emitPrologue(MachineFunction &MF, MachineBasicBlock &MBB) const { assert(&STI == &MF.getSubtarget() && "MF used frame lowering for wrong subtarget"); MachineBasicBlock::iterator MBBI = MBB.begin(); MachineFrameInfo &MFI = MF.getFrameInfo(); const Function &Fn = MF.getFunction(); MachineModuleInfo &MMI = MF.getMMI(); X86MachineFunctionInfo *X86FI = MF.getInfo(); uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. bool IsFunclet = MBB.isEHFuncletEntry(); EHPersonality Personality = EHPersonality::Unknown; if (Fn.hasPersonalityFn()) Personality = classifyEHPersonality(Fn.getPersonalityFn()); bool FnHasClrFunclet = MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; bool IsClrFunclet = IsFunclet && FnHasClrFunclet; bool HasFP = hasFP(MF); bool IsWin64Prologue = isWin64Prologue(MF); bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); // FIXME: Emit FPO data for EH funclets. bool NeedsWinFPO = !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; bool NeedsDwarfCFI = needsDwarfCFI(MF); Register FramePtr = TRI->getFrameRegister(MF); const Register MachineFramePtr = STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; Register BasePtr = TRI->getBaseRegister(); bool HasWinCFI = false; // Debug location must be unknown since the first debug location is used // to determine the end of the prologue. DebugLoc DL; // Space reserved for stack-based arguments when making a (ABI-guaranteed) // tail call. unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); if (TailCallArgReserveSize && IsWin64Prologue) report_fatal_error("Can't handle guaranteed tail call under win64 yet"); const bool EmitStackProbeCall = STI.getTargetLowering()->hasStackProbeSymbol(MF); unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); if (HasFP && X86FI->hasSwiftAsyncContext()) { switch (MF.getTarget().Options.SwiftAsyncFramePointer) { case SwiftAsyncFramePointerMode::DeploymentBased: if (STI.swiftAsyncContextIsDynamicallySet()) { // The special symbol below is absolute and has a *value* suitable to be // combined with the frame pointer directly. BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) .addUse(MachineFramePtr) .addUse(X86::RIP) .addImm(1) .addUse(X86::NoRegister) .addExternalSymbol("swift_async_extendedFramePointerFlags", X86II::MO_GOTPCREL) .addUse(X86::NoRegister); break; } LLVM_FALLTHROUGH; case SwiftAsyncFramePointerMode::Always: BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) .addUse(MachineFramePtr) .addImm(60) .setMIFlag(MachineInstr::FrameSetup); break; case SwiftAsyncFramePointerMode::Never: break; } } // Re-align the stack on 64-bit if the x86-interrupt calling convention is // used and an error code was pushed, since the x86-64 ABI requires a 16-byte // stack alignment. if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && Fn.arg_size() == 2) { StackSize += 8; MFI.setStackSize(StackSize); emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); } // If this is x86-64 and the Red Zone is not disabled, if we are a leaf // function, and use up to 128 bytes of stack space, don't have a frame // pointer, calls, or dynamic alloca then we do not need to adjust the // stack pointer (we fit in the Red Zone). We also check that we don't // push and pop from the stack. if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && !MFI.hasVarSizedObjects() && // No dynamic alloca. !MFI.adjustsStack() && // No calls. !EmitStackProbeCall && // No stack probes. !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. !MF.shouldSplitStack()) { // Regular stack uint64_t MinSize = X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); if (HasFP) MinSize += SlotSize; X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); MFI.setStackSize(StackSize); } // Insert stack pointer adjustment for later moving of return addr. Only // applies to tail call optimized functions where the callee argument stack // size is bigger than the callers. if (TailCallArgReserveSize != 0) { BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, /*InEpilogue=*/false) .setMIFlag(MachineInstr::FrameSetup); } // Mapping for machine moves: // // DST: VirtualFP AND // SRC: VirtualFP => DW_CFA_def_cfa_offset // ELSE => DW_CFA_def_cfa // // SRC: VirtualFP AND // DST: Register => DW_CFA_def_cfa_register // // ELSE // OFFSET < 0 => DW_CFA_offset_extended_sf // REG < 64 => DW_CFA_offset + Reg // ELSE => DW_CFA_offset_extended uint64_t NumBytes = 0; int stackGrowth = -SlotSize; // Find the funclet establisher parameter Register Establisher = X86::NoRegister; if (IsClrFunclet) Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; else if (IsFunclet) Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { // Immediately spill establisher into the home slot. // The runtime cares about this. // MOV64mr %rdx, 16(%rsp) unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) .addReg(Establisher) .setMIFlag(MachineInstr::FrameSetup); MBB.addLiveIn(Establisher); } if (HasFP) { assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); // Calculate required stack adjustment. uint64_t FrameSize = StackSize - SlotSize; // If required, include space for extra hidden slot for stashing base pointer. if (X86FI->getRestoreBasePointer()) FrameSize += SlotSize; NumBytes = FrameSize - (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); // Callee-saved registers are pushed on stack before the stack is realigned. if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) NumBytes = alignTo(NumBytes, MaxAlign); // Save EBP/RBP into the appropriate stack slot. BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) .addReg(MachineFramePtr, RegState::Kill) .setMIFlag(MachineInstr::FrameSetup); if (NeedsDwarfCFI) { // Mark the place where EBP/RBP was saved. // Define the current CFA rule to use the provided offset. assert(StackSize); BuildCFI(MBB, MBBI, DL, MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth), MachineInstr::FrameSetup); // Change the rule for the FramePtr to be an "offset" rule. unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(nullptr, DwarfFramePtr, 2 * stackGrowth), MachineInstr::FrameSetup); } if (NeedsWinCFI) { HasWinCFI = true; BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) .addImm(FramePtr) .setMIFlag(MachineInstr::FrameSetup); } if (!IsFunclet) { if (X86FI->hasSwiftAsyncContext()) { const auto &Attrs = MF.getFunction().getAttributes(); // Before we update the live frame pointer we have to ensure there's a // valid (or null) asynchronous context in its slot just before FP in // the frame record, so store it now. if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { // We have an initial context in r14, store it just before the frame // pointer. MBB.addLiveIn(X86::R14); BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) .addReg(X86::R14) .setMIFlag(MachineInstr::FrameSetup); } else { // No initial context, store null so that there's no pointer that // could be misused. BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8)) .addImm(0) .setMIFlag(MachineInstr::FrameSetup); } if (NeedsWinCFI) { HasWinCFI = true; BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) .addImm(X86::R14) .setMIFlag(MachineInstr::FrameSetup); } BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) .addUse(X86::RSP) .addImm(1) .addUse(X86::NoRegister) .addImm(8) .addUse(X86::NoRegister) .setMIFlag(MachineInstr::FrameSetup); BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP) .addUse(X86::RSP) .addImm(8) .setMIFlag(MachineInstr::FrameSetup); } if (!IsWin64Prologue && !IsFunclet) { // Update EBP with the new base value. if (!X86FI->hasSwiftAsyncContext()) BuildMI(MBB, MBBI, DL, TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), FramePtr) .addReg(StackPtr) .setMIFlag(MachineInstr::FrameSetup); if (NeedsDwarfCFI) { // Mark effective beginning of when frame pointer becomes valid. // Define the current CFA to use the EBP/RBP register. unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); BuildCFI( MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr), MachineInstr::FrameSetup); } if (NeedsWinFPO) { // .cv_fpo_setframe $FramePtr HasWinCFI = true; BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) .addImm(FramePtr) .addImm(0) .setMIFlag(MachineInstr::FrameSetup); } } } } else { assert(!IsFunclet && "funclets without FPs not yet implemented"); NumBytes = StackSize - (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); } // Update the offset adjustment, which is mainly used by codeview to translate // from ESP to VFRAME relative local variable offsets. if (!IsFunclet) { if (HasFP && TRI->hasStackRealignment(MF)) MFI.setOffsetAdjustment(-NumBytes); else MFI.setOffsetAdjustment(-StackSize); } // For EH funclets, only allocate enough space for outgoing calls. Save the // NumBytes value that we would've used for the parent frame. unsigned ParentFrameNumBytes = NumBytes; if (IsFunclet) NumBytes = getWinEHFuncletFrameSize(MF); // Skip the callee-saved push instructions. bool PushedRegs = false; int StackOffset = 2 * stackGrowth; while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup) && (MBBI->getOpcode() == X86::PUSH32r || MBBI->getOpcode() == X86::PUSH64r)) { PushedRegs = true; Register Reg = MBBI->getOperand(0).getReg(); ++MBBI; if (!HasFP && NeedsDwarfCFI) { // Mark callee-saved push instruction. // Define the current CFA rule to use the provided offset. assert(StackSize); BuildCFI(MBB, MBBI, DL, MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset), MachineInstr::FrameSetup); StackOffset += stackGrowth; } if (NeedsWinCFI) { HasWinCFI = true; BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) .addImm(Reg) .setMIFlag(MachineInstr::FrameSetup); } } // Realign stack after we pushed callee-saved registers (so that we'll be // able to calculate their offsets from the frame pointer). // Don't do this for Win64, it needs to realign the stack after the prologue. if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) { assert(HasFP && "There should be a frame pointer if stack is realigned."); BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); if (NeedsWinCFI) { HasWinCFI = true; BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) .addImm(MaxAlign) .setMIFlag(MachineInstr::FrameSetup); } } // If there is an SUB32ri of ESP immediately before this instruction, merge // the two. This can be the case when tail call elimination is enabled and // the callee has more arguments then the caller. NumBytes -= mergeSPUpdates(MBB, MBBI, true); // Adjust stack pointer: ESP -= numbytes. // Windows and cygwin/mingw require a prologue helper routine when allocating // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the // stack and adjust the stack pointer in one go. The 64-bit version of // __chkstk is only responsible for probing the stack. The 64-bit prologue is // responsible for adjusting the stack pointer. Touching the stack at 4K // increments is necessary to ensure that the guard pages used by the OS // virtual memory manager are allocated in correct sequence. uint64_t AlignedNumBytes = NumBytes; if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { assert(!X86FI->getUsesRedZone() && "The Red Zone is not accounted for in stack probes"); // Check whether EAX is livein for this block. bool isEAXAlive = isEAXLiveIn(MBB); if (isEAXAlive) { if (Is64Bit) { // Save RAX BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) .addReg(X86::RAX, RegState::Kill) .setMIFlag(MachineInstr::FrameSetup); } else { // Save EAX BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) .addReg(X86::EAX, RegState::Kill) .setMIFlag(MachineInstr::FrameSetup); } } if (Is64Bit) { // Handle the 64-bit Windows ABI case where we need to call __chkstk. // Function prologue is responsible for adjusting the stack pointer. int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX) .addImm(Alloc) .setMIFlag(MachineInstr::FrameSetup); } else { // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. // We'll also use 4 already allocated bytes for EAX. BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) .setMIFlag(MachineInstr::FrameSetup); } // Call __chkstk, __chkstk_ms, or __alloca. emitStackProbe(MF, MBB, MBBI, DL, true); if (isEAXAlive) { // Restore RAX/EAX MachineInstr *MI; if (Is64Bit) MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), StackPtr, false, NumBytes - 8); else MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), StackPtr, false, NumBytes - 4); MI->setFlag(MachineInstr::FrameSetup); MBB.insert(MBBI, MI); } } else if (NumBytes) { emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); } if (NeedsWinCFI && NumBytes) { HasWinCFI = true; BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) .addImm(NumBytes) .setMIFlag(MachineInstr::FrameSetup); } int SEHFrameOffset = 0; unsigned SPOrEstablisher; if (IsFunclet) { if (IsClrFunclet) { // The establisher parameter passed to a CLR funclet is actually a pointer // to the (mostly empty) frame of its nearest enclosing funclet; we have // to find the root function establisher frame by loading the PSPSym from // the intermediate frame. unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); MachinePointerInfo NoInfo; MBB.addLiveIn(Establisher); addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), Establisher, false, PSPSlotOffset) .addMemOperand(MF.getMachineMemOperand( NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); ; // Save the root establisher back into the current funclet's (mostly // empty) frame, in case a sub-funclet or the GC needs it. addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, PSPSlotOffset) .addReg(Establisher) .addMemOperand(MF.getMachineMemOperand( NoInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, SlotSize, Align(SlotSize))); } SPOrEstablisher = Establisher; } else { SPOrEstablisher = StackPtr; } if (IsWin64Prologue && HasFP) { // Set RBP to a small fixed offset from RSP. In the funclet case, we base // this calculation on the incoming establisher, which holds the value of // RSP from the parent frame at the end of the prologue. SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); if (SEHFrameOffset) addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), SPOrEstablisher, false, SEHFrameOffset); else BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) .addReg(SPOrEstablisher); // If this is not a funclet, emit the CFI describing our frame pointer. if (NeedsWinCFI && !IsFunclet) { assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); HasWinCFI = true; BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) .addImm(FramePtr) .addImm(SEHFrameOffset) .setMIFlag(MachineInstr::FrameSetup); if (isAsynchronousEHPersonality(Personality)) MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; } } else if (IsFunclet && STI.is32Bit()) { // Reset EBP / ESI to something good for funclets. MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); // If we're a catch funclet, we can be returned to via catchret. Save ESP // into the registration node so that the runtime will restore it for us. if (!MBB.isCleanupFuncletEntry()) { assert(Personality == EHPersonality::MSVC_CXX); Register FrameReg; int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); // ESP is the first field, so no extra displacement is needed. addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, false, EHRegOffset) .addReg(X86::ESP); } } while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { const MachineInstr &FrameInstr = *MBBI; ++MBBI; if (NeedsWinCFI) { int FI; if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { if (X86::FR64RegClass.contains(Reg)) { int Offset; Register IgnoredFrameReg; if (IsWin64Prologue && IsFunclet) Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); else Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + SEHFrameOffset; HasWinCFI = true; assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) .addImm(Reg) .addImm(Offset) .setMIFlag(MachineInstr::FrameSetup); } } } } if (NeedsWinCFI && HasWinCFI) BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) .setMIFlag(MachineInstr::FrameSetup); if (FnHasClrFunclet && !IsFunclet) { // Save the so-called Initial-SP (i.e. the value of the stack pointer // immediately after the prolog) into the PSPSlot so that funclets // and the GC can recover it. unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); auto PSPInfo = MachinePointerInfo::getFixedStack( MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, PSPSlotOffset) .addReg(StackPtr) .addMemOperand(MF.getMachineMemOperand( PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, SlotSize, Align(SlotSize))); } // Realign stack after we spilled callee-saved registers (so that we'll be // able to calculate their offsets from the frame pointer). // Win64 requires aligning the stack after the prologue. if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { assert(HasFP && "There should be a frame pointer if stack is realigned."); BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); } // We already dealt with stack realignment and funclets above. if (IsFunclet && STI.is32Bit()) return; // If we need a base pointer, set it up here. It's whatever the value // of the stack pointer is at this point. Any variable size objects // will be allocated after this, so we can still use the base pointer // to reference locals. if (TRI->hasBasePointer(MF)) { // Update the base pointer with the current stack pointer. unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) .addReg(SPOrEstablisher) .setMIFlag(MachineInstr::FrameSetup); if (X86FI->getRestoreBasePointer()) { // Stash value of base pointer. Saving RSP instead of EBP shortens // dependence chain. Used by SjLj EH. unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), FramePtr, true, X86FI->getRestoreBasePointerOffset()) .addReg(SPOrEstablisher) .setMIFlag(MachineInstr::FrameSetup); } if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { // Stash the value of the frame pointer relative to the base pointer for // Win32 EH. This supports Win32 EH, which does the inverse of the above: // it recovers the frame pointer from the base pointer rather than the // other way around. unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; Register UsedReg; int Offset = getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) .getFixed(); assert(UsedReg == BasePtr); addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) .addReg(FramePtr) .setMIFlag(MachineInstr::FrameSetup); } } if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { // Mark end of stack pointer adjustment. if (!HasFP && NumBytes) { // Define the current CFA rule to use the provided offset. assert(StackSize); BuildCFI( MBB, MBBI, DL, MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth), MachineInstr::FrameSetup); } // Emit DWARF info specifying the offsets of the callee-saved registers. emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); } // X86 Interrupt handling function cannot assume anything about the direction // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction // in each prologue of interrupt handler function. // // FIXME: Create "cld" instruction only in these cases: // 1. The interrupt handling