1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/SystemZInstPrinter.h" 10 #include "MCTargetDesc/SystemZMCAsmInfo.h" 11 #include "MCTargetDesc/SystemZMCTargetDesc.h" 12 #include "SystemZTargetStreamer.h" 13 #include "TargetInfo/SystemZTargetInfo.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/MC/MCAsmInfo.h" 19 #include "llvm/MC/MCContext.h" 20 #include "llvm/MC/MCExpr.h" 21 #include "llvm/MC/MCInst.h" 22 #include "llvm/MC/MCInstBuilder.h" 23 #include "llvm/MC/MCInstrInfo.h" 24 #include "llvm/MC/MCParser/MCAsmLexer.h" 25 #include "llvm/MC/MCParser/MCAsmParser.h" 26 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 27 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 28 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 29 #include "llvm/MC/MCStreamer.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/TargetRegistry.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/SMLoc.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstddef> 38 #include <cstdint> 39 #include <iterator> 40 #include <memory> 41 #include <string> 42 43 using namespace llvm; 44 45 // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol 46 // is true any MCExpr is accepted (address displacement). 47 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, 48 bool AllowSymbol = false) { 49 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 50 int64_t Value = CE->getValue(); 51 return Value >= MinValue && Value <= MaxValue; 52 } 53 return AllowSymbol; 54 } 55 56 namespace { 57 58 enum RegisterKind { 59 GR32Reg, 60 GRH32Reg, 61 GR64Reg, 62 GR128Reg, 63 FP32Reg, 64 FP64Reg, 65 FP128Reg, 66 VR32Reg, 67 VR64Reg, 68 VR128Reg, 69 AR32Reg, 70 CR64Reg, 71 }; 72 73 enum MemoryKind { 74 BDMem, 75 BDXMem, 76 BDLMem, 77 BDRMem, 78 BDVMem 79 }; 80 81 class SystemZOperand : public MCParsedAsmOperand { 82 private: 83 enum OperandKind { 84 KindInvalid, 85 KindToken, 86 KindReg, 87 KindImm, 88 KindImmTLS, 89 KindMem 90 }; 91 92 OperandKind Kind; 93 SMLoc StartLoc, EndLoc; 94 95 // A string of length Length, starting at Data. 96 struct TokenOp { 97 const char *Data; 98 unsigned Length; 99 }; 100 101 // LLVM register Num, which has kind Kind. In some ways it might be 102 // easier for this class to have a register bank (general, floating-point 103 // or access) and a raw register number (0-15). This would postpone the 104 // interpretation of the operand to the add*() methods and avoid the need 105 // for context-dependent parsing. However, we do things the current way 106 // because of the virtual getReg() method, which needs to distinguish 107 // between (say) %r0 used as a single register and %r0 used as a pair. 108 // Context-dependent parsing can also give us slightly better error 109 // messages when invalid pairs like %r1 are used. 110 struct RegOp { 111 RegisterKind Kind; 112 unsigned Num; 113 }; 114 115 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 116 // MemKind says what type of memory this is and RegKind says what type 117 // the base register has (GR32Reg or GR64Reg). Length is the operand 118 // length for D(L,B)-style operands, otherwise it is null. 119 struct MemOp { 120 unsigned Base : 12; 121 unsigned Index : 12; 122 unsigned MemKind : 4; 123 unsigned RegKind : 4; 124 const MCExpr *Disp; 125 union { 126 const MCExpr *Imm; 127 unsigned Reg; 128 } Length; 129 }; 130 131 // Imm is an immediate operand, and Sym is an optional TLS symbol 132 // for use with a __tls_get_offset marker relocation. 133 struct ImmTLSOp { 134 const MCExpr *Imm; 135 const MCExpr *Sym; 136 }; 137 138 union { 139 TokenOp Token; 140 RegOp Reg; 141 const MCExpr *Imm; 142 ImmTLSOp ImmTLS; 143 MemOp Mem; 144 }; 145 146 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 147 // Add as immediates when possible. Null MCExpr = 0. 148 if (!Expr) 149 Inst.addOperand(MCOperand::createImm(0)); 150 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 151 Inst.addOperand(MCOperand::createImm(CE->getValue())); 152 else 153 Inst.addOperand(MCOperand::createExpr(Expr)); 154 } 155 156 public: 157 SystemZOperand(OperandKind Kind, SMLoc StartLoc, SMLoc EndLoc) 158 : Kind(Kind), StartLoc(StartLoc), EndLoc(EndLoc) {} 159 160 // Create particular kinds of operand. 161 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 162 SMLoc EndLoc) { 163 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 164 } 165 166 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 167 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc); 168 Op->Token.Data = Str.data(); 169 Op->Token.Length = Str.size(); 170 return Op; 171 } 172 173 static std::unique_ptr<SystemZOperand> 174 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 175 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 176 Op->Reg.Kind = Kind; 177 Op->Reg.Num = Num; 178 return Op; 179 } 180 181 static std::unique_ptr<SystemZOperand> 182 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 183 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 184 Op->Imm = Expr; 185 return Op; 186 } 187 188 static std::unique_ptr<SystemZOperand> 189 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 190 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 191 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 192 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 193 Op->Mem.MemKind = MemKind; 194 Op->Mem.RegKind = RegKind; 195 Op->Mem.Base = Base; 196 Op->Mem.Index = Index; 197 Op->Mem.Disp = Disp; 198 if (MemKind == BDLMem) 199 Op->Mem.Length.Imm = LengthImm; 200 if (MemKind == BDRMem) 201 Op->Mem.Length.Reg = LengthReg; 202 return Op; 203 } 204 205 static std::unique_ptr<SystemZOperand> 206 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 207 SMLoc StartLoc, SMLoc EndLoc) { 208 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 209 Op->ImmTLS.Imm = Imm; 210 Op->ImmTLS.Sym = Sym; 211 return Op; 212 } 213 214 // Token operands 215 bool isToken() const override { 216 return Kind == KindToken; 217 } 218 StringRef getToken() const { 219 assert(Kind == KindToken && "Not a token"); 220 return StringRef(Token.Data, Token.Length); 221 } 222 223 // Register operands. 224 bool isReg() const override { 225 return Kind == KindReg; 226 } 227 bool isReg(RegisterKind RegKind) const { 228 return Kind == KindReg && Reg.Kind == RegKind; 229 } 230 unsigned getReg() const override { 231 assert(Kind == KindReg && "Not a register"); 232 return Reg.Num; 233 } 234 235 // Immediate operands. 236 bool isImm() const override { 237 return Kind == KindImm; 238 } 239 bool isImm(int64_t MinValue, int64_t MaxValue) const { 240 return Kind == KindImm && inRange(Imm, MinValue, MaxValue, true); 241 } 242 const MCExpr *getImm() const { 243 assert(Kind == KindImm && "Not an immediate"); 244 return Imm; 245 } 246 247 // Immediate operands with optional TLS symbol. 248 bool isImmTLS() const { 249 return Kind == KindImmTLS; 250 } 251 252 const ImmTLSOp getImmTLS() const { 253 assert(Kind == KindImmTLS && "Not a TLS immediate"); 254 return ImmTLS; 255 } 256 257 // Memory operands. 258 bool isMem() const override { 259 return Kind == KindMem; 260 } 261 bool isMem(MemoryKind MemKind) const { 262 return (Kind == KindMem && 263 (Mem.MemKind == MemKind || 264 // A BDMem can be treated as a BDXMem in which the index 265 // register field is 0. 