xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoV.td (revision f5f40dd63bc7acbb5312b26ac1ea1103c12352a6)
1//===-- RISCVInstrInfoV.td - RISC-V 'V' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// This file describes the RISC-V instructions from the standard 'V' Vector
10/// extension, version 1.0.
11///
12//===----------------------------------------------------------------------===//
13
14include "RISCVInstrFormatsV.td"
15
16//===----------------------------------------------------------------------===//
17// Operand and SDNode transformation definitions.
18//===----------------------------------------------------------------------===//
19
20class VTypeIAsmOperand<int VTypeINum> : AsmOperandClass {
21  let Name = "VTypeI" # VTypeINum;
22  let ParserMethod = "parseVTypeI";
23  let DiagnosticType = "InvalidVTypeI";
24  let RenderMethod = "addVTypeIOperands";
25}
26
27class VTypeIOp<int VTypeINum> : RISCVOp {
28  let ParserMatchClass = VTypeIAsmOperand<VTypeINum>;
29  let PrintMethod = "printVTypeI";
30  let DecoderMethod = "decodeUImmOperand<"#VTypeINum#">";
31  let OperandType = "OPERAND_VTYPEI" # VTypeINum;
32  let MCOperandPredicate = [{
33    int64_t Imm;
34    if (MCOp.evaluateAsConstantImm(Imm))
35      return isUInt<VTypeINum>(Imm);
36    return MCOp.isBareSymbolRef();
37  }];
38}
39
40def VTypeIOp10 : VTypeIOp<10>;
41def VTypeIOp11 : VTypeIOp<11>;
42
43def VMaskAsmOperand : AsmOperandClass {
44  let Name = "RVVMaskRegOpOperand";
45  let RenderMethod = "addRegOperands";
46  let PredicateMethod = "isV0Reg";
47  let ParserMethod = "parseMaskReg";
48  let IsOptional = 1;
49  let DefaultMethod = "defaultMaskRegOp";
50  let DiagnosticType = "InvalidVMaskRegister";
51}
52
53def VMaskOp : RegisterOperand<VMV0> {
54  let ParserMatchClass = VMaskAsmOperand;
55  let PrintMethod = "printVMaskReg";
56  let EncoderMethod = "getVMaskReg";
57  let DecoderMethod = "decodeVMaskReg";
58}
59
60def simm5 : RISCVSImmLeafOp<5> {
61  let MCOperandPredicate = [{
62    int64_t Imm;
63    if (MCOp.evaluateAsConstantImm(Imm))
64      return isInt<5>(Imm);
65    return MCOp.isBareSymbolRef();
66  }];
67}
68
69def SImm5Plus1AsmOperand : AsmOperandClass {
70  let Name = "SImm5Plus1";
71  let RenderMethod = "addImmOperands";
72  let DiagnosticType = "InvalidSImm5Plus1";
73}
74
75def simm5_plus1 : RISCVOp, ImmLeaf<XLenVT,
76  [{return (isInt<5>(Imm) && Imm != -16) || Imm == 16;}]> {
77  let ParserMatchClass = SImm5Plus1AsmOperand;
78  let OperandType = "OPERAND_SIMM5_PLUS1";
79  let MCOperandPredicate = [{
80    int64_t Imm;
81    if (MCOp.evaluateAsConstantImm(Imm))
82      return (isInt<5>(Imm) && Imm != -16) || Imm == 16;
83    return MCOp.isBareSymbolRef();
84  }];
85}
86
87def simm5_plus1_nonzero : ImmLeaf<XLenVT,
88  [{return Imm != 0 && ((isInt<5>(Imm) && Imm != -16) || Imm == 16);}]>;
89
90//===----------------------------------------------------------------------===//
91// Scheduling definitions.
92//===----------------------------------------------------------------------===//
93
94// Common class of scheduling definitions.
95// `ReadVMergeOp` will be prepended to reads if instruction is masked.
96// `ReadVMask` will be appended to reads if instruction is masked.
97// Operands:
98//   `writes`       SchedWrites that are listed for each explicit def operand
99//                  in order.
100//   `reads`        SchedReads that are listed for each explicit use operand.
101//   `forceMasked`  Forced to be masked (e.g. Add-with-Carry Instructions).
102//   `forceMergeOpRead` Force to have read for merge operand.
103class SchedCommon<list<SchedWrite> writes, list<SchedRead> reads,
104                  string mx = "WorstCase", int sew = 0, bit forceMasked = 0,
105                  bit forceMergeOpRead = 0> : Sched<[]> {
106  defvar isMasked = !ne(!find(NAME, "_MASK"), -1);
107  defvar isMaskedOrForceMasked = !or(forceMasked, isMasked);
108  defvar mergeRead = !if(!or(!eq(mx, "WorstCase"), !eq(sew, 0)),
109                            !cast<SchedRead>("ReadVMergeOp_" # mx),
110                            !cast<SchedRead>("ReadVMergeOp_" # mx # "_E" #sew));
111  defvar needsMergeRead = !or(isMaskedOrForceMasked, forceMergeOpRead);
112  defvar readsWithMask =
113      !if(isMaskedOrForceMasked, !listconcat(reads, [ReadVMask]), reads);
114  defvar allReads =
115      !if(needsMergeRead, !listconcat([mergeRead], readsWithMask), reads);
116  let SchedRW = !listconcat(writes, allReads);
117}
118
119// Common class of scheduling definitions for n-ary instructions.
120// The scheudling resources are relevant to LMUL and may be relevant to SEW.
121class SchedNary<string write, list<string> reads, string mx, int sew = 0,
122                bit forceMasked = 0, bit forceMergeOpRead = 0>
123    : SchedCommon<[!cast<SchedWrite>(
124                      !if(sew,
125                          write # "_" # mx # "_E" # sew,
126                          write # "_" # mx))],
127                  !foreach(read, reads,
128                           !cast<SchedRead>(!if(sew, read #"_" #mx #"_E" #sew,
129                                                 read #"_" #mx))),
130                  mx, sew, forceMasked, forceMergeOpRead>;
131
132// Classes with postfix "MC" are only used in MC layer.
133// For these classes, we assume that they are with the worst case costs and
134// `ReadVMask` is always needed (with some exceptions).
135
136// For instructions with no operand.
137class SchedNullary<string write, string mx, int sew = 0, bit forceMasked = 0,
138                   bit forceMergeOpRead = 0>:
139  SchedNary<write, [], mx, sew, forceMasked, forceMergeOpRead>;
140class SchedNullaryMC<string write, bit forceMasked = 1>:
141  SchedNullary<write, "WorstCase", forceMasked=forceMasked>;
142
143// For instructions with one operand.
144class SchedUnary<string write, string read0, string mx, int sew = 0,
145                 bit forceMasked = 0, bit forceMergeOpRead = 0>:
146  SchedNary<write, [read0], mx, sew, forceMasked, forceMergeOpRead>;
147class SchedUnaryMC<string write, string read0, bit forceMasked = 1>:
148  SchedUnary<write, read0, "WorstCase", forceMasked=forceMasked>;
149
150// For instructions with two operands.
151class SchedBinary<string write, string read0, string read1, string mx,
152                  int sew = 0, bit forceMasked = 0, bit forceMergeOpRead = 0>
153    : SchedNary<write, [read0, read1], mx, sew, forceMasked, forceMergeOpRead>;
154class SchedBinaryMC<string write, string read0, string read1,
155                    bit forceMasked = 1>:
156  SchedBinary<write, read0, read1, "WorstCase", forceMasked=forceMasked>;
157
158// For instructions with three operands.
159class SchedTernary<string write, string read0, string read1, string read2,
160                   string mx, int sew = 0, bit forceMasked = 0,
161                   bit forceMergeOpRead = 0>
162    : SchedNary<write, [read0, read1, read2], mx, sew, forceMasked,
163                forceMergeOpRead>;
164class SchedTernaryMC<string write, string read0, string read1, string read2,
165                     int sew = 0, bit forceMasked = 1>:
166  SchedNary<write, [read0, read1, read2], "WorstCase", sew, forceMasked>;
167
168// For reduction instructions.
169class SchedReduction<string write, string read, string mx, int sew,
170                     bit forceMergeOpRead = 0>
171    : SchedCommon<[!cast<SchedWrite>(write #"_" #mx #"_E" #sew)],
172                  !listsplat(!cast<SchedRead>(read), 3), mx, sew, forceMergeOpRead>;
173class SchedReductionMC<string write, string readV, string readV0>:
174  SchedCommon<[!cast<SchedWrite>(write # "_WorstCase")],
175              [!cast<SchedRead>(readV), !cast<SchedRead>(readV0)],
176              forceMasked=1>;
177
178// Whole Vector Register Move
179class VMVRSched<int n> : SchedCommon<
180  [!cast<SchedWrite>("WriteVMov" # n # "V")],
181  [!cast<SchedRead>("ReadVMov" # n # "V")]
182>;
183
184// Vector Unit-Stride Loads and Stores
185class VLESched<string lmul, bit forceMasked = 0> : SchedCommon<
186  [!cast<SchedWrite>("WriteVLDE_" # lmul)],
187  [ReadVLDX], mx=lmul, forceMasked=forceMasked
188>;
189class VLESchedMC : VLESched<"WorstCase", forceMasked=1>;
190
191class VSESched<string lmul, bit forceMasked = 0> : SchedCommon<
192  [!cast<SchedWrite>("WriteVSTE_" # lmul)],
193  [!cast<SchedRead>("ReadVSTEV_" # lmul), ReadVSTX], mx=lmul,
194  forceMasked=forceMasked
195>;
196class VSESchedMC : VSESched<"WorstCase", forceMasked=1>;
197
198// Vector Strided Loads and Stores
199class VLSSched<int eew, string emul, bit forceMasked = 0> : SchedCommon<
200  [!cast<SchedWrite>("WriteVLDS" # eew # "_" # emul)],
201  [ReadVLDX, ReadVLDSX], emul, eew, forceMasked
202>;
203class VLSSchedMC<int eew> : VLSSched<eew, "WorstCase", forceMasked=1>;
204
205class VSSSched<int eew, string emul, bit forceMasked = 0> : SchedCommon<
206  [!cast<SchedWrite>("WriteVSTS" # eew # "_" # emul)],
207  [!cast<SchedRead>("ReadVSTS" # eew # "V_" # emul), ReadVSTX, ReadVSTSX],
208  emul, eew, forceMasked
209>;
210class VSSSchedMC<int eew> : VSSSched<eew, "WorstCase", forceMasked=1>;
211
212// Vector Indexed Loads and Stores
213class VLXSched<int dataEEW, bit isOrdered, string dataEMUL, string idxEMUL,
214               bit forceMasked = 0> : SchedCommon<
215  [!cast<SchedWrite>("WriteVLD" # !if(isOrdered, "O", "U") # "X" # dataEEW # "_" # dataEMUL)],
216  [ReadVLDX, !cast<SchedRead>("ReadVLD" # !if(isOrdered, "O", "U") # "XV_" # idxEMUL)],
217  dataEMUL, dataEEW, forceMasked
218>;
219class VLXSchedMC<int dataEEW, bit isOrdered>:
220  VLXSched<dataEEW, isOrdered, "WorstCase", "WorstCase", forceMasked=1>;
221
222class VSXSched<int dataEEW, bit isOrdered, string dataEMUL, string idxEMUL,
223               bit forceMasked = 0> : SchedCommon<
224  [!cast<SchedWrite>("WriteVST" # !if(isOrdered, "O", "U") # "X" # dataEEW # "_" # dataEMUL)],
225  [!cast<SchedRead>("ReadVST" # !if(isOrdered, "O", "U") #"X" # dataEEW # "_" # dataEMUL),
226   ReadVSTX, !cast<SchedRead>("ReadVST" # !if(isOrdered, "O", "U") # "XV_" # idxEMUL)],
227  dataEMUL, dataEEW, forceMasked
228>;
229class VSXSchedMC<int dataEEW, bit isOrdered>:
230  VSXSched<dataEEW, isOrdered, "WorstCase", "WorstCase", forceMasked=1>;
231
232// Unit-stride Fault-Only-First Loads
233class VLFSched<string lmul, bit forceMasked = 0> : SchedCommon<
234  [!cast<SchedWrite>("WriteVLDFF_" # lmul)],
235  [ReadVLDX], mx=lmul, forceMasked=forceMasked
236>;
237class VLFSchedMC: VLFSched<"WorstCase", forceMasked=1>;
238
239// Unit-Stride Segment Loads and Stores
240class VLSEGSched<int nf, int eew, string emul, bit forceMasked = 0> : SchedCommon<
241  [!cast<SchedWrite>("WriteVLSEG" #nf #"e" #eew #"_" #emul)],
242  [ReadVLDX], emul, eew, forceMasked
243>;
244class VLSEGSchedMC<int nf, int eew> : VLSEGSched<nf, eew, "WorstCase",
245                                                 forceMasked=1>;
246
247class VSSEGSched<int nf, int eew, string emul, bit forceMasked = 0> : SchedCommon<
248  [!cast<SchedWrite>("WriteVSSEG" # nf # "e" # eew # "_" # emul)],
249  [!cast<SchedRead>("ReadVSTEV_" #emul), ReadVSTX], emul, eew, forceMasked
250>;
251class VSSEGSchedMC<int nf, int eew> : VSSEGSched<nf, eew, "WorstCase",
252                                                 forceMasked=1>;
253
254class VLSEGFFSched<int nf, int eew, string emul, bit forceMasked = 0> : SchedCommon<
255  [!cast<SchedWrite>("WriteVLSEGFF" # nf # "e" # eew # "_" # emul)],
256  [ReadVLDX], emul, eew, forceMasked
257>;
258class VLSEGFFSchedMC<int nf, int eew> : VLSEGFFSched<nf, eew, "WorstCase",
259                                                     forceMasked=1>;
260
261// Strided Segment Loads and Stores
262class VLSSEGSched<int nf, int eew, string emul, bit forceMasked = 0> : SchedCommon<
263  [!cast<SchedWrite>("WriteVLSSEG" #nf #"e" #eew #"_" #emul)],
264  [ReadVLDX, ReadVLDSX], emul, eew, forceMasked
265>;
266class VLSSEGSchedMC<int nf, int eew> : VLSSEGSched<nf, eew, "WorstCase",
267                                                   forceMasked=1>;
268
269class VSSSEGSched<int nf, int eew, string emul, bit forceMasked = 0> : SchedCommon<
270  [!cast<SchedWrite>("WriteVSSSEG" #nf #"e" #eew #"_" #emul)],
271  [!cast<SchedRead>("ReadVSTS" #eew #"V_" #emul),
272   ReadVSTX, ReadVSTSX], emul, eew, forceMasked
273>;
274class VSSSEGSchedMC<int nf, int eew> : VSSSEGSched<nf, eew, "WorstCase",
275                                                   forceMasked=1>;
276
277// Indexed Segment Loads and Stores
278class VLXSEGSched<int nf, int eew, bit isOrdered, string emul,
279                  bit forceMasked = 0> : SchedCommon<
280  [!cast<SchedWrite>("WriteVL" #!if(isOrdered, "O", "U") #"XSEG" #nf #"e" #eew #"_" #emul)],
281  [ReadVLDX, !cast<SchedRead>("ReadVLD" #!if(isOrdered, "O", "U") #"XV_" #emul)],
282  emul, eew, forceMasked
283>;
284class VLXSEGSchedMC<int nf, int eew, bit isOrdered>:
285  VLXSEGSched<nf, eew, isOrdered, "WorstCase", forceMasked=1>;
286
287// Passes sew=0 instead of eew=0 since this pseudo does not follow MX_E form.