function uses any of the "rep" instructions. // 2. Interrupt handling function calls another function. // if (Fn.getCallingConv() == CallingConv::X86_INTR) BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) .setMIFlag(MachineInstr::FrameSetup); // At this point we know if the function has WinCFI or not. MF.setHasWinCFI(HasWinCFI); } bool X86FrameLowering::canUseLEAForSPInEpilogue( const MachineFunction &MF) const { // We can't use LEA instructions for adjusting the stack pointer if we don't // have a frame pointer in the Win64 ABI. Only ADD instructions may be used // to deallocate the stack. // This means that we can use LEA for SP in two situations: // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. // 2. We *have* a frame pointer which means we are permitted to use LEA. return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); } static bool isFuncletReturnInstr(MachineInstr &MI) { switch (MI.getOpcode()) { case X86::CATCHRET: case X86::CLEANUPRET: return true; default: return false; } llvm_unreachable("impossible"); } // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the // stack. It holds a pointer to the bottom of the root function frame. The // establisher frame pointer passed to a nested funclet may point to the // (mostly empty) frame of its parent funclet, but it will need to find // the frame of the root function to access locals. To facilitate this, // every funclet copies the pointer to the bottom of the root function // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the // same offset for the PSPSym in the root function frame that's used in the // funclets' frames allows each funclet to dynamically accept any ancestor // frame as its establisher argument (the runtime doesn't guarantee the // immediate parent for some reason lost to history), and also allows the GC, // which uses the PSPSym for some bookkeeping, to find it in any funclet's // frame with only a single offset reported for the entire method. unsigned X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); Register SPReg; int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, /*IgnoreSPUpdates*/ true) .getFixed(); assert(Offset >= 0 && SPReg == TRI->getStackRegister()); return static_cast(Offset); } unsigned X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { const X86MachineFunctionInfo *X86FI = MF.getInfo(); // This is the size of the pushed CSRs. unsigned CSSize = X86FI->getCalleeSavedFrameSize(); // This is the size of callee saved XMMs. const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); unsigned XMMSize = WinEHXMMSlotInfo.size() * TRI->getSpillSize(X86::VR128RegClass); // This is the amount of stack a funclet needs to allocate. unsigned UsedSize; EHPersonality Personality = classifyEHPersonality(MF.getFunction().getPersonalityFn()); if (Personality == EHPersonality::CoreCLR) { // CLR funclets need to hold enough space to include the PSPSym, at the // same offset from the stack pointer (immediately after the prolog) as it // resides at in the main function. UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; } else { // Other funclets just need enough stack for outgoing call arguments. UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); } // RBP is not included in the callee saved register block. After pushing RBP, // everything is 16 byte aligned. Everything we allocate before an outgoing // call must also be 16 byte aligned. unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); // Subtract out the size of the callee saved registers. This is how much stack // each funclet will allocate. return FrameSizeMinusRBP + XMMSize - CSSize; } static bool isTailCallOpcode(unsigned Opc) { return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || Opc == X86::TCRETURNmi || Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || Opc == X86::TCRETURNmi64; } void X86FrameLowering::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); X86MachineFunctionInfo *X86FI = MF.getInfo(); MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); MachineBasicBlock::iterator MBBI = Terminator; DebugLoc DL; if (MBBI != MBB.end()) DL = MBBI->getDebugLoc(); // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. const bool Is64BitILP32 = STI.isTarget64BitILP32(); Register FramePtr = TRI->getFrameRegister(MF); Register MachineFramePtr = Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); bool NeedsWin64CFI = IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); // Get the number of bytes to allocate from the FrameInfo. uint64_t StackSize = MFI.getStackSize(); uint64_t MaxAlign = calculateMaxStackAlign(MF); unsigned CSSize = X86FI->getCalleeSavedFrameSize(); unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); bool HasFP = hasFP(MF); uint64_t NumBytes = 0; bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && !MF.getTarget().getTargetTriple().isOSWindows()) && MF.needsFrameMoves(); if (IsFunclet) { assert(HasFP && "EH funclets without FP not yet implemented"); NumBytes = getWinEHFuncletFrameSize(MF); } else if (HasFP) { // Calculate required stack adjustment. uint64_t FrameSize = StackSize - SlotSize; NumBytes = FrameSize - CSSize - TailCallArgReserveSize; // Callee-saved registers were pushed on stack before the stack was // realigned. if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) NumBytes = alignTo(FrameSize, MaxAlign); } else { NumBytes = StackSize - CSSize - TailCallArgReserveSize; } uint64_t SEHStackAllocAmt = NumBytes; // AfterPop is the position to insert .cfi_restore. MachineBasicBlock::iterator AfterPop = MBBI; if (HasFP) { if (X86FI->hasSwiftAsyncContext()) { // Discard the context. int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); } // Pop EBP. BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr) .setMIFlag(MachineInstr::FrameDestroy); // We need to reset FP to its untagged state on return. Bit 60 is currently // used to show the presence of an extended frame. if (X86FI->hasSwiftAsyncContext()) { BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), MachineFramePtr) .addUse(MachineFramePtr) .addImm(60) .setMIFlag(MachineInstr::FrameDestroy); } if (NeedsDwarfCFI) { unsigned DwarfStackPtr = TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); BuildCFI(MBB, MBBI, DL, MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize), MachineInstr::FrameDestroy); if (!MBB.succ_empty() && !MBB.isReturnBlock()) { unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); BuildCFI(MBB, AfterPop, DL, MCCFIInstruction::createRestore(nullptr, DwarfFramePtr), MachineInstr::FrameDestroy); --MBBI; --AfterPop; } --MBBI; } } MachineBasicBlock::iterator FirstCSPop = MBBI; // Skip the callee-saved pop instructions. while (MBBI != MBB.begin()) { MachineBasicBlock::iterator PI = std::prev(MBBI); unsigned Opc = PI->getOpcode(); if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy))) break; FirstCSPop = PI; } --MBBI; } MBBI = FirstCSPop; if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); if (MBBI != MBB.end()) DL = MBBI->getDebugLoc(); // If there is an ADD32ri or SUB32ri of ESP immediately before this // instruction, merge the two instructions. if (NumBytes || MFI.hasVarSizedObjects()) NumBytes += mergeSPUpdates(MBB, MBBI, true); // If dynamic alloca is used, then reset esp to point to the last callee-saved // slot before popping them off! Same applies for the case, when stack was // realigned. Don't do this if this was a funclet epilogue, since the funclets // will not do realignment or dynamic stack allocation. if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && !IsFunclet) { if (TRI->hasStackRealignment(MF)) MBBI = FirstCSPop; unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); uint64_t LEAAmount = IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; if (X86FI->hasSwiftAsyncContext()) LEAAmount -= 16; // There are only two legal forms of epilogue: // - add SEHAllocationSize, %rsp // - lea SEHAllocationSize(%FramePtr), %rsp // // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. // However, we may use this sequence if we have a frame pointer because the // effects of the prologue can safely be undone. if (LEAAmount != 0) { unsigned Opc = getLEArOpcode(Uses64BitFramePtr); addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), FramePtr, false, LEAAmount); --MBBI; } else { unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) .addReg(FramePtr); --MBBI; } } else if (NumBytes) { // Adjust stack pointer back: ESP += numbytes. emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); if (!HasFP && NeedsDwarfCFI) { // Define the current CFA rule to use the provided offset. BuildCFI(MBB, MBBI, DL, MCCFIInstruction::cfiDefCfaOffset( nullptr, CSSize + TailCallArgReserveSize + SlotSize), MachineInstr::FrameDestroy); } --MBBI; } // Windows unwinder will not invoke function's exception handler if IP is // either in prologue or in epilogue. This behavior causes a problem when a // call immediately precedes an epilogue, because the return address points // into the epilogue. To cope with that, we insert an epilogue marker here, // then replace it with a 'nop' if it ends up immediately after a CALL in the // final emitted code. if (NeedsWin64CFI && MF.hasWinCFI()) BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); if (!HasFP && NeedsDwarfCFI) { MBBI = FirstCSPop; int64_t Offset = -CSSize - SlotSize; // Mark callee-saved pop instruction. // Define the current CFA rule to use the provided offset. while (MBBI != MBB.end()) { MachineBasicBlock::iterator PI = MBBI; unsigned Opc = PI->getOpcode(); ++MBBI; if (Opc == X86::POP32r || Opc == X86::POP64r) { Offset += SlotSize; BuildCFI(MBB, MBBI, DL, MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset), MachineInstr::FrameDestroy); } } } // Emit DWARF info specifying the restores of the callee-saved registers. // For epilogue with return inside or being other block without successor, // no need to generate .cfi_restore for callee-saved registers. if (NeedsDwarfCFI && !MBB.succ_empty()) emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { // Add the return addr area delta back since we are not tail calling. int Offset = -1 * X86FI->getTCReturnAddrDelta(); assert(Offset >= 0 && "TCDelta should never be positive"); if (Offset) { // Check for possible merge with preceding ADD instruction. Offset += mergeSPUpdates(MBB, Terminator, true); emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); } } // Emit tilerelease for AMX kernel. if (X86FI->hasVirtualTileReg()) BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); } StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); bool IsFixed = MFI.isFixedObjectIndex(FI); // We can't calculate offset from frame pointer if the stack is realigned, // so enforce usage of stack/base pointer. The base pointer is used when we // have dynamic allocas in addition to dynamic realignment. if (TRI->hasBasePointer(MF)) FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); else if (TRI->hasStackRealignment(MF)) FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); else FrameReg = TRI->getFrameRegister(MF); // Offset will hold the offset from the stack pointer at function entry to the // object. // We need to factor in additional offsets applied during the prologue to the // frame, base, and stack pointer depending on which is used. int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); const X86MachineFunctionInfo *X86FI = MF.getInfo(); unsigned CSSize = X86FI->getCalleeSavedFrameSize(); uint64_t StackSize = MFI.getStackSize(); bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); int64_t FPDelta = 0; // In an x86 interrupt, remove the offset we added to account for the return // address from any stack object allocated in the caller's frame. Interrupts // do not have a standard return address. Fixed objects in the current frame, // such as SSE register spills, should not get this treatment. if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && Offset >= 0) { Offset += getOffsetOfLocalArea(); } if (IsWin64Prologue) { assert(!MFI.hasCalls() || (StackSize % 16) == 8); // Calculate required stack adjustment. uint64_t FrameSize = StackSize - SlotSize; // If required, include space for extra hidden slot for stashing base pointer. if (X86FI->getRestoreBasePointer()) FrameSize += SlotSize; uint64_t NumBytes = FrameSize - CSSize; uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); if (FI && FI == X86FI->getFAIndex()) return StackOffset::getFixed(-SEHFrameOffset); // FPDelta is the offset from the "traditional" FP location of the old base // pointer followed by return address and the location required by the // restricted Win64 prologue. // Add FPDelta to all offsets below that go through the frame pointer. FPDelta = FrameSize - SEHFrameOffset; assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && "FPDelta isn't aligned per the Win64 ABI!"); } if (FrameReg == TRI->getFramePtr()) { // Skip saved EBP/RBP Offset += SlotSize; // Account for restricted Windows prologue. Offset += FPDelta; // Skip the RETADDR move area int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta; return StackOffset::getFixed(Offset); } // FrameReg is either the stack pointer or a base pointer. But the base is // located at the end of the statically known StackSize so the distinction // doesn't really matter. if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); return StackOffset::getFixed(Offset + StackSize); } int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, Register &FrameReg) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); const X86MachineFunctionInfo *X86FI = MF.getInfo(); const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); const auto it = WinEHXMMSlotInfo.find(FI); if (it == WinEHXMMSlotInfo.end()) return getFrameIndexReference(MF, FI, FrameReg).getFixed(); FrameReg = TRI->getStackRegister(); return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + it->second; } StackOffset X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, Register &FrameReg, int Adjustment) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); FrameReg = TRI->getStackRegister(); return StackOffset::getFixed(MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment); } StackOffset X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, int FI, Register &FrameReg, bool IgnoreSPUpdates) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); // Does not include any dynamic realign. const uint64_t StackSize = MFI.getStackSize(); // LLVM arranges the stack as follows: // ... // ARG2 // ARG1 // RETADDR // PUSH RBP <-- RBP points here // PUSH CSRs // ~~~~~~~ <-- possible stack realignment (non-win64) // ... // STACK OBJECTS // ... <-- RSP after prologue points here // ~~~~~~~ <-- possible stack realignment (win64) // // if (hasVarSizedObjects()): // ... <-- "base pointer" (ESI/RBX) points here // DYNAMIC ALLOCAS // ... <-- RSP points here // // Case 1: In the simple case of no stack realignment and no dynamic // allocas, both "fixed" stack objects (arguments and CSRs) are addressable // with fixed offsets from RSP. // // Case 2: In the case of stack realignment with no dynamic allocas, fixed // stack objects are addressed with RBP and regular stack objects with RSP. // // Case 3: In the case of dynamic allocas and stack realignment, RSP is used // to address stack arguments for outgoing calls and nothing else. The "base // pointer" points to local variables, and RBP points to fixed objects. // // In cases 2 and 3, we can only answer for non-fixed stack objects, and the // answer we give is relative to the SP after the prologue, and not the // SP in the middle of the function. if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && !STI.isTargetWin64()) return getFrameIndexReference(MF, FI, FrameReg); // If !hasReservedCallFrame the function might have SP adjustement in the // body. So, even though the offset is statically known, it depends on where // we are in the function. if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) return getFrameIndexReference(MF, FI, FrameReg); // We don't handle tail calls, and shouldn't be seeing them either. assert(MF.getInfo()->getTCReturnAddrDelta() >= 0 && "we don't handle this case!"); // This is how the math works out: // // %rsp grows (i.e. gets lower) left to right. Each box below is // one word (eight bytes). Obj0 is the stack slot we're trying to // get to. // // ---------------------------------- // | BP | Obj0 | Obj1 | ... | ObjN | // ---------------------------------- // ^ ^ ^ ^ // A B C E // // A is the incoming stack pointer. // (B - A) is the local area offset (-8 for x86-64) [1] // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] // // |(E - B)| is the StackSize (absolute value, positive). For a // stack that grown down, this works out to be (B - E). [3] // // E is also the value of %rsp after stack has been set up, and we // want (C - E) -- the value we can add to %rsp to get to Obj0. Now // (C - E) == (C - A) - (B - A) + (B - E) // { Using [1], [2] and [3] above } // == getObjectOffset - LocalAreaOffset + StackSize return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); } bool X86FrameLowering::assignCalleeSavedSpillSlots( MachineFunction &MF, const TargetRegisterInfo *TRI, std::vector &CSI) const { MachineFrameInfo &MFI = MF.getFrameInfo(); X86MachineFunctionInfo *X86FI = MF.getInfo(); unsigned CalleeSavedFrameSize = 0; unsigned XMMCalleeSavedFrameSize = 0; auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta < 0) { // create RETURNADDR area // arg // arg // RETADDR // { ... // RETADDR area // ... // } // [EBP] MFI.CreateFixedObject(-TailCallReturnAddrDelta, TailCallReturnAddrDelta - SlotSize, true); } // Spill the BasePtr if it's used. if (this->TRI->hasBasePointer(MF)) { // Allocate a spill slot for EBP if we have a base pointer and EH funclets. if (MF.hasEHFunclets()) { int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); X86FI->setHasSEHFramePtrSave(true); X86FI->setSEHFramePtrSaveIndex(FI); } } if (hasFP(MF)) { // emitPrologue always spills frame register the first thing. SpillSlotOffset -= SlotSize; MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); // The async context lives directly before the frame pointer, and we // allocate a second slot to preserve stack alignment. if (X86FI->hasSwiftAsyncContext()) { SpillSlotOffset -= SlotSize; MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); SpillSlotOffset -= SlotSize; } // Since emitPrologue and emitEpilogue will handle spilling and restoring of // the frame register, we can delete it from CSI list and not have to worry // about avoiding it later. Register FPReg = TRI->getFrameRegister(MF); for (unsigned i = 0; i < CSI.size(); ++i) { if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { CSI.erase(CSI.begin() + i); break; } } } // Assign slots for GPRs. It increases frame size. for (CalleeSavedInfo &I : llvm::reverse(CSI)) { Register Reg = I.getReg(); if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) continue; SpillSlotOffset -= SlotSize; CalleeSavedFrameSize += SlotSize; int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); I.setFrameIdx(SlotIndex); } X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); // Assign