266 (Mem.MemKind == BDMem && MemKind == BDXMem))); 267 } 268 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 269 return isMem(MemKind) && Mem.RegKind == RegKind; 270 } 271 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 272 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true); 273 } 274 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 275 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true); 276 } 277 bool isMemDisp12Len4(RegisterKind RegKind) const { 278 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 279 } 280 bool isMemDisp12Len8(RegisterKind RegKind) const { 281 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 282 } 283 284 const MemOp& getMem() const { 285 assert(Kind == KindMem && "Not a Mem operand"); 286 return Mem; 287 } 288 289 // Override MCParsedAsmOperand. 290 SMLoc getStartLoc() const override { return StartLoc; } 291 SMLoc getEndLoc() const override { return EndLoc; } 292 void print(raw_ostream &OS) const override; 293 294 /// getLocRange - Get the range between the first and last token of this 295 /// operand. 296 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 297 298 // Used by the TableGen code to add particular types of operand 299 // to an instruction. 300 void addRegOperands(MCInst &Inst, unsigned N) const { 301 assert(N == 1 && "Invalid number of operands"); 302 Inst.addOperand(MCOperand::createReg(getReg())); 303 } 304 void addImmOperands(MCInst &Inst, unsigned N) const { 305 assert(N == 1 && "Invalid number of operands"); 306 addExpr(Inst, getImm()); 307 } 308 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 309 assert(N == 2 && "Invalid number of operands"); 310 assert(isMem(BDMem) && "Invalid operand type"); 311 Inst.addOperand(MCOperand::createReg(Mem.Base)); 312 addExpr(Inst, Mem.Disp); 313 } 314 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 315 assert(N == 3 && "Invalid number of operands"); 316 assert(isMem(BDXMem) && "Invalid operand type"); 317 Inst.addOperand(MCOperand::createReg(Mem.Base)); 318 addExpr(Inst, Mem.Disp); 319 Inst.addOperand(MCOperand::createReg(Mem.Index)); 320 } 321 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 322 assert(N == 3 && "Invalid number of operands"); 323 assert(isMem(BDLMem) && "Invalid operand type"); 324 Inst.addOperand(MCOperand::createReg(Mem.Base)); 325 addExpr(Inst, Mem.Disp); 326 addExpr(Inst, Mem.Length.Imm); 327 } 328 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 329 assert(N == 3 && "Invalid number of operands"); 330 assert(isMem(BDRMem) && "Invalid operand type"); 331 Inst.addOperand(MCOperand::createReg(Mem.Base)); 332 addExpr(Inst, Mem.Disp); 333 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 334 } 335 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 336 assert(N == 3 && "Invalid number of operands"); 337 assert(isMem(BDVMem) && "Invalid operand type"); 338 Inst.addOperand(MCOperand::createReg(Mem.Base)); 339 addExpr(Inst, Mem.Disp); 340 Inst.addOperand(MCOperand::createReg(Mem.Index)); 341 } 342 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 343 assert(N == 2 && "Invalid number of operands"); 344 assert(Kind == KindImmTLS && "Invalid operand type"); 345 addExpr(Inst, ImmTLS.Imm); 346 if (ImmTLS.Sym) 347 addExpr(Inst, ImmTLS.Sym); 348 } 349 350 // Used by the TableGen code to check for particular operand types. 351 bool isGR32() const { return isReg(GR32Reg); } 352 bool isGRH32() const { return isReg(GRH32Reg); } 353 bool isGRX32() const { return false; } 354 bool isGR64() const { return isReg(GR64Reg); } 355 bool isGR128() const { return isReg(GR128Reg); } 356 bool isADDR32() const { return isReg(GR32Reg); } 357 bool isADDR64() const { return isReg(GR64Reg); } 358 bool isADDR128() const { return false; } 359 bool isFP32() const { return isReg(FP32Reg); } 360 bool isFP64() const { return isReg(FP64Reg); } 361 bool isFP128() const { return isReg(FP128Reg); } 362 bool isVR32() const { return isReg(VR32Reg); } 363 bool isVR64() const { return isReg(VR64Reg); } 364 bool isVF128() const { return false; } 365 bool isVR128() const { return isReg(VR128Reg); } 366 bool isAR32() const { return isReg(AR32Reg); } 367 bool isCR64() const { return isReg(CR64Reg); } 368 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 369 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); } 370 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); } 371 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); } 372 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); } 373 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); } 374 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); } 375 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); } 376 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); } 377 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); } 378 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); } 379 bool isU1Imm() const { return isImm(0, 1); } 380 bool isU2Imm() const { return isImm(0, 3); } 381 bool isU3Imm() const { return isImm(0, 7); } 382 bool isU4Imm() const { return isImm(0, 15); } 383 bool isU8Imm() const { return isImm(0, 255); } 384 bool isS8Imm() const { return isImm(-128, 127); } 385 bool isU12Imm() const { return isImm(0, 4095); } 386 bool isU16Imm() const { return isImm(0, 65535); } 387 bool isS16Imm() const { return isImm(-32768, 32767); } 388 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 389 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 390 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 391 }; 392 393 class SystemZAsmParser : public MCTargetAsmParser { 394 #define GET_ASSEMBLER_HEADER 395 #include "SystemZGenAsmMatcher.inc" 396 397 private: 398 MCAsmParser &Parser; 399 enum RegisterGroup { 400 RegGR, 401 RegFP, 402 RegV, 403 RegAR, 404 RegCR 405 }; 406 struct Register { 407 RegisterGroup Group; 408 unsigned Num; 409 SMLoc StartLoc, EndLoc; 410 }; 411 412 SystemZTargetStreamer &getTargetStreamer() { 413 assert(getParser().getStreamer().getTargetStreamer() && 414 "do not have a target streamer"); 415 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 416 return static_cast<SystemZTargetStreamer &>(TS); 417 } 418 419 bool parseRegister(Register &Reg, bool RestoreOnFailure = false); 420 421 bool parseIntegerRegister(Register &Reg, RegisterGroup Group); 422 423 ParseStatus parseRegister(OperandVector &Operands, RegisterKind Kind); 424 425 ParseStatus parseAnyRegister(OperandVector &Operands); 426 427 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, 428 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, 429 bool HasLength = false, bool HasVectorIndex = false); 430 bool parseAddressRegister(Register &Reg); 431 432 bool ParseDirectiveInsn(SMLoc L); 433 bool ParseDirectiveMachine(SMLoc L); 434 bool ParseGNUAttribute(SMLoc L); 435 436 ParseStatus parseAddress(OperandVector &Operands, MemoryKind MemKind, 437 RegisterKind RegKind); 438 439 ParseStatus parsePCRel(OperandVector &Operands, int64_t MinVal, 440 int64_t MaxVal, bool AllowTLS); 441 442 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 443 444 // Both the hlasm and att variants still rely on the basic gnu asm 445 // format with respect to inputs, clobbers, outputs etc. 446 // 447 // However, calling the overriden getAssemblerDialect() method in 448 // AsmParser is problematic. It either returns the AssemblerDialect field 449 // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is 450 // unset, otherwise it returns the private AssemblerDialect field in 451 // AsmParser. 