xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp (revision 59144db3fca192c4637637dfe6b5a5d98632cd47)
1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/SystemZInstPrinter.h"
10 #include "MCTargetDesc/SystemZMCAsmInfo.h"
11 #include "MCTargetDesc/SystemZMCTargetDesc.h"
12 #include "SystemZTargetStreamer.h"
13 #include "TargetInfo/SystemZTargetInfo.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/MC/MCAsmInfo.h"
19 #include "llvm/MC/MCContext.h"
20 #include "llvm/MC/MCExpr.h"
21 #include "llvm/MC/MCInst.h"
22 #include "llvm/MC/MCInstBuilder.h"
23 #include "llvm/MC/MCInstrInfo.h"
24 #include "llvm/MC/MCParser/MCAsmLexer.h"
25 #include "llvm/MC/MCParser/MCAsmParser.h"
26 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
27 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
28 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
29 #include "llvm/MC/MCStreamer.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/TargetRegistry.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/SMLoc.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <iterator>
40 #include <memory>
41 #include <string>
42 
43 using namespace llvm;
44 
45 // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol
46 // is true any MCExpr is accepted (address displacement).
47 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue,
48                     bool AllowSymbol = false) {
49   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
50     int64_t Value = CE->getValue();
51     return Value >= MinValue && Value <= MaxValue;
52   }
53   return AllowSymbol;
54 }
55 
56 namespace {
57 
58 enum RegisterKind {
59   GR32Reg,
60   GRH32Reg,
61   GR64Reg,
62   GR128Reg,
63   FP32Reg,
64   FP64Reg,
65   FP128Reg,
66   VR32Reg,
67   VR64Reg,
68   VR128Reg,
69   AR32Reg,
70   CR64Reg,
71 };
72 
73 enum MemoryKind {
74   BDMem,
75   BDXMem,
76   BDLMem,
77   BDRMem,
78   BDVMem
79 };
80 
81 class SystemZOperand : public MCParsedAsmOperand {
82 private:
83   enum OperandKind {
84     KindInvalid,
85     KindToken,
86     KindReg,
87     KindImm,
88     KindImmTLS,
89     KindMem
90   };
91 
92   OperandKind Kind;
93   SMLoc StartLoc, EndLoc;
94 
95   // A string of length Length, starting at Data.
96   struct TokenOp {
97     const char *Data;
98     unsigned Length;
99   };
100 
101   // LLVM register Num, which has kind Kind.  In some ways it might be
102   // easier for this class to have a register bank (general, floating-point
103   // or access) and a raw register number (0-15).  This would postpone the
104   // interpretation of the operand to the add*() methods and avoid the need
105   // for context-dependent parsing.  However, we do things the current way
106   // because of the virtual getReg() method, which needs to distinguish
107   // between (say) %r0 used as a single register and %r0 used as a pair.
108   // Context-dependent parsing can also give us slightly better error
109   // messages when invalid pairs like %r1 are used.
110   struct RegOp {
111     RegisterKind Kind;
112     unsigned Num;
113   };
114 
115   // Base + Disp + Index, where Base and Index are LLVM registers or 0.
116   // MemKind says what type of memory this is and RegKind says what type
117   // the base register has (GR32Reg or GR64Reg).  Length is the operand
118   // length for D(L,B)-style operands, otherwise it is null.
119   struct MemOp {
120     unsigned Base : 12;
121     unsigned Index : 12;
122     unsigned MemKind : 4;
123     unsigned RegKind : 4;
124     const MCExpr *Disp;
125     union {
126       const MCExpr *Imm;
127       unsigned Reg;
128     } Length;
129   };
130 
131   // Imm is an immediate operand, and Sym is an optional TLS symbol
132   // for use with a __tls_get_offset marker relocation.
133   struct ImmTLSOp {
134     const MCExpr *Imm;
135     const MCExpr *Sym;
136   };
137 
138   union {
139     TokenOp Token;
140     RegOp Reg;
141     const MCExpr *Imm;
142     ImmTLSOp ImmTLS;
143     MemOp Mem;
144   };
145 
146   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
147     // Add as immediates when possible.  Null MCExpr = 0.
148     if (!Expr)
149       Inst.addOperand(MCOperand::createImm(0));
150     else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
151       Inst.addOperand(MCOperand::createImm(CE->getValue()));
152     else
153       Inst.addOperand(MCOperand::createExpr(Expr));
154   }
155 
156 public:
157   SystemZOperand(OperandKind Kind, SMLoc StartLoc, SMLoc EndLoc)
158       : Kind(Kind), StartLoc(StartLoc), EndLoc(EndLoc) {}
159 
160   // Create particular kinds of operand.
161   static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
162                                                        SMLoc EndLoc) {
163     return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
164   }
165 
166   static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
167     auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
168     Op->Token.Data = Str.data();
169     Op->Token.Length = Str.size();
170     return Op;
171   }
172 
173   static std::unique_ptr<SystemZOperand>
174   createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
175     auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
176     Op->Reg.Kind = Kind;
177     Op->Reg.Num = Num;
178     return Op;
179   }
180 
181   static std::unique_ptr<SystemZOperand>
182   createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
183     auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
184     Op->Imm = Expr;
185     return Op;
186   }
187 
188   static std::unique_ptr<SystemZOperand>
189   createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
190             const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
191             unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
192     auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
193     Op->Mem.MemKind = MemKind;
194     Op->Mem.RegKind = RegKind;
195     Op->Mem.Base = Base;
196     Op->Mem.Index = Index;
197     Op->Mem.Disp = Disp;
198     if (MemKind == BDLMem)
199       Op->Mem.Length.Imm = LengthImm;
200     if (MemKind == BDRMem)
201       Op->Mem.Length.Reg = LengthReg;
202     return Op;
203   }
204 
205   static std::unique_ptr<SystemZOperand>
206   createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
207                SMLoc StartLoc, SMLoc EndLoc) {
208     auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
209     Op->ImmTLS.Imm = Imm;
210     Op->ImmTLS.Sym = Sym;
211     return Op;
212   }
213 
214   // Token operands
215   bool isToken() const override {
216     return Kind == KindToken;
217   }
218   StringRef getToken() const {
219     assert(Kind == KindToken && "Not a token");
220     return StringRef(Token.Data, Token.Length);
221   }
222 
223   // Register operands.
224   bool isReg() const override {
225     return Kind == KindReg;
226   }
227   bool isReg(RegisterKind RegKind) const {
228     return Kind == KindReg && Reg.Kind == RegKind;
229   }
230   unsigned getReg() const override {
231     assert(Kind == KindReg && "Not a register");
232     return Reg.Num;
233   }
234 
235   // Immediate operands.
236   bool isImm() const override {
237     return Kind == KindImm;
238   }
239   bool isImm(int64_t MinValue, int64_t MaxValue) const {
240     return Kind == KindImm && inRange(Imm, MinValue, MaxValue, true);
241   }
242   const MCExpr *getImm() const {
243     assert(Kind == KindImm && "Not an immediate");
244     return Imm;
245   }
246 
247   // Immediate operands with optional TLS symbol.
248   bool isImmTLS() const {
249     return Kind == KindImmTLS;
250   }
251 
252   const ImmTLSOp getImmTLS() const {
253     assert(Kind == KindImmTLS && "Not a TLS immediate");
254     return ImmTLS;
255   }
256 
257   // Memory operands.
258   bool isMem() const override {
259     return Kind == KindMem;
260   }
261   bool isMem(MemoryKind MemKind) const {
262     return (Kind == KindMem &&
263             (Mem.MemKind == MemKind ||
264              // A BDMem can be treated as a BDXMem in which the index
265              // register field is 0.