slots for XMMs. for (CalleeSavedInfo &I : llvm::reverse(CSI)) { Register Reg = I.getReg(); if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) continue; // If this is k-register make sure we lookup via the largest legal type. MVT VT = MVT::Other; if (X86::VK16RegClass.contains(Reg)) VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); unsigned Size = TRI->getSpillSize(*RC); Align Alignment = TRI->getSpillAlign(*RC); // ensure alignment assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); // spill into slot SpillSlotOffset -= Size; int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); I.setFrameIdx(SlotIndex); MFI.ensureMaxAlignment(Alignment); // Save the start offset and size of XMM in stack frame for funclets. if (X86::VR128RegClass.contains(Reg)) { WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; XMMCalleeSavedFrameSize += Size; } } return true; } bool X86FrameLowering::spillCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, ArrayRef CSI, const TargetRegisterInfo *TRI) const { DebugLoc DL = MBB.findDebugLoc(MI); // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI // for us, and there are no XMM CSRs on Win32. if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) return true; // Push GPRs. It increases frame size. const MachineFunction &MF = *MBB.getParent(); unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { Register Reg = I.getReg(); if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) continue; const MachineRegisterInfo &MRI = MF.getRegInfo(); bool isLiveIn = MRI.isLiveIn(Reg); if (!isLiveIn) MBB.addLiveIn(Reg); // Decide whether we can add a kill flag to the use. bool CanKill = !isLiveIn; // Check if any subregister is live-in if (CanKill) { for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { if (MRI.isLiveIn(*AReg)) { CanKill = false; break; } } } // Do not set a kill flag on values that are also marked as live-in. This // happens with the @llvm-returnaddress intrinsic and with arguments // passed in callee saved registers. // Omitting the kill flags is conservatively correct even if the live-in // is not used after all. BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) .setMIFlag(MachineInstr::FrameSetup); } // Make XMM regs spilled. X86 does not have ability of push/pop XMM. // It can be done by spilling XMMs to stack frame. for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { Register Reg = I.getReg(); if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) continue; // If this is k-register make sure we lookup via the largest legal type. MVT VT = MVT::Other; if (X86::VK16RegClass.contains(Reg)) VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; // Add the callee-saved register as live-in. It's killed at the spill. MBB.addLiveIn(Reg); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI); --MI; MI->setFlag(MachineInstr::FrameSetup); ++MI; } return true; } void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, MachineInstr *CatchRet) const { // SEH shouldn't use catchret. assert(!isAsynchronousEHPersonality(classifyEHPersonality( MBB.getParent()->getFunction().getPersonalityFn())) && "SEH should not use CATCHRET"); const DebugLoc &DL = CatchRet->getDebugLoc(); MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); // Fill EAX/RAX with the address of the target block. if (STI.is64Bit()) { // LEA64r CatchRetTarget(%rip), %rax BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) .addReg(X86::RIP) .addImm(0) .addReg(0) .addMBB(CatchRetTarget) .addReg(0); } else { // MOV32ri $CatchRetTarget, %eax BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) .addMBB(CatchRetTarget); } // Record that we've taken the address of CatchRetTarget and no longer just // reference it in a terminator. CatchRetTarget->setHasAddressTaken(); } bool X86FrameLowering::restoreCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, MutableArrayRef CSI, const TargetRegisterInfo *TRI) const { if (CSI.empty()) return false; if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { // Don't restore CSRs in 32-bit EH funclets. Matches // spillCalleeSavedRegisters. if (STI.is32Bit()) return true; // Don't restore CSRs before an SEH catchret. SEH except blocks do not form // funclets. emitEpilogue transforms these to normal jumps. if (MI->getOpcode() == X86::CATCHRET) { const Function &F = MBB.getParent()->getFunction(); bool IsSEH = isAsynchronousEHPersonality( classifyEHPersonality(F.getPersonalityFn())); if (IsSEH) return true; } } DebugLoc DL = MBB.findDebugLoc(MI); // Reload XMMs from stack frame. for (const CalleeSavedInfo &I : CSI) { Register Reg = I.getReg(); if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) continue; // If this is k-register make sure we lookup via the largest legal type. MVT VT = MVT::Other; if (X86::VK16RegClass.contains(Reg)) VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI); } // POP GPRs. unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; for (const CalleeSavedInfo &I : CSI) { Register Reg = I.getReg(); if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) continue; BuildMI(MBB, MI, DL, TII.get(Opc), Reg) .setMIFlag(MachineInstr::FrameDestroy); } return true; } void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS) const { TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); // Spill the BasePtr if it's used. if (TRI->hasBasePointer(MF)){ Register BasePtr = TRI->getBaseRegister(); if (STI.isTarget64BitILP32()) BasePtr = getX86SubSuperRegister(BasePtr, 64); SavedRegs.set(BasePtr); } } static bool HasNestArgument(const MachineFunction *MF) { const Function &F = MF->getFunction(); for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; I++) { if (I->hasNestAttr() && !I->use_empty()) return true; } return false; } /// GetScratchRegister - Get a temp register for performing work in the /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform /// and the properties of the function either one or two registers will be /// needed. Set primary to true for the first register, false for the second. static unsigned GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); // Erlang stuff. if (CallingConvention == CallingConv::HiPE) { if (Is64Bit) return Primary ? X86::R14 : X86::R13; else return Primary ? X86::EBX : X86::EDI; } if (Is64Bit) { if (IsLP64) return Primary ? X86::R11 : X86::R12; else return Primary ? X86::R11D : X86::R12D; } bool IsNested = HasNestArgument(&MF); if (CallingConvention == CallingConv::X86_FastCall || CallingConvention == CallingConv::Fast || CallingConvention == CallingConv::Tail) { if (IsNested) report_fatal_error("Segmented stacks does not support fastcall with " "nested function."); return Primary ? X86::EAX : X86::ECX; } if (IsNested) return Primary ? X86::EDX : X86::EAX; return Primary ? X86::ECX : X86::EAX; } // The stack limit in the TCB is set to this many bytes above the actual stack // limit. static const uint64_t kSplitStackAvailable = 256; void X86FrameLowering::adjustForSegmentedStacks( MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { MachineFrameInfo &MFI = MF.getFrameInfo(); uint64_t StackSize; unsigned TlsReg, TlsOffset; DebugLoc DL; // To support shrink-wrapping we would need to insert the new blocks // at the right place and update the branches to PrologueMBB. assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); assert(!MF.getRegInfo().isLiveIn(ScratchReg) && "Scratch register is live-in"); if (MF.getFunction().isVarArg()) report_fatal_error("Segmented stacks do not support vararg functions."); if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && !STI.isTargetWin64() && !STI.isTargetFreeBSD() && !STI.isTargetDragonFly()) report_fatal_error("Segmented stacks not supported on this platform."); // Eventually StackSize will be calculated by a link-time pass; which will // also decide whether checking code needs to be injected into this particular // prologue. StackSize = MFI.getStackSize(); if (!MFI.needsSplitStackProlog()) return; MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); X86MachineFunctionInfo *X86FI = MF.getInfo(); bool IsNested = false; // We need to know if the function has a nest argument only in 64 bit mode. if (Is64Bit) IsNested = HasNestArgument(&MF); // The MOV R10, RAX needs to be in a different block, since the RET we emit in // allocMBB needs to be last (terminating) instruction. for (const auto &LI : PrologueMBB.liveins()) { allocMBB->addLiveIn(LI); checkMBB->addLiveIn(LI); } if (IsNested) allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); MF.push_front(allocMBB); MF.push_front(checkMBB); // When the frame size is less than 256 we just compare the stack // boundary directly to the value of the stack pointer, per gcc. bool CompareStackPointer = StackSize < kSplitStackAvailable; // Read the limit off the current stacklet off the stack_guard location. if (Is64Bit) { if (STI.isTargetLinux()) { TlsReg = X86::FS; TlsOffset = IsLP64 ? 