288class VSXSEGSched<int nf, int eew, bit isOrdered, string emul,
289                  bit forceMasked = 0> : SchedCommon<
290  [!cast<SchedWrite>("WriteVS" #!if(isOrdered, "O", "U") #"XSEG" #nf #"e" #eew #"_" #emul)],
291  [!cast<SchedRead>("ReadVST" #!if(isOrdered, "O", "U") #"X" #eew #"_" #emul),
292   ReadVSTX, !cast<SchedRead>("ReadVST" #!if(isOrdered, "O", "U") #"XV_" #emul)],
293  emul, sew=0, forceMasked=forceMasked
294>;
295class VSXSEGSchedMC<int nf, int eew, bit isOrdered>:
296  VSXSEGSched<nf, eew, isOrdered, "WorstCase", forceMasked=1>;
297
298//===----------------------------------------------------------------------===//
299// Instruction class templates
300//===----------------------------------------------------------------------===//
301
302let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
303// unit-stride load vd, (rs1), vm
304class VUnitStrideLoad<RISCVWidth width, string opcodestr>
305    : RVInstVLU<0b000, width.Value{3}, LUMOPUnitStride, width.Value{2-0},
306                (outs VR:$vd),
307                (ins GPRMemZeroOffset:$rs1, VMaskOp:$vm), opcodestr, "$vd, ${rs1}$vm">;
308
309let vm = 1, RVVConstraint = NoConstraint in {
310// unit-stride whole register load vl<nf>r.v vd, (rs1)
311class VWholeLoad<bits<3> nf, RISCVWidth width, string opcodestr, RegisterClass VRC>
312    : RVInstVLU<nf, width.Value{3}, LUMOPUnitStrideWholeReg,
313                width.Value{2-0}, (outs VRC:$vd), (ins GPRMemZeroOffset:$rs1),
314                opcodestr, "$vd, $rs1"> {
315  let Uses = [];
316}
317
318// unit-stride mask load vd, (rs1)
319class VUnitStrideLoadMask<string opcodestr>
320    : RVInstVLU<0b000, LSWidth8.Value{3}, LUMOPUnitStrideMask, LSWidth8.Value{2-0},
321                (outs VR:$vd),
322                (ins GPRMemZeroOffset:$rs1), opcodestr, "$vd, $rs1">;
323} // vm = 1, RVVConstraint = NoConstraint
324
325// unit-stride fault-only-first load vd, (rs1), vm
326class VUnitStrideLoadFF<RISCVWidth width, string opcodestr>
327    : RVInstVLU<0b000, width.Value{3}, LUMOPUnitStrideFF, width.Value{2-0},
328                (outs VR:$vd),
329                (ins GPRMemZeroOffset:$rs1, VMaskOp:$vm), opcodestr, "$vd, ${rs1}$vm">;
330
331// strided load vd, (rs1), rs2, vm
332class VStridedLoad<RISCVWidth width, string opcodestr>
333    : RVInstVLS<0b000, width.Value{3}, width.Value{2-0},
334                (outs VR:$vd),
335                (ins GPRMemZeroOffset:$rs1, GPR:$rs2, VMaskOp:$vm), opcodestr,
336                "$vd, $rs1, $rs2$vm">;
337
338// indexed load vd, (rs1), vs2, vm
339class VIndexedLoad<RISCVMOP mop, RISCVWidth width, string opcodestr>
340    : RVInstVLX<0b000, width.Value{3}, mop, width.Value{2-0},
341                (outs VR:$vd),
342                (ins GPRMemZeroOffset:$rs1, VR:$vs2, VMaskOp:$vm), opcodestr,
343                "$vd, $rs1, $vs2$vm">;
344
345// unit-stride segment load vd, (rs1), vm
346class VUnitStrideSegmentLoad<bits<3> nf, RISCVWidth width, string opcodestr>
347    : RVInstVLU<nf, width.Value{3}, LUMOPUnitStride, width.Value{2-0},
348                (outs VR:$vd),
349                (ins GPRMemZeroOffset:$rs1, VMaskOp:$vm), opcodestr, "$vd, ${rs1}$vm">;
350
351// segment fault-only-first load vd, (rs1), vm
352class VUnitStrideSegmentLoadFF<bits<3> nf, RISCVWidth width, string opcodestr>
353    : RVInstVLU<nf, width.Value{3}, LUMOPUnitStrideFF, width.Value{2-0},
354                (outs VR:$vd),
355                (ins GPRMemZeroOffset:$rs1, VMaskOp:$vm), opcodestr, "$vd, ${rs1}$vm">;
356
357// strided segment load vd, (rs1), rs2, vm
358class VStridedSegmentLoad<bits<3> nf, RISCVWidth width, string opcodestr>
359    : RVInstVLS<nf, width.Value{3}, width.Value{2-0},
360                (outs VR:$vd),
361                (ins GPRMemZeroOffset:$rs1, GPR:$rs2, VMaskOp:$vm), opcodestr,
362                "$vd, $rs1, $rs2$vm">;
363
364// indexed segment load vd, (rs1), vs2, vm
365class VIndexedSegmentLoad<bits<3> nf, RISCVMOP mop, RISCVWidth width,
366                          string opcodestr>
367    : RVInstVLX<nf, width.Value{3}, mop, width.Value{2-0},
368                (outs VR:$vd),
369                (ins GPRMemZeroOffset:$rs1, VR:$vs2, VMaskOp:$vm), opcodestr,
370                "$vd, $rs1, $vs2$vm">;
371} // hasSideEffects = 0, mayLoad = 1, mayStore = 0
372
373let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in {
374// unit-stride store vd, vs3, (rs1), vm
375class VUnitStrideStore<RISCVWidth width, string opcodestr>
376    : RVInstVSU<0b000, width.Value{3}, SUMOPUnitStride, width.Value{2-0},
377                (outs), (ins VR:$vs3, GPRMemZeroOffset:$rs1, VMaskOp:$vm), opcodestr,
378                "$vs3, ${rs1}$vm">;
379
380let vm = 1 in {
381// vs<nf>r.v vd, (rs1)
382class VWholeStore<bits<3> nf, string opcodestr, RegisterClass VRC>
383    : RVInstVSU<nf, 0, SUMOPUnitStrideWholeReg,
384                0b000, (outs), (ins VRC:$vs3, GPRMemZeroOffset:$rs1),
385                opcodestr, "$vs3, $rs1"> {
386  let Uses = [];
387}
388
389// unit-stride mask store vd, vs3, (rs1)
390class VUnitStrideStoreMask<string opcodestr>
391    : RVInstVSU<0b000, LSWidth8.Value{3}, SUMOPUnitStrideMask, LSWidth8.Value{2-0},
392                (outs), (ins VR:$vs3, GPRMemZeroOffset:$rs1), opcodestr,
393                "$vs3, $rs1">;
394} // vm = 1
395
396// strided store vd, vs3, (rs1), rs2, vm
397class VStridedStore<RISCVWidth width, string opcodestr>
398    : RVInstVSS<0b000, width.Value{3}, width.Value{2-0}, (outs),
399                (ins VR:$vs3, GPRMemZeroOffset:$rs1, GPR:$rs2, VMaskOp:$vm),
400                opcodestr, "$vs3, $rs1, $rs2$vm">;
401
402// indexed store vd, vs3, (rs1), vs2, vm
403class VIndexedStore<RISCVMOP mop, RISCVWidth width, string opcodestr>
404    : RVInstVSX<0b000, width.Value{3}, mop, width.Value{2-0}, (outs),
405                (ins VR:$vs3, GPRMemZeroOffset:$rs1, VR:$vs2, VMaskOp:$vm),
406                opcodestr, "$vs3, $rs1, $vs2$vm">;
407
408// segment store vd, vs3, (rs1), vm
409class VUnitStrideSegmentStore<bits<3> nf, RISCVWidth width, string opcodestr>
410    : RVInstVSU<nf, width.Value{3}, SUMOPUnitStride, width.Value{2-0},
411                (outs), (ins VR:$vs3, GPRMemZeroOffset:$rs1, VMaskOp:$vm), opcodestr,
412                "$vs3, ${rs1}$vm">;
413
414// segment store vd, vs3, (rs1), rs2, vm
415class VStridedSegmentStore<bits<3> nf, RISCVWidth width, string opcodestr>
416    : RVInstVSS<nf, width.Value{3}, width.Value{2-0}, (outs),
417                (ins VR:$vs3, GPRMemZeroOffset:$rs1, GPR:$rs2, VMaskOp:$vm),
418                opcodestr, "$vs3, $rs1, $rs2$vm">;
419
420// segment store vd, vs3, (rs1), vs2, vm
421class VIndexedSegmentStore<bits<3> nf, RISCVMOP mop, RISCVWidth width,
422                           string opcodestr>
423    : RVInstVSX<nf, width.Value{3}, mop, width.Value{2-0}, (outs),
424                (ins VR:$vs3, GPRMemZeroOffset:$rs1, VR:$vs2, VMaskOp:$vm),
425                opcodestr, "$vs3, $rs1, $vs2$vm">;
426} // hasSideEffects = 0, mayLoad = 0, mayStore = 1
427
428let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
429// op vd, vs2, vs1, vm
430class VALUVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
431    : RVInstVV<funct6, opv, (outs VR:$vd),
432                (ins VR:$vs2, VR:$vs1, VMaskOp:$vm),
433                opcodestr, "$vd, $vs2, $vs1$vm">;
434
435// op vd, vs2, vs1, v0 (without mask, use v0 as carry input)
436class VALUmVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
437    : RVInstVV<funct6, opv, (outs VR:$vd),
438                (ins VR:$vs2, VR:$vs1, VMV0:$v0),
439                opcodestr, "$vd, $vs2, $vs1, v0"> {
440  let vm = 0;
441}
442
443// op vd, vs1, vs2, vm (reverse the order of vs1 and vs2)
444class VALUrVV<bits<6> funct6, RISCVVFormat opv, string opcodestr,
445              bit EarlyClobber = 0>
446    : RVInstVV<funct6, opv, (outs VR:$vd_wb),
447                (ins VR:$vd, VR:$vs1, VR:$vs2, VMaskOp:$vm),
448                opcodestr, "$vd, $vs1, $vs2$vm"> {
449  let Constraints = !if(EarlyClobber, "@earlyclobber $vd_wb, $vd = $vd_wb",
450                                      "$vd = $vd_wb");
451}
452
453// op vd, vs2, vs1
454class VALUVVNoVm<bits<6> funct6, RISCVVFormat opv, string opcodestr>
455    : RVInstVV<funct6, opv, (outs VR:$vd),
456               (ins VR:$vs2, VR:$vs1),
457               opcodestr, "$vd, $vs2, $vs1"> {
458  let vm = 1;
459}
460
461// op vd, vs2, rs1, vm
462class VALUVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
463    : RVInstVX<funct6, opv, (outs VR:$vd),
464                (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
465                opcodestr, "$vd, $vs2, $rs1$vm">;
466
467// op vd, vs2, rs1, v0 (without mask, use v0 as carry input)
468class VALUmVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
469    : RVInstVX<funct6, opv, (outs VR:$vd),
470                (ins VR:$vs2, GPR:$rs1, VMV0:$v0),
471                opcodestr, "$vd, $vs2, $rs1, v0"> {
472  let vm = 0;
473}
474
475// op vd, rs1, vs2, vm (reverse the order of rs1 and vs2)
476class VALUrVX<bits<6> funct6, RISCVVFormat opv, string opcodestr,
477              bit EarlyClobber = 0>
478    : RVInstVX<funct6, opv, (outs VR:$vd_wb),
479                (ins VR:$vd, GPR:$rs1, VR:$vs2, VMaskOp:$vm),
480                opcodestr, "$vd, $rs1, $vs2$vm"> {
481  let Constraints = !if(EarlyClobber, "@earlyclobber $vd_wb, $vd = $vd_wb",
482                                      "$vd = $vd_wb");
483}
484
485// op vd, vs1, vs2
486class VALUVXNoVm<bits<6> funct6, RISCVVFormat opv, string opcodestr>
487    : RVInstVX<funct6, opv, (outs VR:$vd),
488               (ins VR:$vs2, GPR:$rs1),
489               opcodestr, "$vd, $vs2, $rs1"> {
490  let vm = 1;
491}
492
493// op vd, vs2, imm, vm
494class VALUVI<bits<6> funct6, string opcodestr, Operand optype = simm5>
495    : RVInstIVI<funct6, (outs VR:$vd),
496                (ins VR:$vs2, optype:$imm, VMaskOp:$vm),
497                opcodestr, "$vd, $vs2, $imm$vm">;
498
499// op vd, vs2, imm, v0 (without mask, use v0 as carry input)
500class VALUmVI<bits<6> funct6, string opcodestr, Operand optype = simm5>
501    : RVInstIVI<funct6, (outs VR:$vd),
502                (ins VR:$vs2, optype:$imm, VMV0:$v0),
503                opcodestr, "$vd, $vs2, $imm, v0"> {
504  let vm = 0;
