xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoV.td (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1//===-- RISCVInstrInfoV.td - RISC-V 'V' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// This file describes the RISC-V instructions from the standard 'V' Vector
10/// extension, version 0.10.
11/// This version is still experimental as the 'V' extension hasn't been
12/// ratified yet.
13///
14//===----------------------------------------------------------------------===//
15
16include "RISCVInstrFormatsV.td"
17
18//===----------------------------------------------------------------------===//
19// Operand and SDNode transformation definitions.
20//===----------------------------------------------------------------------===//
21
22class VTypeIAsmOperand<int VTypeINum> : AsmOperandClass {
23  let Name = "VTypeI" # VTypeINum;
24  let ParserMethod = "parseVTypeI";
25  let DiagnosticType = "InvalidVTypeI";
26  let RenderMethod = "addVTypeIOperands";
27}
28
29class VTypeIOp<int VTypeINum> : Operand<XLenVT> {
30  let ParserMatchClass = VTypeIAsmOperand<VTypeINum>;
31  let PrintMethod = "printVTypeI";
32  let DecoderMethod = "decodeUImmOperand<"#VTypeINum#">";
33}
34
35def VTypeIOp10 : VTypeIOp<10>;
36def VTypeIOp11 : VTypeIOp<11>;
37
38def VMaskAsmOperand : AsmOperandClass {
39  let Name = "RVVMaskRegOpOperand";
40  let RenderMethod = "addRegOperands";
41  let PredicateMethod = "isV0Reg";
42  let ParserMethod = "parseMaskReg";
43  let IsOptional = 1;
44  let DefaultMethod = "defaultMaskRegOp";
45  let DiagnosticType = "InvalidVMaskRegister";
46}
47
48def VMaskOp : RegisterOperand<VMV0> {
49  let ParserMatchClass = VMaskAsmOperand;
50  let PrintMethod = "printVMaskReg";
51  let EncoderMethod = "getVMaskReg";
52  let DecoderMethod = "decodeVMaskReg";
53}
54
55def simm5 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<5>(Imm);}]> {
56  let ParserMatchClass = SImmAsmOperand<5>;
57  let EncoderMethod = "getImmOpValue";
58  let DecoderMethod = "decodeSImmOperand<5>";
59  let MCOperandPredicate = [{
60    int64_t Imm;
61    if (MCOp.evaluateAsConstantImm(Imm))
62      return isInt<5>(Imm);
63    return MCOp.isBareSymbolRef();
64  }];
65}
66
67def SImm5Plus1AsmOperand : AsmOperandClass {
68  let Name = "SImm5Plus1";
69  let RenderMethod = "addImmOperands";
70  let DiagnosticType = "InvalidSImm5Plus1";
71}
72
73def simm5_plus1 : Operand<XLenVT>, ImmLeaf<XLenVT,
74  [{return (isInt<5>(Imm) && Imm != -16) || Imm == 16;}]> {
75  let ParserMatchClass = SImm5Plus1AsmOperand;
76  let MCOperandPredicate = [{
77    int64_t Imm;
78    if (MCOp.evaluateAsConstantImm(Imm))
79      return (isInt<5>(Imm) && Imm != -16) || Imm == 16;
80    return MCOp.isBareSymbolRef();
81  }];
82}
83
84def simm5_plus1_nonzero : ImmLeaf<XLenVT,
85  [{return Imm != 0 && ((isInt<5>(Imm) && Imm != -16) || Imm == 16);}]>;
86
87//===----------------------------------------------------------------------===//
88// Scheduling definitions.