266              (Mem.MemKind == BDMem && MemKind == BDXMem)));
267   }
268   bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
269     return isMem(MemKind) && Mem.RegKind == RegKind;
270   }
271   bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
272     return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true);
273   }
274   bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
275     return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true);
276   }
277   bool isMemDisp12Len4(RegisterKind RegKind) const {
278     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
279   }
280   bool isMemDisp12Len8(RegisterKind RegKind) const {
281     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
282   }
283 
284   const MemOp& getMem() const {
285     assert(Kind == KindMem && "Not a Mem operand");
286     return Mem;
287   }
288 
289   // Override MCParsedAsmOperand.
290   SMLoc getStartLoc() const override { return StartLoc; }
291   SMLoc getEndLoc() const override { return EndLoc; }
292   void print(raw_ostream &OS) const override;
293 
294   /// getLocRange - Get the range between the first and last token of this
295   /// operand.
296   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
297 
298   // Used by the TableGen code to add particular types of operand
299   // to an instruction.
300   void addRegOperands(MCInst &Inst, unsigned N) const {
301     assert(N == 1 && "Invalid number of operands");
302     Inst.addOperand(MCOperand::createReg(getReg()));
303   }
304   void addImmOperands(MCInst &Inst, unsigned N) const {
305     assert(N == 1 && "Invalid number of operands");
306     addExpr(Inst, getImm());
307   }
308   void addBDAddrOperands(MCInst &Inst, unsigned N) const {
309     assert(N == 2 && "Invalid number of operands");
310     assert(isMem(BDMem) && "Invalid operand type");
311     Inst.addOperand(MCOperand::createReg(Mem.Base));
312     addExpr(Inst, Mem.Disp);
313   }
314   void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
315     assert(N == 3 && "Invalid number of operands");
316     assert(isMem(BDXMem) && "Invalid operand type");
317     Inst.addOperand(MCOperand::createReg(Mem.Base));
318     addExpr(Inst, Mem.Disp);
319     Inst.addOperand(MCOperand::createReg(Mem.Index));
320   }
321   void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
322     assert(N == 3 && "Invalid number of operands");
323     assert(isMem(BDLMem) && "Invalid operand type");
324     Inst.addOperand(MCOperand::createReg(Mem.Base));
325     addExpr(Inst, Mem.Disp);
326     addExpr(Inst, Mem.Length.Imm);
327   }
328   void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
329     assert(N == 3 && "Invalid number of operands");
330     assert(isMem(BDRMem) && "Invalid operand type");
331     Inst.addOperand(MCOperand::createReg(Mem.Base));
332     addExpr(Inst, Mem.Disp);
333     Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
334   }
335   void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
336     assert(N == 3 && "Invalid number of operands");
337     assert(isMem(BDVMem) && "Invalid operand type");
338     Inst.addOperand(MCOperand::createReg(Mem.Base));
339     addExpr(Inst, Mem.Disp);
340     Inst.addOperand(MCOperand::createReg(Mem.Index));
341   }
342   void addImmTLSOperands(MCInst &Inst, unsigned N) const {
343     assert(N == 2 && "Invalid number of operands");
344     assert(Kind == KindImmTLS && "Invalid operand type");
345     addExpr(Inst, ImmTLS.Imm);
346     if (ImmTLS.Sym)
347       addExpr(Inst, ImmTLS.Sym);
348   }
349 
350   // Used by the TableGen code to check for particular operand types.
351   bool isGR32() const { return isReg(GR32Reg); }
352   bool isGRH32() const { return isReg(GRH32Reg); }
353   bool isGRX32() const { return false; }
354   bool isGR64() const { return isReg(GR64Reg); }
355   bool isGR128() const { return isReg(GR128Reg); }
356   bool isADDR32() const { return isReg(GR32Reg); }
357   bool isADDR64() const { return isReg(GR64Reg); }
358   bool isADDR128() const { return false; }
359   bool isFP32() const { return isReg(FP32Reg); }
360   bool isFP64() const { return isReg(FP64Reg); }
361   bool isFP128() const { return isReg(FP128Reg); }
362   bool isVR32() const { return isReg(VR32Reg); }
363   bool isVR64() const { return isReg(VR64Reg); }
364   bool isVF128() const { return false; }
365   bool isVR128() const { return isReg(VR128Reg); }
366   bool isAR32() const { return isReg(AR32Reg); }
367   bool isCR64() const { return isReg(CR64Reg); }
368   bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
369   bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
370   bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
371   bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
372   bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
373   bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
374   bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
375   bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
376   bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
377   bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
378   bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
379   bool isU1Imm() const { return isImm(0, 1); }
380   bool isU2Imm() const { return isImm(0, 3); }
381   bool isU3Imm() const { return isImm(0, 7); }
382   bool isU4Imm() const { return isImm(0, 15); }
383   bool isU8Imm() const { return isImm(0, 255); }
384   bool isS8Imm() const { return isImm(-128, 127); }
385   bool isU12Imm() const { return isImm(0, 4095); }
386   bool isU16Imm() const { return isImm(0, 65535); }
387   bool isS16Imm() const { return isImm(-32768, 32767); }
388   bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
389   bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
390   bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
391 };
392 
393 class SystemZAsmParser : public MCTargetAsmParser {
394 #define GET_ASSEMBLER_HEADER
395 #include "SystemZGenAsmMatcher.inc"
396 
397 private:
398   MCAsmParser &Parser;
399   enum RegisterGroup {
400     RegGR,
401     RegFP,
402     RegV,
403     RegAR,
404     RegCR
405   };
406   struct Register {
407     RegisterGroup Group;
408     unsigned Num;
409     SMLoc StartLoc, EndLoc;
410   };
411 
412   SystemZTargetStreamer &getTargetStreamer() {
413     assert(getParser().getStreamer().getTargetStreamer() &&
414            "do not have a target streamer");
415     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
416     return static_cast<SystemZTargetStreamer &>(TS);
417   }
418 
419   bool parseRegister(Register &Reg, bool RestoreOnFailure = false);
420 
421   bool parseIntegerRegister(Register &Reg, RegisterGroup Group);
422 
423   ParseStatus parseRegister(OperandVector &Operands, RegisterKind Kind);
424 
425   ParseStatus parseAnyRegister(OperandVector &Operands);
426 
427   bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2,
428                     Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length,
429                     bool HasLength = false, bool HasVectorIndex = false);
430   bool parseAddressRegister(Register &Reg);
431 
432   bool ParseDirectiveInsn(SMLoc L);
433   bool ParseDirectiveMachine(SMLoc L);
434   bool ParseGNUAttribute(SMLoc L);
435 
436   ParseStatus parseAddress(OperandVector &Operands, MemoryKind MemKind,
437                            RegisterKind RegKind);
438 
439   ParseStatus parsePCRel(OperandVector &Operands, int64_t MinVal,
440                          int64_t MaxVal, bool AllowTLS);
441 
442   bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
443 
444   // Both the hlasm and att variants still rely on the basic gnu asm
445   // format with respect to inputs, clobbers, outputs etc.
446   //
447   // However, calling the overriden getAssemblerDialect() method in
448   // AsmParser is problematic. It either returns the AssemblerDialect field
449   // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is
450   // unset, otherwise it returns the private AssemblerDialect field in
451   // AsmParser.
452   //
453   // The problematic part is because, we forcibly set the inline asm dialect
454   // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query
455   // to the overriden getAssemblerDialect function in AsmParser.cpp, will
456   // not return the assembler dialect set in the respective MCAsmInfo instance.