452 // 453 // The problematic part is because, we forcibly set the inline asm dialect 454 // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query 455 // to the overriden getAssemblerDialect function in AsmParser.cpp, will 456 // not return the assembler dialect set in the respective MCAsmInfo instance. 457 // 458 // For this purpose, we explicitly query the SystemZMCAsmInfo instance 459 // here, to get the "correct" assembler dialect, and use it in various 460 // functions. 461 unsigned getMAIAssemblerDialect() { 462 return Parser.getContext().getAsmInfo()->getAssemblerDialect(); 463 } 464 465 // An alphabetic character in HLASM is a letter from 'A' through 'Z', 466 // or from 'a' through 'z', or '$', '_','#', or '@'. 467 inline bool isHLASMAlpha(char C) { 468 return isAlpha(C) || llvm::is_contained("_@#$", C); 469 } 470 471 // A digit in HLASM is a number from 0 to 9. 472 inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } 473 474 // Are we parsing using the AD_HLASM dialect? 475 inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; } 476 477 // Are we parsing using the AD_ATT dialect? 478 inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; } 479 480 public: 481 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 482 const MCInstrInfo &MII, 483 const MCTargetOptions &Options) 484 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 485 MCAsmParserExtension::Initialize(Parser); 486 487 // Alias the .word directive to .short. 488 parser.addAliasForDirective(".word", ".short"); 489 490 // Initialize the set of available features. 491 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 492 } 493 494 // Override MCTargetAsmParser. 495 ParseStatus parseDirective(AsmToken DirectiveID) override; 496 bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; 497 bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, 498 bool RestoreOnFailure); 499 ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, 500 SMLoc &EndLoc) override; 501 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 502 SMLoc NameLoc, OperandVector &Operands) override; 503 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 504 OperandVector &Operands, MCStreamer &Out, 505 uint64_t &ErrorInfo, 506 bool MatchingInlineAsm) override; 507 bool isLabel(AsmToken &Token) override; 508 509 // Used by the TableGen code to parse particular operand types. 510 ParseStatus parseGR32(OperandVector &Operands) { 511 return parseRegister(Operands, GR32Reg); 512 } 513 ParseStatus parseGRH32(OperandVector &Operands) { 514 return parseRegister(Operands, GRH32Reg); 515 } 516 ParseStatus parseGRX32(OperandVector &Operands) { 517 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 518 } 519 ParseStatus parseGR64(OperandVector &Operands) { 520 return parseRegister(Operands, GR64Reg); 521 } 522 ParseStatus parseGR128(OperandVector &Operands) { 523 return parseRegister(Operands, GR128Reg); 524 } 525 ParseStatus parseADDR32(OperandVector &Operands) { 526 // For the AsmParser, we will accept %r0 for ADDR32 as well. 527 return parseRegister(Operands, GR32Reg); 528 } 529 ParseStatus parseADDR64(OperandVector &Operands) { 530 // For the AsmParser, we will accept %r0 for ADDR64 as well. 531 return parseRegister(Operands, GR64Reg); 532 } 533 ParseStatus parseADDR128(OperandVector &Operands) { 534 llvm_unreachable("Shouldn't be used as an operand"); 535 } 536 ParseStatus parseFP32(OperandVector &Operands) { 537 return parseRegister(Operands, FP32Reg); 538 } 539 ParseStatus parseFP64(OperandVector &Operands) { 540 return parseRegister(Operands, FP64Reg); 541 } 542 ParseStatus parseFP128(OperandVector &Operands) { 543 return parseRegister(Operands, FP128Reg); 544 } 545 ParseStatus parseVR32(OperandVector &Operands) { 546 return parseRegister(Operands, VR32Reg); 547 } 548 ParseStatus parseVR64(OperandVector &Operands) { 549 return parseRegister(Operands, VR64Reg); 550 } 551 ParseStatus parseVF128(OperandVector &Operands) { 552 llvm_unreachable("Shouldn't be used as an operand"); 553 } 554 ParseStatus parseVR128(OperandVector &Operands) { 555 return parseRegister(Operands, VR128Reg); 556 } 557 ParseStatus parseAR32(OperandVector &Operands) { 558 return parseRegister(Operands, AR32Reg); 559 } 560 ParseStatus parseCR64(OperandVector &Operands) { 561 return parseRegister(Operands, CR64Reg); 562 } 563 ParseStatus parseAnyReg(OperandVector &Operands) { 564 return parseAnyRegister(Operands); 565 } 566 ParseStatus parseBDAddr32(OperandVector &Operands) { 567 return parseAddress(Operands, BDMem, GR32Reg); 568 } 569 ParseStatus parseBDAddr64(OperandVector &Operands) { 570 return parseAddress(Operands, BDMem, GR64Reg); 571 } 572 ParseStatus parseBDXAddr64(OperandVector &Operands) { 573 return parseAddress(Operands, BDXMem, GR64Reg); 574 } 575 ParseStatus parseBDLAddr64(OperandVector &Operands) { 576 return parseAddress(Operands, BDLMem, GR64Reg); 577 } 578 ParseStatus parseBDRAddr64(OperandVector &Operands) { 579 return parseAddress(Operands, BDRMem, GR64Reg); 580 } 581 ParseStatus parseBDVAddr64(OperandVector &Operands) { 582 return parseAddress(Operands, BDVMem, GR64Reg); 583 } 584 ParseStatus parsePCRel12(OperandVector &Operands) { 585 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 586 } 587 ParseStatus parsePCRel16(OperandVector &Operands) { 588 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 589 } 590 ParseStatus parsePCRel24(OperandVector &Operands) { 591 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 592 } 593 ParseStatus parsePCRel32(OperandVector &Operands) { 594 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 595 } 596 ParseStatus parsePCRelTLS16(OperandVector &Operands) { 597 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 598 } 599 ParseStatus parsePCRelTLS32(OperandVector &Operands) { 600 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 601 } 602 }; 603 604 } // end anonymous namespace 605 606 #define GET_REGISTER_MATCHER 607 #define GET_SUBTARGET_FEATURE_NAME 608 #define GET_MATCHER_IMPLEMENTATION 609 #define GET_MNEMONIC_SPELL_CHECKER 610 #include "SystemZGenAsmMatcher.inc" 611 612 // Used for the .insn directives; contains information needed to parse the 613 // operands in the directive. 614 struct InsnMatchEntry { 615 StringRef Format; 616 uint64_t Opcode; 617 int32_t NumOperands; 618 MatchClassKind OperandKinds[7]; 619 }; 620 621 // For equal_range comparison. 622 struct CompareInsn { 623 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 624 return LHS.Format < RHS; 625 } 626 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 627 return LHS < RHS.Format; 628 } 629 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 630 return LHS.Format < RHS.Format; 631 } 632 }; 633 634 // Table initializing information for parsing the .insn directive. 