505}
506
507// op vd, vs2, imm, vm
508class VALUVINoVm<bits<6> funct6, string opcodestr, Operand optype = simm5>
509    : RVInstIVI<funct6, (outs VR:$vd),
510                (ins VR:$vs2, optype:$imm),
511                opcodestr, "$vd, $vs2, $imm"> {
512  let vm = 1;
513}
514
515// op vd, vs2, rs1, vm (Float)
516class VALUVF<bits<6> funct6, RISCVVFormat opv, string opcodestr>
517    : RVInstVX<funct6, opv, (outs VR:$vd),
518                (ins VR:$vs2, FPR32:$rs1, VMaskOp:$vm),
519                opcodestr, "$vd, $vs2, $rs1$vm">;
520
521// op vd, rs1, vs2, vm (Float) (with mask, reverse the order of rs1 and vs2)
522class VALUrVF<bits<6> funct6, RISCVVFormat opv, string opcodestr,
523              bit EarlyClobber = 0>
524    : RVInstVX<funct6, opv, (outs VR:$vd_wb),
525                (ins VR:$vd, FPR32:$rs1, VR:$vs2, VMaskOp:$vm),
526                opcodestr, "$vd, $rs1, $vs2$vm"> {
527  let Constraints = !if(EarlyClobber, "@earlyclobber $vd_wb, $vd = $vd_wb",
528                                      "$vd = $vd_wb");
529}
530
531// op vd, vs2, vm (use vs1 as instruction encoding)
532class VALUVs2<bits<6> funct6, bits<5> vs1, RISCVVFormat opv, string opcodestr>
533    : RVInstV<funct6, vs1, opv, (outs VR:$vd),
534               (ins VR:$vs2, VMaskOp:$vm),
535               opcodestr, "$vd, $vs2$vm">;
536
537// op vd, vs2 (use vs1 as instruction encoding)
538class VALUVs2NoVm<bits<6> funct6, bits<5> vs1, RISCVVFormat opv, string opcodestr>
539    : RVInstV<funct6, vs1, opv, (outs VR:$vd),
540              (ins VR:$vs2), opcodestr,
541              "$vd, $vs2"> {
542  let vm = 1;
543}
544} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
545
546//===----------------------------------------------------------------------===//
547// Combination of instruction classes.
548// Use these multiclasses to define instructions more easily.
549//===----------------------------------------------------------------------===//
550
551multiclass VIndexLoadStore<int eew> {
552  defvar w = !cast<RISCVWidth>("LSWidth" # eew);
553
554  def VLUXEI # eew # _V :
555    VIndexedLoad<MOPLDIndexedUnord, w, "vluxei" # eew # ".v">,
556    VLXSchedMC<eew, isOrdered=0>;
557  def VLOXEI # eew # _V :
558    VIndexedLoad<MOPLDIndexedOrder, w, "vloxei" # eew # ".v">,
559    VLXSchedMC<eew, isOrdered=1>;
560
561  def VSUXEI # eew # _V :
562    VIndexedStore<MOPSTIndexedUnord, w, "vsuxei" # eew # ".v">,
563    VSXSchedMC<eew, isOrdered=0>;
564  def VSOXEI # eew # _V :
565    VIndexedStore<MOPSTIndexedOrder, w, "vsoxei" # eew # ".v">,
566    VSXSchedMC<eew, isOrdered=1>;
567}
568
569multiclass VALU_IV_V<string opcodestr, bits<6> funct6> {
570  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
571           SchedBinaryMC<"WriteVIALUV", "ReadVIALUV", "ReadVIALUV">;
572}
573
574multiclass VALU_IV_X<string opcodestr, bits<6> funct6> {
575  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
576           SchedBinaryMC<"WriteVIALUX", "ReadVIALUV", "ReadVIALUX">;
577}
578
579multiclass VALU_IV_I<string opcodestr, bits<6> funct6> {
580  def I  : VALUVI<funct6, opcodestr # ".vi", simm5>,
581           SchedUnaryMC<"WriteVIALUI", "ReadVIALUV">;
582}
583
584multiclass VALU_IV_V_X_I<string opcodestr, bits<6> funct6>
585    : VALU_IV_V<opcodestr, funct6>,
586      VALU_IV_X<opcodestr, funct6>,
587      VALU_IV_I<opcodestr, funct6>;
588
589multiclass VALU_IV_V_X<string opcodestr, bits<6> funct6>
590    : VALU_IV_V<opcodestr, funct6>,
591      VALU_IV_X<opcodestr, funct6>;
592
593multiclass VALU_IV_X_I<string opcodestr, bits<6> funct6>
594    : VALU_IV_X<opcodestr, funct6>,
595      VALU_IV_I<opcodestr, funct6>;
596
597multiclass VALU_MV_V_X<string opcodestr, bits<6> funct6, string vw> {
598  def V  : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
599           SchedBinaryMC<"WriteVIWALUV", "ReadVIWALUV", "ReadVIWALUV">;
600  def X  : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
601           SchedBinaryMC<"WriteVIWALUX", "ReadVIWALUV", "ReadVIWALUX">;
602}
603
604multiclass VMAC_MV_V_X<string opcodestr, bits<6> funct6> {
605  def V : VALUrVV<funct6, OPMVV, opcodestr # ".vv">,
606          SchedTernaryMC<"WriteVIMulAddV", "ReadVIMulAddV", "ReadVIMulAddV",
607                         "ReadVIMulAddV">;
608  def X : VALUrVX<funct6, OPMVX, opcodestr # ".vx">,
609          SchedTernaryMC<"WriteVIMulAddX", "ReadVIMulAddV", "ReadVIMulAddX",
610                         "ReadVIMulAddV">;
611}
612
613multiclass VWMAC_MV_X<string opcodestr, bits<6> funct6> {
614  let RVVConstraint = WidenV in
615  def X : VALUrVX<funct6, OPMVX, opcodestr # ".vx">,
616          SchedTernaryMC<"WriteVIWMulAddX", "ReadVIWMulAddV", "ReadVIWMulAddX",
617                         "ReadVIWMulAddV">;
618}
619
620multiclass VWMAC_MV_V_X<string opcodestr, bits<6> funct6>
621   : VWMAC_MV_X<opcodestr, funct6> {
622  let RVVConstraint = WidenV in
623  def V : VALUrVV<funct6, OPMVV, opcodestr # ".vv", EarlyClobber=1>,
624          SchedTernaryMC<"WriteVIWMulAddV", "ReadVIWMulAddV", "ReadVIWMulAddV",
625                         "ReadVIWMulAddV">;
626}
627
628multiclass VALU_MV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
629  def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>,
630           SchedUnaryMC<"WriteVExtV", "ReadVExtV">;
631}
632
633multiclass VMRG_IV_V_X_I<string opcodestr, bits<6> funct6> {
634  def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">,
635           SchedBinaryMC<"WriteVIMergeV", "ReadVIMergeV", "ReadVIMergeV">;
636  def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">,
637           SchedBinaryMC<"WriteVIMergeX", "ReadVIMergeV", "ReadVIMergeX">;
638  def IM : VALUmVI<funct6, opcodestr # ".vim">,
639           SchedUnaryMC<"WriteVIMergeI", "ReadVIMergeV">;
640}
641
642multiclass VALUm_IV_V_X<string opcodestr, bits<6> funct6> {
643  def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">,
644           SchedBinaryMC<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV">;
645  def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">,
646           SchedBinaryMC<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX">;
647}
648
649multiclass VALUm_IV_V_X_I<string opcodestr, bits<6> funct6>
650    : VALUm_IV_V_X<opcodestr, funct6> {
651  def IM : VALUmVI<funct6, opcodestr # ".vim">,
652           SchedUnaryMC<"WriteVICALUI", "ReadVICALUV">;
653}
654
655multiclass VALUNoVm_IV_V_X<string opcodestr, bits<6> funct6> {
656  def V : VALUVVNoVm<funct6, OPIVV, opcodestr # ".vv">,
657          SchedBinaryMC<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV",
658                        forceMasked=0>;
659  def X : VALUVXNoVm<funct6, OPIVX, opcodestr # ".vx">,
660          SchedBinaryMC<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX",
661                        forceMasked=0>;
662}
663
664multiclass VALUNoVm_IV_V_X_I<string opcodestr, bits<6> funct6>
665   : VALUNoVm_IV_V_X<opcodestr, funct6> {
666  def I : VALUVINoVm<funct6, opcodestr # ".vi", simm5>,
667          SchedUnaryMC<"WriteVICALUI", "ReadVICALUV", forceMasked=0>;
668}
669
670multiclass VALU_FV_F<string opcodestr, bits<6> funct6> {
671  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
672          SchedBinaryMC<"WriteVFALUF", "ReadVFALUV", "ReadVFALUF">;
673}
674
675multiclass VALU_FV_V_F<string opcodestr, bits<6> funct6>
676    : VALU_FV_F<opcodestr, funct6> {
677  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
678          SchedBinaryMC<"WriteVFALUV", "ReadVFALUV", "ReadVFALUV">;
679}
680
681multiclass VWALU_FV_V_F<string opcodestr, bits<6> funct6, string vw> {
682  def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
683          SchedBinaryMC<"WriteVFWALUV", "ReadVFWALUV", "ReadVFWALUV">;
684  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
685          SchedBinaryMC<"WriteVFWALUF", "ReadVFWALUV", "ReadVFWALUF">;
686}
687
688multiclass VMUL_FV_V_F<string opcodestr, bits<6> funct6> {
689  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
690          SchedBinaryMC<"WriteVFMulV", "ReadVFMulV", "ReadVFMulV">;
691  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
692          SchedBinaryMC<"WriteVFMulF", "ReadVFMulV", "ReadVFMulF">;
693}
694
695multiclass VDIV_FV_F<string opcodestr, bits<6> funct6> {
696  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
697          SchedBinaryMC<"WriteVFDivF", "ReadVFDivV", "ReadVFDivF">;
698}
699
700multiclass VDIV_FV_V_F<string opcodestr, bits<6> funct6>
701    : VDIV_FV_F<opcodestr, funct6> {
702  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
703          SchedBinaryMC<"WriteVFDivV", "ReadVFDivV", "ReadVFDivV">;
704}
705
706multiclass VWMUL_FV_V_F<string opcodestr, bits<6> funct6> {
707  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
708          SchedBinaryMC<"WriteVFWMulV", "ReadVFWMulV", "ReadVFWMulV">;
709  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
710          SchedBinaryMC<"WriteVFWMulF", "ReadVFWMulV", "ReadVFWMulF">;
711}
712
713multiclass VMAC_FV_V_F<string opcodestr, bits<6> funct6> {
714  def V : VALUrVV<funct6, OPFVV, opcodestr # ".vv">,
715          SchedTernaryMC<"WriteVFMulAddV", "ReadVFMulAddV", "ReadVFMulAddV",
716                         "ReadVFMulAddV">;
717  def F : VALUrVF<funct6, OPFVF, opcodestr # ".vf">,
718          SchedTernaryMC<"WriteVFMulAddF", "ReadVFMulAddV", "ReadVFMulAddF",
719                         "ReadVFMulAddV">;
720}
721
722multiclass VWMAC_FV_V_F<string opcodestr, bits<6> funct6> {
723  let RVVConstraint = WidenV in {
724  def V : VALUrVV<funct6, OPFVV, opcodestr # ".vv", EarlyClobber=1>,
725          SchedTernaryMC<"WriteVFWMulAddV", "ReadVFWMulAddV", "ReadVFWMulAddV",
726                         "ReadVFWMulAddV">;
727  def F : VALUrVF<funct6, OPFVF, opcodestr # ".vf", EarlyClobber=1>,
728          SchedTernaryMC<"WriteVFWMulAddF", "ReadVFWMulAddV", "ReadVFWMulAddF",
729                         "ReadVFWMulAddV">;
730  }
731}
732
733multiclass VSQR_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
734  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
735           SchedUnaryMC<"WriteVFSqrtV", "ReadVFSqrtV">;
736}
737
738multiclass VRCP_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
739  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
740           SchedUnaryMC<"WriteVFRecpV", "ReadVFRecpV">;