457   //
458   // For this purpose, we explicitly query the SystemZMCAsmInfo instance
459   // here, to get the "correct" assembler dialect, and use it in various
460   // functions.
461   unsigned getMAIAssemblerDialect() {
462     return Parser.getContext().getAsmInfo()->getAssemblerDialect();
463   }
464 
465   // An alphabetic character in HLASM is a letter from 'A' through 'Z',
466   // or from 'a' through 'z', or '$', '_','#', or '@'.
467   inline bool isHLASMAlpha(char C) {
468     return isAlpha(C) || llvm::is_contained("_@#$", C);
469   }
470 
471   // A digit in HLASM is a number from 0 to 9.
472   inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); }
473 
474   // Are we parsing using the AD_HLASM dialect?
475   inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; }
476 
477   // Are we parsing using the AD_ATT dialect?
478   inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; }
479 
480 public:
481   SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
482                    const MCInstrInfo &MII,
483                    const MCTargetOptions &Options)
484     : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
485     MCAsmParserExtension::Initialize(Parser);
486 
487     // Alias the .word directive to .short.
488     parser.addAliasForDirective(".word", ".short");
489 
490     // Initialize the set of available features.
491     setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
492   }
493 
494   // Override MCTargetAsmParser.
495   ParseStatus parseDirective(AsmToken DirectiveID) override;
496   bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override;
497   bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
498                      bool RestoreOnFailure);
499   ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
500                                SMLoc &EndLoc) override;
501   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
502                         SMLoc NameLoc, OperandVector &Operands) override;
503   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
504                                OperandVector &Operands, MCStreamer &Out,
505                                uint64_t &ErrorInfo,
506                                bool MatchingInlineAsm) override;
507   bool isLabel(AsmToken &Token) override;
508 
509   // Used by the TableGen code to parse particular operand types.
510   ParseStatus parseGR32(OperandVector &Operands) {
511     return parseRegister(Operands, GR32Reg);
512   }
513   ParseStatus parseGRH32(OperandVector &Operands) {
514     return parseRegister(Operands, GRH32Reg);
515   }
516   ParseStatus parseGRX32(OperandVector &Operands) {
517     llvm_unreachable("GRX32 should only be used for pseudo instructions");
518   }
519   ParseStatus parseGR64(OperandVector &Operands) {
520     return parseRegister(Operands, GR64Reg);
521   }
522   ParseStatus parseGR128(OperandVector &Operands) {
523     return parseRegister(Operands, GR128Reg);
524   }
525   ParseStatus parseADDR32(OperandVector &Operands) {
526     // For the AsmParser, we will accept %r0 for ADDR32 as well.
527     return parseRegister(Operands, GR32Reg);
528   }
529   ParseStatus parseADDR64(OperandVector &Operands) {
530     // For the AsmParser, we will accept %r0 for ADDR64 as well.
531     return parseRegister(Operands, GR64Reg);
532   }
533   ParseStatus parseADDR128(OperandVector &Operands) {
534     llvm_unreachable("Shouldn't be used as an operand");
535   }
536   ParseStatus parseFP32(OperandVector &Operands) {
537     return parseRegister(Operands, FP32Reg);
538   }
539   ParseStatus parseFP64(OperandVector &Operands) {
540     return parseRegister(Operands, FP64Reg);
541   }
542   ParseStatus parseFP128(OperandVector &Operands) {
543     return parseRegister(Operands, FP128Reg);
544   }
545   ParseStatus parseVR32(OperandVector &Operands) {
546     return parseRegister(Operands, VR32Reg);
547   }
548   ParseStatus parseVR64(OperandVector &Operands) {
549     return parseRegister(Operands, VR64Reg);
550   }
551   ParseStatus parseVF128(OperandVector &Operands) {
552     llvm_unreachable("Shouldn't be used as an operand");
553   }
554   ParseStatus parseVR128(OperandVector &Operands) {
555     return parseRegister(Operands, VR128Reg);
556   }
557   ParseStatus parseAR32(OperandVector &Operands) {
558     return parseRegister(Operands, AR32Reg);
559   }
560   ParseStatus parseCR64(OperandVector &Operands) {
561     return parseRegister(Operands, CR64Reg);
562   }
563   ParseStatus parseAnyReg(OperandVector &Operands) {
564     return parseAnyRegister(Operands);
565   }
566   ParseStatus parseBDAddr32(OperandVector &Operands) {
567     return parseAddress(Operands, BDMem, GR32Reg);
568   }
569   ParseStatus parseBDAddr64(OperandVector &Operands) {
570     return parseAddress(Operands, BDMem, GR64Reg);
571   }
572   ParseStatus parseBDXAddr64(OperandVector &Operands) {
573     return parseAddress(Operands, BDXMem, GR64Reg);
574   }
575   ParseStatus parseBDLAddr64(OperandVector &Operands) {
576     return parseAddress(Operands, BDLMem, GR64Reg);
577   }
578   ParseStatus parseBDRAddr64(OperandVector &Operands) {
579     return parseAddress(Operands, BDRMem, GR64Reg);
580   }
581   ParseStatus parseBDVAddr64(OperandVector &Operands) {
582     return parseAddress(Operands, BDVMem, GR64Reg);
583   }
584   ParseStatus parsePCRel12(OperandVector &Operands) {
585     return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
586   }
587   ParseStatus parsePCRel16(OperandVector &Operands) {
588     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
589   }
590   ParseStatus parsePCRel24(OperandVector &Operands) {
591     return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
592   }
593   ParseStatus parsePCRel32(OperandVector &Operands) {
594     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
595   }
596   ParseStatus parsePCRelTLS16(OperandVector &Operands) {
597     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
598   }
599   ParseStatus parsePCRelTLS32(OperandVector &Operands) {
600     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
601   }
602 };
603 
604 } // end anonymous namespace
605 
606 #define GET_REGISTER_MATCHER
607 #define GET_SUBTARGET_FEATURE_NAME
608 #define GET_MATCHER_IMPLEMENTATION
609 #define GET_MNEMONIC_SPELL_CHECKER
610 #include "SystemZGenAsmMatcher.inc"
611 
612 // Used for the .insn directives; contains information needed to parse the
613 // operands in the directive.
614 struct InsnMatchEntry {
615   StringRef Format;
616   uint64_t Opcode;
617   int32_t NumOperands;
618   MatchClassKind OperandKinds[7];
619 };
620 
621 // For equal_range comparison.
622 struct CompareInsn {
623   bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
624     return LHS.Format < RHS;
625   }
626   bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
627     return LHS < RHS.Format;
628   }
629   bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
630     return LHS.Format < RHS.Format;
631   }
632 };
633 
634 // Table initializing information for parsing the .insn directive.