635 static struct InsnMatchEntry InsnMatchTable[] = { 636 /* Format, Opcode, NumOperands, OperandKinds */ 637 { "e", SystemZ::InsnE, 1, 638 { MCK_U16Imm } }, 639 { "ri", SystemZ::InsnRI, 3, 640 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 641 { "rie", SystemZ::InsnRIE, 4, 642 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 643 { "ril", SystemZ::InsnRIL, 3, 644 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 645 { "rilu", SystemZ::InsnRILU, 3, 646 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 647 { "ris", SystemZ::InsnRIS, 5, 648 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 649 { "rr", SystemZ::InsnRR, 3, 650 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 651 { "rre", SystemZ::InsnRRE, 3, 652 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 653 { "rrf", SystemZ::InsnRRF, 5, 654 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 655 { "rrs", SystemZ::InsnRRS, 5, 656 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 657 { "rs", SystemZ::InsnRS, 4, 658 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 659 { "rse", SystemZ::InsnRSE, 4, 660 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 661 { "rsi", SystemZ::InsnRSI, 4, 662 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 663 { "rsy", SystemZ::InsnRSY, 4, 664 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 665 { "rx", SystemZ::InsnRX, 3, 666 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 667 { "rxe", SystemZ::InsnRXE, 3, 668 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 669 { "rxf", SystemZ::InsnRXF, 4, 670 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 671 { "rxy", SystemZ::InsnRXY, 3, 672 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 673 { "s", SystemZ::InsnS, 2, 674 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 675 { "si", SystemZ::InsnSI, 3, 676 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 677 { "sil", SystemZ::InsnSIL, 3, 678 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 679 { "siy", SystemZ::InsnSIY, 3, 680 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 681 { "ss", SystemZ::InsnSS, 4, 682 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 683 { "sse", SystemZ::InsnSSE, 3, 684 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 685 { "ssf", SystemZ::InsnSSF, 4, 686 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 687 { "vri", SystemZ::InsnVRI, 6, 688 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, 689 { "vrr", SystemZ::InsnVRR, 7, 690 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, 691 MCK_U4Imm } }, 692 { "vrs", SystemZ::InsnVRS, 5, 693 { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, 694 { "vrv", SystemZ::InsnVRV, 4, 695 { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, 696 { "vrx", SystemZ::InsnVRX, 4, 697 { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, 698 { "vsi", SystemZ::InsnVSI, 4, 699 { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } 700 }; 701 702 static void printMCExpr(const MCExpr *E, raw_ostream &OS) { 703 if (!E) 704 return; 705 if (auto *CE = dyn_cast<MCConstantExpr>(E)) 706 OS << *CE; 707 else if (auto *UE = dyn_cast<MCUnaryExpr>(E)) 708 OS << *UE; 709 else if (auto *BE = dyn_cast<MCBinaryExpr>(E)) 710 OS << *BE; 711 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E)) 712 OS << *SRE; 713 else 714 OS << *E; 715 } 716 717 void SystemZOperand::print(raw_ostream &OS) const { 718 switch (Kind) { 719 case KindToken: 720 OS << "Token:" << getToken(); 721 break; 722 case KindReg: 723 OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg()); 724 break; 725 case KindImm: 726 OS << "Imm:"; 727 printMCExpr(getImm(), OS); 728 break; 729 case KindImmTLS: 730 OS << "ImmTLS:"; 731 printMCExpr(getImmTLS().Imm, OS); 732 if (getImmTLS().Sym) { 733 OS << ", "; 734 printMCExpr(getImmTLS().Sym, OS); 735 } 736 break; 737 case KindMem: { 738 const MemOp &Op = getMem(); 739 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp); 740 if (Op.Base) { 741 OS << "("; 742 if (Op.MemKind == BDLMem) 743 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ","; 744 else if (Op.MemKind == BDRMem) 745 OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ","; 746 if (Op.Index) 747 OS << SystemZInstPrinter::getRegisterName(Op.Index) << ","; 748 OS << SystemZInstPrinter::getRegisterName(Op.Base); 749 OS << ")"; 750 } 751 break; 752 } 753 case KindInvalid: 754 break; 755 } 756 } 757 758 // Parse one register of the form %<prefix><number>. 759 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) { 760 Reg.StartLoc = Parser.getTok().getLoc(); 761 762 // Eat the % prefix. 763 if (Parser.getTok().isNot(AsmToken::Percent)) 764 return Error(Parser.getTok().getLoc(), "register expected"); 765 const AsmToken &PercentTok = Parser.getTok(); 766 Parser.Lex(); 767 768 // Expect a register name. 769 if (Parser.getTok().isNot(AsmToken::Identifier)) { 770 if (RestoreOnFailure) 771 getLexer().UnLex(PercentTok); 772 return Error(Reg.StartLoc, "invalid register"); 773 } 774 775 // Check that there's a prefix. 776 StringRef Name = Parser.getTok().getString(); 777 if (Name.size() < 2) { 778 if (RestoreOnFailure) 779 getLexer().UnLex(PercentTok); 780 return Error(Reg.StartLoc, "invalid register"); 781 } 782 char Prefix = Name[0]; 783 784 // Treat the rest of the register name as a register number. 785 if (Name.substr(1).getAsInteger(10, Reg.Num)) { 786 if (RestoreOnFailure) 787 getLexer().UnLex(PercentTok); 788 return Error(Reg.StartLoc, "invalid register"); 789 } 790 791 // Look for valid combinations of prefix and number. 792 if (Prefix == 'r' && Reg.Num < 16) 793 Reg.Group = RegGR; 794 else if (Prefix == 'f' && Reg.Num < 16) 795 Reg.Group = RegFP; 796 else if (Prefix == 'v' && Reg.Num < 32) 797 Reg.Group = RegV; 798 else if (Prefix == 'a' && Reg.Num < 16) 799 Reg.Group = RegAR; 800 else if (Prefix == 'c' && Reg.Num < 16) 801 Reg.Group = RegCR; 802 else { 803 if (RestoreOnFailure) 804 getLexer().UnLex(PercentTok); 805 return Error(Reg.StartLoc, "invalid register"); 806 } 807 808 Reg.EndLoc = Parser.getTok().getLoc(); 809 Parser.Lex(); 810 return false; 811 } 812 813 // Parse a register of kind Kind and add it to Operands. 814 ParseStatus SystemZAsmParser::parseRegister(OperandVector &Operands, 815 RegisterKind Kind) { 816 Register Reg; 817 RegisterGroup Group; 818 switch (Kind) { 819 case GR32Reg: 820 case GRH32Reg: 821 case GR64Reg: 822 case GR128Reg: 823 Group = RegGR; 824 break; 825 case FP32Reg: 826 case FP64Reg: 827 case FP128Reg: 828 Group = RegFP; 829 break; 830 case VR32Reg: 831 case VR64Reg: 832 case VR128Reg: 833 Group = RegV; 834 break; 835 case AR32Reg: 836 Group = RegAR; 837 break; 838 case CR64Reg: 839 Group = RegCR; 840 break; 841 } 842 843 // Handle register names of the form %<prefix><number> 844 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { 845 if (parseRegister(Reg)) 846 return ParseStatus::Failure; 847 848 // Check the parsed register group "Reg.Group" with the expected "Group" 849 // Have to error out if user specified wrong prefix. 850 switch (Group) { 851 case RegGR: 852 case RegFP: 853 case RegAR: 854 case RegCR: 855 if (Group != Reg.Group) 856 return Error(Reg.StartLoc, "invalid operand for instruction"); 857 break; 858 case RegV: 859 if (Reg.Group != RegV && Reg.Group != RegFP) 860 return Error(Reg.StartLoc, "invalid operand for instruction"); 861 break; 862 } 863 } else if (Parser.getTok().is(AsmToken::Integer)) { 864 if (parseIntegerRegister(Reg, Group)) 865 return ParseStatus::Failure; 866 } 867 // Otherwise we didn't match a register operand. 