741}
742
743multiclass VMINMAX_FV_V_F<string opcodestr, bits<6> funct6> {
744  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
745          SchedBinaryMC<"WriteVFMinMaxV", "ReadVFMinMaxV", "ReadVFMinMaxV">;
746  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
747          SchedBinaryMC<"WriteVFMinMaxF", "ReadVFMinMaxV", "ReadVFMinMaxF">;
748}
749
750multiclass VCMP_FV_F<string opcodestr, bits<6> funct6> {
751  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
752          SchedBinaryMC<"WriteVFCmpF", "ReadVFCmpV", "ReadVFCmpF">;
753}
754
755multiclass VCMP_FV_V_F<string opcodestr, bits<6> funct6>
756    : VCMP_FV_F<opcodestr, funct6> {
757  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
758          SchedBinaryMC<"WriteVFCmpV", "ReadVFCmpV", "ReadVFCmpV">;
759}
760
761multiclass VSGNJ_FV_V_F<string opcodestr, bits<6> funct6> {
762  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
763          SchedBinaryMC<"WriteVFSgnjV", "ReadVFSgnjV", "ReadVFSgnjV">;
764  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
765          SchedBinaryMC<"WriteVFSgnjF", "ReadVFSgnjV", "ReadVFSgnjF">;
766}
767
768multiclass VCLS_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
769  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
770           SchedUnaryMC<"WriteVFClassV", "ReadVFClassV">;
771}
772
773multiclass VCVTF_IV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
774  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
775           SchedUnaryMC<"WriteVFCvtIToFV", "ReadVFCvtIToFV">;
776}
777
778multiclass VCVTI_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
779  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
780           SchedUnaryMC<"WriteVFCvtFToIV", "ReadVFCvtFToIV">;
781}
782
783multiclass VWCVTF_IV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
784  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
785           SchedUnaryMC<"WriteVFWCvtIToFV", "ReadVFWCvtIToFV">;
786}
787
788multiclass VWCVTI_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
789  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
790           SchedUnaryMC<"WriteVFWCvtFToIV", "ReadVFWCvtFToIV">;
791}
792
793multiclass VWCVTF_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
794  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
795           SchedUnaryMC<"WriteVFWCvtFToFV", "ReadVFWCvtFToFV">;
796}
797
798multiclass VNCVTF_IV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
799  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
800           SchedUnaryMC<"WriteVFNCvtIToFV", "ReadVFNCvtIToFV">;
801}
802
803multiclass VNCVTI_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
804  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
805           SchedUnaryMC<"WriteVFNCvtFToIV", "ReadVFNCvtFToIV">;
806}
807
808multiclass VNCVTF_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
809  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
810           SchedUnaryMC<"WriteVFNCvtFToFV", "ReadVFNCvtFToFV">;
811}
812
813multiclass VRED_MV_V<string opcodestr, bits<6> funct6> {
814  def _VS : VALUVV<funct6, OPMVV, opcodestr # ".vs">,
815            SchedReductionMC<"WriteVIRedV_From", "ReadVIRedV", "ReadVIRedV0">;
816}
817
818multiclass VREDMINMAX_MV_V<string opcodestr, bits<6> funct6> {
819  def _VS : VALUVV<funct6, OPMVV, opcodestr # ".vs">,
820            SchedReductionMC<"WriteVIRedMinMaxV_From", "ReadVIRedV", "ReadVIRedV0">;
821}
822
823multiclass VWRED_IV_V<string opcodestr, bits<6> funct6> {
824  def _VS : VALUVV<funct6, OPIVV, opcodestr # ".vs">,
825            SchedReductionMC<"WriteVIWRedV_From", "ReadVIWRedV", "ReadVIWRedV0">;
826}
827
828multiclass VRED_FV_V<string opcodestr, bits<6> funct6> {
829  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
830            SchedReductionMC<"WriteVFRedV_From", "ReadVFRedV", "ReadVFRedV0">;
831}
832
833multiclass VREDMINMAX_FV_V<string opcodestr, bits<6> funct6> {
834  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
835            SchedReductionMC<"WriteVFRedMinMaxV_From", "ReadVFRedV", "ReadVFRedV0">;
836}
837
838multiclass VREDO_FV_V<string opcodestr, bits<6> funct6> {
839  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
840            SchedReductionMC<"WriteVFRedOV_From", "ReadVFRedOV", "ReadVFRedOV0">;
841}
842
843multiclass VWRED_FV_V<string opcodestr, bits<6> funct6> {
844  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
845            SchedReductionMC<"WriteVFWRedV_From", "ReadVFWRedV", "ReadVFWRedV0">;
846}
847
848multiclass VWREDO_FV_V<string opcodestr, bits<6> funct6> {
849  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
850            SchedReductionMC<"WriteVFWRedOV_From", "ReadVFWRedOV", "ReadVFWRedOV0">;
851}
852
853multiclass VMALU_MV_Mask<string opcodestr, bits<6> funct6, string vm = "v"> {
854  def M : VALUVVNoVm<funct6, OPMVV, opcodestr #"." #vm #"m">,
855          SchedBinaryMC<"WriteVMALUV", "ReadVMALUV", "ReadVMALUV",
856                        forceMasked=0>;
857}
858
859multiclass VMSFS_MV_V<string opcodestr, bits<6> funct6, bits<5> vs1> {
860  def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>,
861           SchedUnaryMC<"WriteVMSFSV", "ReadVMSFSV">;
862}
863
864multiclass VMIOT_MV_V<string opcodestr, bits<6> funct6, bits<5> vs1> {
865  def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>,
866           SchedUnaryMC<"WriteVMIotV", "ReadVMIotV">;
867}
868
869multiclass VSHT_IV_V_X_I<string opcodestr, bits<6> funct6> {
870  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
871           SchedBinaryMC<"WriteVShiftV", "ReadVShiftV", "ReadVShiftV">;
872  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
873           SchedBinaryMC<"WriteVShiftX", "ReadVShiftV", "ReadVShiftX">;
874  def I  : VALUVI<funct6, opcodestr # ".vi", uimm5>,
875           SchedUnaryMC<"WriteVShiftI", "ReadVShiftV">;
876}
877
878multiclass VNSHT_IV_V_X_I<string opcodestr, bits<6> funct6> {
879  def V  : VALUVV<funct6, OPIVV, opcodestr # ".wv">,
880           SchedBinaryMC<"WriteVNShiftV", "ReadVNShiftV", "ReadVNShiftV">;
881  def X  : VALUVX<funct6, OPIVX, opcodestr # ".wx">,
882           SchedBinaryMC<"WriteVNShiftX", "ReadVNShiftV", "ReadVNShiftX">;
883  def I  : VALUVI<funct6, opcodestr # ".wi", uimm5>,
884           SchedUnaryMC<"WriteVNShiftI", "ReadVNShiftV">;
885}
886
887multiclass VMINMAX_IV_V_X<string opcodestr, bits<6> funct6> {
888  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
889           SchedBinaryMC<"WriteVIMinMaxV", "ReadVIMinMaxV", "ReadVIMinMaxV">;
890  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
891           SchedBinaryMC<"WriteVIMinMaxX", "ReadVIMinMaxV", "ReadVIMinMaxX">;
892}
893
894multiclass VCMP_IV_V<string opcodestr, bits<6> funct6> {
895  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
896           SchedBinaryMC<"WriteVICmpV", "ReadVICmpV", "ReadVICmpV">;
897}
898
899multiclass VCMP_IV_X<string opcodestr, bits<6> funct6> {
900  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
901           SchedBinaryMC<"WriteVICmpX", "ReadVICmpV", "ReadVICmpX">;
902}
903
904multiclass VCMP_IV_I<string opcodestr, bits<6> funct6> {
905  def I  : VALUVI<funct6, opcodestr # ".vi", simm5>,
906           SchedUnaryMC<"WriteVICmpI", "ReadVICmpV">;
907}
908
909multiclass VCMP_IV_V_X_I<string opcodestr, bits<6> funct6>
910    : VCMP_IV_V<opcodestr, funct6>,
911      VCMP_IV_X<opcodestr, funct6>,
912      VCMP_IV_I<opcodestr, funct6>;
913
914multiclass VCMP_IV_X_I<string opcodestr, bits<6> funct6>
915    : VCMP_IV_X<opcodestr, funct6>,
916      VCMP_IV_I<opcodestr, funct6>;
917
918multiclass VCMP_IV_V_X<string opcodestr, bits<6> funct6>
919    : VCMP_IV_V<opcodestr, funct6>,
920      VCMP_IV_X<opcodestr, funct6>;
921
922multiclass VMUL_MV_V_X<string opcodestr, bits<6> funct6> {
923  def V  : VALUVV<funct6, OPMVV, opcodestr # ".vv">,
924           SchedBinaryMC<"WriteVIMulV", "ReadVIMulV", "ReadVIMulV">;
925  def X  : VALUVX<funct6, OPMVX, opcodestr # ".vx">,
926           SchedBinaryMC<"WriteVIMulX", "ReadVIMulV", "ReadVIMulX">;
927}
928
929multiclass VWMUL_MV_V_X<string opcodestr, bits<6> funct6> {
930  def V  : VALUVV<funct6, OPMVV, opcodestr # ".vv">,
931           SchedBinaryMC<"WriteVIWMulV", "ReadVIWMulV", "ReadVIWMulV">;
932  def X  : VALUVX<funct6, OPMVX, opcodestr # ".vx">,
933           SchedBinaryMC<"WriteVIWMulX", "ReadVIWMulV", "ReadVIWMulX">;
934}
935
936multiclass VDIV_MV_V_X<string opcodestr, bits<6> funct6> {
937  def V  : VALUVV<funct6, OPMVV, opcodestr # ".vv">,
938           SchedBinaryMC<"WriteVIDivV", "ReadVIDivV", "ReadVIDivV">;
939  def X  : VALUVX<funct6, OPMVX, opcodestr # ".vx">,
940           SchedBinaryMC<"WriteVIDivX", "ReadVIDivV", "ReadVIDivX">;
941}
942
943multiclass VSALU_IV_V_X<string opcodestr, bits<6> funct6> {
944  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
945           SchedBinaryMC<"WriteVSALUV", "ReadVSALUV", "ReadVSALUV">;
946  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
947           SchedBinaryMC<"WriteVSALUX", "ReadVSALUV", "ReadVSALUX">;
948}
949
950multiclass VSALU_IV_V_X_I<string opcodestr, bits<6> funct6>
951    : VSALU_IV_V_X<opcodestr, funct6> {
952  def I  : VALUVI<funct6, opcodestr # ".vi", simm5>,
953           SchedUnaryMC<"WriteVSALUI", "ReadVSALUV">;
954}
955
956multiclass VAALU_MV_V_X<string opcodestr, bits<6> funct6> {
957  def V  : VALUVV<funct6, OPMVV, opcodestr # ".vv">,
958           SchedBinaryMC<"WriteVAALUV", "ReadVAALUV", "ReadVAALUV">;
959  def X  : VALUVX<funct6, OPMVX, opcodestr # ".vx">,
960           SchedBinaryMC<"WriteVAALUX", "ReadVAALUV", "ReadVAALUX">;
961}
962
963multiclass VSMUL_IV_V_X<string opcodestr, bits<6> funct6> {
964  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
965           SchedBinaryMC<"WriteVSMulV", "ReadVSMulV", "ReadVSMulV">;
966  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
967           SchedBinaryMC<"WriteVSMulX", "ReadVSMulV", "ReadVSMulX">;
968}
969
970multiclass VSSHF_IV_V_X_I<string opcodestr, bits<6> funct6> {
971  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
972           SchedBinaryMC<"WriteVSShiftV", "ReadVSShiftV", "ReadVSShiftV">;
973  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
974           SchedBinaryMC<"WriteVSShiftX", "ReadVSShiftV", "ReadVSShiftX">;
