//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "MCTargetDesc/SystemZInstPrinter.h" #include "MCTargetDesc/SystemZMCAsmInfo.h" #include "MCTargetDesc/SystemZMCTargetDesc.h" #include "SystemZTargetStreamer.h" #include "TargetInfo/SystemZTargetInfo.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstBuilder.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCAsmParserExtension.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCParser/MCTargetAsmParser.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/SMLoc.h" #include #include #include #include #include #include #include using namespace llvm; // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol // is true any MCExpr is accepted (address displacement). static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, bool AllowSymbol = false) { if (auto *CE = dyn_cast(Expr)) { int64_t Value = CE->getValue(); return Value >= MinValue && Value <= MaxValue; } return AllowSymbol; } namespace { enum RegisterKind { GR32Reg, GRH32Reg, GR64Reg, GR128Reg, FP32Reg, FP64Reg, FP128Reg, VR32Reg, VR64Reg, VR128Reg, AR32Reg, CR64Reg, }; enum MemoryKind { BDMem, BDXMem, BDLMem, BDRMem, BDVMem }; class SystemZOperand : public MCParsedAsmOperand { private: enum OperandKind { KindInvalid, KindToken, KindReg, KindImm, KindImmTLS, KindMem }; OperandKind Kind; SMLoc StartLoc, EndLoc; // A string of length Length, starting at Data. struct TokenOp { const char *Data; unsigned Length; }; // LLVM register Num, which has kind Kind. In some ways it might be // easier for this class to have a register bank (general, floating-point // or access) and a raw register number (0-15). This would postpone the // interpretation of the operand to the add*() methods and avoid the need // for context-dependent parsing. However, we do things the current way // because of the virtual getReg() method, which needs to distinguish // between (say) %r0 used as a single register and %r0 used as a pair. // Context-dependent parsing can also give us slightly better error // messages when invalid pairs like %r1 are used. struct RegOp { RegisterKind Kind; unsigned Num; }; // Base + Disp + Index, where Base and Index are LLVM registers or 0. // MemKind says what type of memory this is and RegKind says what type // the base register has (GR32Reg or GR64Reg). Length is the operand // length for D(L,B)-style operands, otherwise it is null. struct MemOp { unsigned Base : 12; unsigned Index : 12; unsigned MemKind : 4; unsigned RegKind : 4; const MCExpr *Disp; union { const MCExpr *Imm; unsigned Reg; } Length; }; // Imm is an immediate operand, and Sym is an optional TLS symbol // for use with a __tls_get_offset marker relocation. struct ImmTLSOp { const MCExpr *Imm; const MCExpr *Sym; }; union { TokenOp Token; RegOp Reg; const MCExpr *Imm; ImmTLSOp ImmTLS; MemOp Mem; }; void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates when possible. Null MCExpr = 0. if (!Expr) Inst.addOperand(MCOperand::createImm(0)); else if (auto *CE = dyn_cast(Expr)) Inst.addOperand(MCOperand::createImm(CE->getValue())); else Inst.addOperand(MCOperand::createExpr(Expr)); } public: SystemZOperand(OperandKind Kind, SMLoc StartLoc, SMLoc EndLoc) : Kind(Kind), StartLoc(StartLoc), EndLoc(EndLoc) {} // Create particular kinds of operand. static std::unique_ptr createInvalid(SMLoc StartLoc, SMLoc EndLoc) { return std::make_unique(KindInvalid, StartLoc, EndLoc); } static std::unique_ptr createToken(StringRef Str, SMLoc Loc) { auto Op = std::make_unique(KindToken, Loc, Loc); Op->Token.Data = Str.data(); Op->Token.Length = Str.size(); return Op; } static std::unique_ptr createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { auto Op = std::make_unique(KindReg, StartLoc, EndLoc); Op->Reg.Kind = Kind; Op->Reg.Num = Num; return Op; } static std::unique_ptr createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { auto Op = std::make_unique(KindImm, StartLoc, EndLoc); Op->Imm = Expr; return Op; } static std::unique_ptr createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { auto Op = std::make_unique(KindMem, StartLoc, EndLoc); Op->Mem.MemKind = MemKind; Op->Mem.RegKind = RegKind; Op->Mem.Base = Base; Op->Mem.Index = Index; Op->Mem.Disp = Disp; if (MemKind == BDLMem) Op->Mem.Length.Imm = LengthImm; if (MemKind == BDRMem) Op->Mem.Length.Reg = LengthReg; return Op; } static std::unique_ptr createImmTLS(const MCExpr *Imm, const MCExpr *Sym, SMLoc StartLoc, SMLoc EndLoc) { auto Op = std::make_unique(KindImmTLS, StartLoc, EndLoc); Op->ImmTLS.Imm = Imm; Op->ImmTLS.Sym = Sym; return Op; } // Token operands bool isToken() const override { return Kind == KindToken; } StringRef getToken() const { assert(Kind == KindToken && "Not a token"); return StringRef(Token.Data, Token.Length); } // Register operands. bool isReg() const override { return Kind == KindReg; } bool isReg(RegisterKind RegKind) const { return Kind == KindReg && Reg.Kind == RegKind; } unsigned getReg() const override { assert(Kind == KindReg && "Not a register"); return Reg.Num; } // Immediate operands. bool isImm() const override { return Kind == KindImm; } bool isImm(int64_t MinValue, int64_t MaxValue) const { return Kind == KindImm && inRange(Imm, MinValue, MaxValue, true); } const MCExpr *getImm() const { assert(Kind == KindImm && "Not an immediate"); return Imm; } // Immediate operands with optional TLS symbol. bool isImmTLS() const { return Kind == KindImmTLS; } const ImmTLSOp getImmTLS() const { assert(Kind == KindImmTLS && "Not a TLS immediate"); return ImmTLS; } // Memory operands. bool isMem() const override { return Kind == KindMem; } bool isMem(MemoryKind MemKind) const { return (Kind == KindMem && (Mem.MemKind == MemKind || // A BDMem can be treated as a BDXMem in which the index // register field is 0. (Mem.MemKind == BDMem && MemKind == BDXMem))); } bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { return isMem(MemKind) && Mem.RegKind == RegKind; } bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true); } bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true); } bool