868 else 869 return ParseStatus::NoMatch; 870 871 // Determine the LLVM register number according to Kind. 872 const unsigned *Regs; 873 switch (Kind) { 874 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 875 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; 876 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 877 case GR128Reg: Regs = SystemZMC::GR128Regs; break; 878 case FP32Reg: Regs = SystemZMC::FP32Regs; break; 879 case FP64Reg: Regs = SystemZMC::FP64Regs; break; 880 case FP128Reg: Regs = SystemZMC::FP128Regs; break; 881 case VR32Reg: Regs = SystemZMC::VR32Regs; break; 882 case VR64Reg: Regs = SystemZMC::VR64Regs; break; 883 case VR128Reg: Regs = SystemZMC::VR128Regs; break; 884 case AR32Reg: Regs = SystemZMC::AR32Regs; break; 885 case CR64Reg: Regs = SystemZMC::CR64Regs; break; 886 } 887 if (Regs[Reg.Num] == 0) 888 return Error(Reg.StartLoc, "invalid register pair"); 889 890 Operands.push_back( 891 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc)); 892 return ParseStatus::Success; 893 } 894 895 // Parse any type of register (including integers) and add it to Operands. 896 ParseStatus SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 897 SMLoc StartLoc = Parser.getTok().getLoc(); 898 899 // Handle integer values. 900 if (Parser.getTok().is(AsmToken::Integer)) { 901 const MCExpr *Register; 902 if (Parser.parseExpression(Register)) 903 return ParseStatus::Failure; 904 905 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 906 int64_t Value = CE->getValue(); 907 if (Value < 0 || Value > 15) 908 return Error(StartLoc, "invalid register"); 909 } 910 911 SMLoc EndLoc = 912 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 913 914 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 915 } 916 else { 917 if (isParsingHLASM()) 918 return ParseStatus::NoMatch; 919 920 Register Reg; 921 if (parseRegister(Reg)) 922 return ParseStatus::Failure; 923 924 if (Reg.Num > 15) 925 return Error(StartLoc, "invalid register"); 926 927 // Map to the correct register kind. 928 RegisterKind Kind; 929 unsigned RegNo; 930 if (Reg.Group == RegGR) { 931 Kind = GR64Reg; 932 RegNo = SystemZMC::GR64Regs[Reg.Num]; 933 } 934 else if (Reg.Group == RegFP) { 935 Kind = FP64Reg; 936 RegNo = SystemZMC::FP64Regs[Reg.Num]; 937 } 938 else if (Reg.Group == RegV) { 939 Kind = VR128Reg; 940 RegNo = SystemZMC::VR128Regs[Reg.Num]; 941 } 942 else if (Reg.Group == RegAR) { 943 Kind = AR32Reg; 944 RegNo = SystemZMC::AR32Regs[Reg.Num]; 945 } 946 else if (Reg.Group == RegCR) { 947 Kind = CR64Reg; 948 RegNo = SystemZMC::CR64Regs[Reg.Num]; 949 } 950 else { 951 return ParseStatus::Failure; 952 } 953 954 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 955 Reg.StartLoc, Reg.EndLoc)); 956 } 957 return ParseStatus::Success; 958 } 959 960 bool SystemZAsmParser::parseIntegerRegister(Register &Reg, 961 RegisterGroup Group) { 962 Reg.StartLoc = Parser.getTok().getLoc(); 963 // We have an integer token 964 const MCExpr *Register; 965 if (Parser.parseExpression(Register)) 966 return true; 967 968 const auto *CE = dyn_cast<MCConstantExpr>(Register); 969 if (!CE) 970 return true; 971 972 int64_t MaxRegNum = (Group == RegV) ? 31 : 15; 973 int64_t Value = CE->getValue(); 974 if (Value < 0 || Value > MaxRegNum) { 975 Error(Parser.getTok().getLoc(), "invalid register"); 976 return true; 977 } 978 979 // Assign the Register Number 980 Reg.Num = (unsigned)Value; 981 Reg.Group = Group; 982 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 983 984 // At this point, successfully parsed an integer register. 985 return false; 986 } 987 988 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 989 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 990 bool &HaveReg2, Register &Reg2, 991 const MCExpr *&Disp, const MCExpr *&Length, 992 bool HasLength, bool HasVectorIndex) { 993 // Parse the displacement, which must always be present. 994 if (getParser().parseExpression(Disp)) 995 return true; 996 997 // Parse the optional base and index. 998 HaveReg1 = false; 999 HaveReg2 = false; 1000 Length = nullptr; 1001 1002 // If we have a scenario as below: 1003 // vgef %v0, 0(0), 0 1004 // This is an example of a "BDVMem" instruction type. 1005 // 1006 // So when we parse this as an integer register, the register group 1007 // needs to be tied to "RegV". Usually when the prefix is passed in 1008 // as %<prefix><reg-number> its easy to check which group it should belong to 1009 // However, if we're passing in just the integer there's no real way to 1010 // "check" what register group it should belong to. 1011 // 1012 // When the user passes in the register as an integer, the user assumes that 1013 // the compiler is responsible for substituting it as the right kind of 1014 // register. Whereas, when the user specifies a "prefix", the onus is on 1015 // the user to make sure they pass in the right kind of register. 1016 // 1017 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is 1018 // always a general register. Reg1 should be of group RegV if "HasVectorIndex" 1019 // (i.e. insn is of type BDVMem) is true. 1020 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; 1021 1022 if (getLexer().is(AsmToken::LParen)) { 1023 Parser.Lex(); 1024 1025 if (isParsingATT() && getLexer().is(AsmToken::Percent)) { 1026 // Parse the first register. 1027 HaveReg1 = true; 1028 if (parseRegister(Reg1)) 1029 return true; 1030 } 1031 // So if we have an integer as the first token in ([tok1], ..), it could: 1032 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of 1033 // instructions) 1034 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) 1035 else if (getLexer().is(AsmToken::Integer)) { 1036 if (HasLength) { 1037 // Instruction has a "Length" field, safe to parse the first token as 1038 // the "Length" field 1039 if (getParser().parseExpression(Length)) 1040 return true; 1041 } else { 1042 // Otherwise, if the instruction has no "Length" field, parse the 1043 // token as a "Register". We don't have to worry about whether the 1044 // instruction is invalid here, because the caller will take care of 1045 // error reporting. 1046 HaveReg1 = true; 1047 if (parseIntegerRegister(Reg1, RegGroup)) 1048 return true; 1049 } 1050 } else { 1051 // If its not an integer or a percent token, then if the instruction 1052 // is reported to have a "Length" then, parse it as "Length". 1053 if (HasLength) { 1054 if (getParser().parseExpression(Length)) 1055 return true; 1056 } 1057 } 1058 1059 // Check whether there's a second register. 1060 if (getLexer().is(AsmToken::Comma)) { 1061 Parser.Lex(); 1062 HaveReg2 = true; 1063 1064 if (getLexer().is(AsmToken::Integer)) { 1065 if (parseIntegerRegister(Reg2, RegGR)) 1066 return true; 1067 } else { 1068 if (isParsingATT() && parseRegister(Reg2)) 1069 return true; 1070 } 1071 } 1072 1073 // Consume the closing bracket. 1074 if (getLexer().isNot(AsmToken::RParen)) 1075 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 1076 Parser.Lex(); 1077 } 1078 return false; 1079 } 1080 1081 // Verify that Reg is a valid address register (base or index). 