975  def I  : VALUVI<funct6, opcodestr # ".vi", uimm5>,
976           SchedUnaryMC<"WriteVSShiftI", "ReadVSShiftV">;
977}
978
979multiclass VNCLP_IV_V_X_I<string opcodestr, bits<6> funct6> {
980  def V  : VALUVV<funct6, OPIVV, opcodestr # ".wv">,
981           SchedBinaryMC<"WriteVNClipV", "ReadVNClipV", "ReadVNClipV">;
982  def X  : VALUVX<funct6, OPIVX, opcodestr # ".wx">,
983           SchedBinaryMC<"WriteVNClipX", "ReadVNClipV", "ReadVNClipX">;
984  def I  : VALUVI<funct6, opcodestr # ".wi", uimm5>,
985           SchedUnaryMC<"WriteVNClipI", "ReadVNClipV">;
986}
987
988multiclass VSLD_IV_X_I<string opcodestr, bits<6> funct6> {
989  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
990           SchedBinaryMC<"WriteVISlideX", "ReadVISlideV", "ReadVISlideX">;
991  def I  : VALUVI<funct6, opcodestr # ".vi", uimm5>,
992           SchedUnaryMC<"WriteVISlideI", "ReadVISlideV">;
993}
994
995multiclass VSLD1_MV_X<string opcodestr, bits<6> funct6> {
996  def X  : VALUVX<funct6, OPMVX, opcodestr # ".vx">,
997           SchedBinaryMC<"WriteVISlide1X", "ReadVISlideV", "ReadVISlideX">;
998}
999
1000multiclass VSLD1_FV_F<string opcodestr, bits<6> funct6> {
1001  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
1002          SchedBinaryMC<"WriteVFSlide1F", "ReadVFSlideV", "ReadVFSlideF">;
1003}
1004
1005multiclass VGTR_IV_V_X_I<string opcodestr, bits<6> funct6> {
1006  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
1007           SchedBinaryMC<"WriteVRGatherVV", "ReadVRGatherVV_data",
1008                         "ReadVRGatherVV_index">;
1009  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
1010           SchedBinaryMC<"WriteVRGatherVX", "ReadVRGatherVX_data",
1011                         "ReadVRGatherVX_index">;
1012  def I  : VALUVI<funct6, opcodestr # ".vi", uimm5>,
1013           SchedUnaryMC<"WriteVRGatherVI", "ReadVRGatherVI_data">;
1014}
1015
1016multiclass VCPR_MV_Mask<string opcodestr, bits<6> funct6, string vm = "v"> {
1017  def M  : VALUVVNoVm<funct6, OPMVV, opcodestr # "." # vm # "m">,
1018           SchedBinaryMC<"WriteVCompressV", "ReadVCompressV", "ReadVCompressV">;
1019}
1020
1021multiclass VWholeLoadN<int l, bits<3> nf, string opcodestr, RegisterClass VRC> {
1022  defvar w = !cast<RISCVWidth>("LSWidth" # l);
1023  defvar s = !cast<SchedWrite>("WriteVLD" # !add(nf, 1) # "R");
1024
1025  def E # l # _V : VWholeLoad<nf, w, opcodestr # "e" # l # ".v", VRC>,
1026                   Sched<[s, ReadVLDX]>;
1027}
1028
1029//===----------------------------------------------------------------------===//
1030// Instructions
1031//===----------------------------------------------------------------------===//
1032
1033let Predicates = [HasVInstructions] in {
1034let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
1035def VSETVLI : RVInstSetVLi<(outs GPR:$rd), (ins GPR:$rs1, VTypeIOp11:$vtypei),
1036                           "vsetvli", "$rd, $rs1, $vtypei">,
1037                           Sched<[WriteVSETVLI, ReadVSETVLI]>;
1038def VSETIVLI : RVInstSetiVLi<(outs GPR:$rd), (ins uimm5:$uimm, VTypeIOp10:$vtypei),
1039                             "vsetivli", "$rd, $uimm, $vtypei">,
1040                             Sched<[WriteVSETIVLI]>;
1041
1042def VSETVL : RVInstSetVL<(outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
1043                         "vsetvl", "$rd, $rs1, $rs2">,
1044                          Sched<[WriteVSETVL, ReadVSETVL, ReadVSETVL]>;
1045} // hasSideEffects = 1, mayLoad = 0, mayStore = 0
1046} // Predicates = [HasVInstructions]
1047
1048foreach eew = [8, 16, 32, 64] in {
1049  defvar w = !cast<RISCVWidth>("LSWidth" # eew);
1050
1051  let Predicates = !if(!eq(eew, 64), [HasVInstructionsI64],
1052                                     [HasVInstructions]) in {
1053    // Vector Unit-Stride Instructions
1054    def VLE#eew#_V : VUnitStrideLoad<w, "vle"#eew#".v">, VLESchedMC;
1055    def VSE#eew#_V  : VUnitStrideStore<w,  "vse"#eew#".v">, VSESchedMC;
1056
1057    // Vector Unit-Stride Fault-only-First Loads
1058    def VLE#eew#FF_V : VUnitStrideLoadFF<w,  "vle"#eew#"ff.v">, VLFSchedMC;
1059
1060    // Vector Strided Instructions
1061    def VLSE#eew#_V  : VStridedLoad<w,  "vlse"#eew#".v">, VLSSchedMC<eew>;
1062    def VSSE#eew#_V  : VStridedStore<w,  "vsse"#eew#".v">, VSSSchedMC<eew>;
1063
1064    defm VL1R : VWholeLoadN<eew, 0, "vl1r", VR>;
1065    defm VL2R : VWholeLoadN<eew, 1, "vl2r", VRM2>;
1066    defm VL4R : VWholeLoadN<eew, 3, "vl4r", VRM4>;
1067    defm VL8R : VWholeLoadN<eew, 7, "vl8r", VRM8>;
1068  }
1069
1070  let Predicates = !if(!eq(eew, 64), [IsRV64, HasVInstructionsI64],
1071                                     [HasVInstructions]) in
1072  defm "" : VIndexLoadStore<eew>;
1073}
1074
1075let Predicates = [HasVInstructions] in {
1076def VLM_V : VUnitStrideLoadMask<"vlm.v">,
1077             Sched<[WriteVLDM_WorstCase, ReadVLDX]>;
1078def VSM_V : VUnitStrideStoreMask<"vsm.v">,
1079             Sched<[WriteVSTM_WorstCase, ReadVSTM_WorstCase, ReadVSTX]>;
1080def : InstAlias<"vle1.v $vd, (${rs1})",
1081                (VLM_V VR:$vd, GPR:$rs1), 0>;
1082def : InstAlias<"vse1.v $vs3, (${rs1})",
1083                (VSM_V VR:$vs3, GPR:$rs1), 0>;
1084
1085def VS1R_V : VWholeStore<0, "vs1r.v", VR>,
1086             Sched<[WriteVST1R, ReadVST1R, ReadVSTX]>;
1087def VS2R_V : VWholeStore<1, "vs2r.v", VRM2>,
1088             Sched<[WriteVST2R, ReadVST2R, ReadVSTX]>;
1089def VS4R_V : VWholeStore<3, "vs4r.v", VRM4>,
1090             Sched<[WriteVST4R, ReadVST4R, ReadVSTX]>;
1091def VS8R_V : VWholeStore<7, "vs8r.v", VRM8>,
1092             Sched<[WriteVST8R, ReadVST8R, ReadVSTX]>;
1093
1094def : InstAlias<"vl1r.v $vd, (${rs1})", (VL1RE8_V VR:$vd, GPR:$rs1)>;
1095def : InstAlias<"vl2r.v $vd, (${rs1})", (VL2RE8_V VRM2:$vd, GPR:$rs1)>;
1096def : InstAlias<"vl4r.v $vd, (${rs1})", (VL4RE8_V VRM4:$vd, GPR:$rs1)>;
1097def : InstAlias<"vl8r.v $vd, (${rs1})", (VL8RE8_V VRM8:$vd, GPR:$rs1)>;
1098} // Predicates = [HasVInstructions]
1099
1100let Predicates = [HasVInstructions] in {
1101// Vector Single-Width Integer Add and Subtract
1102defm VADD_V : VALU_IV_V_X_I<"vadd", 0b000000>;
1103defm VSUB_V : VALU_IV_V_X<"vsub", 0b000010>;
1104defm VRSUB_V : VALU_IV_X_I<"vrsub", 0b000011>;
1105
1106def : InstAlias<"vneg.v $vd, $vs$vm", (VRSUB_VX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
1107def : InstAlias<"vneg.v $vd, $vs", (VRSUB_VX VR:$vd, VR:$vs, X0, zero_reg)>;
1108
1109// Vector Widening Integer Add/Subtract
1110// Refer to 11.2 Widening Vector Arithmetic Instructions
1111// The destination vector register group cannot overlap a source vector
1112// register group of a different element width (including the mask register
1113// if masked), otherwise an illegal instruction exception is raised.
1114let Constraints = "@earlyclobber $vd" in {
1115let RVVConstraint = WidenV in {
1116defm VWADDU_V : VALU_MV_V_X<"vwaddu", 0b110000, "v">;
1117defm VWSUBU_V : VALU_MV_V_X<"vwsubu", 0b110010, "v">;
1118defm VWADD_V : VALU_MV_V_X<"vwadd", 0b110001, "v">;
1119defm VWSUB_V : VALU_MV_V_X<"vwsub", 0b110011, "v">;
1120} // RVVConstraint = WidenV
1121// Set earlyclobber for following instructions for second and mask operands.
1122// This has the downside that the earlyclobber constraint is too coarse and
1123// will impose unnecessary restrictions by not allowing the destination to
1124// overlap with the first (wide) operand.
1125let RVVConstraint = WidenW in {
1126defm VWADDU_W : VALU_MV_V_X<"vwaddu", 0b110100, "w">;
1127defm VWSUBU_W : VALU_MV_V_X<"vwsubu", 0b110110, "w">;
1128defm VWADD_W : VALU_MV_V_X<"vwadd", 0b110101, "w">;
1129defm VWSUB_W : VALU_MV_V_X<"vwsub", 0b110111, "w">;
1130} // RVVConstraint = WidenW
1131} // Constraints = "@earlyclobber $vd"
1132
1133def : InstAlias<"vwcvt.x.x.v $vd, $vs$vm",
1134                (VWADD_VX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
1135def : InstAlias<"vwcvt.x.x.v $vd, $vs",
1136                (VWADD_VX VR:$vd, VR:$vs, X0, zero_reg)>;
1137def : InstAlias<"vwcvtu.x.x.v $vd, $vs$vm",
1138                (VWADDU_VX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
1139def : InstAlias<"vwcvtu.x.x.v $vd, $vs",
1140                (VWADDU_VX VR:$vd, VR:$vs, X0, zero_reg)>;
1141
1142// Vector Integer Extension
1143defm VZEXT_VF8 : VALU_MV_VS2<"vzext.vf8", 0b010010, 0b00010>;
1144defm VSEXT_VF8 : VALU_MV_VS2<"vsext.vf8", 0b010010, 0b00011>;
1145defm VZEXT_VF4 : VALU_MV_VS2<"vzext.vf4", 0b010010, 0b00100>;
1146defm VSEXT_VF4 : VALU_MV_VS2<"vsext.vf4", 0b010010, 0b00101>;
1147defm VZEXT_VF2 : VALU_MV_VS2<"vzext.vf2", 0b010010, 0b00110>;
1148defm VSEXT_VF2 : VALU_MV_VS2<"vsext.vf2", 0b010010, 0b00111>;
1149
1150// Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
1151defm VADC_V : VALUm_IV_V_X_I<"vadc", 0b010000>;
1152let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint in {
1153defm VMADC_V : VALUm_IV_V_X_I<"vmadc", 0b010001>;
1154defm VMADC_V : VALUNoVm_IV_V_X_I<"vmadc", 0b010001>;
1155} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint
1156defm VSBC_V : VALUm_IV_V_X<"vsbc", 0b010010>;
1157let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint in {
1158defm VMSBC_V : VALUm_IV_V_X<"vmsbc", 0b010011>;
1159defm VMSBC_V : VALUNoVm_IV_V_X<"vmsbc", 0b010011>;
1160} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint
1161
1162// Vector Bitwise Logical Instructions
1163defm VAND_V : VALU_IV_V_X_I<"vand", 0b001001>;
1164defm VOR_V : VALU_IV_V_X_I<"vor", 0b001010>;
1165defm VXOR_V : VALU_IV_V_X_I<"vxor", 0b001011>;
1166
1167def : InstAlias<"vnot.v $vd, $vs$vm",
1168                (VXOR_VI VR:$vd, VR:$vs, -1, VMaskOp:$vm)>;
1169def : InstAlias<"vnot.v $vd, $vs",
1170                (VXOR_VI VR:$vd, VR:$vs, -1, zero_reg)>;
1171
1172// Vector Single-Width Bit Shift Instructions
1173defm VSLL_V : VSHT_IV_V_X_I<"vsll", 0b100101>;
1174defm VSRL_V : VSHT_IV_V_X_I<"vsrl", 0b101000>;
1175defm VSRA_V : VSHT_IV_V_X_I<"vsra", 0b101001>;
1176
1177// Vector Narrowing Integer Right Shift Instructions
1178// Refer to 11.3. Narrowing Vector Arithmetic Instructions
1179// The destination vector register group cannot overlap the first source
1180// vector register group (specified by vs2). The destination vector register
1181// group cannot overlap the mask register if used, unless LMUL=1.