isMemDisp12Len4(RegisterKind RegKind) const { return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); } bool isMemDisp12Len8(RegisterKind RegKind) const { return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); } const MemOp& getMem() const { assert(Kind == KindMem && "Not a Mem operand"); return Mem; } // Override MCParsedAsmOperand. SMLoc getStartLoc() const override { return StartLoc; } SMLoc getEndLoc() const override { return EndLoc; } void print(raw_ostream &OS) const override; /// getLocRange - Get the range between the first and last token of this /// operand. SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } // Used by the TableGen code to add particular types of operand // to an instruction. void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands"); Inst.addOperand(MCOperand::createReg(getReg())); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands"); addExpr(Inst, getImm()); } void addBDAddrOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands"); assert(isMem(BDMem) && "Invalid operand type"); Inst.addOperand(MCOperand::createReg(Mem.Base)); addExpr(Inst, Mem.Disp); } void addBDXAddrOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands"); assert(isMem(BDXMem) && "Invalid operand type"); Inst.addOperand(MCOperand::createReg(Mem.Base)); addExpr(Inst, Mem.Disp); Inst.addOperand(MCOperand::createReg(Mem.Index)); } void addBDLAddrOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands"); assert(isMem(BDLMem) && "Invalid operand type"); Inst.addOperand(MCOperand::createReg(Mem.Base)); addExpr(Inst, Mem.Disp); addExpr(Inst, Mem.Length.Imm); } void addBDRAddrOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands"); assert(isMem(BDRMem) && "Invalid operand type"); Inst.addOperand(MCOperand::createReg(Mem.Base)); addExpr(Inst, Mem.Disp); Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); } void addBDVAddrOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands"); assert(isMem(BDVMem) && "Invalid operand type"); Inst.addOperand(MCOperand::createReg(Mem.Base)); addExpr(Inst, Mem.Disp); Inst.addOperand(MCOperand::createReg(Mem.Index)); } void addImmTLSOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands"); assert(Kind == KindImmTLS && "Invalid operand type"); addExpr(Inst, ImmTLS.Imm); if (ImmTLS.Sym) addExpr(Inst, ImmTLS.Sym); } // Used by the TableGen code to check for particular operand types. bool isGR32() const { return isReg(GR32Reg); } bool isGRH32() const { return isReg(GRH32Reg); } bool isGRX32() const { return false; } bool isGR64() const { return isReg(GR64Reg); } bool isGR128() const { return isReg(GR128Reg); } bool isADDR32() const { return isReg(GR32Reg); } bool isADDR64() const { return isReg(GR64Reg); } bool isADDR128() const { return false; } bool isFP32() const { return isReg(FP32Reg); } bool isFP64() const { return isReg(FP64Reg); } bool isFP128() const { return isReg(FP128Reg); } bool isVR32() const { return isReg(VR32Reg); } bool isVR64() const { return isReg(VR64Reg); } bool isVF128() const { return false; } bool isVR128() const { return isReg(VR128Reg); } bool isAR32() const { return isReg(AR32Reg); } bool isCR64() const { return isReg(CR64Reg); } bool isAnyReg() const { return (isReg() || isImm(0, 15)); } bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); } bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); } bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); } bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); } bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); } bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); } bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); } bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); } bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); } bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); } bool isU1Imm() const { return isImm(0, 1); } bool isU2Imm() const { return isImm(0, 3); } bool isU3Imm() const { return isImm(0, 7); } bool isU4Imm() const { return isImm(0, 15); } bool isU8Imm() const { return isImm(0, 255); } bool isS8Imm() const { return isImm(-128, 127); } bool isU12Imm() const { return isImm(0, 4095); } bool isU16Imm() const { return isImm(0, 65535); } bool isS16Imm() const { return isImm(-32768, 32767); } bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } }; class SystemZAsmParser : public MCTargetAsmParser { #define GET_ASSEMBLER_HEADER #include "SystemZGenAsmMatcher.inc" private: MCAsmParser &Parser; enum RegisterGroup { RegGR, RegFP, RegV, RegAR, RegCR }; struct Register { RegisterGroup Group; unsigned Num; SMLoc StartLoc, EndLoc; }; SystemZTargetStreamer &getTargetStreamer() { assert(getParser().getStreamer().getTargetStreamer() && "do not have a target streamer"); MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); return static_cast(TS); } bool parseRegister(Register &Reg, bool RestoreOnFailure = false); bool parseIntegerRegister(Register &Reg, RegisterGroup Group); ParseStatus parseRegister(OperandVector &Operands, RegisterKind Kind); ParseStatus parseAnyRegister(OperandVector &Operands); bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, bool HasLength = false, bool HasVectorIndex = false); bool parseAddressRegister(Register &Reg); bool ParseDirectiveInsn(SMLoc L); bool ParseDirectiveMachine(SMLoc L); bool ParseGNUAttribute(SMLoc L); ParseStatus parseAddress(OperandVector &Operands, MemoryKind MemKind, RegisterKind RegKind); ParseStatus parsePCRel(OperandVector &Operands, int64_t MinVal, int64_t MaxVal, bool AllowTLS); bool parseOperand(OperandVector &Operands, StringRef Mnemonic); // Both the hlasm and att variants still rely on the basic gnu asm // format with respect to inputs, clobbers, outputs etc. // // However, calling the overriden getAssemblerDialect() method in // AsmParser is problematic. It either returns the AssemblerDialect field // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is // unset, otherwise it returns the private AssemblerDialect field in // AsmParser. // // The problematic part is