1082 bool 1083 SystemZAsmParser::parseAddressRegister(Register &Reg) { 1084 if (Reg.Group == RegV) { 1085 Error(Reg.StartLoc, "invalid use of vector addressing"); 1086 return true; 1087 } 1088 if (Reg.Group != RegGR) { 1089 Error(Reg.StartLoc, "invalid address register"); 1090 return true; 1091 } 1092 return false; 1093 } 1094 1095 // Parse a memory operand and add it to Operands. The other arguments 1096 // are as above. 1097 ParseStatus SystemZAsmParser::parseAddress(OperandVector &Operands, 1098 MemoryKind MemKind, 1099 RegisterKind RegKind) { 1100 SMLoc StartLoc = Parser.getTok().getLoc(); 1101 unsigned Base = 0, Index = 0, LengthReg = 0; 1102 Register Reg1, Reg2; 1103 bool HaveReg1, HaveReg2; 1104 const MCExpr *Disp; 1105 const MCExpr *Length; 1106 1107 bool HasLength = (MemKind == BDLMem) ? true : false; 1108 bool HasVectorIndex = (MemKind == BDVMem) ? true : false; 1109 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, 1110 HasVectorIndex)) 1111 return ParseStatus::Failure; 1112 1113 const unsigned *Regs; 1114 switch (RegKind) { 1115 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 1116 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 1117 default: llvm_unreachable("invalid RegKind"); 1118 } 1119 1120 switch (MemKind) { 1121 case BDMem: 1122 // If we have Reg1, it must be an address register. 1123 if (HaveReg1) { 1124 if (parseAddressRegister(Reg1)) 1125 return ParseStatus::Failure; 1126 Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; 1127 } 1128 // There must be no Reg2. 1129 if (HaveReg2) 1130 return Error(StartLoc, "invalid use of indexed addressing"); 1131 break; 1132 case BDXMem: 1133 // If we have Reg1, it must be an address register. 1134 if (HaveReg1) { 1135 if (parseAddressRegister(Reg1)) 1136 return ParseStatus::Failure; 1137 // If the are two registers, the first one is the index and the 1138 // second is the base. 1139 if (HaveReg2) 1140 Index = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; 1141 else 1142 Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; 1143 } 1144 // If we have Reg2, it must be an address register. 1145 if (HaveReg2) { 1146 if (parseAddressRegister(Reg2)) 1147 return ParseStatus::Failure; 1148 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; 1149 } 1150 break; 1151 case BDLMem: 1152 // If we have Reg2, it must be an address register. 1153 if (HaveReg2) { 1154 if (parseAddressRegister(Reg2)) 1155 return ParseStatus::Failure; 1156 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; 1157 } 1158 // We cannot support base+index addressing. 1159 if (HaveReg1 && HaveReg2) 1160 return Error(StartLoc, "invalid use of indexed addressing"); 1161 // We must have a length. 1162 if (!Length) 1163 return Error(StartLoc, "missing length in address"); 1164 break; 1165 case BDRMem: 1166 // We must have Reg1, and it must be a GPR. 1167 if (!HaveReg1 || Reg1.Group != RegGR) 1168 return Error(StartLoc, "invalid operand for instruction"); 1169 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 1170 // If we have Reg2, it must be an address register. 1171 if (HaveReg2) { 1172 if (parseAddressRegister(Reg2)) 1173 return ParseStatus::Failure; 1174 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; 1175 } 1176 break; 1177 case BDVMem: 1178 // We must have Reg1, and it must be a vector register. 1179 if (!HaveReg1 || Reg1.Group != RegV) 1180 return Error(StartLoc, "vector index required in address"); 1181 Index = SystemZMC::VR128Regs[Reg1.Num]; 1182 // If we have Reg2, it must be an address register. 1183 if (HaveReg2) { 1184 if (parseAddressRegister(Reg2)) 1185 return ParseStatus::Failure; 1186 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; 1187 } 1188 break; 1189 } 1190 1191 SMLoc EndLoc = 1192 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1193 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 1194 Index, Length, LengthReg, 1195 StartLoc, EndLoc)); 1196 return ParseStatus::Success; 1197 } 1198 1199 ParseStatus SystemZAsmParser::parseDirective(AsmToken DirectiveID) { 1200 StringRef IDVal = DirectiveID.getIdentifier(); 1201 1202 if (IDVal == ".insn") 1203 return ParseDirectiveInsn(DirectiveID.getLoc()); 1204 if (IDVal == ".machine") 1205 return ParseDirectiveMachine(DirectiveID.getLoc()); 1206 if (IDVal.starts_with(".gnu_attribute")) 1207 return ParseGNUAttribute(DirectiveID.getLoc()); 1208 1209 return ParseStatus::NoMatch; 1210 } 1211 1212 /// ParseDirectiveInsn 1213 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 1214 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 1215 MCAsmParser &Parser = getParser(); 1216 1217 // Expect instruction format as identifier. 1218 StringRef Format; 1219 SMLoc ErrorLoc = Parser.getTok().getLoc(); 1220 if (Parser.parseIdentifier(Format)) 1221 return Error(ErrorLoc, "expected instruction format"); 1222 1223 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 1224 1225 // Find entry for this format in InsnMatchTable. 1226 auto EntryRange = 1227 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 1228 Format, CompareInsn()); 1229 1230 // If first == second, couldn't find a match in the table. 1231 if (EntryRange.first == EntryRange.second) 1232 return Error(ErrorLoc, "unrecognized format"); 1233 1234 struct InsnMatchEntry *Entry = EntryRange.first; 1235 1236 // Format should match from equal_range. 1237 assert(Entry->Format == Format); 1238 1239 // Parse the following operands using the table's information. 1240 for (int I = 0; I < Entry->NumOperands; I++) { 1241 MatchClassKind Kind = Entry->OperandKinds[I]; 1242 1243 SMLoc StartLoc = Parser.getTok().getLoc(); 1244 1245 // Always expect commas as separators for operands. 1246 if (getLexer().isNot(AsmToken::Comma)) 1247 return Error(StartLoc, "unexpected token in directive"); 1248 Lex(); 1249 1250 // Parse operands. 1251 ParseStatus ResTy; 1252 if (Kind == MCK_AnyReg) 1253 ResTy = parseAnyReg(Operands); 1254 else if (Kind == MCK_VR128) 1255 ResTy = parseVR128(Operands); 1256 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1257 ResTy = parseBDXAddr64(Operands); 1258 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1259 ResTy = parseBDAddr64(Operands); 1260 else if (Kind == MCK_BDVAddr64Disp12) 1261 ResTy = parseBDVAddr64(Operands); 1262 else if (Kind == MCK_PCRel32) 1263 ResTy = parsePCRel32(Operands); 1264 else if (Kind == MCK_PCRel16) 1265 ResTy = parsePCRel16(Operands); 1266 else { 1267 // Only remaining operand kind is an immediate. 1268 const MCExpr *Expr; 1269 SMLoc StartLoc = Parser.getTok().getLoc(); 1270 1271 // Expect immediate expression. 1272 if (Parser.parseExpression(Expr)) 1273 return Error(StartLoc, "unexpected token in directive"); 1274 1275 SMLoc EndLoc = 1276 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1277 1278 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1279 ResTy = ParseStatus::Success; 1280 } 1281 1282 if (!ResTy.isSuccess()) 1283 return true; 1284 } 1285 1286 // Build the instruction with the parsed operands. 1287 MCInst Inst = MCInstBuilder(Entry->Opcode); 1288 1289 for (size_t I = 0; I < Operands.size(); I++) { 1290 MCParsedAsmOperand &Operand = *Operands[I]; 1291 MatchClassKind Kind = Entry->OperandKinds[I]; 1292 1293 // Verify operand. 1294 unsigned Res = validateOperandClass(Operand, Kind); 1295 if (Res != Match_Success) 1296 return Error(Operand.getStartLoc(), "unexpected operand type"); 1297 1298 // Add operands to instruction. 