0x70 : 0x40; } else if (STI.isTargetDarwin()) { TlsReg = X86::GS; TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. } else if (STI.isTargetWin64()) { TlsReg = X86::GS; TlsOffset = 0x28; // pvArbitrary, reserved for application use } else if (STI.isTargetFreeBSD()) { TlsReg = X86::FS; TlsOffset = 0x18; } else if (STI.isTargetDragonFly()) { TlsReg = X86::FS; TlsOffset = 0x20; // use tls_tcb.tcb_segstack } else { report_fatal_error("Segmented stacks not supported on this platform."); } if (CompareStackPointer) ScratchReg = IsLP64 ? X86::RSP : X86::ESP; else BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) .addImm(1).addReg(0).addImm(-StackSize).addReg(0); BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); } else { if (STI.isTargetLinux()) { TlsReg = X86::GS; TlsOffset = 0x30; } else if (STI.isTargetDarwin()) { TlsReg = X86::GS; TlsOffset = 0x48 + 90*4; } else if (STI.isTargetWin32()) { TlsReg = X86::FS; TlsOffset = 0x14; // pvArbitrary, reserved for application use } else if (STI.isTargetDragonFly()) { TlsReg = X86::FS; TlsOffset = 0x10; // use tls_tcb.tcb_segstack } else if (STI.isTargetFreeBSD()) { report_fatal_error("Segmented stacks not supported on FreeBSD i386."); } else { report_fatal_error("Segmented stacks not supported on this platform."); } if (CompareStackPointer) ScratchReg = X86::ESP; else BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) .addImm(1).addReg(0).addImm(-StackSize).addReg(0); if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || STI.isTargetDragonFly()) { BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); } else if (STI.isTargetDarwin()) { // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. unsigned ScratchReg2; bool SaveScratch2; if (CompareStackPointer) { // The primary scratch register is available for holding the TLS offset. ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); SaveScratch2 = false; } else { // Need to use a second register to hold the TLS offset ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); // Unfortunately, with fastcc the second scratch register may hold an // argument. SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); } // If Scratch2 is live-in then it needs to be saved. assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && "Scratch register is live-in and not saved"); if (SaveScratch2) BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) .addReg(ScratchReg2, RegState::Kill); BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) .addImm(TlsOffset); BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) .addReg(ScratchReg) .addReg(ScratchReg2).addImm(1).addReg(0) .addImm(0) .addReg(TlsReg); if (SaveScratch2) BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); } } // This jump is taken if SP >= (Stacklet Limit + Stack Space required). // It jumps to normal execution of the function body. BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); // On 32 bit we first push the arguments size and then the frame size. On 64 // bit, we pass the stack frame size in r10 and the argument size in r11. if (Is64Bit) { // Functions with nested arguments use R10, so it needs to be saved across // the call to _morestack const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; if (IsNested) BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10) .addImm(StackSize); BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())), Reg11) .addImm(X86FI->getArgumentStackSize()); } else { BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) .addImm(X86FI->getArgumentStackSize()); BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) .addImm(StackSize); } // __morestack is in libgcc if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { // Under the large code model, we cannot assume that __morestack lives // within 2^31 bytes of the call site, so we cannot use pc-relative // addressing. We cannot perform the call via a temporary register, // as the rax register may be used to store the static chain, and all // other suitable registers may be either callee-save or used for // parameter passing. We cannot use the stack at this point either // because __morestack manipulates the stack directly. // // To avoid these issues, perform an indirect call via a read-only memory // location containing the address. // // This solution is not perfect, as it assumes that the .rodata section // is laid out within 2^31 bytes of each function body, but this seems // to be sufficient for JIT. // FIXME: Add retpoline support and remove the error here.. if (STI.useIndirectThunkCalls()) report_fatal_error("Emitting morestack calls on 64-bit with the large " "code model and thunks not yet implemented."); BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) .addReg(X86::RIP) .addImm(0) .addReg(0) .addExternalSymbol("__morestack_addr") .addReg(0); } else { if (Is64Bit) BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) .addExternalSymbol("__morestack"); else BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) .addExternalSymbol("__morestack"); } if (IsNested) BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); else BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); allocMBB->addSuccessor(&PrologueMBB); checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); #ifdef EXPENSIVE_CHECKS MF.verify(); #endif } /// Lookup an ERTS parameter in the !hipe.literals named metadata node. /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets /// to fields it needs, through a named metadata node "hipe.literals" containing /// name-value pairs. static unsigned getHiPELiteral( NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { MDNode *Node = HiPELiteralsMD->getOperand(i); if (Node->getNumOperands() != 2) continue; MDString *NodeName = dyn_cast(Node->getOperand(0)); ValueAsMetadata *NodeVal = dyn_cast(Node->getOperand(1)); if (!NodeName || !NodeVal) continue; ConstantInt *ValConst = dyn_cast_or_null(NodeVal->getValue()); if (ValConst && NodeName->getString() == LiteralName) { return ValConst->getZExtValue(); } } report_fatal_error("HiPE literal " + LiteralName + " required but not provided"); } // Return true if there are no non-ehpad successors to MBB and there are no // non-meta instructions between MBBI and MBB.end(). static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, MachineBasicBlock::const_iterator MBBI) { return llvm::all_of( MBB.successors(), [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { return MI.isMetaInstruction(); }); } /// Erlang programs may need a special prologue to handle the stack size they /// might need at runtime. That is because Erlang/OTP does not implement a C /// stack but uses a custom implementation of hybrid stack/heap architecture. /// (for more information see Eric Stenman's Ph.D. thesis: /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) /// /// CheckStack: /// temp0 = sp - MaxStack /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart /// OldStart: /// ... /// IncStack: /// call inc_stack # doubles the stack space /// temp0 = sp - MaxStack /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart void X86FrameLowering::adjustForHiPEPrologue( MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { MachineFrameInfo &MFI = MF.getFrameInfo(); DebugLoc DL; // To support shrink-wrapping we would need to insert the new blocks // at the right place and update the branches to PrologueMBB. assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); // HiPE-specific values NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() ->getNamedMetadata("hipe.literals"); if (!HiPELiteralsMD) report_fatal_error( "Can't generate HiPE prologue without runtime parameters"); const unsigned HipeLeafWords = getHiPELiteral(HiPELiteralsMD, Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; const unsigned Guaranteed = HipeLeafWords * SlotSize; unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? MF.getFunction().arg_size() - CCRegisteredArgs : 0; unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; assert(STI.isTargetLinux() && "HiPE prologue is only supported on Linux operating systems."); // Compute the largest caller's frame that is needed to fit the callees' // frames. This 'MaxStack' is computed from: // // a) the fixed frame size, which is the space needed for all spilled temps, // b) outgoing on-stack parameter areas, and // c) the minimum stack space this function needs to make available for the // functions it calls (a tunable ABI property). if (MFI.hasCalls()) { unsigned MoreStackForCalls = 0; for (auto &MBB : MF) { for (auto &MI : MBB) { if (!MI.isCall()) continue; // Get callee operand. const MachineOperand &MO = MI.getOperand(0); // Only take account of global function calls (no closures etc.). if (!MO.isGlobal()) continue; const Function *F = dyn_cast(MO.getGlobal()); if (!F) continue; // Do not update 'MaxStack' for primitive and built-in functions // (encoded with names either starting with "erlang."