635 static struct InsnMatchEntry InsnMatchTable[] = {
636   /* Format, Opcode, NumOperands, OperandKinds */
637   { "e", SystemZ::InsnE, 1,
638     { MCK_U16Imm } },
639   { "ri", SystemZ::InsnRI, 3,
640     { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
641   { "rie", SystemZ::InsnRIE, 4,
642     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
643   { "ril", SystemZ::InsnRIL, 3,
644     { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
645   { "rilu", SystemZ::InsnRILU, 3,
646     { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
647   { "ris", SystemZ::InsnRIS, 5,
648     { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
649   { "rr", SystemZ::InsnRR, 3,
650     { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
651   { "rre", SystemZ::InsnRRE, 3,
652     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
653   { "rrf", SystemZ::InsnRRF, 5,
654     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
655   { "rrs", SystemZ::InsnRRS, 5,
656     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
657   { "rs", SystemZ::InsnRS, 4,
658     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
659   { "rse", SystemZ::InsnRSE, 4,
660     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
661   { "rsi", SystemZ::InsnRSI, 4,
662     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
663   { "rsy", SystemZ::InsnRSY, 4,
664     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
665   { "rx", SystemZ::InsnRX, 3,
666     { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
667   { "rxe", SystemZ::InsnRXE, 3,
668     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
669   { "rxf", SystemZ::InsnRXF, 4,
670     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
671   { "rxy", SystemZ::InsnRXY, 3,
672     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
673   { "s", SystemZ::InsnS, 2,
674     { MCK_U32Imm, MCK_BDAddr64Disp12 } },
675   { "si", SystemZ::InsnSI, 3,
676     { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
677   { "sil", SystemZ::InsnSIL, 3,
678     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
679   { "siy", SystemZ::InsnSIY, 3,
680     { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
681   { "ss", SystemZ::InsnSS, 4,
682     { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
683   { "sse", SystemZ::InsnSSE, 3,
684     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
685   { "ssf", SystemZ::InsnSSF, 4,
686     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
687   { "vri", SystemZ::InsnVRI, 6,
688     { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } },
689   { "vrr", SystemZ::InsnVRR, 7,
690     { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm,
691       MCK_U4Imm } },
692   { "vrs", SystemZ::InsnVRS, 5,
693     { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } },
694   { "vrv", SystemZ::InsnVRV, 4,
695     { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } },
696   { "vrx", SystemZ::InsnVRX, 4,
697     { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } },
698   { "vsi", SystemZ::InsnVSI, 4,
699     { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } }
700 };
701 
702 static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
703   if (!E)
704     return;
705   if (auto *CE = dyn_cast<MCConstantExpr>(E))
706     OS << *CE;
707   else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
708     OS << *UE;
709   else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
710     OS << *BE;
711   else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
712     OS << *SRE;
713   else
714     OS << *E;
715 }
716 
717 void SystemZOperand::print(raw_ostream &OS) const {
718   switch (Kind) {
719   case KindToken:
720     OS << "Token:" << getToken();
721     break;
722   case KindReg:
723     OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
724     break;
725   case KindImm:
726     OS << "Imm:";
727     printMCExpr(getImm(), OS);
728     break;
729   case KindImmTLS:
730     OS << "ImmTLS:";
731     printMCExpr(getImmTLS().Imm, OS);
732     if (getImmTLS().Sym) {
733       OS << ", ";
734       printMCExpr(getImmTLS().Sym, OS);
735     }
736     break;
737   case KindMem: {
738     const MemOp &Op = getMem();
739     OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
740     if (Op.Base) {
741       OS << "(";
742       if (Op.MemKind == BDLMem)
743         OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
744       else if (Op.MemKind == BDRMem)
745         OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
746       if (Op.Index)
747         OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
748       OS << SystemZInstPrinter::getRegisterName(Op.Base);
749       OS << ")";
750     }
751     break;
752   }
753   case KindInvalid:
754     break;
755   }
756 }
757 
758 // Parse one register of the form %<prefix><number>.
759 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) {
760   Reg.StartLoc = Parser.getTok().getLoc();
761 
762   // Eat the % prefix.
763   if (Parser.getTok().isNot(AsmToken::Percent))
764     return Error(Parser.getTok().getLoc(), "register expected");
765   const AsmToken &PercentTok = Parser.getTok();
766   Parser.Lex();
767 
768   // Expect a register name.
769   if (Parser.getTok().isNot(AsmToken::Identifier)) {
770     if (RestoreOnFailure)
771       getLexer().UnLex(PercentTok);
772     return Error(Reg.StartLoc, "invalid register");
773   }
774 
775   // Check that there's a prefix.
776   StringRef Name = Parser.getTok().getString();
777   if (Name.size() < 2) {
778     if (RestoreOnFailure)
779       getLexer().UnLex(PercentTok);
780     return Error(Reg.StartLoc, "invalid register");
781   }
782   char Prefix = Name[0];
783 
784   // Treat the rest of the register name as a register number.
785   if (Name.substr(1).getAsInteger(10, Reg.Num)) {
786     if (RestoreOnFailure)
787       getLexer().UnLex(PercentTok);
788     return Error(Reg.StartLoc, "invalid register");
789   }
790 
791   // Look for valid combinations of prefix and number.
792   if (Prefix == 'r' && Reg.Num < 16)
793     Reg.Group = RegGR;
794   else if (Prefix == 'f' && Reg.Num < 16)
795     Reg.Group = RegFP;
796   else if (Prefix == 'v' && Reg.Num < 32)
797     Reg.Group = RegV;
798   else if (Prefix == 'a' && Reg.Num < 16)
799     Reg.Group = RegAR;
800   else if (Prefix == 'c' && Reg.Num < 16)
801     Reg.Group = RegCR;
802   else {
803     if (RestoreOnFailure)
804       getLexer().UnLex(PercentTok);
805     return Error(Reg.StartLoc, "invalid register");
806   }
807 
808   Reg.EndLoc = Parser.getTok().getLoc();
809   Parser.Lex();
810   return false;
811 }
812 
813 // Parse a register of kind Kind and add it to Operands.
814 ParseStatus SystemZAsmParser::parseRegister(OperandVector &Operands,
815                                             RegisterKind Kind) {
816   Register Reg;
817   RegisterGroup Group;
818   switch (Kind) {
819   case GR32Reg:
820   case GRH32Reg:
821   case GR64Reg:
822   case GR128Reg:
823     Group = RegGR;
824     break;
825   case FP32Reg:
826   case FP64Reg:
827   case FP128Reg:
828     Group = RegFP;
829     break;
830   case VR32Reg:
831   case VR64Reg:
832   case VR128Reg:
833     Group = RegV;
834     break;
835   case AR32Reg:
836     Group = RegAR;
837     break;
838   case CR64Reg:
839     Group = RegCR;
840     break;
841   }
842 
843   // Handle register names of the form %<prefix><number>
844   if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
845     if (parseRegister(Reg))
846       return ParseStatus::Failure;
847 
848     // Check the parsed register group "Reg.Group" with the expected "Group"
849     // Have to error out if user specified wrong prefix.
850     switch (Group) {
851     case RegGR:
852     case RegFP:
853     case RegAR:
854     case RegCR:
855       if (Group != Reg.Group)
856         return Error(Reg.StartLoc, "invalid operand for instruction");
857       break;
858     case RegV:
859       if (Reg.Group != RegV && Reg.Group != RegFP)
860         return Error(Reg.StartLoc, "invalid operand for instruction");
861       break;
862     }
863   } else if (Parser.getTok().is(AsmToken::Integer)) {
864     if (parseIntegerRegister(Reg, Group))
865       return ParseStatus::Failure;
866   }
867   // Otherwise we didn't match a register operand.
868   else
869     return ParseStatus::NoMatch;
870 
871   // Determine the LLVM register number according to Kind.
872   const unsigned *Regs;
873   switch (Kind) {
874   case GR32Reg:  Regs = SystemZMC::GR32Regs;  break;
875   case GRH32Reg: Regs = SystemZMC::GRH32Regs; break;
876   case GR64Reg:  Regs = SystemZMC::GR64Regs;  break;
877   case GR128Reg: Regs = SystemZMC::GR128Regs; break;
878   case FP32Reg:  Regs = SystemZMC::FP32Regs;  break;
879   case FP64Reg:  Regs = SystemZMC::FP64Regs;  break;
880   case FP128Reg: Regs = SystemZMC::FP128Regs; break;
881   case VR32Reg:  Regs = SystemZMC::VR32Regs;  break;
882   case VR64Reg:  Regs = SystemZMC::VR64Regs;  break;
883   case VR128Reg: Regs = SystemZMC::VR128Regs; break;
884   case AR32Reg:  Regs = SystemZMC::AR32Regs;  break;
885   case CR64Reg:  Regs = SystemZMC::CR64Regs;  break;
886   }
887   if (Regs[Reg.Num] == 0)
888     return Error(Reg.StartLoc, "invalid register pair");
889 
890   Operands.push_back(
891       SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc));
892   return ParseStatus::Success;
893 }
894 
895 // Parse any type of register (including integers) and add it to Operands.