1299 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1300 if (ZOperand.isReg()) 1301 ZOperand.addRegOperands(Inst, 1); 1302 else if (ZOperand.isMem(BDMem)) 1303 ZOperand.addBDAddrOperands(Inst, 2); 1304 else if (ZOperand.isMem(BDXMem)) 1305 ZOperand.addBDXAddrOperands(Inst, 3); 1306 else if (ZOperand.isMem(BDVMem)) 1307 ZOperand.addBDVAddrOperands(Inst, 3); 1308 else if (ZOperand.isImm()) 1309 ZOperand.addImmOperands(Inst, 1); 1310 else 1311 llvm_unreachable("unexpected operand type"); 1312 } 1313 1314 // Emit as a regular instruction. 1315 Parser.getStreamer().emitInstruction(Inst, getSTI()); 1316 1317 return false; 1318 } 1319 1320 /// ParseDirectiveMachine 1321 /// ::= .machine [ mcpu ] 1322 bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) { 1323 MCAsmParser &Parser = getParser(); 1324 if (Parser.getTok().isNot(AsmToken::Identifier) && 1325 Parser.getTok().isNot(AsmToken::String)) 1326 return TokError("unexpected token in '.machine' directive"); 1327 1328 StringRef CPU = Parser.getTok().getIdentifier(); 1329 Parser.Lex(); 1330 if (parseEOL()) 1331 return true; 1332 1333 MCSubtargetInfo &STI = copySTI(); 1334 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); 1335 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 1336 1337 getTargetStreamer().emitMachine(CPU); 1338 1339 return false; 1340 } 1341 1342 bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) { 1343 int64_t Tag; 1344 int64_t IntegerValue; 1345 if (!Parser.parseGNUAttribute(L, Tag, IntegerValue)) 1346 return Error(L, "malformed .gnu_attribute directive"); 1347 1348 // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2. 1349 if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2)) 1350 return Error(L, "unrecognized .gnu_attribute tag/value pair."); 1351 1352 Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue); 1353 1354 return parseEOL(); 1355 } 1356 1357 bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, 1358 SMLoc &EndLoc, bool RestoreOnFailure) { 1359 Register Reg; 1360 if (parseRegister(Reg, RestoreOnFailure)) 1361 return true; 1362 if (Reg.Group == RegGR) 1363 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1364 else if (Reg.Group == RegFP) 1365 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1366 else if (Reg.Group == RegV) 1367 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1368 else if (Reg.Group == RegAR) 1369 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1370 else if (Reg.Group == RegCR) 1371 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1372 StartLoc = Reg.StartLoc; 1373 EndLoc = Reg.EndLoc; 1374 return false; 1375 } 1376 1377 bool SystemZAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc, 1378 SMLoc &EndLoc) { 1379 return ParseRegister(Reg, StartLoc, EndLoc, /*RestoreOnFailure=*/false); 1380 } 1381 1382 ParseStatus SystemZAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, 1383 SMLoc &EndLoc) { 1384 bool Result = ParseRegister(Reg, StartLoc, EndLoc, /*RestoreOnFailure=*/true); 1385 bool PendingErrors = getParser().hasPendingError(); 1386 getParser().clearPendingErrors(); 1387 if (PendingErrors) 1388 return ParseStatus::Failure; 1389 if (Result) 1390 return ParseStatus::NoMatch; 1391 return ParseStatus::Success; 1392 } 1393 1394 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1395 StringRef Name, SMLoc NameLoc, 1396 OperandVector &Operands) { 1397 1398 // Apply mnemonic aliases first, before doing anything else, in 1399 // case the target uses it. 1400 applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect()); 1401 1402 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1403 1404 // Read the remaining operands. 1405 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1406 // Read the first operand. 1407 if (parseOperand(Operands, Name)) { 1408 return true; 1409 } 1410 1411 // Read any subsequent operands. 1412 while (getLexer().is(AsmToken::Comma)) { 1413 Parser.Lex(); 1414 1415 if (isParsingHLASM() && getLexer().is(AsmToken::Space)) 1416 return Error( 1417 Parser.getTok().getLoc(), 1418 "No space allowed between comma that separates operand entries"); 1419 1420 if (parseOperand(Operands, Name)) { 1421 return true; 1422 } 1423 } 1424 1425 // Under the HLASM variant, we could have the remark field 1426 // The remark field occurs after the operation entries 1427 // There is a space that separates the operation entries and the 1428 // remark field. 1429 if (isParsingHLASM() && getTok().is(AsmToken::Space)) { 1430 // We've confirmed that there is a Remark field. 1431 StringRef Remark(getLexer().LexUntilEndOfStatement()); 1432 Parser.Lex(); 1433 1434 // If there is nothing after the space, then there is nothing to emit 1435 // We could have a situation as this: 1436 // " \n" 1437 // After lexing above, we will have 1438 // "\n" 1439 // This isn't an explicit remark field, so we don't have to output 1440 // this as a comment. 1441 if (Remark.size()) 1442 // Output the entire Remarks Field as a comment 1443 getStreamer().AddComment(Remark); 1444 } 1445 1446 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1447 SMLoc Loc = getLexer().getLoc(); 1448 return Error(Loc, "unexpected token in argument list"); 1449 } 1450 } 1451 1452 // Consume the EndOfStatement. 1453 Parser.Lex(); 1454 return false; 1455 } 1456 1457 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1458 StringRef Mnemonic) { 1459 // Check if the current operand has a custom associated parser, if so, try to 1460 // custom parse the operand, or fallback to the general approach. Force all 1461 // features to be available during the operand check, or else we will fail to 1462 // find the custom parser, and then we will later get an InvalidOperand error 1463 // instead of a MissingFeature errror. 1464 FeatureBitset AvailableFeatures = getAvailableFeatures(); 1465 FeatureBitset All; 1466 All.set(); 1467 setAvailableFeatures(All); 1468 ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic); 1469 setAvailableFeatures(AvailableFeatures); 1470 if (Res.isSuccess()) 1471 return false; 1472 1473 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1474 // there was a match, but an error occurred, in which case, just return that 1475 // the operand parsing failed. 1476 if (Res.isFailure()) 1477 return true; 1478 1479 // Check for a register. All real register operands should have used 1480 // a context-dependent parse routine, which gives the required register 1481 // class. The code is here to mop up other cases, like those where 1482 // the instruction isn't recognized. 1483 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { 1484 Register Reg; 1485 if (parseRegister(Reg)) 1486 return true; 1487 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1488 return false; 1489 } 1490 1491 // The only other type of operand is an immediate or address. As above, 1492 // real address operands should have used a context-dependent parse routine, 1493 // so we treat any plain expression as an immediate. 1494 SMLoc StartLoc = Parser.getTok().getLoc(); 1495 Register Reg1, Reg2; 1496 bool HaveReg1, HaveReg2; 1497 const MCExpr *Expr; 1498 const MCExpr *Length; 1499 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length, 1500 /*HasLength*/ true, /*HasVectorIndex*/ true)) 1501 return true; 1502 // If the register combination is not valid for any instruction, reject it. 1503 // Otherwise, fall back to reporting an unrecognized instruction. 