/"bif_" or not // having a ".", such as a simple .., or an // "_", such as the BIF "suspend_0") as they are executed on another // stack. if (F->getName().contains("erlang.") || F->getName().contains("bif_") || F->getName().find_first_of("._") == StringRef::npos) continue; unsigned CalleeStkArity = F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; if (HipeLeafWords - 1 > CalleeStkArity) MoreStackForCalls = std::max(MoreStackForCalls, (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); } } MaxStack += MoreStackForCalls; } // If the stack frame needed is larger than the guaranteed then runtime checks // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. if (MaxStack > Guaranteed) { MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); for (const auto &LI : PrologueMBB.liveins()) { stackCheckMBB->addLiveIn(LI); incStackMBB->addLiveIn(LI); } MF.push_front(incStackMBB); MF.push_front(stackCheckMBB); unsigned ScratchReg, SPReg, PReg, SPLimitOffset; unsigned LEAop, CMPop, CALLop; SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); if (Is64Bit) { SPReg = X86::RSP; PReg = X86::RBP; LEAop = X86::LEA64r; CMPop = X86::CMP64rm; CALLop = X86::CALL64pcrel32; } else { SPReg = X86::ESP; PReg = X86::EBP; LEAop = X86::LEA32r; CMPop = X86::CMP32rm; CALLop = X86::CALLpcrel32; } ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); assert(!MF.getRegInfo().isLiveIn(ScratchReg) && "HiPE prologue scratch register is live-in"); // Create new MBB for StackCheck: addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), SPReg, false, -MaxStack); // SPLimitOffset is in a fixed heap location (pointed by BP). addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) .addReg(ScratchReg), PReg, false, SPLimitOffset); BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); // Create new MBB for IncStack: BuildMI(incStackMBB, DL, TII.get(CALLop)). addExternalSymbol("inc_stack_0"); addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), SPReg, false, -MaxStack); addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) .addReg(ScratchReg), PReg, false, SPLimitOffset); BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); incStackMBB->addSuccessor(incStackMBB, {1, 100}); } #ifdef EXPENSIVE_CHECKS MF.verify(); #endif } bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, int Offset) const { if (Offset <= 0) return false; if (Offset % SlotSize) return false; int NumPops = Offset / SlotSize; // This is only worth it if we have at most 2 pops. if (NumPops != 1 && NumPops != 2) return false; // Handle only the trivial case where the adjustment directly follows // a call. This is the most common one, anyway. if (MBBI == MBB.begin()) return false; MachineBasicBlock::iterator Prev = std::prev(MBBI); if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) return false; unsigned Regs[2]; unsigned FoundRegs = 0; const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const MachineOperand &RegMask = Prev->getOperand(1); auto &RegClass = Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; // Try to find up to NumPops free registers. for (auto Candidate : RegClass) { // Poor man's liveness: // Since we're immediately after a call, any register that is clobbered // by the call and not defined by it can be considered dead. if (!RegMask.clobbersPhysReg(Candidate)) continue; // Don't clobber reserved registers if (MRI.isReserved(Candidate)) continue; bool IsDef = false; for (const MachineOperand &MO : Prev->implicit_operands()) { if (MO.isReg() && MO.isDef() && TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { IsDef = true; break; } } if (IsDef) continue; Regs[FoundRegs++] = Candidate; if (FoundRegs == (unsigned)NumPops) break; } if (FoundRegs == 0) return false; // If we found only one free register, but need two, reuse the same one twice. while (FoundRegs < (unsigned)NumPops) Regs[FoundRegs++] = Regs[0]; for (int i = 0; i < NumPops; ++i) BuildMI(MBB, MBBI, DL, TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); return true; } MachineBasicBlock::iterator X86FrameLowering:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { bool reserveCallFrame = hasReservedCallFrame(MF); unsigned Opcode = I->getOpcode(); bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. uint64_t Amount = TII.getFrameSize(*I); uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; I = MBB.erase(I); auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); // Try to avoid emitting dead SP adjustments if the block end is unreachable, // typically because the function is marked noreturn (abort, throw, // assert_fail, etc). if (isDestroy && blockEndIsUnreachable(MBB, I)) return I; if (!reserveCallFrame) { // If the stack pointer can be changed after prologue, turn the // adjcallstackup instruction into a 'sub ESP, ' and the // adjcallstackdown instruction into 'add ESP, ' // We need to keep the stack aligned properly. To do this, we round the // amount of space needed for the outgoing arguments up to the next // alignment boundary. Amount = alignTo(Amount, getStackAlign()); const Function &F = MF.getFunction(); bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); // If we have any exception handlers in this function, and we adjust // the SP before calls, we may need to indicate this to the unwinder // using GNU_ARGS_SIZE. Note that this may be necessary even when // Amount == 0, because the preceding function may have set a non-0 // GNU_ARGS_SIZE. // TODO: We don't need to reset this between subsequent functions, // if it didn't change. bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); if (HasDwarfEHHandlers && !isDestroy && MF.getInfo()->getHasPushSequences()) BuildCFI(MBB, InsertPos, DL, MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); if (Amount == 0) return I; // Factor out the amount that gets handled inside the sequence // (Pushes of argument for frame setup, callee pops for frame destroy) Amount -= InternalAmt; // TODO: This is needed only if we require precise CFA. // If this is a callee-pop calling convention, emit a CFA adjust for // the amount the callee popped. if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) BuildCFI(MBB, InsertPos, DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); // Add Amount to SP to destroy a frame, or subtract to setup. int64_t StackAdjustment = isDestroy ? Amount : -Amount; if (StackAdjustment) { // Merge with any previous or following adjustment instruction. Note: the // instructions merged with here do not have CFI, so their stack // adjustments do not feed into CfaAdjustment. StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); if (StackAdjustment) { if (!(F.hasMinSize() && adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, /*InEpilogue=*/false); } } if (DwarfCFI && !hasFP(MF)) { // If we don't have FP, but need to generate unwind information, // we need to set the correct CFA offset after the stack adjustment. // How much we adjust the CFA offset depends on whether we're emitting // CFI only for EH purposes or for debugging. EH only requires the CFA // offset to be correct at each call site, while for debugging we want // it to be more precise. int64_t CfaAdjustment = -StackAdjustment; // TODO: When not using precise CFA, we also need to adjust for the // InternalAmt here. if (CfaAdjustment) { BuildCFI(MBB, InsertPos, DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, CfaAdjustment)); } } return I; } if (InternalAmt) { MachineBasicBlock::iterator CI = I; MachineBasicBlock::iterator B = MBB.begin(); while (CI != B && !std::prev(CI)->isCall()) --CI; BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); } return I; } bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { assert(MBB.getParent() && "Block is not attached to a function!"); const MachineFunction &MF = *MBB.getParent(); if (!MBB.isLiveIn(X86::EFLAGS)) return true; const X86MachineFunctionInfo *X86FI = MF.getInfo(); return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); } bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { assert(MBB.getParent() && "Block is not attached to a function!"); // Win64 has strict requirements in terms of epilogue and we are // not taking a chance at messing with them. // I.e., unless this block is already an exit block, we can't use // it as an epilogue. if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) return false; // Swift async context epilogue has a BTR instruction that clobbers parts of // EFLAGS. const MachineFunction &MF = *MBB.getParent(); if (MF.getInfo()->hasSwiftAsyncContext()) return !flagsNeedToBePreservedBeforeTheTerminators(MBB); if (canUseLEAForSPInEpilogue(*MBB.getParent())) return true; // If we cannot use LEA to adjust SP, we may need to use ADD, which // clobbers the EFLAGS. Check that we do not need to preserve it, // otherwise, conservatively assume this is not // safe to insert the epilogue here. return !flagsNeedToBePreservedBeforeTheTerminators(MBB); } bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { // If we may need to emit frameless compact unwind information, give // up as this is currently broken: PR25614. bool CompactUnwind = MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != nullptr; return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || !CompactUnwind) && // The lowering of segmented stack and HiPE only support entry // blocks as prologue blocks: PR26107. This limitation may be // lifted if we fix: // - adjustForSegmentedStacks // - adjustForHiPEPrologue MF.getFunction().getCallingConv() != CallingConv::HiPE && !MF.shouldSplitStack(); } MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool RestoreSP) const { assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); assert(STI.is32Bit() && !Uses64BitFramePtr && "restoring EBP/ESI on non-32-bit target"); MachineFunction &MF = *MBB.getParent(); Register FramePtr = TRI->getFrameRegister(MF); Register BasePtr = TRI->getBaseRegister(); WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); X86MachineFunctionInfo *X86FI = MF.getInfo(); MachineFrameInfo &MFI = MF.getFrameInfo(); // FIXME: Don't set FrameSetup flag in catchret case. int FI = FuncInfo.EHRegNodeFrameIndex; int EHRegSize = MFI.getObjectSize(FI); if (RestoreSP) { // MOV32rm -EHRegSize(%ebp), %esp addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), X86::EBP, true, -EHRegSize) .setMIFlag(MachineInstr::FrameSetup); } Register UsedReg; int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); int EndOffset = -EHRegOffset - EHRegSize; FuncInfo.EHRegNodeEndOffset = EndOffset; if (UsedReg == FramePtr) { // ADD $offset, %ebp unsigned ADDri = getADDriOpcode(false, EndOffset); BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) .addReg(FramePtr) .addImm(EndOffset) .setMIFlag(MachineInstr::FrameSetup) ->getOperand(3) .setIsDead(); assert(EndOffset >= 0 && "end of registration object above normal EBP position!"); } else if (UsedReg == BasePtr) { // LEA offset(%ebp), %esi addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), FramePtr, false, EndOffset) .setMIFlag(MachineInstr::FrameSetup); // MOV32rm SavedEBPOffset(%esi), %ebp assert(X86FI->getHasSEHFramePtrSave()); int Offset = getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) .getFixed(); assert(UsedReg == BasePtr); addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), UsedReg, true, Offset) .setMIFlag(MachineInstr::FrameSetup); } else { llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); } return MBBI; } int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { return TRI->getSlotSize(); } Register X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { return TRI->getDwarfRegNum(StackPtr, true); } namespace { // Struct used by orderFrameObjects to help sort the stack objects. struct X86FrameSortingObject { bool IsValid = false; // true if we care about this Object. unsigned ObjectIndex = 0; // Index of Object into MFI list. unsigned ObjectSize = 0; // Size of Object in bytes. Align ObjectAlignment = Align(1); // Alignment of Object in bytes. unsigned ObjectNumUses = 0; // Object static number of uses. }; // The comparison function we use for std::sort to order our local // stack symbols. The current algorithm is to use an estimated // "density". This takes into consideration the size and number of // uses each object has in order to roughly minimize code size. // So, for example, an object of size 16B that is referenced 5 times // will get higher priority than 4 4B objects referenced 1 time each. // It's not perfect and we may be able to squeeze a few more bytes out of // it (for example : 0(esp) requires fewer bytes, symbols allocated at the // fringe end can have special consideration, given their size is less // important, etc.), but the algorithmic complexity grows too much to be // worth the extra gains we get. This gets us pretty close. // The final order leaves us with objects with highest priority going // at the end of our list. struct X86FrameSortingComparator { inline bool operator()(const X86FrameSortingObject &A, const X86FrameSortingObject &B) const { uint64_t DensityAScaled, DensityBScaled; // For consistency in our comparison, all invalid objects are placed // at the end. This also allows us to stop walking when we hit the // first invalid item after it's all sorted. if (!A.IsValid) return false; if (!B.IsValid) return true; // The density is calculated by doing : // (double)DensityA = A.ObjectNumUses / A.ObjectSize // (double)DensityB = B.ObjectNumUses / B.ObjectSize // Since this approach may cause inconsistencies in // the floating point <, >, == comparisons, depending on the floating // point model with which the compiler was built, we're going // to scale both sides by multiplying with // A.ObjectSize * B.ObjectSize. This ends up factoring away // the division and, with it, the need for any floating point // arithmetic. DensityAScaled = static_cast(A.ObjectNumUses) * static_cast(B.ObjectSize); DensityBScaled = static_cast(B.ObjectNumUses) * static_cast(A.ObjectSize); // If the two densities are equal, prioritize highest alignment // objects. This allows for similar alignment objects // to be packed together (given the same density). // There's room for improvement here, also, since we can pack // similar alignment (different density) objects next to each // other to save padding. This will also require further // complexity/iterations, and the overall gain isn't worth it, // in general. Something to keep in mind, though. if (DensityAScaled == DensityBScaled) return A.ObjectAlignment < B.ObjectAlignment; return DensityAScaled < DensityBScaled; } }; } // namespace // Order the symbols in the local stack. // We want to place the local stack objects in some sort of sensible order. // The heuristic we use is to try and pack them according to static number // of uses and size of object in order to minimize code size. void X86FrameLowering::orderFrameObjects( const MachineFunction &MF, SmallVectorImpl &ObjectsToAllocate) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); // Don't waste time if there's nothing to do. if (ObjectsToAllocate.empty()) return; // Create an array of all MFI objects. We won't need all of these // objects, but we're going to create a full array of them to make // it easier to index into when we're counting "uses" down below. // We want to be able to easily/cheaply access an object by simply // indexing into it, instead of having to search for it every time. std::vector SortingObjects(MFI.getObjectIndexEnd()); // Walk the objects we care about and mark them as such in our working // struct. for (auto &Obj : ObjectsToAllocate) { SortingObjects[Obj].IsValid = true; SortingObjects[Obj].ObjectIndex = Obj; SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); // Set the size. int ObjectSize = MFI.getObjectSize(Obj); if (ObjectSize == 0) // Variable size. Just use 4. SortingObjects[Obj].ObjectSize = 4; else SortingObjects[Obj].ObjectSize = ObjectSize; } // Count the number of uses for each object. for (auto &MBB : MF) { for (auto &MI : MBB) { if (MI.isDebugInstr()) continue; for (const MachineOperand &MO : MI.operands()) { // Check to see if it's a local stack symbol. if (!MO.isFI()) continue; int Index = MO.getIndex(); // Check to see if it falls within our range, and is tagged // to require ordering. if (Index >= 0 && Index < MFI.getObjectIndexEnd() && SortingObjects[Index].IsValid) SortingObjects[Index].ObjectNumUses++; } } } // Sort the objects using X86FrameSortingAlgorithm (see its comment for // info). llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); // Now modify the original list to represent the final order that // we want. The order will depend on whether we're going to access them // from the stack pointer or the frame pointer. For SP, the list should // end up with the END containing objects that we want with smaller offsets. // For FP, it should be flipped. int i = 0; for (auto &Obj : SortingObjects) { // All invalid items are sorted at the end, so it's safe to stop. if (!Obj.IsValid) break; ObjectsToAllocate[i++] = Obj.ObjectIndex; } // Flip it if we're accessing off of the FP. if (!TRI->hasStackRealignment(MF) && hasFP(MF)) std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); } unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. unsigned Offset = 16; // RBP is immediately pushed. Offset += SlotSize; // All callee-saved registers are then pushed. Offset += MF.getInfo()->getCalleeSavedFrameSize(); // Every funclet allocates enough stack space for the largest outgoing call. Offset += getWinEHFuncletFrameSize(MF); return Offset; } void X86FrameLowering::processFunctionBeforeFrameFinalized( MachineFunction &MF, RegScavenger *RS) const { // Mark the function as not having WinCFI. We will set it back to true in // emitPrologue if it gets called and emits CFI. MF.setHasWinCFI(false); // If we are using Windows x64 CFI, ensure that the stack is always 8 byte // aligned. The format doesn't support misaligned stack adjustments. if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); // If this function isn't doing Win64-style C++ EH, we don't need to do // anything. if (STI.is64Bit() && MF.hasEHFunclets() && classifyEHPersonality(MF.getFunction().getPersonalityFn()) == EHPersonality::MSVC_CXX) { adjustFrameForMsvcCxxEh(MF); } } void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset // relative to RSP after the prologue. Find the offset of the last fixed // object, so that we can allocate a slot immediately following it. If there // were no fixed objects, use offset -SlotSize, which is immediately after the // return address. Fixed objects have negative frame indices. MachineFrameInfo &MFI = MF.getFrameInfo(); WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); int64_t MinFixedObjOffset = -SlotSize; for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { for (WinEHHandlerType &H : TBME.HandlerArray) { int FrameIndex = H.CatchObj.FrameIndex; if (FrameIndex != INT_MAX) { // Ensure alignment. unsigned Align = MFI.getObjectAlign(FrameIndex).value(); MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); } } } // Ensure alignment. MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; int UnwindHelpFI = MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; // Store -2 into UnwindHelp on function entry. We have to scan forwards past // other frame setup instructions. MachineBasicBlock &MBB = MF.front(); auto MBBI = MBB.begin(); while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) ++MBBI; DebugLoc DL = MBB.findDebugLoc(MBBI); addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), UnwindHelpFI) .addImm(-2); } void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( MachineFunction &MF, RegScavenger *RS) const { if (STI.is32Bit() && MF.hasEHFunclets()) restoreWinEHStackPointersInParent(MF); } void X86FrameLowering::restoreWinEHStackPointersInParent( MachineFunction &MF) const { // 32-bit functions have to restore stack pointers when control is transferred // back to the parent function. These blocks are identified as eh pads that // are not funclet entries. bool IsSEH = isAsynchronousEHPersonality( classifyEHPersonality(MF.getFunction().getPersonalityFn())); for (MachineBasicBlock &MBB : MF) { bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); if (NeedsRestore) restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), /*RestoreSP=*/IsSEH); } }