because, we forcibly set the inline asm dialect // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query // to the overriden getAssemblerDialect function in AsmParser.cpp, will // not return the assembler dialect set in the respective MCAsmInfo instance. // // For this purpose, we explicitly query the SystemZMCAsmInfo instance // here, to get the "correct" assembler dialect, and use it in various // functions. unsigned getMAIAssemblerDialect() { return Parser.getContext().getAsmInfo()->getAssemblerDialect(); } // An alphabetic character in HLASM is a letter from 'A' through 'Z', // or from 'a' through 'z', or '$', '_','#', or '@'. inline bool isHLASMAlpha(char C) { return isAlpha(C) || llvm::is_contained("_@#$", C); } // A digit in HLASM is a number from 0 to 9. inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } // Are we parsing using the AD_HLASM dialect? inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; } // Are we parsing using the AD_ATT dialect? inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; } public: SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(Options, sti, MII), Parser(parser) { MCAsmParserExtension::Initialize(Parser); // Alias the .word directive to .short. parser.addAliasForDirective(".word", ".short"); // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); } // Override MCTargetAsmParser. ParseStatus parseDirective(AsmToken DirectiveID) override; bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, bool RestoreOnFailure); ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) override; bool isLabel(AsmToken &Token) override; // Used by the TableGen code to parse particular operand types. ParseStatus parseGR32(OperandVector &Operands) { return parseRegister(Operands, GR32Reg); } ParseStatus parseGRH32(OperandVector &Operands) { return parseRegister(Operands, GRH32Reg); } ParseStatus parseGRX32(OperandVector &Operands) { llvm_unreachable("GRX32 should only be used for pseudo instructions"); } ParseStatus parseGR64(OperandVector &Operands) { return parseRegister(Operands, GR64Reg); } ParseStatus parseGR128(OperandVector &Operands) { return parseRegister(Operands, GR128Reg); } ParseStatus parseADDR32(OperandVector &Operands) { // For the AsmParser, we will accept %r0 for ADDR32 as well. return parseRegister(Operands, GR32Reg); } ParseStatus parseADDR64(OperandVector &Operands) { // For the AsmParser, we will accept %r0 for ADDR64 as well. return parseRegister(Operands, GR64Reg); } ParseStatus parseADDR128(OperandVector &Operands) { llvm_unreachable("Shouldn't be used as an operand"); } ParseStatus parseFP32(OperandVector &Operands) { return parseRegister(Operands, FP32Reg); } ParseStatus parseFP64(OperandVector &Operands) { return parseRegister(Operands, FP64Reg); } ParseStatus parseFP128(OperandVector &Operands) { return parseRegister(Operands, FP128Reg); } ParseStatus parseVR32(OperandVector &Operands) { return parseRegister(Operands, VR32Reg); } ParseStatus parseVR64(OperandVector &Operands) { return parseRegister(Operands, VR64Reg); } ParseStatus parseVF128(OperandVector &Operands) { llvm_unreachable("Shouldn't be used as an operand"); } ParseStatus parseVR128(OperandVector &Operands) { return parseRegister(Operands, VR128Reg); } ParseStatus parseAR32(OperandVector &Operands) { return parseRegister(Operands, AR32Reg); } ParseStatus parseCR64(OperandVector &Operands) { return parseRegister(Operands, CR64Reg); } ParseStatus parseAnyReg(OperandVector &Operands) { return parseAnyRegister(Operands); } ParseStatus parseBDAddr32(OperandVector &Operands) { return parseAddress(Operands, BDMem, GR32Reg); } ParseStatus parseBDAddr64(OperandVector &Operands) { return parseAddress(Operands, BDMem, GR64Reg); } ParseStatus parseBDXAddr64(OperandVector &Operands) { return parseAddress(Operands, BDXMem, GR64Reg); } ParseStatus parseBDLAddr64(OperandVector &Operands) { return parseAddress(Operands, BDLMem, GR64Reg); } ParseStatus parseBDRAddr64(OperandVector &Operands) { return parseAddress(Operands, BDRMem, GR64Reg); } ParseStatus parseBDVAddr64(OperandVector &Operands) { return parseAddress(Operands, BDVMem, GR64Reg); } ParseStatus parsePCRel12(OperandVector &Operands) { return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); } ParseStatus parsePCRel16(OperandVector &Operands) { return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); } ParseStatus parsePCRel24(OperandVector &Operands) { return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); } ParseStatus parsePCRel32(OperandVector &Operands) { return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); } ParseStatus parsePCRelTLS16(OperandVector &Operands) { return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); } ParseStatus parsePCRelTLS32(OperandVector &Operands) { return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); } }; } // end anonymous namespace #define GET_REGISTER_MATCHER #define GET_SUBTARGET_FEATURE_NAME #define GET_MATCHER_IMPLEMENTATION #define GET_MNEMONIC_SPELL_CHECKER #include "SystemZGenAsmMatcher.inc" // Used for the .insn directives; contains information needed to parse the // operands in the directive. struct InsnMatchEntry { StringRef Format; uint64_t Opcode; int32_t NumOperands; MatchClassKind OperandKinds[7]; }; // For equal_range comparison. struct CompareInsn { bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { return LHS.Format < RHS; } bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { return LHS < RHS.Format; } bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { return LHS.Format < RHS.Format; } }; // Table initializing information for parsing the .insn directive. static struct InsnMatchEntry InsnMatchTable[] = { /* Format, Opcode, NumOperands, OperandKinds */ { "e", SystemZ::InsnE, 1, { MCK_U16Imm } }, { "ri", SystemZ::InsnRI, 3, { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, { "rie", SystemZ::InsnRIE, 4, { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, { "ril", SystemZ::InsnRIL, 3, { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, { "rilu", SystemZ::InsnRILU, 3, { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, { "ris", SystemZ::InsnRIS, 5, { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, { "rr", SystemZ::InsnRR, 3, { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, { "rre", SystemZ::InsnRRE, 3, { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, { "rrf", SystemZ::InsnRRF, 5, { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, { "rrs", SystemZ::InsnRRS, 5, { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, { "rs", SystemZ::InsnRS, 4, { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, { "rse", SystemZ::InsnRSE, 4, { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, { "rsi", SystemZ::InsnRSI, 4, { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, { "rsy", SystemZ::InsnRSY, 4, { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, { "rx", SystemZ::InsnRX, 3, { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, { "rxe", SystemZ::InsnRXE, 3, { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, { "rxf", SystemZ::InsnRXF, 4, { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, { "rxy", SystemZ::InsnRXY, 3, { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, { "s", SystemZ::InsnS, 2, { MCK_U32Imm, MCK_BDAddr64Disp12 } }, { "si", SystemZ::InsnSI, 3, { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, { "sil", SystemZ::InsnSIL, 3, { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, { "siy", SystemZ::InsnSIY, 3, { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, { "ss", SystemZ::InsnSS, 4, { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, { "sse", SystemZ::InsnSSE, 3, { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, { "ssf", SystemZ::InsnSSF, 4, { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, { "vri", SystemZ::InsnVRI, 6, { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, { "vrr", SystemZ::InsnVRR, 7, { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, MCK_U4Imm } }, { "vrs", SystemZ::InsnVRS, 5, { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, { "vrv", SystemZ::InsnVRV, 4, { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, { "vrx", SystemZ::InsnVRX, 4, { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, { "vsi", SystemZ::InsnVSI, 4, { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } }; static void printMCExpr(const MCExpr *E, raw_ostream &OS) { if (!E) return; if (auto *CE = dyn_cast(E)) OS << *CE; else if (auto *UE = dyn_cast(E)) OS << *UE; else if (auto *BE = dyn_cast(E)) OS << *BE; else if (auto *SRE = dyn_cast(E)) OS << *SRE; else OS << *E; } void SystemZOperand::print(raw_ostream &OS) const { switch (Kind) { case KindToken: OS << "Token:" << getToken(); break; case KindReg: OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg()); break; case KindImm: OS << "Imm:"; printMCExpr(getImm(), OS); break; case KindImmTLS: OS << "ImmTLS:"; printMCExpr(getImmTLS().Imm, OS); if (getImmTLS().Sym) { OS << ", "; printMCExpr(getImmTLS().Sym, OS); } break; case KindMem: { const MemOp &Op = getMem(); OS << "Mem:" << *cast(Op.Disp); if (Op.Base) { OS << "("; if (Op.MemKind == BDLMem) OS << *cast(Op.Length.Imm) << ","; else if (Op.MemKind == BDRMem) OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ","; if (Op.Index) OS << SystemZInstPrinter::getRegisterName(Op.Index) << ","; OS << SystemZInstPrinter::getRegisterName(Op.Base); OS << ")"; } break; } case KindInvalid: break; } } // Parse one register of the form %. bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) { Reg.StartLoc = Parser.getTok().getLoc(); // Eat the % prefix. if (Parser.getTok().isNot(AsmToken::Percent)) return Error(Parser.getTok().getLoc(), "register expected"); const AsmToken &PercentTok = Parser.getTok(); Parser.Lex(); // Expect a register name. if (Parser.getTok().isNot(AsmToken::Identifier)) { if (RestoreOnFailure) getLexer().UnLex(PercentTok); return Error(Reg.StartLoc, "invalid register"); } // Check that there's a prefix. StringRef Name = Parser.getTok().getString(); if (Name.size() < 2) { if (RestoreOnFailure) getLexer().UnLex(PercentTok); return Error(Reg.StartLoc, "invalid register"); } char Prefix = Name[0]; // Treat the rest of the register name as a register number. if (Name.substr(1).getAsInteger(10, Reg.Num)) { if (RestoreOnFailure) getLexer().UnLex(PercentTok); return Error(Reg.StartLoc, "invalid register"); } // Look for valid combinations of prefix and number. if (Prefix == 'r' && Reg.Num < 16) Reg.Group = RegGR; else if (Prefix == 'f' && Reg.Num < 16) Reg.Group = RegFP; else if (Prefix == 'v' && Reg.Num < 32) Reg.Group = RegV; else if (Prefix == 'a' && Reg.Num < 16) Reg.Group = RegAR; else if (Prefix == 'c' && Reg.Num < 16) Reg.Group = RegCR; else { if (RestoreOnFailure) getLexer().UnLex(PercentTok); return Error(Reg.StartLoc, "invalid register"); } Reg.EndLoc = Parser.getTok().getLoc(); Parser.Lex(); return false; } // Parse a register of kind Kind and add it to Operands. ParseStatus SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) { Register Reg; RegisterGroup Group; switch (Kind) { case GR32Reg: case GRH32Reg: case GR64Reg: case GR128Reg: Group = RegGR; break; case FP32Reg: case FP64Reg: case FP128Reg: Group = RegFP; break; case VR32Reg: case VR64Reg: case VR128Reg: Group = RegV; break; case AR32Reg: Group = RegAR; break; case CR64Reg: Group = RegCR; break; } // Handle register names of the form % if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { if (parseRegister(Reg)) return ParseStatus::Failure; // Check the parsed register group "Reg.Group" with the expected "Group" // Have to error out if user specified wrong prefix. switch (Group) { case RegGR: case RegFP: case RegAR: case RegCR: if (Group != Reg.Group) return Error(Reg.StartLoc, "invalid operand for instruction"); break; case RegV: if (Reg.Group != RegV && Reg.Group != RegFP) return Error(Reg.StartLoc, "invalid operand for instruction"); break; } } else if (Parser.getTok().is(AsmToken::Integer)) { if (parseIntegerRegister(Reg, Group)) return ParseStatus::Failure; } // Otherwise we didn't match a