1182let Constraints = "@earlyclobber $vd" in {
1183defm VNSRL_W : VNSHT_IV_V_X_I<"vnsrl", 0b101100>;
1184defm VNSRA_W : VNSHT_IV_V_X_I<"vnsra", 0b101101>;
1185} // Constraints = "@earlyclobber $vd"
1186
1187def : InstAlias<"vncvt.x.x.w $vd, $vs$vm",
1188                (VNSRL_WX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
1189def : InstAlias<"vncvt.x.x.w $vd, $vs",
1190                (VNSRL_WX VR:$vd, VR:$vs, X0, zero_reg)>;
1191
1192// Vector Integer Comparison Instructions
1193let RVVConstraint = NoConstraint in {
1194defm VMSEQ_V : VCMP_IV_V_X_I<"vmseq", 0b011000>;
1195defm VMSNE_V : VCMP_IV_V_X_I<"vmsne", 0b011001>;
1196defm VMSLTU_V : VCMP_IV_V_X<"vmsltu", 0b011010>;
1197defm VMSLT_V : VCMP_IV_V_X<"vmslt", 0b011011>;
1198defm VMSLEU_V : VCMP_IV_V_X_I<"vmsleu", 0b011100>;
1199defm VMSLE_V : VCMP_IV_V_X_I<"vmsle", 0b011101>;
1200defm VMSGTU_V : VCMP_IV_X_I<"vmsgtu", 0b011110>;
1201defm VMSGT_V : VCMP_IV_X_I<"vmsgt", 0b011111>;
1202} // RVVConstraint = NoConstraint
1203
1204def : InstAlias<"vmsgtu.vv $vd, $va, $vb$vm",
1205                (VMSLTU_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1206def : InstAlias<"vmsgt.vv $vd, $va, $vb$vm",
1207                (VMSLT_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1208def : InstAlias<"vmsgeu.vv $vd, $va, $vb$vm",
1209                (VMSLEU_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1210def : InstAlias<"vmsge.vv $vd, $va, $vb$vm",
1211                (VMSLE_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1212
1213let isCodeGenOnly = 0, isAsmParserOnly = 1, hasSideEffects = 0, mayLoad = 0,
1214    mayStore = 0 in {
1215// For unsigned comparisons we need to special case 0 immediate to maintain
1216// the always true/false semantics we would invert if we just decremented the
1217// immediate like we do for signed. To match the GNU assembler we will use
1218// vmseq/vmsne.vv with the same register for both operands which we can't do
1219// from an InstAlias.
1220def PseudoVMSGEU_VI : Pseudo<(outs VR:$vd),
1221                             (ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
1222                             [], "vmsgeu.vi", "$vd, $vs2, $imm$vm">;
1223def PseudoVMSLTU_VI : Pseudo<(outs VR:$vd),
1224                             (ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
1225                             [], "vmsltu.vi", "$vd, $vs2, $imm$vm">;
1226// Handle signed with pseudos as well for more consistency in the
1227// implementation.
1228def PseudoVMSGE_VI : Pseudo<(outs VR:$vd),
1229                            (ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
1230                            [], "vmsge.vi", "$vd, $vs2, $imm$vm">;
1231def PseudoVMSLT_VI : Pseudo<(outs VR:$vd),
1232                            (ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
1233                            [], "vmslt.vi", "$vd, $vs2, $imm$vm">;
1234}
1235
1236let isCodeGenOnly = 0, isAsmParserOnly = 1, hasSideEffects = 0, mayLoad = 0,
1237    mayStore = 0 in {
1238def PseudoVMSGEU_VX : Pseudo<(outs VR:$vd),
1239                             (ins VR:$vs2, GPR:$rs1),
1240                             [], "vmsgeu.vx", "$vd, $vs2, $rs1">;
1241def PseudoVMSGE_VX : Pseudo<(outs VR:$vd),
1242                            (ins VR:$vs2, GPR:$rs1),
1243                            [], "vmsge.vx", "$vd, $vs2, $rs1">;
1244def PseudoVMSGEU_VX_M : Pseudo<(outs VRNoV0:$vd),
1245                               (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
1246                               [], "vmsgeu.vx", "$vd, $vs2, $rs1$vm">;
1247def PseudoVMSGE_VX_M : Pseudo<(outs VRNoV0:$vd),
1248                              (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
1249                              [], "vmsge.vx", "$vd, $vs2, $rs1$vm">;
1250def PseudoVMSGEU_VX_M_T : Pseudo<(outs VR:$vd, VRNoV0:$scratch),
1251                                 (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
1252                                 [], "vmsgeu.vx", "$vd, $vs2, $rs1$vm, $scratch">;
1253def PseudoVMSGE_VX_M_T : Pseudo<(outs VR:$vd, VRNoV0:$scratch),
1254                                (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
1255                                [], "vmsge.vx", "$vd, $vs2, $rs1$vm, $scratch">;
1256}
1257
1258// Vector Integer Min/Max Instructions
1259defm VMINU_V : VMINMAX_IV_V_X<"vminu", 0b000100>;
1260defm VMIN_V : VMINMAX_IV_V_X<"vmin", 0b000101>;
1261defm VMAXU_V : VMINMAX_IV_V_X<"vmaxu", 0b000110>;
1262defm VMAX_V : VMINMAX_IV_V_X<"vmax", 0b000111>;
1263
1264// Vector Single-Width Integer Multiply Instructions
1265defm VMUL_V : VMUL_MV_V_X<"vmul", 0b100101>;
1266defm VMULH_V : VMUL_MV_V_X<"vmulh", 0b100111>;
1267defm VMULHU_V : VMUL_MV_V_X<"vmulhu", 0b100100>;
1268defm VMULHSU_V : VMUL_MV_V_X<"vmulhsu", 0b100110>;
1269
1270// Vector Integer Divide Instructions
1271defm VDIVU_V : VDIV_MV_V_X<"vdivu", 0b100000>;
1272defm VDIV_V : VDIV_MV_V_X<"vdiv", 0b100001>;
1273defm VREMU_V : VDIV_MV_V_X<"vremu", 0b100010>;
1274defm VREM_V : VDIV_MV_V_X<"vrem", 0b100011>;
1275
1276// Vector Widening Integer Multiply Instructions
1277let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
1278defm VWMUL_V : VWMUL_MV_V_X<"vwmul", 0b111011>;
1279defm VWMULU_V : VWMUL_MV_V_X<"vwmulu", 0b111000>;
1280defm VWMULSU_V : VWMUL_MV_V_X<"vwmulsu", 0b111010>;
1281} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV
1282
1283// Vector Single-Width Integer Multiply-Add Instructions
1284defm VMACC_V : VMAC_MV_V_X<"vmacc", 0b101101>;
1285defm VNMSAC_V : VMAC_MV_V_X<"vnmsac", 0b101111>;
1286defm VMADD_V : VMAC_MV_V_X<"vmadd", 0b101001>;
1287defm VNMSUB_V : VMAC_MV_V_X<"vnmsub", 0b101011>;
1288
1289// Vector Widening Integer Multiply-Add Instructions
1290defm VWMACCU_V : VWMAC_MV_V_X<"vwmaccu", 0b111100>;
1291defm VWMACC_V : VWMAC_MV_V_X<"vwmacc", 0b111101>;
1292defm VWMACCSU_V : VWMAC_MV_V_X<"vwmaccsu", 0b111111>;
1293defm VWMACCUS_V : VWMAC_MV_X<"vwmaccus", 0b111110>;
1294
1295// Vector Integer Merge Instructions
1296defm VMERGE_V : VMRG_IV_V_X_I<"vmerge", 0b010111>;
1297
1298// Vector Integer Move Instructions
1299let hasSideEffects = 0, mayLoad = 0, mayStore = 0, vs2 = 0, vm = 1,
1300    RVVConstraint = NoConstraint  in {
1301// op vd, vs1
1302def VMV_V_V : RVInstVV<0b010111, OPIVV, (outs VR:$vd),
1303                       (ins VR:$vs1), "vmv.v.v", "$vd, $vs1">,
1304              SchedUnaryMC<"WriteVIMovV", "ReadVIMovV", forceMasked=0>;
1305// op vd, rs1
1306def VMV_V_X : RVInstVX<0b010111, OPIVX, (outs VR:$vd),
1307                       (ins GPR:$rs1), "vmv.v.x", "$vd, $rs1">,
1308              SchedUnaryMC<"WriteVIMovX", "ReadVIMovX", forceMasked=0>;
1309// op vd, imm
1310def VMV_V_I : RVInstIVI<0b010111, (outs VR:$vd),
1311                       (ins simm5:$imm), "vmv.v.i", "$vd, $imm">,
1312              SchedNullaryMC<"WriteVIMovI", forceMasked=0>;
1313} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1314
1315// Vector Fixed-Point Arithmetic Instructions
1316defm VSADDU_V : VSALU_IV_V_X_I<"vsaddu", 0b100000>;
1317defm VSADD_V : VSALU_IV_V_X_I<"vsadd", 0b100001>;
1318defm VSSUBU_V : VSALU_IV_V_X<"vssubu", 0b100010>;
1319defm VSSUB_V : VSALU_IV_V_X<"vssub", 0b100011>;
1320
1321// Vector Single-Width Averaging Add and Subtract
1322defm VAADDU_V : VAALU_MV_V_X<"vaaddu", 0b001000>;
1323defm VAADD_V : VAALU_MV_V_X<"vaadd", 0b001001>;
1324defm VASUBU_V : VAALU_MV_V_X<"vasubu", 0b001010>;
1325defm VASUB_V : VAALU_MV_V_X<"vasub", 0b001011>;
1326
1327// Vector Single-Width Fractional Multiply with Rounding and Saturation
1328defm VSMUL_V : VSMUL_IV_V_X<"vsmul", 0b100111>;
1329
1330// Vector Single-Width Scaling Shift Instructions
1331defm VSSRL_V : VSSHF_IV_V_X_I<"vssrl", 0b101010>;
1332defm VSSRA_V : VSSHF_IV_V_X_I<"vssra", 0b101011>;
1333
1334// Vector Narrowing Fixed-Point Clip Instructions
1335let Constraints = "@earlyclobber $vd" in {
1336defm VNCLIPU_W : VNCLP_IV_V_X_I<"vnclipu", 0b101110>;
1337defm VNCLIP_W : VNCLP_IV_V_X_I<"vnclip", 0b101111>;
1338} // Constraints = "@earlyclobber $vd"
1339} // Predicates = [HasVInstructions]
1340
1341let Predicates = [HasVInstructionsAnyF] in {
1342// Vector Single-Width Floating-Point Add/Subtract Instructions
1343let Uses = [FRM], mayRaiseFPException = true in {
1344defm VFADD_V : VALU_FV_V_F<"vfadd", 0b000000>;
1345defm VFSUB_V : VALU_FV_V_F<"vfsub", 0b000010>;
1346defm VFRSUB_V : VALU_FV_F<"vfrsub", 0b100111>;
1347}
1348
1349// Vector Widening Floating-Point Add/Subtract Instructions
1350let Constraints = "@earlyclobber $vd",
1351    Uses = [FRM],
1352    mayRaiseFPException = true in {
1353let RVVConstraint = WidenV in {
1354defm VFWADD_V : VWALU_FV_V_F<"vfwadd", 0b110000, "v">;
1355defm VFWSUB_V : VWALU_FV_V_F<"vfwsub", 0b110010, "v">;
1356} // RVVConstraint = WidenV
1357// Set earlyclobber for following instructions for second and mask operands.
1358// This has the downside that the earlyclobber constraint is too coarse and
1359// will impose unnecessary restrictions by not allowing the destination to
1360// overlap with the first (wide) operand.