89//===----------------------------------------------------------------------===//
90
91class VMVRSched<int n>: Sched <[!cast<SchedReadWrite>("WriteVMov" # n # "V"),
92                                !cast<SchedReadWrite>("ReadVMov" # n # "V")]>;
93
94class VLESched<int n> : Sched <[!cast<SchedReadWrite>("WriteVLDE" # n),
95                                ReadVLDX, ReadVMask]>;
96
97class VSESched<int n> : Sched <[!cast<SchedReadWrite>("WriteVSTE" # n),
98                                !cast<SchedReadWrite>("ReadVSTE" # n # "V"),
99                                ReadVSTX, ReadVMask]>;
100
101class VLSSched<int n> : Sched <[!cast<SchedReadWrite>("WriteVLDS" # n),
102                                ReadVLDX, ReadVLDSX, ReadVMask]>;
103
104class VSSSched<int n> : Sched <[!cast<SchedReadWrite>("WriteVSTS" # n),
105                                !cast<SchedReadWrite>("ReadVSTS" # n # "V"),
106                                ReadVSTX, ReadVSTSX, ReadVMask]>;
107
108class VLXSched<int n, string o> :
109  Sched <[!cast<SchedReadWrite>("WriteVLD" # o # "X" # n),
110          ReadVLDX, !cast<SchedReadWrite>("ReadVLD" # o # "XV"), ReadVMask]>;
111
112class VSXSched<int n, string o> :
113  Sched <[!cast<SchedReadWrite>("WriteVST" # o # "X" # n),
114          !cast<SchedReadWrite>("ReadVST" # o # "X" # n),
115          ReadVSTX, !cast<SchedReadWrite>("ReadVST" # o # "XV"), ReadVMask]>;
116
117class VLFSched<int n> : Sched <[!cast<SchedReadWrite>("WriteVLDFF" # n),
118                                ReadVLDX, ReadVMask]>;
119
120//===----------------------------------------------------------------------===//
121// Instruction class templates
122//===----------------------------------------------------------------------===//
123
124let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
125// unit-stride load vd, (rs1), vm
126class VUnitStrideLoad<RISCVWidth width, string opcodestr>
127    : RVInstVLU<0b000, width.Value{3}, LUMOPUnitStride, width.Value{2-0},
128                (outs VR:$vd),
129                (ins GPR:$rs1, VMaskOp:$vm), opcodestr, "$vd, (${rs1})$vm">;
130
131let vm = 1, RVVConstraint = NoConstraint in {
132// unit-stride whole register load vl<nf>r.v vd, (rs1)
133class VWholeLoad<bits<3> nf, RISCVWidth width, string opcodestr, RegisterClass VRC>
134    : RVInstVLU<nf, width.Value{3}, LUMOPUnitStrideWholeReg,
135                width.Value{2-0}, (outs VRC:$vd), (ins GPR:$rs1),
136                opcodestr, "$vd, (${rs1})"> {
137  let Uses = [];
138}
139
140// unit-stride mask load vd, (rs1)
141class VUnitStrideLoadMask<string opcodestr>
142    : RVInstVLU<0b000, LSWidth8.Value{3}, LUMOPUnitStrideMask, LSWidth8.Value{2-0},
143                (outs VR:$vd),
144                (ins GPR:$rs1), opcodestr, "$vd, (${rs1})">;
145} // vm = 1, RVVConstraint = NoConstraint
146
147// unit-stride fault-only-first load vd, (rs1), vm
148class VUnitStrideLoadFF<RISCVWidth width, string opcodestr>
149    : RVInstVLU<0b000, width.Value{3}, LUMOPUnitStrideFF, width.Value{2-0},
150                (outs VR:$vd),
151                (ins GPR:$rs1, VMaskOp:$vm), opcodestr, "$vd, (${rs1})$vm">;
152
153// strided load vd, (rs1), rs2, vm
154class VStridedLoad<RISCVWidth width, string opcodestr>
155    : RVInstVLS<0b000, width.Value{3}, width.Value{2-0},
156                (outs VR:$vd),
157                (ins GPR:$rs1, GPR:$rs2, VMaskOp:$vm), opcodestr,
158                "$vd, (${rs1}), $rs2$vm">;
159
160// indexed load vd, (rs1), vs2, vm
161class VIndexedLoad<RISCVMOP mop, RISCVWidth width, string opcodestr>