register operand. else return ParseStatus::NoMatch; // Determine the LLVM register number according to Kind. const unsigned *Regs; switch (Kind) { case GR32Reg: Regs = SystemZMC::GR32Regs; break; case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; case GR64Reg: Regs = SystemZMC::GR64Regs; break; case GR128Reg: Regs = SystemZMC::GR128Regs; break; case FP32Reg: Regs = SystemZMC::FP32Regs; break; case FP64Reg: Regs = SystemZMC::FP64Regs; break; case FP128Reg: Regs = SystemZMC::FP128Regs; break; case VR32Reg: Regs = SystemZMC::VR32Regs; break; case VR64Reg: Regs = SystemZMC::VR64Regs; break; case VR128Reg: Regs = SystemZMC::VR128Regs; break; case AR32Reg: Regs = SystemZMC::AR32Regs; break; case CR64Reg: Regs = SystemZMC::CR64Regs; break; } if (Regs[Reg.Num] == 0) return Error(Reg.StartLoc, "invalid register pair"); Operands.push_back( SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc)); return ParseStatus::Success; } // Parse any type of register (including integers) and add it to Operands. ParseStatus SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { SMLoc StartLoc = Parser.getTok().getLoc(); // Handle integer values. if (Parser.getTok().is(AsmToken::Integer)) { const MCExpr *Register; if (Parser.parseExpression(Register)) return ParseStatus::Failure; if (auto *CE = dyn_cast(Register)) { int64_t Value = CE->getValue(); if (Value < 0 || Value > 15) return Error(StartLoc, "invalid register"); } SMLoc EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); } else { if (isParsingHLASM()) return ParseStatus::NoMatch; Register Reg; if (parseRegister(Reg)) return ParseStatus::Failure; if (Reg.Num > 15) return Error(StartLoc, "invalid register"); // Map to the correct register kind. RegisterKind Kind; unsigned RegNo; if (Reg.Group == RegGR) { Kind = GR64Reg; RegNo = SystemZMC::GR64Regs[Reg.Num]; } else if (Reg.Group == RegFP) { Kind = FP64Reg; RegNo = SystemZMC::FP64Regs[Reg.Num]; } else if (Reg.Group == RegV) { Kind = VR128Reg; RegNo = SystemZMC::VR128Regs[Reg.Num]; } else if (Reg.Group == RegAR) { Kind = AR32Reg; RegNo = SystemZMC::AR32Regs[Reg.Num]; } else if (Reg.Group == RegCR) { Kind = CR64Reg; RegNo = SystemZMC::CR64Regs[Reg.Num]; } else { return ParseStatus::Failure; } Operands.push_back(SystemZOperand::createReg(Kind, RegNo, Reg.StartLoc, Reg.EndLoc)); } return ParseStatus::Success; } bool SystemZAsmParser::parseIntegerRegister(Register &Reg, RegisterGroup Group) { Reg.StartLoc = Parser.getTok().getLoc(); // We have an integer token const MCExpr *Register; if (Parser.parseExpression(Register)) return true; const auto *CE = dyn_cast(Register); if (!CE) return true; int64_t MaxRegNum = (Group == RegV) ? 31 : 15; int64_t Value = CE->getValue(); if (Value < 0 || Value > MaxRegNum) { Error(Parser.getTok().getLoc(), "invalid register"); return true; } // Assign the Register Number Reg.Num = (unsigned)Value; Reg.Group = Group; Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); // At this point, successfully parsed an integer register. return false; } // Parse a memory operand into Reg1, Reg2, Disp, and Length. bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, bool HasLength, bool HasVectorIndex) { // Parse the displacement, which must always be present. if (getParser().parseExpression(Disp)) return true; // Parse the optional base and index. HaveReg1 = false; HaveReg2 = false; Length = nullptr; // If we have a scenario as below: // vgef %v0, 0(0), 0 // This is an example of a "BDVMem" instruction type. // // So when we parse this as an integer register, the register group // needs to be tied to "RegV". Usually when the prefix is passed in // as % its easy to check which group it should belong to // However, if we're passing in just the integer there's no real way to // "check" what register group it should belong to. // // When the user passes in the register as an integer, the user assumes that // the compiler is responsible for substituting it as the right kind of // register. Whereas, when the user specifies a "prefix", the onus is on // the user to make sure they pass in the right kind of register. // // The restriction only applies to the first Register (i.e. Reg1). Reg2 is // always a general register. Reg1 should be of group RegV if "HasVectorIndex" // (i.e. insn is of type BDVMem) is true. RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; if (getLexer().is(AsmToken::LParen)) { Parser.Lex(); if (isParsingATT() && getLexer().is(AsmToken::Percent)) { // Parse the first register. HaveReg1 = true; if (parseRegister(Reg1)) return true; } // So if we have an integer as the first token in ([tok1], ..), it could: // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of // instructions) // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) else if (getLexer().is(AsmToken::Integer)) { if (HasLength) { // Instruction has a "Length" field, safe to parse the first token as // the "Length" field if (getParser().parseExpression(Length)) return true; } else { // Otherwise, if the instruction has no "Length" field, parse the // token as a "Register". We don't have to worry about whether the // instruction is invalid here, because the caller will take care of // error reporting. HaveReg1 = true; if (parseIntegerRegister(Reg1, RegGroup)) return true; } } else { // If its not an integer or a percent token, then if the instruction // is reported to have a "Length" then, parse it as "Length". if (HasLength) { if (getParser().parseExpression(Length)) return true; } } // Check whether there's a second register. if (getLexer().is(AsmToken::Comma)) { Parser.Lex(); HaveReg2 = true; if (getLexer().is(AsmToken::Integer)) { if (parseIntegerRegister(Reg2, RegGR)) return true; } else { if (isParsingATT() && parseRegister(Reg2)) return true; } } // Consume the closing bracket. if (getLexer().isNot(AsmToken::RParen)) return Error(Parser.getTok().getLoc(), "unexpected token in address"); Parser.Lex(); } return false; } // Verify that Reg is a valid address register (base or index). bool SystemZAsmParser::parseAddressRegister(Register &Reg) { if (Reg.Group == RegV) { Error(Reg.StartLoc, "invalid use of vector addressing"); return true; } if (Reg.Group != RegGR) { Error(Reg.StartLoc, "invalid address register"); return true; } return false; } // Parse a memory operand and add it to Operands. The other arguments // are as above. ParseStatus SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, RegisterKind RegKind) { SMLoc StartLoc = Parser.getTok().getLoc(); unsigned Base = 0, Index = 0, LengthReg = 0; Register Reg1, Reg2; bool HaveReg1, HaveReg2; const MCExpr *Disp; const MCExpr *Length; bool HasLength = (MemKind == BDLMem) ? true : false; bool HasVectorIndex = (MemKind == BDVMem) ? true : false; if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, HasVectorIndex)) return ParseStatus::Failure; const unsigned *Regs; switch (RegKind) { case GR32Reg: Regs = SystemZMC::GR32Regs; break; case GR64Reg: Regs = SystemZMC::GR64Regs; break; default: llvm_unreachable("invalid RegKind"); } switch (MemKind) { case BDMem: // If we have Reg1, it must be an address register. if (HaveReg1) { if (parseAddressRegister(Reg1)) return ParseStatus::Failure; Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; } // There must be no Reg2. if (HaveReg2) return Error(StartLoc, "invalid use of indexed addressing"); break; case BDXMem: // If we have Reg1, it must be an address register. if (HaveReg1) { if (parseAddressRegister(Reg1)) return ParseStatus::Failure; // If the are two registers, the first one is the index and the // second is the base. if (HaveReg2) Index = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; else Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; } // If we have Reg2, it must be an address register. if (HaveReg2) { if (parseAddressRegister(Reg2)) return ParseStatus::Failure; Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; } break; case BDLMem: // If we have Reg2, it must be an address register. if (HaveReg2) { if (parseAddressRegister(Reg2)) return ParseStatus::Failure; Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; } // We cannot support base+index addressing. if (HaveReg1 && HaveReg2) return Error(StartLoc, "invalid use of indexed addressing"); // We must have a length. if (!Length) return Error(StartLoc, "missing length in address"); break; case BDRMem: // We must have Reg1, and it must be a GPR. if (!HaveReg1 || Reg1.Group != RegGR) return Error(StartLoc, "invalid operand for instruction"); LengthReg = SystemZMC::GR64Regs[Reg1.Num]; // If we have Reg2, it must be an address register. if (HaveReg2) { if (parseAddressRegister(Reg2)) return ParseStatus::Failure; Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; } break; case BDVMem: // We must have Reg1, and it must be a vector register. if (!HaveReg1 || Reg1.Group != RegV) return Error(StartLoc, "vector index required in address"); Index = SystemZMC::VR128Regs[Reg1.Num]; // If we have Reg2, it must be an address register. if (HaveReg2) { if (parseAddressRegister(Reg2)) return ParseStatus::Failure; Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; } break; } SMLoc EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, Index, Length, LengthReg, StartLoc, EndLoc)); return ParseStatus::Success; } ParseStatus SystemZAsmParser::parseDirective(AsmToken DirectiveID) { StringRef IDVal = DirectiveID.getIdentifier(); if (IDVal == ".insn") return ParseDirectiveInsn(DirectiveID.getLoc()); if (IDVal == ".machine") return ParseDirectiveMachine(DirectiveID.getLoc()); if (IDVal.starts_with(".gnu_attribute")) return ParseGNUAttribute(DirectiveID.getLoc()); return ParseStatus::NoMatch; } /// ParseDirectiveInsn /// ::= .insn [ format, encoding, (operands (, operands)*) ] bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { MCAsmParser &Parser = getParser(); // Expect instruction format as identifier. StringRef Format; SMLoc ErrorLoc = Parser.getTok().getLoc(); if (Parser.parseIdentifier(Format)) return Error(ErrorLoc, "expected instruction format"); SmallVector, 8> Operands; // Find entry for this format in InsnMatchTable. auto EntryRange = std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), Format, CompareInsn()); // If first == second, couldn't find a match in the table. if (EntryRange.first == EntryRange.second) return Error(ErrorLoc, "unrecognized format"); struct InsnMatchEntry *Entry = EntryRange.first; // Format should match from equal_range. assert(Entry->Format == Format); // Parse the following operands using the table's information. for (int I = 0; I < Entry->NumOperands; I++) { MatchClassKind Kind = Entry->OperandKinds[I]; SMLoc StartLoc = Parser.getTok().getLoc(); // Always expect commas as separators for operands. if (getLexer().isNot(AsmToken::Comma)) return Error(StartLoc, "unexpected token in directive"); Lex(); // Parse operands. ParseStatus ResTy; if (Kind == MCK_AnyReg) ResTy = parseAnyReg(Operands); else if (Kind == MCK_VR128) ResTy = parseVR128(Operands); else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) ResTy = parseBDXAddr64(Operands); else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) ResTy = parseBDAddr64(Operands); else if (Kind == MCK_BDVAddr64Disp12) ResTy = parseBDVAddr64(Operands); else if (Kind == MCK_PCRel32) ResTy = parsePCRel32(Operands); else if (Kind == MCK_PCRel16) ResTy = parsePCRel16(Operands); else { // Only remaining operand kind is an immediate. const MCExpr *Expr; SMLoc StartLoc = Parser.getTok().getLoc(); // Expect immediate expression. if (Parser.parseExpression(Expr)) return Error(StartLoc, "unexpected token in directive"); SMLoc EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); ResTy = ParseStatus::Success; } if (!ResTy.isSuccess()) return true; } // Build the instruction with the parsed operands. MCInst Inst = MCInstBuilder(Entry->Opcode); for (size_t I = 0; I < Operands.size(); I++) { MCParsedAsmOperand &Operand = *Operands[I]; MatchClassKind Kind = Entry->OperandKinds[I]; // Verify operand. unsigned Res = validateOperandClass(Operand, Kind); if (Res != Match_Success) return Error(Operand.getStartLoc(), "unexpected