1361let RVVConstraint = WidenW in {
1362defm VFWADD_W : VWALU_FV_V_F<"vfwadd", 0b110100, "w">;
1363defm VFWSUB_W : VWALU_FV_V_F<"vfwsub", 0b110110, "w">;
1364} // RVVConstraint = WidenW
1365} // Constraints = "@earlyclobber $vd", Uses = [FRM], mayRaiseFPException = true
1366
1367// Vector Single-Width Floating-Point Multiply/Divide Instructions
1368let Uses = [FRM], mayRaiseFPException = true in {
1369defm VFMUL_V : VMUL_FV_V_F<"vfmul", 0b100100>;
1370defm VFDIV_V : VDIV_FV_V_F<"vfdiv", 0b100000>;
1371defm VFRDIV_V : VDIV_FV_F<"vfrdiv", 0b100001>;
1372}
1373
1374// Vector Widening Floating-Point Multiply
1375let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV,
1376    Uses = [FRM], mayRaiseFPException = true in {
1377defm VFWMUL_V : VWMUL_FV_V_F<"vfwmul", 0b111000>;
1378} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV, Uses = [FRM], mayRaiseFPException = true
1379
1380// Vector Single-Width Floating-Point Fused Multiply-Add Instructions
1381let Uses = [FRM], mayRaiseFPException = true in {
1382defm VFMACC_V : VMAC_FV_V_F<"vfmacc", 0b101100>;
1383defm VFNMACC_V : VMAC_FV_V_F<"vfnmacc", 0b101101>;
1384defm VFMSAC_V : VMAC_FV_V_F<"vfmsac", 0b101110>;
1385defm VFNMSAC_V : VMAC_FV_V_F<"vfnmsac", 0b101111>;
1386defm VFMADD_V : VMAC_FV_V_F<"vfmadd", 0b101000>;
1387defm VFNMADD_V : VMAC_FV_V_F<"vfnmadd", 0b101001>;
1388defm VFMSUB_V : VMAC_FV_V_F<"vfmsub", 0b101010>;
1389defm VFNMSUB_V : VMAC_FV_V_F<"vfnmsub", 0b101011>;
1390}
1391
1392// Vector Widening Floating-Point Fused Multiply-Add Instructions
1393let Uses = [FRM], mayRaiseFPException = true in {
1394defm VFWMACC_V : VWMAC_FV_V_F<"vfwmacc", 0b111100>;
1395defm VFWNMACC_V : VWMAC_FV_V_F<"vfwnmacc", 0b111101>;
1396defm VFWMSAC_V : VWMAC_FV_V_F<"vfwmsac", 0b111110>;
1397defm VFWNMSAC_V : VWMAC_FV_V_F<"vfwnmsac", 0b111111>;
1398} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV, Uses = [FRM], mayRaiseFPException = true
1399
1400// Vector Floating-Point Square-Root Instruction
1401let Uses = [FRM], mayRaiseFPException = true in {
1402defm VFSQRT_V : VSQR_FV_VS2<"vfsqrt.v", 0b010011, 0b00000>;
1403defm VFREC7_V : VRCP_FV_VS2<"vfrec7.v", 0b010011, 0b00101>;
1404}
1405
1406let mayRaiseFPException = true in
1407defm VFRSQRT7_V : VRCP_FV_VS2<"vfrsqrt7.v", 0b010011, 0b00100>;
1408
1409// Vector Floating-Point MIN/MAX Instructions
1410let mayRaiseFPException = true in {
1411defm VFMIN_V : VMINMAX_FV_V_F<"vfmin", 0b000100>;
1412defm VFMAX_V : VMINMAX_FV_V_F<"vfmax", 0b000110>;
1413}
1414
1415// Vector Floating-Point Sign-Injection Instructions
1416defm VFSGNJ_V : VSGNJ_FV_V_F<"vfsgnj", 0b001000>;
1417defm VFSGNJN_V : VSGNJ_FV_V_F<"vfsgnjn", 0b001001>;
1418defm VFSGNJX_V : VSGNJ_FV_V_F<"vfsgnjx", 0b001010>;
1419
1420def : InstAlias<"vfneg.v $vd, $vs$vm",
1421                (VFSGNJN_VV VR:$vd, VR:$vs, VR:$vs, VMaskOp:$vm)>;
1422def : InstAlias<"vfneg.v $vd, $vs",
1423                (VFSGNJN_VV VR:$vd, VR:$vs, VR:$vs, zero_reg)>;
1424def : InstAlias<"vfabs.v $vd, $vs$vm",
1425                (VFSGNJX_VV VR:$vd, VR:$vs, VR:$vs, VMaskOp:$vm)>;
1426def : InstAlias<"vfabs.v $vd, $vs",
1427                (VFSGNJX_VV VR:$vd, VR:$vs, VR:$vs, zero_reg)>;
1428
1429// Vector Floating-Point Compare Instructions
1430let RVVConstraint = NoConstraint, mayRaiseFPException = true in {
1431defm VMFEQ_V : VCMP_FV_V_F<"vmfeq", 0b011000>;
1432defm VMFNE_V : VCMP_FV_V_F<"vmfne", 0b011100>;
1433defm VMFLT_V : VCMP_FV_V_F<"vmflt", 0b011011>;
1434defm VMFLE_V : VCMP_FV_V_F<"vmfle", 0b011001>;
1435defm VMFGT_V : VCMP_FV_F<"vmfgt", 0b011101>;
1436defm VMFGE_V : VCMP_FV_F<"vmfge", 0b011111>;
1437} // RVVConstraint = NoConstraint, mayRaiseFPException = true
1438
1439def : InstAlias<"vmfgt.vv $vd, $va, $vb$vm",
1440                (VMFLT_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1441def : InstAlias<"vmfge.vv $vd, $va, $vb$vm",
1442                (VMFLE_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1443
1444// Vector Floating-Point Classify Instruction
1445defm VFCLASS_V : VCLS_FV_VS2<"vfclass.v", 0b010011, 0b10000>;
1446
1447let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
1448
1449// Vector Floating-Point Merge Instruction
1450let vm = 0 in
1451def VFMERGE_VFM : RVInstVX<0b010111, OPFVF, (outs VR:$vd),
1452                           (ins VR:$vs2, FPR32:$rs1, VMV0:$v0),
1453                           "vfmerge.vfm", "$vd, $vs2, $rs1, v0">,
1454                  SchedBinaryMC<"WriteVFMergeV", "ReadVFMergeV", "ReadVFMergeF">;
1455
1456// Vector Floating-Point Move Instruction
1457let RVVConstraint = NoConstraint in
1458let vm = 1, vs2 = 0 in
1459def VFMV_V_F : RVInstVX<0b010111, OPFVF, (outs VR:$vd),
1460                       (ins FPR32:$rs1), "vfmv.v.f", "$vd, $rs1">,
1461               SchedUnaryMC<"WriteVFMovV", "ReadVFMovF", forceMasked=0>;
1462
1463} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1464
1465// Single-Width Floating-Point/Integer Type-Convert Instructions
1466let mayRaiseFPException = true in {
1467let Uses = [FRM] in {
1468defm VFCVT_XU_F_V : VCVTI_FV_VS2<"vfcvt.xu.f.v", 0b010010, 0b00000>;
1469defm VFCVT_X_F_V : VCVTI_FV_VS2<"vfcvt.x.f.v", 0b010010, 0b00001>;
1470}
1471defm VFCVT_RTZ_XU_F_V : VCVTI_FV_VS2<"vfcvt.rtz.xu.f.v", 0b010010, 0b00110>;
1472defm VFCVT_RTZ_X_F_V : VCVTI_FV_VS2<"vfcvt.rtz.x.f.v", 0b010010, 0b00111>;
1473let Uses = [FRM] in {
1474defm VFCVT_F_XU_V : VCVTF_IV_VS2<"vfcvt.f.xu.v", 0b010010, 0b00010>;
1475defm VFCVT_F_X_V : VCVTF_IV_VS2<"vfcvt.f.x.v", 0b010010, 0b00011>;
1476}
1477} // mayRaiseFPException = true
1478
1479// Widening Floating-Point/Integer Type-Convert Instructions
1480let Constraints = "@earlyclobber $vd", RVVConstraint = WidenCvt,
1481    mayRaiseFPException = true in {
1482let Uses = [FRM] in {
1483defm VFWCVT_XU_F_V : VWCVTI_FV_VS2<"vfwcvt.xu.f.v", 0b010010, 0b01000>;
1484defm VFWCVT_X_F_V : VWCVTI_FV_VS2<"vfwcvt.x.f.v", 0b010010, 0b01001>;
1485}
1486defm VFWCVT_RTZ_XU_F_V : VWCVTI_FV_VS2<"vfwcvt.rtz.xu.f.v", 0b010010, 0b01110>;
1487defm VFWCVT_RTZ_X_F_V : VWCVTI_FV_VS2<"vfwcvt.rtz.x.f.v", 0b010010, 0b01111>;
1488defm VFWCVT_F_XU_V : VWCVTF_IV_VS2<"vfwcvt.f.xu.v", 0b010010, 0b01010>;
1489defm VFWCVT_F_X_V : VWCVTF_IV_VS2<"vfwcvt.f.x.v", 0b010010, 0b01011>;
1490defm VFWCVT_F_F_V : VWCVTF_FV_VS2<"vfwcvt.f.f.v", 0b010010, 0b01100>;
1491} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenCvt
1492
1493// Narrowing Floating-Point/Integer Type-Convert Instructions
1494let Constraints = "@earlyclobber $vd", mayRaiseFPException = true in {
1495let Uses = [FRM] in {
1496defm VFNCVT_XU_F_W : VNCVTI_FV_VS2<"vfncvt.xu.f.w", 0b010010, 0b10000>;
1497defm VFNCVT_X_F_W : VNCVTI_FV_VS2<"vfncvt.x.f.w", 0b010010, 0b10001>;
1498}
1499defm VFNCVT_RTZ_XU_F_W : VNCVTI_FV_VS2<"vfncvt.rtz.xu.f.w", 0b010010, 0b10110>;
1500defm VFNCVT_RTZ_X_F_W : VNCVTI_FV_VS2<"vfncvt.rtz.x.f.w", 0b010010, 0b10111>;
1501let Uses = [FRM] in {
1502defm VFNCVT_F_XU_W : VNCVTF_IV_VS2<"vfncvt.f.xu.w", 0b010010, 0b10010>;
1503defm VFNCVT_F_X_W : VNCVTF_IV_VS2<"vfncvt.f.x.w", 0b010010, 0b10011>;
1504defm VFNCVT_F_F_W : VNCVTF_FV_VS2<"vfncvt.f.f.w", 0b010010, 0b10100>;
1505}
1506defm VFNCVT_ROD_F_F_W : VNCVTF_FV_VS2<"vfncvt.rod.f.f.w", 0b010010, 0b10101>;
1507} // Constraints = "@earlyclobber $vd", mayRaiseFPException = true
1508} // Predicates = HasVInstructionsAnyF]
1509
1510let Predicates = [HasVInstructions] in {
1511
1512// Vector Single-Width Integer Reduction Instructions
1513let RVVConstraint = NoConstraint in {
1514defm VREDSUM  : VRED_MV_V<"vredsum", 0b000000>;
1515defm VREDMAXU : VREDMINMAX_MV_V<"vredmaxu", 0b000110>;
1516defm VREDMAX  : VREDMINMAX_MV_V<"vredmax", 0b000111>;
1517defm VREDMINU : VREDMINMAX_MV_V<"vredminu", 0b000100>;
1518defm VREDMIN  : VREDMINMAX_MV_V<"vredmin", 0b000101>;
1519defm VREDAND  : VRED_MV_V<"vredand", 0b000001>;
1520defm VREDOR   : VRED_MV_V<"vredor", 0b000010>;
1521defm VREDXOR  : VRED_MV_V<"vredxor", 0b000011>;
1522} // RVVConstraint = NoConstraint
1523
1524// Vector Widening Integer Reduction Instructions
1525let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint in {
1526// Set earlyclobber for following instructions for second and mask operands.
1527// This has the downside that the earlyclobber constraint is too coarse and
1528// will impose unnecessary restrictions by not allowing the destination to
1529// overlap with the first (wide) operand.
1530defm VWREDSUMU : VWRED_IV_V<"vwredsumu", 0b110000>;
1531defm VWREDSUM : VWRED_IV_V<"vwredsum", 0b110001>;
1532} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint
1533
1534} // Predicates = [HasVInstructions]
1535
1536let Predicates = [HasVInstructionsAnyF] in {
1537// Vector Single-Width Floating-Point Reduction Instructions
1538let RVVConstraint = NoConstraint in {
1539let Uses = [FRM], mayRaiseFPException = true in {
1540defm VFREDOSUM : VREDO_FV_V<"vfredosum", 0b000011>;
1541defm VFREDUSUM : VRED_FV_V<"vfredusum", 0b000001>;
1542}
1543let mayRaiseFPException = true in {
1544defm VFREDMAX : VREDMINMAX_FV_V<"vfredmax", 0b000111>;
1545defm VFREDMIN : VREDMINMAX_FV_V<"vfredmin", 0b000101>;
1546}
1547} // RVVConstraint = NoConstraint
1548
1549def : InstAlias<"vfredsum.vs $vd, $vs2, $vs1$vm",
1550                (VFREDUSUM_VS VR:$vd, VR:$vs2, VR:$vs1, VMaskOp:$vm), 0>;
1551
1552// Vector Widening Floating-Point Reduction Instructions
1553let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint in {
1554// Set earlyclobber for following instructions for second and mask operands.
1555// This has the downside that the earlyclobber constraint is too coarse and
1556// will impose unnecessary restrictions by not allowing the destination to
1557// overlap with the first (wide) operand.