896 ParseStatus SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
897   SMLoc StartLoc = Parser.getTok().getLoc();
898 
899   // Handle integer values.
900   if (Parser.getTok().is(AsmToken::Integer)) {
901     const MCExpr *Register;
902     if (Parser.parseExpression(Register))
903       return ParseStatus::Failure;
904 
905     if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
906       int64_t Value = CE->getValue();
907       if (Value < 0 || Value > 15)
908         return Error(StartLoc, "invalid register");
909     }
910 
911     SMLoc EndLoc =
912       SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
913 
914     Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
915   }
916   else {
917     if (isParsingHLASM())
918       return ParseStatus::NoMatch;
919 
920     Register Reg;
921     if (parseRegister(Reg))
922       return ParseStatus::Failure;
923 
924     if (Reg.Num > 15)
925       return Error(StartLoc, "invalid register");
926 
927     // Map to the correct register kind.
928     RegisterKind Kind;
929     unsigned RegNo;
930     if (Reg.Group == RegGR) {
931       Kind = GR64Reg;
932       RegNo = SystemZMC::GR64Regs[Reg.Num];
933     }
934     else if (Reg.Group == RegFP) {
935       Kind = FP64Reg;
936       RegNo = SystemZMC::FP64Regs[Reg.Num];
937     }
938     else if (Reg.Group == RegV) {
939       Kind = VR128Reg;
940       RegNo = SystemZMC::VR128Regs[Reg.Num];
941     }
942     else if (Reg.Group == RegAR) {
943       Kind = AR32Reg;
944       RegNo = SystemZMC::AR32Regs[Reg.Num];
945     }
946     else if (Reg.Group == RegCR) {
947       Kind = CR64Reg;
948       RegNo = SystemZMC::CR64Regs[Reg.Num];
949     }
950     else {
951       return ParseStatus::Failure;
952     }
953 
954     Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
955                                                  Reg.StartLoc, Reg.EndLoc));
956   }
957   return ParseStatus::Success;
958 }
959 
960 bool SystemZAsmParser::parseIntegerRegister(Register &Reg,
961                                             RegisterGroup Group) {
962   Reg.StartLoc = Parser.getTok().getLoc();
963   // We have an integer token
964   const MCExpr *Register;
965   if (Parser.parseExpression(Register))
966     return true;
967 
968   const auto *CE = dyn_cast<MCConstantExpr>(Register);
969   if (!CE)
970     return true;
971 
972   int64_t MaxRegNum = (Group == RegV) ? 31 : 15;
973   int64_t Value = CE->getValue();
974   if (Value < 0 || Value > MaxRegNum) {
975     Error(Parser.getTok().getLoc(), "invalid register");
976     return true;
977   }
978 
979   // Assign the Register Number
980   Reg.Num = (unsigned)Value;
981   Reg.Group = Group;
982   Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
983 
984   // At this point, successfully parsed an integer register.
985   return false;
986 }
987 
988 // Parse a memory operand into Reg1, Reg2, Disp, and Length.
989 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
990                                     bool &HaveReg2, Register &Reg2,
991                                     const MCExpr *&Disp, const MCExpr *&Length,
992                                     bool HasLength, bool HasVectorIndex) {
993   // Parse the displacement, which must always be present.
994   if (getParser().parseExpression(Disp))
995     return true;
996 
997   // Parse the optional base and index.
998   HaveReg1 = false;
999   HaveReg2 = false;
1000   Length = nullptr;
1001 
1002   // If we have a scenario as below:
1003   //   vgef %v0, 0(0), 0
1004   // This is an example of a "BDVMem" instruction type.
1005   //
1006   // So when we parse this as an integer register, the register group
1007   // needs to be tied to "RegV". Usually when the prefix is passed in
1008   // as %<prefix><reg-number> its easy to check which group it should belong to
1009   // However, if we're passing in just the integer there's no real way to
1010   // "check" what register group it should belong to.
1011   //
1012   // When the user passes in the register as an integer, the user assumes that
1013   // the compiler is responsible for substituting it as the right kind of
1014   // register. Whereas, when the user specifies a "prefix", the onus is on
1015   // the user to make sure they pass in the right kind of register.
1016   //
1017   // The restriction only applies to the first Register (i.e. Reg1). Reg2 is
1018   // always a general register. Reg1 should be of group RegV if "HasVectorIndex"
1019   // (i.e. insn is of type BDVMem) is true.
1020   RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR;
1021 
1022   if (getLexer().is(AsmToken::LParen)) {
1023     Parser.Lex();
1024 
1025     if (isParsingATT() && getLexer().is(AsmToken::Percent)) {
1026       // Parse the first register.
1027       HaveReg1 = true;
1028       if (parseRegister(Reg1))
1029         return true;
1030     }
1031     // So if we have an integer as the first token in ([tok1], ..), it could:
1032     // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of
1033     // instructions)
1034     // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions)
1035     else if (getLexer().is(AsmToken::Integer)) {
1036       if (HasLength) {
1037         // Instruction has a "Length" field, safe to parse the first token as
1038         // the "Length" field
1039         if (getParser().parseExpression(Length))
1040           return true;
1041       } else {
1042         // Otherwise, if the instruction has no "Length" field, parse the
1043         // token as a "Register". We don't have to worry about whether the
1044         // instruction is invalid here, because the caller will take care of
1045         // error reporting.
1046         HaveReg1 = true;
1047         if (parseIntegerRegister(Reg1, RegGroup))
1048           return true;
1049       }
1050     } else {
1051       // If its not an integer or a percent token, then if the instruction
1052       // is reported to have a "Length" then, parse it as "Length".
1053       if (HasLength) {
1054         if (getParser().parseExpression(Length))
1055           return true;
1056       }
1057     }
1058 
1059     // Check whether there's a second register.
1060     if (getLexer().is(AsmToken::Comma)) {
1061       Parser.Lex();
1062       HaveReg2 = true;
1063 
1064       if (getLexer().is(AsmToken::Integer)) {
1065         if (parseIntegerRegister(Reg2, RegGR))
1066           return true;
1067       } else {
1068         if (isParsingATT() && parseRegister(Reg2))
1069           return true;
1070       }
1071     }
1072 
1073     // Consume the closing bracket.
1074     if (getLexer().isNot(AsmToken::RParen))
1075       return Error(Parser.getTok().getLoc(), "unexpected token in address");
1076     Parser.Lex();
1077   }
1078   return false;
1079 }
1080 
1081 // Verify that Reg is a valid address register (base or index).
1082 bool
1083 SystemZAsmParser::parseAddressRegister(Register &Reg) {
1084   if (Reg.Group == RegV) {
1085     Error(Reg.StartLoc, "invalid use of vector addressing");
1086     return true;
1087   }
1088   if (Reg.Group != RegGR) {
1089     Error(Reg.StartLoc, "invalid address register");
1090     return true;
1091   }
1092   return false;
1093 }
1094 
1095 // Parse a memory operand and add it to Operands.  The other arguments
1096 // are as above.