162    : RVInstVLX<0b000, width.Value{3}, mop, width.Value{2-0},
163                (outs VR:$vd),
164                (ins GPR:$rs1, VR:$vs2, VMaskOp:$vm), opcodestr,
165                "$vd, (${rs1}), $vs2$vm">;
166
167// unit-stride segment load vd, (rs1), vm
168class VUnitStrideSegmentLoad<bits<3> nf, RISCVWidth width, string opcodestr>
169    : RVInstVLU<nf, width.Value{3}, LUMOPUnitStride, width.Value{2-0},
170                (outs VR:$vd),
171                (ins GPR:$rs1, VMaskOp:$vm), opcodestr, "$vd, (${rs1})$vm">;
172
173// segment fault-only-first load vd, (rs1), vm
174class VUnitStrideSegmentLoadFF<bits<3> nf, RISCVWidth width, string opcodestr>
175    : RVInstVLU<nf, width.Value{3}, LUMOPUnitStrideFF, width.Value{2-0},
176                (outs VR:$vd),
177                (ins GPR:$rs1, VMaskOp:$vm), opcodestr, "$vd, (${rs1})$vm">;
178
179// strided segment load vd, (rs1), rs2, vm
180class VStridedSegmentLoad<bits<3> nf, RISCVWidth width, string opcodestr>
181    : RVInstVLS<nf, width.Value{3}, width.Value{2-0},
182                (outs VR:$vd),
183                (ins GPR:$rs1, GPR:$rs2, VMaskOp:$vm), opcodestr,
184                "$vd, (${rs1}), $rs2$vm">;
185
186// indexed segment load vd, (rs1), vs2, vm
187class VIndexedSegmentLoad<bits<3> nf, RISCVMOP mop, RISCVWidth width,
188                          string opcodestr>
189    : RVInstVLX<nf, width.Value{3}, mop, width.Value{2-0},
190                (outs VR:$vd),
191                (ins GPR:$rs1, VR:$vs2, VMaskOp:$vm), opcodestr,
192                "$vd, (${rs1}), $vs2$vm">;
193} // hasSideEffects = 0, mayLoad = 1, mayStore = 0
194
195let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in {
196// unit-stride store vd, vs3, (rs1), vm
197class VUnitStrideStore<RISCVWidth width, string opcodestr>
198    : RVInstVSU<0b000, width.Value{3}, SUMOPUnitStride, width.Value{2-0},
199                (outs), (ins VR:$vs3, GPR:$rs1, VMaskOp:$vm), opcodestr,
200                "$vs3, (${rs1})$vm">;
201
202let vm = 1 in {
203// vs<nf>r.v vd, (rs1)
204class VWholeStore<bits<3> nf, string opcodestr, RegisterClass VRC>
205    : RVInstVSU<nf, 0, SUMOPUnitStrideWholeReg,
206                0b000, (outs), (ins VRC:$vs3, GPR:$rs1),
207                opcodestr, "$vs3, (${rs1})"> {
208  let Uses = [];
209}
210
211// unit-stride mask store vd, vs3, (rs1)
212class VUnitStrideStoreMask<string opcodestr>
213    : RVInstVSU<0b000, LSWidth8.Value{3}, SUMOPUnitStrideMask, LSWidth8.Value{2-0},
214                (outs), (ins VR:$vs3, GPR:$rs1), opcodestr,
215                "$vs3, (${rs1})">;
216} // vm = 1
217
218// strided store vd, vs3, (rs1), rs2, vm
219class VStridedStore<RISCVWidth width, string opcodestr>
220    : RVInstVSS<0b000, width.Value{3}, width.Value{2-0}, (outs),
221                (ins VR:$vs3, GPR:$rs1, GPR:$rs2, VMaskOp:$vm),
222                opcodestr, "$vs3, (${rs1}), $rs2$vm">;
223
224// indexed store vd, vs3, (rs1), vs2, vm
225class VIndexedStore<RISCVMOP mop, RISCVWidth width, string opcodestr>
226    : RVInstVSX<0b000, width.Value{3}, mop, width.Value{2-0}, (outs),
227                (ins VR:$vs3, GPR:$rs1, VR:$vs2, VMaskOp:$vm),
228                opcodestr, "$vs3, (${rs1}), $vs2$vm">;
229
230// segment store vd, vs3, (rs1), vm
231class VUnitStrideSegmentStore<bits<3> nf, RISCVWidth width, string opcodestr>
232    : RVInstVSU<nf, width.Value{3}, SUMOPUnitStride, width.Value{2-0},
233                (outs), (ins VR:$vs3, GPR:$rs1, VMaskOp:$vm), opcodestr,
234                "$vs3, (${rs1})$vm">;
235