1558let Uses = [FRM], mayRaiseFPException = true in {
1559defm VFWREDOSUM : VWREDO_FV_V<"vfwredosum", 0b110011>;
1560defm VFWREDUSUM : VWRED_FV_V<"vfwredusum", 0b110001>;
1561}
1562} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint
1563
1564def : InstAlias<"vfwredsum.vs $vd, $vs2, $vs1$vm",
1565                (VFWREDUSUM_VS VR:$vd, VR:$vs2, VR:$vs1, VMaskOp:$vm), 0>;
1566} // Predicates = [HasVInstructionsAnyF]
1567
1568let Predicates = [HasVInstructions] in {
1569// Vector Mask-Register Logical Instructions
1570let RVVConstraint = NoConstraint in {
1571defm VMAND_M : VMALU_MV_Mask<"vmand", 0b011001, "m">;
1572defm VMNAND_M : VMALU_MV_Mask<"vmnand", 0b011101, "m">;
1573defm VMANDN_M : VMALU_MV_Mask<"vmandn", 0b011000, "m">;
1574defm VMXOR_M : VMALU_MV_Mask<"vmxor", 0b011011, "m">;
1575defm VMOR_M : VMALU_MV_Mask<"vmor", 0b011010, "m">;
1576defm VMNOR_M : VMALU_MV_Mask<"vmnor", 0b011110, "m">;
1577defm VMORN_M : VMALU_MV_Mask<"vmorn", 0b011100, "m">;
1578defm VMXNOR_M : VMALU_MV_Mask<"vmxnor", 0b011111, "m">;
1579}
1580
1581def : InstAlias<"vmmv.m $vd, $vs",
1582                (VMAND_MM VR:$vd, VR:$vs, VR:$vs)>;
1583def : InstAlias<"vmclr.m $vd",
1584                (VMXOR_MM VR:$vd, VR:$vd, VR:$vd)>;
1585def : InstAlias<"vmset.m $vd",
1586                (VMXNOR_MM VR:$vd, VR:$vd, VR:$vd)>;
1587def : InstAlias<"vmnot.m $vd, $vs",
1588                (VMNAND_MM VR:$vd, VR:$vs, VR:$vs)>;
1589
1590def : InstAlias<"vmandnot.mm $vd, $vs2, $vs1",
1591                (VMANDN_MM VR:$vd, VR:$vs2, VR:$vs1), 0>;
1592def : InstAlias<"vmornot.mm $vd, $vs2, $vs1",
1593                (VMORN_MM VR:$vd, VR:$vs2, VR:$vs1), 0>;
1594
1595let hasSideEffects = 0, mayLoad = 0, mayStore = 0,
1596    RVVConstraint = NoConstraint  in {
1597
1598// Vector mask population count vcpop
1599def VCPOP_M : RVInstV<0b010000, 0b10000, OPMVV, (outs GPR:$vd),
1600                      (ins VR:$vs2, VMaskOp:$vm),
1601                      "vcpop.m", "$vd, $vs2$vm">,
1602              SchedUnaryMC<"WriteVMPopV", "ReadVMPopV">;
1603
1604// vfirst find-first-set mask bit
1605def VFIRST_M : RVInstV<0b010000, 0b10001, OPMVV, (outs GPR:$vd),
1606                       (ins VR:$vs2, VMaskOp:$vm),
1607                       "vfirst.m", "$vd, $vs2$vm">,
1608              SchedUnaryMC<"WriteVMFFSV", "ReadVMFFSV">;
1609
1610} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1611
1612def : InstAlias<"vpopc.m $vd, $vs2$vm",
1613                (VCPOP_M GPR:$vd, VR:$vs2, VMaskOp:$vm), 0>;
1614
1615let Constraints = "@earlyclobber $vd", RVVConstraint = Iota in {
1616
1617// vmsbf.m set-before-first mask bit
1618defm VMSBF_M : VMSFS_MV_V<"vmsbf.m", 0b010100, 0b00001>;
1619// vmsif.m set-including-first mask bit
1620defm VMSIF_M : VMSFS_MV_V<"vmsif.m", 0b010100, 0b00011>;
1621// vmsof.m set-only-first mask bit
1622defm VMSOF_M : VMSFS_MV_V<"vmsof.m", 0b010100, 0b00010>;
1623// Vector Iota Instruction
1624defm VIOTA_M : VMIOT_MV_V<"viota.m", 0b010100, 0b10000>;
1625
1626} // Constraints = "@earlyclobber $vd", RVVConstraint = Iota
1627
1628// Vector Element Index Instruction
1629let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
1630
1631let vs2 = 0 in
1632def VID_V : RVInstV<0b010100, 0b10001, OPMVV, (outs VR:$vd),
1633                    (ins VMaskOp:$vm), "vid.v", "$vd$vm">,
1634            SchedNullaryMC<"WriteVMIdxV">;
1635
1636// Integer Scalar Move Instructions
1637let vm = 1, RVVConstraint = NoConstraint in {
1638def VMV_X_S : RVInstV<0b010000, 0b00000, OPMVV, (outs GPR:$vd),
1639                      (ins VR:$vs2), "vmv.x.s", "$vd, $vs2">,
1640              Sched<[WriteVIMovVX, ReadVIMovVX]>;
1641let Constraints = "$vd = $vd_wb" in
1642def VMV_S_X : RVInstV2<0b010000, 0b00000, OPMVX, (outs VR:$vd_wb),
1643                      (ins VR:$vd, GPR:$rs1), "vmv.s.x", "$vd, $rs1">,
1644              Sched<[WriteVIMovXV, ReadVIMovXV, ReadVIMovXX]>;
1645}
1646
1647} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1648
1649} // Predicates = [HasVInstructions]
1650
1651let Predicates = [HasVInstructionsAnyF] in {
1652
1653let hasSideEffects = 0, mayLoad = 0, mayStore = 0, vm = 1,
1654    RVVConstraint = NoConstraint  in {
1655// Floating-Point Scalar Move Instructions
1656def VFMV_F_S : RVInstV<0b010000, 0b00000, OPFVV, (outs FPR32:$vd),
1657                      (ins VR:$vs2), "vfmv.f.s", "$vd, $vs2">,
1658               Sched<[WriteVFMovVF, ReadVFMovVF]>;
1659let Constraints = "$vd = $vd_wb" in
1660def VFMV_S_F : RVInstV2<0b010000, 0b00000, OPFVF, (outs VR:$vd_wb),
1661                       (ins VR:$vd, FPR32:$rs1), "vfmv.s.f", "$vd, $rs1">,
1662               Sched<[WriteVFMovFV, ReadVFMovFV, ReadVFMovFX]>;
1663
1664} // hasSideEffects = 0, mayLoad = 0, mayStore = 0, vm = 1
1665
1666} // Predicates = [HasVInstructionsAnyF]
1667
1668let Predicates = [HasVInstructions] in {
1669// Vector Slide Instructions
1670let Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp in {
1671defm VSLIDEUP_V : VSLD_IV_X_I<"vslideup", 0b001110>;
1672defm VSLIDE1UP_V : VSLD1_MV_X<"vslide1up", 0b001110>;
1673} // Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp
1674defm VSLIDEDOWN_V : VSLD_IV_X_I<"vslidedown", 0b001111>;
1675defm VSLIDE1DOWN_V : VSLD1_MV_X<"vslide1down", 0b001111>;
1676} // Predicates = [HasVInstructions]
1677
1678let Predicates = [HasVInstructionsAnyF] in {
1679let Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp in {
1680defm VFSLIDE1UP_V : VSLD1_FV_F<"vfslide1up", 0b001110>;
1681} // Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp
1682defm VFSLIDE1DOWN_V : VSLD1_FV_F<"vfslide1down", 0b001111>;
1683} // Predicates = [HasVInstructionsAnyF]
1684
1685let Predicates = [HasVInstructions] in {
1686// Vector Register Gather Instruction
1687let Constraints = "@earlyclobber $vd", RVVConstraint = Vrgather in {
1688defm VRGATHER_V : VGTR_IV_V_X_I<"vrgather", 0b001100>;
1689def VRGATHEREI16_VV : VALUVV<0b001110, OPIVV, "vrgatherei16.vv">,
1690                      SchedBinaryMC<"WriteVRGatherVV", "ReadVRGatherVV_data",
1691                                    "ReadVRGatherVV_index">;
1692} // Constraints = "@earlyclobber $vd", RVVConstraint = Vrgather
1693
1694// Vector Compress Instruction
1695let Constraints = "@earlyclobber $vd", RVVConstraint = Vcompress in {
1696defm VCOMPRESS_V : VCPR_MV_Mask<"vcompress", 0b010111>;
1697} // Constraints = "@earlyclobber $vd", RVVConstraint = Vcompress
1698
1699let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isMoveReg = 1,
1700    RVVConstraint = NoConstraint in {
1701// A future extension may relax the vector register alignment restrictions.
1702foreach n = [1, 2, 4, 8] in {
1703  defvar vrc = !cast<VReg>(!if(!eq(n, 1), "VR", "VRM"#n));
1704  def VMV#n#R_V  : RVInstV<0b100111, !add(n, -1), OPIVI, (outs vrc:$vd),
1705                           (ins vrc:$vs2), "vmv" # n # "r.v", "$vd, $vs2">,
1706                   VMVRSched<n> {
1707    let Uses = [];
1708    let vm = 1;
1709  }
1710}
1711} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1712} // Predicates = [HasVInstructions]
1713
1714let Predicates = [HasVInstructions] in {
1715  foreach nf=2-8 in {
1716    foreach eew = [8, 16, 32] in {
1717      defvar w = !cast<RISCVWidth>("LSWidth"#eew);
1718
1719      def VLSEG#nf#E#eew#_V :
1720        VUnitStrideSegmentLoad<!add(nf, -1), w, "vlseg"#nf#"e"#eew#".v">,
1721        VLSEGSchedMC<nf, eew>;
1722      def VLSEG#nf#E#eew#FF_V :
1723        VUnitStrideSegmentLoadFF<!add(nf, -1), w, "vlseg"#nf#"e"#eew#"ff.v">,
1724        VLSEGFFSchedMC<nf, eew>;
1725      def VSSEG#nf#E#eew#_V :
1726        VUnitStrideSegmentStore<!add(nf, -1), w, "vsseg"#nf#"e"#eew#".v">,
1727        VSSEGSchedMC<nf, eew>;
1728      // Vector Strided Instructions
1729      def VLSSEG#nf#E#eew#_V :
1730        VStridedSegmentLoad<!add(nf, -1), w, "vlsseg"#nf#"e"#eew#".v">,
1731        VLSSEGSchedMC<nf, eew>;
1732      def VSSSEG#nf#E#eew#_V :
1733        VStridedSegmentStore<!add(nf, -1), w, "vssseg"#nf#"e"#eew#".v">,
1734        VSSSEGSchedMC<nf, eew>;
1735
1736      // Vector Indexed Instructions
1737      def VLUXSEG#nf#EI#eew#_V :
1738        VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedUnord, w,
1739                            "vluxseg"#nf#"ei"#eew#".v">,
1740        VLXSEGSchedMC<nf, eew, isOrdered=0>;
1741      def VLOXSEG#nf#EI#eew#_V :
1742        VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedOrder, w,
1743                            "vloxseg"#nf#"ei"#eew#".v">,
1744        VLXSEGSchedMC<nf, eew, isOrdered=1>;
1745      def VSUXSEG#nf#EI#eew#_V :
1746        VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedUnord, w,
1747                             "vsuxseg"#nf#"ei"#eew#".v">,
1748        VSXSEGSchedMC<nf, eew, isOrdered=0>;
1749      def VSOXSEG#nf#EI#eew#_V :
1750        VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedOrder, w,
1751                             "vsoxseg"#nf#"ei"#eew#".v">,
1752        VSXSEGSchedMC<nf, eew, isOrdered=1>;
1753    }
1754  }
1755} // Predicates = [HasVInstructions]
1756
1757let Predicates = [HasVInstructionsI64] in {
1758  foreach nf=2-8 in {
1759    // Vector Unit-strided Segment Instructions
1760    def VLSEG#nf#E64_V :
1761      VUnitStrideSegmentLoad<!add(nf, -1), LSWidth64, "vlseg"#nf#"e64.v">,
1762      VLSEGSchedMC<nf, 64>;
1763    def VLSEG#nf#E64FF_V :
1764      VUnitStrideSegmentLoadFF<!add(nf, -1), LSWidth64, "vlseg"#nf#"e64ff.v">,
1765      VLSEGFFSchedMC<nf, 64>;
1766    def VSSEG#nf#E64_V :
1767      VUnitStrideSegmentStore<!add(nf, -1), LSWidth64, "vsseg"#nf#"e64.v">,
1768      VSSEGSchedMC<nf, 64>;
1769
1770    // Vector Strided Segment Instructions
1771    def VLSSEG#nf#E64_V :
1772      VStridedSegmentLoad<!add(nf, -1), LSWidth64, "vlsseg"#nf#"e64.v">,
1773      VLSSEGSchedMC<nf, 64>;
1774    def VSSSEG#nf#E64_V :
1775      VStridedSegmentStore<!add(nf, -1), LSWidth64, "vssseg"#nf#"e64.v">,
1776      VSSSEGSchedMC<nf, 64>;
1777  }
1778} // Predicates = [HasVInstructionsI64]
1779let Predicates = [HasVInstructionsI64, IsRV64] in {
1780  foreach nf = 2 - 8 in {
1781    // Vector Indexed Segment Instructions
1782    def VLUXSEG #nf #EI64_V
1783        : VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedUnord, LSWidth64,
1784                              "vluxseg" #nf #"ei64.v">,
1785          VLXSEGSchedMC<nf, 64, isOrdered=0>;
1786    def VLOXSEG #nf #EI64_V
1787        : VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedOrder, LSWidth64,
1788                              "vloxseg" #nf #"ei64.v">,
1789          VLXSEGSchedMC<nf, 64, isOrdered=1>;
1790    def VSUXSEG #nf #EI64_V
1791        : VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedUnord, LSWidth64,
1792                               "vsuxseg" #nf #"ei64.v">,
1793          VSXSEGSchedMC<nf, 64, isOrdered=0>;
1794    def VSOXSEG #nf #EI64_V
1795        : VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedOrder, LSWidth64,
1796                               "vsoxseg" #nf #"ei64.v">,
1797          VSXSEGSchedMC<nf, 64, isOrdered=1>;
1798  }
1799} // Predicates = [HasVInstructionsI64, IsRV64]
1800
1801include "RISCVInstrInfoZvfbf.td"
1802include "RISCVInstrInfoVPseudos.td"
1803