1097 ParseStatus SystemZAsmParser::parseAddress(OperandVector &Operands,
1098                                            MemoryKind MemKind,
1099                                            RegisterKind RegKind) {
1100   SMLoc StartLoc = Parser.getTok().getLoc();
1101   unsigned Base = 0, Index = 0, LengthReg = 0;
1102   Register Reg1, Reg2;
1103   bool HaveReg1, HaveReg2;
1104   const MCExpr *Disp;
1105   const MCExpr *Length;
1106 
1107   bool HasLength = (MemKind == BDLMem) ? true : false;
1108   bool HasVectorIndex = (MemKind == BDVMem) ? true : false;
1109   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength,
1110                    HasVectorIndex))
1111     return ParseStatus::Failure;
1112 
1113   const unsigned *Regs;
1114   switch (RegKind) {
1115   case GR32Reg: Regs = SystemZMC::GR32Regs; break;
1116   case GR64Reg: Regs = SystemZMC::GR64Regs; break;
1117   default: llvm_unreachable("invalid RegKind");
1118   }
1119 
1120   switch (MemKind) {
1121   case BDMem:
1122     // If we have Reg1, it must be an address register.
1123     if (HaveReg1) {
1124       if (parseAddressRegister(Reg1))
1125         return ParseStatus::Failure;
1126       Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num];
1127     }
1128     // There must be no Reg2.
1129     if (HaveReg2)
1130       return Error(StartLoc, "invalid use of indexed addressing");
1131     break;
1132   case BDXMem:
1133     // If we have Reg1, it must be an address register.
1134     if (HaveReg1) {
1135       if (parseAddressRegister(Reg1))
1136         return ParseStatus::Failure;
1137       // If the are two registers, the first one is the index and the
1138       // second is the base.
1139       if (HaveReg2)
1140         Index = Reg1.Num == 0 ? 0 : Regs[Reg1.Num];
1141       else
1142         Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num];
1143     }
1144     // If we have Reg2, it must be an address register.
1145     if (HaveReg2) {
1146       if (parseAddressRegister(Reg2))
1147         return ParseStatus::Failure;
1148       Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
1149     }
1150     break;
1151   case BDLMem:
1152     // If we have Reg2, it must be an address register.
1153     if (HaveReg2) {
1154       if (parseAddressRegister(Reg2))
1155         return ParseStatus::Failure;
1156       Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
1157     }
1158     // We cannot support base+index addressing.
1159     if (HaveReg1 && HaveReg2)
1160       return Error(StartLoc, "invalid use of indexed addressing");
1161     // We must have a length.
1162     if (!Length)
1163       return Error(StartLoc, "missing length in address");
1164     break;
1165   case BDRMem:
1166     // We must have Reg1, and it must be a GPR.
1167     if (!HaveReg1 || Reg1.Group != RegGR)
1168       return Error(StartLoc, "invalid operand for instruction");
1169     LengthReg = SystemZMC::GR64Regs[Reg1.Num];
1170     // If we have Reg2, it must be an address register.
1171     if (HaveReg2) {
1172       if (parseAddressRegister(Reg2))
1173         return ParseStatus::Failure;
1174       Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
1175     }
1176     break;
1177   case BDVMem:
1178     // We must have Reg1, and it must be a vector register.
1179     if (!HaveReg1 || Reg1.Group != RegV)
1180       return Error(StartLoc, "vector index required in address");
1181     Index = SystemZMC::VR128Regs[Reg1.Num];
1182     // If we have Reg2, it must be an address register.
1183     if (HaveReg2) {
1184       if (parseAddressRegister(Reg2))
1185         return ParseStatus::Failure;
1186       Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
1187     }
1188     break;
1189   }
1190 
1191   SMLoc EndLoc =
1192       SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1193   Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
1194                                                Index, Length, LengthReg,
1195                                                StartLoc, EndLoc));
1196   return ParseStatus::Success;
1197 }
1198 
1199 ParseStatus SystemZAsmParser::parseDirective(AsmToken DirectiveID) {
1200   StringRef IDVal = DirectiveID.getIdentifier();
1201 
1202   if (IDVal == ".insn")
1203     return ParseDirectiveInsn(DirectiveID.getLoc());
1204   if (IDVal == ".machine")
1205     return ParseDirectiveMachine(DirectiveID.getLoc());
1206   if (IDVal.starts_with(".gnu_attribute"))
1207     return ParseGNUAttribute(DirectiveID.getLoc());
1208 
1209   return ParseStatus::NoMatch;
1210 }
1211 
1212 /// ParseDirectiveInsn
1213 /// ::= .insn [ format, encoding, (operands (, operands)*) ]
1214 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
1215   MCAsmParser &Parser = getParser();
1216 
1217   // Expect instruction format as identifier.
1218   StringRef Format;
1219   SMLoc ErrorLoc = Parser.getTok().getLoc();
1220   if (Parser.parseIdentifier(Format))
1221     return Error(ErrorLoc, "expected instruction format");
1222 
1223   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
1224 
1225   // Find entry for this format in InsnMatchTable.
1226   auto EntryRange =
1227     std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
1228                      Format, CompareInsn());
1229 
1230   // If first == second, couldn't find a match in the table.
1231   if (EntryRange.first == EntryRange.second)
1232     return Error(ErrorLoc, "unrecognized format");
1233 
1234   struct InsnMatchEntry *Entry = EntryRange.first;
1235 
1236   // Format should match from equal_range.
1237   assert(Entry->Format == Format);
1238 
1239   // Parse the following operands using the table's information.
1240   for (int I = 0; I < Entry->NumOperands; I++) {
1241     MatchClassKind Kind = Entry->OperandKinds[I];
1242 
1243     SMLoc StartLoc = Parser.getTok().getLoc();
1244 
1245     // Always expect commas as separators for operands.
1246     if (getLexer().isNot(AsmToken::Comma))
1247       return Error(StartLoc, "unexpected token in directive");
1248     Lex();
1249 
1250     // Parse operands.
1251     ParseStatus ResTy;
1252     if (Kind == MCK_AnyReg)
1253       ResTy = parseAnyReg(Operands);
1254     else if (Kind == MCK_VR128)
1255       ResTy = parseVR128(Operands);
1256     else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
1257       ResTy = parseBDXAddr64(Operands);
1258     else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
1259       ResTy = parseBDAddr64(Operands);
1260     else if (Kind == MCK_BDVAddr64Disp12)
1261       ResTy = parseBDVAddr64(Operands);
1262     else if (Kind == MCK_PCRel32)
1263       ResTy = parsePCRel32(Operands);
1264     else if (Kind == MCK_PCRel16)
1265       ResTy = parsePCRel16(Operands);
1266     else {
1267       // Only remaining operand kind is an immediate.
1268       const MCExpr *Expr;
1269       SMLoc StartLoc = Parser.getTok().getLoc();
1270 
1271       // Expect immediate expression.
1272       if (Parser.parseExpression(Expr))
1273         return Error(StartLoc, "unexpected token in directive");
1274 
1275       SMLoc EndLoc =
1276         SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1277 
1278       Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1279       ResTy = ParseStatus::Success;
1280     }
1281 
1282     if (!ResTy.isSuccess())
1283       return true;
1284   }
1285 
1286   // Build the instruction with the parsed operands.
1287   MCInst Inst = MCInstBuilder(Entry->Opcode);
1288 
1289   for (size_t I = 0; I < Operands.size(); I++) {
1290     MCParsedAsmOperand &Operand = *Operands[I];
1291     MatchClassKind Kind = Entry->OperandKinds[I];
1292 
1293     // Verify operand.
1294     unsigned Res = validateOperandClass(Operand, Kind);
1295     if (Res != Match_Success)
1296       return Error(Operand.getStartLoc(), "unexpected operand type");
1297 
1298     // Add operands to instruction.