236// segment store vd, vs3, (rs1), rs2, vm
237class VStridedSegmentStore<bits<3> nf, RISCVWidth width, string opcodestr>
238    : RVInstVSS<nf, width.Value{3}, width.Value{2-0}, (outs),
239                (ins VR:$vs3, GPR:$rs1, GPR:$rs2, VMaskOp:$vm),
240                opcodestr, "$vs3, (${rs1}), $rs2$vm">;
241
242// segment store vd, vs3, (rs1), vs2, vm
243class VIndexedSegmentStore<bits<3> nf, RISCVMOP mop, RISCVWidth width,
244                           string opcodestr>
245    : RVInstVSX<nf, width.Value{3}, mop, width.Value{2-0}, (outs),
246                (ins VR:$vs3, GPR:$rs1, VR:$vs2, VMaskOp:$vm),
247                opcodestr, "$vs3, (${rs1}), $vs2$vm">;
248} // hasSideEffects = 0, mayLoad = 0, mayStore = 1
249
250let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
251// op vd, vs2, vs1, vm
252class VALUVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
253    : RVInstVV<funct6, opv, (outs VR:$vd),
254                (ins VR:$vs2, VR:$vs1, VMaskOp:$vm),
255                opcodestr, "$vd, $vs2, $vs1$vm">;
256
257// op vd, vs2, vs1, v0 (without mask, use v0 as carry input)
258class VALUmVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
259    : RVInstVV<funct6, opv, (outs VR:$vd),
260                (ins VR:$vs2, VR:$vs1, VMV0:$v0),
261                opcodestr, "$vd, $vs2, $vs1, v0"> {
262  let vm = 0;
263}
264
265// op vd, vs1, vs2, vm (reverse the order of vs1 and vs2)
266class VALUrVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
267    : RVInstVV<funct6, opv, (outs VR:$vd),
268                (ins VR:$vs1, VR:$vs2, VMaskOp:$vm),
269                opcodestr, "$vd, $vs1, $vs2$vm">;
270
271// op vd, vs2, vs1
272class VALUVVNoVm<bits<6> funct6, RISCVVFormat opv, string opcodestr>
273    : RVInstVV<funct6, opv, (outs VR:$vd),
274               (ins VR:$vs2, VR:$vs1),
275               opcodestr, "$vd, $vs2, $vs1"> {
276  let vm = 1;
277}
278
279// op vd, vs2, rs1, vm
280class VALUVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
281    : RVInstVX<funct6, opv, (outs VR:$vd),
282                (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
283                opcodestr, "$vd, $vs2, $rs1$vm">;
284
285// op vd, vs2, rs1, v0 (without mask, use v0 as carry input)
286class VALUmVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
287    : RVInstVX<funct6, opv, (outs VR:$vd),
288                (ins VR:$vs2, GPR:$rs1, VMV0:$v0),
289                opcodestr, "$vd, $vs2, $rs1, v0"> {
290  let vm = 0;
291}
292
293// op vd, rs1, vs2, vm (reverse the order of rs1 and vs2)
294class VALUrVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
295    : RVInstVX<funct6, opv, (outs VR:$vd),
296                (ins GPR:$rs1, VR:$vs2, VMaskOp:$vm),
297                opcodestr, "$vd, $rs1, $vs2$vm">;
298
299// op vd, vs1, vs2
300class VALUVXNoVm<bits<6> funct6, RISCVVFormat opv, string opcodestr>
301    : RVInstVX<funct6, opv, (outs VR:$vd),
302               (ins VR:$vs2, GPR:$rs1),
303               opcodestr, "$vd, $vs2, $rs1"> {
304  let vm = 1;
305}
306
307// op vd, vs2, imm, vm
308class VALUVI<bits<6> funct6, string opcodestr, Operand optype = simm5>
309    : RVInstIVI<funct6, (outs VR:$vd),
310                (ins VR:$vs2, optype:$imm, VMaskOp:$vm),
311                opcodestr, "$vd, $vs2, $imm$vm">;
312
313// op vd, vs2, imm, v0 (without mask, use v0 as carry input)
314class VALUmVI<bits<6> funct6, string opcodestr, Operand optype = simm5>
315    : RVInstIVI<funct6, (outs VR:$vd),
316                (ins VR:$vs2, optype:$imm, VMV0:$v0),