1504 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1505 && parseAddressRegister(Reg1)) 1506 return true; 1507 if (HaveReg2 && parseAddressRegister(Reg2)) 1508 return true; 1509 1510 SMLoc EndLoc = 1511 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1512 if (HaveReg1 || HaveReg2 || Length) 1513 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1514 else 1515 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1516 return false; 1517 } 1518 1519 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1520 OperandVector &Operands, 1521 MCStreamer &Out, 1522 uint64_t &ErrorInfo, 1523 bool MatchingInlineAsm) { 1524 MCInst Inst; 1525 unsigned MatchResult; 1526 1527 unsigned Dialect = getMAIAssemblerDialect(); 1528 1529 FeatureBitset MissingFeatures; 1530 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, 1531 MatchingInlineAsm, Dialect); 1532 switch (MatchResult) { 1533 case Match_Success: 1534 Inst.setLoc(IDLoc); 1535 Out.emitInstruction(Inst, getSTI()); 1536 return false; 1537 1538 case Match_MissingFeature: { 1539 assert(MissingFeatures.any() && "Unknown missing feature!"); 1540 // Special case the error message for the very common case where only 1541 // a single subtarget feature is missing 1542 std::string Msg = "instruction requires:"; 1543 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { 1544 if (MissingFeatures[I]) { 1545 Msg += " "; 1546 Msg += getSubtargetFeatureName(I); 1547 } 1548 } 1549 return Error(IDLoc, Msg); 1550 } 1551 1552 case Match_InvalidOperand: { 1553 SMLoc ErrorLoc = IDLoc; 1554 if (ErrorInfo != ~0ULL) { 1555 if (ErrorInfo >= Operands.size()) 1556 return Error(IDLoc, "too few operands for instruction"); 1557 1558 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1559 if (ErrorLoc == SMLoc()) 1560 ErrorLoc = IDLoc; 1561 } 1562 return Error(ErrorLoc, "invalid operand for instruction"); 1563 } 1564 1565 case Match_MnemonicFail: { 1566 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1567 std::string Suggestion = SystemZMnemonicSpellCheck( 1568 ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect); 1569 return Error(IDLoc, "invalid instruction" + Suggestion, 1570 ((SystemZOperand &)*Operands[0]).getLocRange()); 1571 } 1572 } 1573 1574 llvm_unreachable("Unexpected match type"); 1575 } 1576 1577 ParseStatus SystemZAsmParser::parsePCRel(OperandVector &Operands, 1578 int64_t MinVal, int64_t MaxVal, 1579 bool AllowTLS) { 1580 MCContext &Ctx = getContext(); 1581 MCStreamer &Out = getStreamer(); 1582 const MCExpr *Expr; 1583 SMLoc StartLoc = Parser.getTok().getLoc(); 1584 if (getParser().parseExpression(Expr)) 1585 return ParseStatus::NoMatch; 1586 1587 auto IsOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool { 1588 if (auto *CE = dyn_cast<MCConstantExpr>(E)) { 1589 int64_t Value = CE->getValue(); 1590 if (Negate) 1591 Value = -Value; 1592 if ((Value & 1) || Value < MinVal || Value > MaxVal) 1593 return true; 1594 } 1595 return false; 1596 }; 1597 1598 // For consistency with the GNU assembler, treat immediates as offsets 1599 // from ".". 1600 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1601 if (isParsingHLASM()) 1602 return Error(StartLoc, "Expected PC-relative expression"); 1603 if (IsOutOfRangeConstant(CE, false)) 1604 return Error(StartLoc, "offset out of range"); 1605 int64_t Value = CE->getValue(); 1606 MCSymbol *Sym = Ctx.createTempSymbol(); 1607 Out.emitLabel(Sym); 1608 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1609 Ctx); 1610 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1611 } 1612 1613 // For consistency with the GNU assembler, conservatively assume that a 1614 // constant offset must by itself be within the given size range. 1615 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr)) 1616 if (IsOutOfRangeConstant(BE->getLHS(), false) || 1617 IsOutOfRangeConstant(BE->getRHS(), 1618 BE->getOpcode() == MCBinaryExpr::Sub)) 1619 return Error(StartLoc, "offset out of range"); 1620 1621 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1622 const MCExpr *Sym = nullptr; 1623 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1624 Parser.Lex(); 1625 1626 if (Parser.getTok().isNot(AsmToken::Identifier)) 1627 return Error(Parser.getTok().getLoc(), "unexpected token"); 1628 1629 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1630 StringRef Name = Parser.getTok().getString(); 1631 if (Name == "tls_gdcall") 1632 Kind = MCSymbolRefExpr::VK_TLSGD; 1633 else if (Name == "tls_ldcall") 1634 Kind = MCSymbolRefExpr::VK_TLSLDM; 1635 else 1636 return Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1637 Parser.Lex(); 1638 1639 if (Parser.getTok().isNot(AsmToken::Colon)) 1640 return Error(Parser.getTok().getLoc(), "unexpected token"); 1641 Parser.Lex(); 1642 1643 if (Parser.getTok().isNot(AsmToken::Identifier)) 1644 return Error(Parser.getTok().getLoc(), "unexpected token"); 1645 1646 StringRef Identifier = Parser.getTok().getString(); 1647 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1648 Kind, Ctx); 1649 Parser.Lex(); 1650 } 1651 1652 SMLoc EndLoc = 1653 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1654 1655 if (AllowTLS) 1656 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1657 StartLoc, EndLoc)); 1658 else 1659 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1660 1661 return ParseStatus::Success; 1662 } 1663 1664 bool SystemZAsmParser::isLabel(AsmToken &Token) { 1665 if (isParsingATT()) 1666 return true; 1667 1668 // HLASM labels are ordinary symbols. 1669 // An HLASM label always starts at column 1. 1670 // An ordinary symbol syntax is laid out as follows: 1671 // Rules: 1672 // 1. Has to start with an "alphabetic character". Can be followed by up to 1673 // 62 alphanumeric characters. An "alphabetic character", in this scenario, 1674 // is a letter from 'A' through 'Z', or from 'a' through 'z', 1675 // or '$', '_', '#', or '@' 1676 // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. 1677 // are all treated as the same symbol. However, the processing for the case 1678 // folding will not be done in this function. 1679 StringRef RawLabel = Token.getString(); 1680 SMLoc Loc = Token.getLoc(); 1681 1682 // An HLASM label cannot be empty. 1683 if (!RawLabel.size()) 1684 return !Error(Loc, "HLASM Label cannot be empty"); 1685 1686 // An HLASM label cannot exceed greater than 63 characters. 1687 if (RawLabel.size() > 63) 1688 return !Error(Loc, "Maximum length for HLASM Label is 63 characters"); 1689 1690 // A label must start with an "alphabetic character". 1691 if (!isHLASMAlpha(RawLabel[0])) 1692 return !Error(Loc, "HLASM Label has to start with an alphabetic " 1693 "character or the underscore character"); 1694 1695 // Now, we've established that the length is valid 1696 // and the first character is alphabetic. 1697 // Check whether remaining string is alphanumeric. 1698 for (unsigned I = 1; I < RawLabel.size(); ++I) 1699 if (!isHLASMAlnum(RawLabel[I])) 1700 return !Error(Loc, "HLASM Label has to be alphanumeric"); 1701 1702 return true; 1703 } 1704 1705 // Force static initialization. 1706 // NOLINTNEXTLINE(readability-identifier-naming) 1707 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { 1708 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1709 } 1710