1299     SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
1300     if (ZOperand.isReg())
1301       ZOperand.addRegOperands(Inst, 1);
1302     else if (ZOperand.isMem(BDMem))
1303       ZOperand.addBDAddrOperands(Inst, 2);
1304     else if (ZOperand.isMem(BDXMem))
1305       ZOperand.addBDXAddrOperands(Inst, 3);
1306     else if (ZOperand.isMem(BDVMem))
1307       ZOperand.addBDVAddrOperands(Inst, 3);
1308     else if (ZOperand.isImm())
1309       ZOperand.addImmOperands(Inst, 1);
1310     else
1311       llvm_unreachable("unexpected operand type");
1312   }
1313 
1314   // Emit as a regular instruction.
1315   Parser.getStreamer().emitInstruction(Inst, getSTI());
1316 
1317   return false;
1318 }
1319 
1320 /// ParseDirectiveMachine
1321 /// ::= .machine [ mcpu ]
1322 bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) {
1323   MCAsmParser &Parser = getParser();
1324   if (Parser.getTok().isNot(AsmToken::Identifier) &&
1325       Parser.getTok().isNot(AsmToken::String))
1326     return TokError("unexpected token in '.machine' directive");
1327 
1328   StringRef CPU = Parser.getTok().getIdentifier();
1329   Parser.Lex();
1330   if (parseEOL())
1331     return true;
1332 
1333   MCSubtargetInfo &STI = copySTI();
1334   STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
1335   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
1336 
1337   getTargetStreamer().emitMachine(CPU);
1338 
1339   return false;
1340 }
1341 
1342 bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) {
1343   int64_t Tag;
1344   int64_t IntegerValue;
1345   if (!Parser.parseGNUAttribute(L, Tag, IntegerValue))
1346     return Error(L, "malformed .gnu_attribute directive");
1347 
1348   // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2.
1349   if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2))
1350     return Error(L, "unrecognized .gnu_attribute tag/value pair.");
1351 
1352   Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue);
1353 
1354   return parseEOL();
1355 }
1356 
1357 bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc,
1358                                      SMLoc &EndLoc, bool RestoreOnFailure) {
1359   Register Reg;
1360   if (parseRegister(Reg, RestoreOnFailure))
1361     return true;
1362   if (Reg.Group == RegGR)
1363     RegNo = SystemZMC::GR64Regs[Reg.Num];
1364   else if (Reg.Group == RegFP)
1365     RegNo = SystemZMC::FP64Regs[Reg.Num];
1366   else if (Reg.Group == RegV)
1367     RegNo = SystemZMC::VR128Regs[Reg.Num];
1368   else if (Reg.Group == RegAR)
1369     RegNo = SystemZMC::AR32Regs[Reg.Num];
1370   else if (Reg.Group == RegCR)
1371     RegNo = SystemZMC::CR64Regs[Reg.Num];
1372   StartLoc = Reg.StartLoc;
1373   EndLoc = Reg.EndLoc;
1374   return false;
1375 }
1376 
1377 bool SystemZAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc,
1378                                      SMLoc &EndLoc) {
1379   return ParseRegister(Reg, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
1380 }
1381 
1382 ParseStatus SystemZAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
1383                                                SMLoc &EndLoc) {
1384   bool Result = ParseRegister(Reg, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
1385   bool PendingErrors = getParser().hasPendingError();
1386   getParser().clearPendingErrors();
1387   if (PendingErrors)
1388     return ParseStatus::Failure;
1389   if (Result)
1390     return ParseStatus::NoMatch;
1391   return ParseStatus::Success;
1392 }
1393 
1394 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1395                                         StringRef Name, SMLoc NameLoc,
1396                                         OperandVector &Operands) {
1397 
1398   // Apply mnemonic aliases first, before doing anything else, in
1399   // case the target uses it.
1400   applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect());
1401 
1402   Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
1403 
1404   // Read the remaining operands.
1405   if (getLexer().isNot(AsmToken::EndOfStatement)) {
1406     // Read the first operand.
1407     if (parseOperand(Operands, Name)) {
1408       return true;
1409     }
1410 
1411     // Read any subsequent operands.
1412     while (getLexer().is(AsmToken::Comma)) {
1413       Parser.Lex();
1414 
1415       if (isParsingHLASM() && getLexer().is(AsmToken::Space))
1416         return Error(
1417             Parser.getTok().getLoc(),
1418             "No space allowed between comma that separates operand entries");
1419 
1420       if (parseOperand(Operands, Name)) {
1421         return true;
1422       }
1423     }
1424 
1425     // Under the HLASM variant, we could have the remark field
1426     // The remark field occurs after the operation entries
1427     // There is a space that separates the operation entries and the
1428     // remark field.
1429     if (isParsingHLASM() && getTok().is(AsmToken::Space)) {
1430       // We've confirmed that there is a Remark field.
1431       StringRef Remark(getLexer().LexUntilEndOfStatement());
1432       Parser.Lex();
1433 
1434       // If there is nothing after the space, then there is nothing to emit
1435       // We could have a situation as this:
1436       // "  \n"
1437       // After lexing above, we will have
1438       // "\n"
1439       // This isn't an explicit remark field, so we don't have to output
1440       // this as a comment.
1441       if (Remark.size())
1442         // Output the entire Remarks Field as a comment
1443         getStreamer().AddComment(Remark);
1444     }
1445 
1446     if (getLexer().isNot(AsmToken::EndOfStatement)) {
1447       SMLoc Loc = getLexer().getLoc();
1448       return Error(Loc, "unexpected token in argument list");
1449     }
1450   }
1451 
1452   // Consume the EndOfStatement.
1453   Parser.Lex();
1454   return false;
1455 }
1456 
1457 bool SystemZAsmParser::parseOperand(OperandVector &Operands,
1458                                     StringRef Mnemonic) {
1459   // Check if the current operand has a custom associated parser, if so, try to
1460   // custom parse the operand, or fallback to the general approach.  Force all
1461   // features to be available during the operand check, or else we will fail to
1462   // find the custom parser, and then we will later get an InvalidOperand error
1463   // instead of a MissingFeature errror.
1464   FeatureBitset AvailableFeatures = getAvailableFeatures();
1465   FeatureBitset All;
1466   All.set();
1467   setAvailableFeatures(All);
1468   ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic);
1469   setAvailableFeatures(AvailableFeatures);
1470   if (Res.isSuccess())
1471     return false;
1472 
1473   // If there wasn't a custom match, try the generic matcher below. Otherwise,
1474   // there was a match, but an error occurred, in which case, just return that
1475   // the operand parsing failed.
1476   if (Res.isFailure())
1477     return true;
1478 
1479   // Check for a register.  All real register operands should have used
1480   // a context-dependent parse routine, which gives the required register
1481   // class.  The code is here to mop up other cases, like those where
1482   // the instruction isn't recognized.
1483   if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
1484     Register Reg;
1485     if (parseRegister(Reg))
1486       return true;
1487     Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
1488     return false;
1489   }
1490 
1491   // The only other type of operand is an immediate or address.  As above,
1492   // real address operands should have used a context-dependent parse routine,
1493   // so we treat any plain expression as an immediate.
1494   SMLoc StartLoc = Parser.getTok().getLoc();
1495   Register Reg1, Reg2;
1496   bool HaveReg1, HaveReg2;
1497   const MCExpr *Expr;
1498   const MCExpr *Length;
1499   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length,
1500                    /*HasLength*/ true, /*HasVectorIndex*/ true))
1501     return true;
1502   // If the register combination is not valid for any instruction, reject it.
1503   // Otherwise, fall back to reporting an unrecognized instruction.