317                opcodestr, "$vd, $vs2, $imm, v0"> {
318  let vm = 0;
319}
320
321// op vd, vs2, imm, vm
322class VALUVINoVm<bits<6> funct6, string opcodestr, Operand optype = simm5>
323    : RVInstIVI<funct6, (outs VR:$vd),
324                (ins VR:$vs2, optype:$imm),
325                opcodestr, "$vd, $vs2, $imm"> {
326  let vm = 1;
327}
328
329// op vd, vs2, rs1, vm (Float)
330class VALUVF<bits<6> funct6, RISCVVFormat opv, string opcodestr>
331    : RVInstVX<funct6, opv, (outs VR:$vd),
332                (ins VR:$vs2, FPR32:$rs1, VMaskOp:$vm),
333                opcodestr, "$vd, $vs2, $rs1$vm">;
334
335// op vd, rs1, vs2, vm (Float) (with mask, reverse the order of rs1 and vs2)
336class VALUrVF<bits<6> funct6, RISCVVFormat opv, string opcodestr>
337    : RVInstVX<funct6, opv, (outs VR:$vd),
338                (ins FPR32:$rs1, VR:$vs2, VMaskOp:$vm),
339                opcodestr, "$vd, $rs1, $vs2$vm">;
340
341// op vd, vs2, vm (use vs1 as instruction encoding)
342class VALUVs2<bits<6> funct6, bits<5> vs1, RISCVVFormat opv, string opcodestr>
343    : RVInstV<funct6, vs1, opv, (outs VR:$vd),
344               (ins VR:$vs2, VMaskOp:$vm),
345               opcodestr, "$vd, $vs2$vm">;
346} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
347
348//===----------------------------------------------------------------------===//
349// Combination of instruction classes.
350// Use these multiclasses to define instructions more easily.
351//===----------------------------------------------------------------------===//
352
353multiclass VIndexLoadStore<list<int> EEWList> {
354  foreach n = EEWList in {
355    defvar w = !cast<RISCVWidth>("LSWidth" # n);
356
357    def VLUXEI # n # _V :
358      VIndexedLoad<MOPLDIndexedUnord, w, "vluxei" # n # ".v">,
359      VLXSched<n, "U">;
360    def VLOXEI # n # _V :
361      VIndexedLoad<MOPLDIndexedOrder, w, "vloxei" # n # ".v">,
362      VLXSched<n, "O">;
363
364    def VSUXEI # n # _V :
365      VIndexedStore<MOPSTIndexedUnord, w, "vsuxei" # n # ".v">,
366      VSXSched<n, "U">;
367    def VSOXEI # n # _V :
368      VIndexedStore<MOPSTIndexedOrder, w, "vsoxei" # n # ".v">,
369      VSXSched<n, "O">;
370  }
371}
372
373multiclass VALU_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
374  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
375           Sched<[WriteVIALUV, ReadVIALUV, ReadVIALUV, ReadVMask]>;
376  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
377           Sched<[WriteVIALUX, ReadVIALUV, ReadVIALUX, ReadVMask]>;
378  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
379           Sched<[WriteVIALUI, ReadVIALUV, ReadVMask]>;
380}
381
382multiclass VALU_IV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
383  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
384           Sched<[WriteVIALUV, ReadVIALUV, ReadVIALUV, ReadVMask]>;
385  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
386           Sched<[WriteVIALUX, ReadVIALUV, ReadVIALUX, ReadVMask]>;
387}
388
389multiclass VALU_IV_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
390  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
391           Sched<[WriteVIALUV, ReadVIALUV, ReadVIALUX, ReadVMask]>;
392  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
393           Sched<[WriteVIALUI, ReadVIALUV, ReadVMask]>;
394}
395
396multiclass VALU_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
397  def V  : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
398           Sched<[WriteVIWALUV, ReadVIWALUV, ReadVIWALUV, ReadVMask]>;