operand type"); // Add operands to instruction. SystemZOperand &ZOperand = static_cast(Operand); if (ZOperand.isReg()) ZOperand.addRegOperands(Inst, 1); else if (ZOperand.isMem(BDMem)) ZOperand.addBDAddrOperands(Inst, 2); else if (ZOperand.isMem(BDXMem)) ZOperand.addBDXAddrOperands(Inst, 3); else if (ZOperand.isMem(BDVMem)) ZOperand.addBDVAddrOperands(Inst, 3); else if (ZOperand.isImm()) ZOperand.addImmOperands(Inst, 1); else llvm_unreachable("unexpected operand type"); } // Emit as a regular instruction. Parser.getStreamer().emitInstruction(Inst, getSTI()); return false; } /// ParseDirectiveMachine /// ::= .machine [ mcpu ] bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) { MCAsmParser &Parser = getParser(); if (Parser.getTok().isNot(AsmToken::Identifier) && Parser.getTok().isNot(AsmToken::String)) return TokError("unexpected token in '.machine' directive"); StringRef CPU = Parser.getTok().getIdentifier(); Parser.Lex(); if (parseEOL()) return true; MCSubtargetInfo &STI = copySTI(); STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); getTargetStreamer().emitMachine(CPU); return false; } bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) { int64_t Tag; int64_t IntegerValue; if (!Parser.parseGNUAttribute(L, Tag, IntegerValue)) return Error(L, "malformed .gnu_attribute directive"); // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2. if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2)) return Error(L, "unrecognized .gnu_attribute tag/value pair."); Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue); return parseEOL(); } bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, bool RestoreOnFailure) { Register Reg; if (parseRegister(Reg, RestoreOnFailure)) return true; if (Reg.Group == RegGR) RegNo = SystemZMC::GR64Regs[Reg.Num]; else if (Reg.Group == RegFP) RegNo = SystemZMC::FP64Regs[Reg.Num]; else if (Reg.Group == RegV) RegNo = SystemZMC::VR128Regs[Reg.Num]; else if (Reg.Group == RegAR) RegNo = SystemZMC::AR32Regs[Reg.Num]; else if (Reg.Group == RegCR) RegNo = SystemZMC::CR64Regs[Reg.Num]; StartLoc = Reg.StartLoc; EndLoc = Reg.EndLoc; return false; } bool SystemZAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) { return ParseRegister(Reg, StartLoc, EndLoc, /*RestoreOnFailure=*/false); } ParseStatus SystemZAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) { bool Result = ParseRegister(Reg, StartLoc, EndLoc, /*RestoreOnFailure=*/true); bool PendingErrors = getParser().hasPendingError(); getParser().clearPendingErrors(); if (PendingErrors) return ParseStatus::Failure; if (Result) return ParseStatus::NoMatch; return ParseStatus::Success; } bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) { // Apply mnemonic aliases first, before doing anything else, in // case the target uses it. applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect()); Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); // Read the remaining operands. if (getLexer().isNot(AsmToken::EndOfStatement)) { // Read the first operand. if (parseOperand(Operands, Name)) { return true; } // Read any subsequent operands. while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); if (isParsingHLASM() && getLexer().is(AsmToken::Space)) return Error( Parser.getTok().getLoc(), "No space allowed between comma that separates operand entries"); if (parseOperand(Operands, Name)) { return true; } } // Under the HLASM variant, we could have the remark field // The remark field occurs after the operation entries // There is a space that separates the operation entries and the // remark field. if (isParsingHLASM() && getTok().is(AsmToken::Space)) { // We've confirmed that there is a Remark field. StringRef Remark(getLexer().LexUntilEndOfStatement()); Parser.Lex(); // If there is nothing after the space, then there is nothing to emit // We could have a situation as this: // " \n" // After lexing above, we will have // "\n" // This isn't an explicit remark field, so we don't have to output // this as a comment. if (Remark.size()) // Output the entire Remarks Field as a comment getStreamer().AddComment(Remark); } if (getLexer().isNot(AsmToken::EndOfStatement)) { SMLoc Loc = getLexer().getLoc(); return Error(Loc, "unexpected token in argument list"); } } // Consume the EndOfStatement. Parser.Lex(); return false; } bool SystemZAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { // Check if the current operand has a custom associated parser, if so, try to // custom parse the operand, or fallback to the general approach. Force all // features to be available during the operand check, or else we will fail to // find the custom parser, and then we will later get an InvalidOperand error // instead of a MissingFeature errror. FeatureBitset AvailableFeatures = getAvailableFeatures(); FeatureBitset All; All.set(); setAvailableFeatures(All); ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic); setAvailableFeatures(AvailableFeatures); if (Res.isSuccess()) return false; // If there wasn't a custom match, try the generic matcher below. Otherwise, // there was a match, but an error occurred, in which case, just return that // the operand parsing failed. if (Res.isFailure()) return true; // Check for a register. All real register operands should have used // a context-dependent parse routine, which gives the required register // class. The code is here to mop up other cases, like those where // the instruction isn't recognized. if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { Register Reg; if (parseRegister(Reg)) return true; Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); return false; } // The only other type of operand is an immediate or address. As above, // real address operands should have used a context-dependent parse routine, // so we treat any plain expression as an immediate. SMLoc StartLoc = Parser.getTok().getLoc(); Register Reg1, Reg2; bool HaveReg1, HaveReg2; const MCExpr *Expr; const MCExpr *Length; if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length, /*HasLength*/ true, /*HasVectorIndex*/ true)) return true; // If the register combination is not valid for any instruction, reject it. // Otherwise, fall back to reporting an unrecognized instruction. if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV && parseAddressRegister(Reg1)) return true; if (HaveReg2 && parseAddressRegister(Reg2)) return true; SMLoc EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); if (HaveReg1 || HaveReg2 || Length) Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); else Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); return false; } bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) { MCInst Inst; unsigned MatchResult; unsigned Dialect = getMAIAssemblerDialect(); FeatureBitset MissingFeatures; MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm, Dialect); switch (MatchResult) { case Match_Success: Inst.setLoc(IDLoc); Out.emitInstruction(Inst, getSTI()); return false; case Match_MissingFeature: { assert(MissingFeatures.any() && "Unknown missing feature!"); // Special case the error message for the very common case where only // a single subtarget feature is missing std::string Msg = "instruction requires:"; for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { if (MissingFeatures[I]) { Msg += " "; Msg += getSubtargetFeatureName(I); } } return Error(IDLoc, Msg); } case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0ULL) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } return Error(ErrorLoc, "invalid operand for instruction"); } case Match_MnemonicFail: { FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); std::string Suggestion = SystemZMnemonicSpellCheck( ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect); return Error(IDLoc, "invalid instruction" + Suggestion, ((SystemZOperand &)*Operands[0]).getLocRange()); } } llvm_unreachable("Unexpected match type"); } ParseStatus SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, int64_t MaxVal, bool AllowTLS) { MCContext &Ctx = getContext(); MCStreamer &Out = getStreamer(); const MCExpr *Expr; SMLoc StartLoc = Parser.getTok().getLoc(); if (getParser().parseExpression(Expr)) return ParseStatus::NoMatch; auto IsOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool { if (auto *CE = dyn_cast(E)) { int64_t Value = CE->getValue(); if (Negate) Value = -Value; if ((Value & 1) || Value < MinVal || Value > MaxVal) return true; } return false; }; // For consistency with the GNU assembler, treat immediates as offsets // from ".". if (auto *CE = dyn_cast(Expr)) { if (isParsingHLASM()) return Error(StartLoc, "Expected PC-relative expression"); if (IsOutOfRangeConstant(CE, false)) return Error(StartLoc, "offset out of range"); int64_t Value = CE->getValue(); MCSymbol *Sym = Ctx.createTempSymbol(); Out.emitLabel(Sym); const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, Ctx); Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); } // For consistency with the GNU assembler, conservatively assume that a // constant offset must by itself be within the given size range. if (const auto *BE = dyn_cast(Expr)) if (IsOutOfRangeConstant(BE->getLHS(), false) || IsOutOfRangeConstant(BE->getRHS(), BE->getOpcode() == MCBinaryExpr::Sub)) return Error(StartLoc, "offset out of range"); // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. const MCExpr *Sym = nullptr; if (AllowTLS && getLexer().is(AsmToken::Colon)) { Parser.Lex(); if (Parser.getTok().isNot(AsmToken::Identifier)) return Error(Parser.getTok().getLoc(), "unexpected token"); MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; StringRef Name = Parser.getTok().getString(); if (Name == "tls_gdcall") Kind = MCSymbolRefExpr::VK_TLSGD; else if (Name == "tls_ldcall") Kind = MCSymbolRefExpr::VK_TLSLDM; else return Error(Parser.getTok().getLoc(), "unknown TLS tag"); Parser.Lex(); if (Parser.getTok().isNot(AsmToken::Colon)) return Error(Parser.getTok().getLoc(), "unexpected token"); Parser.Lex(); if (Parser.getTok().isNot(AsmToken::Identifier)) return Error(Parser.getTok().getLoc(), "unexpected token"); StringRef Identifier = Parser.getTok().getString(); Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), Kind, Ctx); Parser.Lex(); } SMLoc EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); if (AllowTLS) Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, StartLoc, EndLoc)); else Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); return ParseStatus::Success; } bool SystemZAsmParser::isLabel(AsmToken &Token) { if (isParsingATT()) return true; // HLASM labels are ordinary symbols. // An HLASM label always starts at column 1. // An ordinary symbol syntax is laid out as follows: // Rules: // 1. Has to start with an "alphabetic character". Can be followed by up to // 62 alphanumeric characters. An "alphabetic character", in this scenario, // is a letter from 'A' through 'Z', or from 'a' through 'z', // or '$', '_', '#', or '@' // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. // are all treated as the same symbol. However, the processing for the case // folding will not be done in this function. StringRef RawLabel = Token.getString(); SMLoc Loc = Token.getLoc(); // An HLASM label cannot be empty. if (!RawLabel.size()) return !Error(Loc, "HLASM Label cannot be empty"); // An HLASM label cannot exceed greater than 63 characters. if (RawLabel.size() > 63) return !Error(Loc, "Maximum length for HLASM Label is 63 characters"); // A label must start with an "alphabetic character". if (!isHLASMAlpha(RawLabel[0])) return !Error(Loc, "HLASM Label has to start with an alphabetic " "character or the underscore character"); // Now, we've established that the length is valid // and the first character is alphabetic. // Check whether remaining string is alphanumeric. for (unsigned I = 1; I < RawLabel.size(); ++I) if (!isHLASMAlnum(RawLabel[I])) return !Error(Loc, "HLASM Label has to be alphanumeric"); return true; } // Force static initialization. // NOLINTNEXTLINE(readability-identifier-naming) extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { RegisterMCAsmParser X(getTheSystemZTarget()); }