1504   if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
1505       && parseAddressRegister(Reg1))
1506     return true;
1507   if (HaveReg2 && parseAddressRegister(Reg2))
1508     return true;
1509 
1510   SMLoc EndLoc =
1511     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1512   if (HaveReg1 || HaveReg2 || Length)
1513     Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
1514   else
1515     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1516   return false;
1517 }
1518 
1519 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1520                                                OperandVector &Operands,
1521                                                MCStreamer &Out,
1522                                                uint64_t &ErrorInfo,
1523                                                bool MatchingInlineAsm) {
1524   MCInst Inst;
1525   unsigned MatchResult;
1526 
1527   unsigned Dialect = getMAIAssemblerDialect();
1528 
1529   FeatureBitset MissingFeatures;
1530   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
1531                                      MatchingInlineAsm, Dialect);
1532   switch (MatchResult) {
1533   case Match_Success:
1534     Inst.setLoc(IDLoc);
1535     Out.emitInstruction(Inst, getSTI());
1536     return false;
1537 
1538   case Match_MissingFeature: {
1539     assert(MissingFeatures.any() && "Unknown missing feature!");
1540     // Special case the error message for the very common case where only
1541     // a single subtarget feature is missing
1542     std::string Msg = "instruction requires:";
1543     for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
1544       if (MissingFeatures[I]) {
1545         Msg += " ";
1546         Msg += getSubtargetFeatureName(I);
1547       }
1548     }
1549     return Error(IDLoc, Msg);
1550   }
1551 
1552   case Match_InvalidOperand: {
1553     SMLoc ErrorLoc = IDLoc;
1554     if (ErrorInfo != ~0ULL) {
1555       if (ErrorInfo >= Operands.size())
1556         return Error(IDLoc, "too few operands for instruction");
1557 
1558       ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
1559       if (ErrorLoc == SMLoc())
1560         ErrorLoc = IDLoc;
1561     }
1562     return Error(ErrorLoc, "invalid operand for instruction");
1563   }
1564 
1565   case Match_MnemonicFail: {
1566     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1567     std::string Suggestion = SystemZMnemonicSpellCheck(
1568         ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect);
1569     return Error(IDLoc, "invalid instruction" + Suggestion,
1570                  ((SystemZOperand &)*Operands[0]).getLocRange());
1571   }
1572   }
1573 
1574   llvm_unreachable("Unexpected match type");
1575 }
1576 
1577 ParseStatus SystemZAsmParser::parsePCRel(OperandVector &Operands,
1578                                          int64_t MinVal, int64_t MaxVal,
1579                                          bool AllowTLS) {
1580   MCContext &Ctx = getContext();
1581   MCStreamer &Out = getStreamer();
1582   const MCExpr *Expr;
1583   SMLoc StartLoc = Parser.getTok().getLoc();
1584   if (getParser().parseExpression(Expr))
1585     return ParseStatus::NoMatch;
1586 
1587   auto IsOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool {
1588     if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
1589       int64_t Value = CE->getValue();
1590       if (Negate)
1591         Value = -Value;
1592       if ((Value & 1) || Value < MinVal || Value > MaxVal)
1593         return true;
1594     }
1595     return false;
1596   };
1597 
1598   // For consistency with the GNU assembler, treat immediates as offsets
1599   // from ".".
1600   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
1601     if (isParsingHLASM())
1602       return Error(StartLoc, "Expected PC-relative expression");
1603     if (IsOutOfRangeConstant(CE, false))
1604       return Error(StartLoc, "offset out of range");
1605     int64_t Value = CE->getValue();
1606     MCSymbol *Sym = Ctx.createTempSymbol();
1607     Out.emitLabel(Sym);
1608     const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1609                                                  Ctx);
1610     Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
1611   }
1612 
1613   // For consistency with the GNU assembler, conservatively assume that a
1614   // constant offset must by itself be within the given size range.
1615   if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
1616     if (IsOutOfRangeConstant(BE->getLHS(), false) ||
1617         IsOutOfRangeConstant(BE->getRHS(),
1618                              BE->getOpcode() == MCBinaryExpr::Sub))
1619       return Error(StartLoc, "offset out of range");
1620 
1621   // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
1622   const MCExpr *Sym = nullptr;
1623   if (AllowTLS && getLexer().is(AsmToken::Colon)) {
1624     Parser.Lex();
1625 
1626     if (Parser.getTok().isNot(AsmToken::Identifier))
1627       return Error(Parser.getTok().getLoc(), "unexpected token");
1628 
1629     MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
1630     StringRef Name = Parser.getTok().getString();
1631     if (Name == "tls_gdcall")
1632       Kind = MCSymbolRefExpr::VK_TLSGD;
1633     else if (Name == "tls_ldcall")
1634       Kind = MCSymbolRefExpr::VK_TLSLDM;
1635     else
1636       return Error(Parser.getTok().getLoc(), "unknown TLS tag");
1637     Parser.Lex();
1638 
1639     if (Parser.getTok().isNot(AsmToken::Colon))
1640       return Error(Parser.getTok().getLoc(), "unexpected token");
1641     Parser.Lex();
1642 
1643     if (Parser.getTok().isNot(AsmToken::Identifier))
1644       return Error(Parser.getTok().getLoc(), "unexpected token");
1645 
1646     StringRef Identifier = Parser.getTok().getString();
1647     Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
1648                                   Kind, Ctx);
1649     Parser.Lex();
1650   }
1651 
1652   SMLoc EndLoc =
1653     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1654 
1655   if (AllowTLS)
1656     Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
1657                                                     StartLoc, EndLoc));
1658   else
1659     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1660 
1661   return ParseStatus::Success;
1662 }
1663 
1664 bool SystemZAsmParser::isLabel(AsmToken &Token) {
1665   if (isParsingATT())
1666     return true;
1667 
1668   // HLASM labels are ordinary symbols.
1669   // An HLASM label always starts at column 1.
1670   // An ordinary symbol syntax is laid out as follows:
1671   // Rules:
1672   // 1. Has to start with an "alphabetic character". Can be followed by up to
1673   //    62 alphanumeric characters. An "alphabetic character", in this scenario,
1674   //    is a letter from 'A' through 'Z', or from 'a' through 'z',
1675   //    or '$', '_', '#', or '@'
1676   // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc.
1677   //    are all treated as the same symbol. However, the processing for the case
1678   //    folding will not be done in this function.
1679   StringRef RawLabel = Token.getString();
1680   SMLoc Loc = Token.getLoc();
1681 
1682   // An HLASM label cannot be empty.
1683   if (!RawLabel.size())
1684     return !Error(Loc, "HLASM Label cannot be empty");
1685 
1686   // An HLASM label cannot exceed greater than 63 characters.
1687   if (RawLabel.size() > 63)
1688     return !Error(Loc, "Maximum length for HLASM Label is 63 characters");
1689 
1690   // A label must start with an "alphabetic character".
1691   if (!isHLASMAlpha(RawLabel[0]))
1692     return !Error(Loc, "HLASM Label has to start with an alphabetic "
1693                        "character or the underscore character");
1694 
1695   // Now, we've established that the length is valid
1696   // and the first character is alphabetic.
1697   // Check whether remaining string is alphanumeric.
1698   for (unsigned I = 1; I < RawLabel.size(); ++I)
1699     if (!isHLASMAlnum(RawLabel[I]))
1700       return !Error(Loc, "HLASM Label has to be alphanumeric");
1701 
1702   return true;
1703 }
1704 
1705 // Force static initialization.
1706 // NOLINTNEXTLINE(readability-identifier-naming)
1707 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() {
1708   RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
1709 }
1710