399  def X  : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
400           Sched<[WriteVIWALUX, ReadVIWALUV, ReadVIWALUX, ReadVMask]>;
401}
402
403multiclass VMAC_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
404  def V : VALUrVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
405          Sched<[WriteVIMulAddV, ReadVIMulAddV, ReadVIMulAddV, ReadVMask]>;
406  def X : VALUrVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
407          Sched<[WriteVIMulAddX, ReadVIMulAddV, ReadVIMulAddX, ReadVMask]>;
408}
409
410multiclass VWMAC_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
411  def V : VALUrVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
412          Sched<[WriteVIWMulAddV, ReadVIWMulAddV, ReadVIWMulAddV, ReadVMask]>;
413  def X : VALUrVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
414          Sched<[WriteVIWMulAddX, ReadVIWMulAddV, ReadVIWMulAddX, ReadVMask]>;
415}
416
417multiclass VWMAC_MV_X<string opcodestr, bits<6> funct6, string vw = "v"> {
418  def X : VALUrVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
419          Sched<[WriteVIWMulAddX, ReadVIWMulAddV, ReadVIWMulAddX, ReadVMask]>;
420}
421
422multiclass VALU_MV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
423  def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>,
424           Sched<[WriteVExtV, ReadVExtV, ReadVMask]>;
425}
426
427multiclass VALUm_IV_V_X_I<string opcodestr, bits<6> funct6> {
428  def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">,
429           Sched<[WriteVICALUV, ReadVIALUCV, ReadVIALUCV, ReadVMask]>;
430  def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">,
431           Sched<[WriteVICALUX, ReadVIALUCV, ReadVIALUCX, ReadVMask]>;
432  def IM : VALUmVI<funct6, opcodestr # ".vim">,
433           Sched<[WriteVICALUI, ReadVIALUCV, ReadVMask]>;
434}
435
436multiclass VMRG_IV_V_X_I<string opcodestr, bits<6> funct6> {
437  def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">,
438           Sched<[WriteVIMergeV, ReadVIMergeV, ReadVIMergeV, ReadVMask]>;
439  def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">,
440           Sched<[WriteVIMergeX, ReadVIMergeV, ReadVIMergeX, ReadVMask]>;
441  def IM : VALUmVI<funct6, opcodestr # ".vim">,
442           Sched<[WriteVIMergeI, ReadVIMergeV, ReadVMask]>;
443}
444
445multiclass VALUm_IV_V_X<string opcodestr, bits<6> funct6> {
446  def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">,
447           Sched<[WriteVICALUV, ReadVIALUCV, ReadVIALUCV, ReadVMask]>;
448  def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">,
449           Sched<[WriteVICALUX, ReadVIALUCV, ReadVIALUCX, ReadVMask]>;
450}
451
452multiclass VALUNoVm_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5> {
453  def V : VALUVVNoVm<funct6, OPIVV, opcodestr # ".vv">,
454          Sched<[WriteVICALUV, ReadVIALUCV, ReadVIALUCV]>;
455  def X : VALUVXNoVm<funct6, OPIVX, opcodestr # ".vx">,
456          Sched<[WriteVICALUX, ReadVIALUCV, ReadVIALUCX]>;
457  def I : VALUVINoVm<funct6, opcodestr # ".vi", optype>,
458          Sched<[WriteVICALUI, ReadVIALUCV]>;
459}
460
461multiclass VALUNoVm_IV_V_X<string opcodestr, bits<6> funct6> {
462  def V : VALUVVNoVm<funct6, OPIVV, opcodestr # ".vv">,
463          Sched<[WriteVICALUV, ReadVIALUCV, ReadVIALUCV]>;
464  def X : VALUVXNoVm<funct6, OPIVX, opcodestr # ".vx">,
465          Sched<[WriteVICALUX, ReadVIALUCV, ReadVIALUCX]>;
466}
467
468multiclass VALU_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
469  def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
470          Sched<[WriteVFALUV, ReadVFALUV, ReadVFALUV, ReadVMask]>;
471  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
472          Sched<[WriteVFALUF, ReadVFALUV, ReadVFALUF, ReadVMask]>;
473}
474
475multiclass VALU_FV_F<string opcodestr, bits<6> funct6, string vw = "v"> {
476  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
477          Sched<[WriteVFALUF, ReadVFALUV, ReadVFALUF, ReadVMask]>;
478}
479
480multiclass VWALU_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
481  def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
482          Sched<[WriteVFWALUV, ReadVFWALUV, ReadVFWALUV, ReadVMask]>;
483  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
484          Sched<[WriteVFWALUF, ReadVFWALUV, ReadVFWALUF, ReadVMask]>;
485}
486
487multiclass VMUL_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
488  def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
489          Sched<[WriteVFMulV, ReadVFMulV, ReadVFMulV, ReadVMask]>;
490  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
491          Sched<[WriteVFMulF, ReadVFMulV, ReadVFMulF, ReadVMask]>;
492}
493
494multiclass VDIV_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
495  def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
496          Sched<[WriteVFDivV, ReadVFDivV, ReadVFDivV, ReadVMask]>;
497  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
498          Sched<[WriteVFDivF, ReadVFDivV, ReadVFDivF, ReadVMask]>;
499}
500
501multiclass VRDIV_FV_F<string opcodestr, bits<6> funct6, string vw = "v"> {
502  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
503          Sched<[WriteVFDivF, ReadVFDivV, ReadVFDivF, ReadVMask]>;
504}
505
506multiclass VWMUL_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
507  def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
508          Sched<[WriteVFWMulV, ReadVFWMulV, ReadVFWMulV, ReadVMask]>;
509  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
510          Sched<[WriteVFWMulF, ReadVFWMulV, ReadVFWMulF, ReadVMask]>;
511}
512
513multiclass VMAC_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
514  def V : VALUrVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
515          Sched<[WriteVFMulAddV, ReadVFMulAddV, ReadVFMulAddV, ReadVMask]>;
516  def F : VALUrVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
517          Sched<[WriteVFMulAddF, ReadVFMulAddV, ReadVFMulAddF, ReadVMask]>;
518}
519
520multiclass VWMAC_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
521  def V : VALUrVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
522          Sched<[WriteVFWMulAddV, ReadVFWMulAddV, ReadVFWMulAddV, ReadVMask]>;
523  def F : VALUrVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
524          Sched<[WriteVFWMulAddF, ReadVFWMulAddV, ReadVFWMulAddF, ReadVMask]>;
525}
526
527multiclass VSQR_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
528  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
529           Sched<[WriteVFSqrtV, ReadVFSqrtV, ReadVMask]>;
530}
531
532multiclass VRCP_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
533  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
534           Sched<[WriteVFRecpV, ReadVFRecpV, ReadVMask]>;
535}
536
537multiclass VCMP_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
538  def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
539          Sched<[WriteVFCmpV, ReadVFCmpV, ReadVFCmpV, ReadVMask]>;
540  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
541          Sched<[WriteVFCmpF, ReadVFCmpV, ReadVFCmpF, ReadVMask]>;
542}
543
544multiclass VCMP_FV_F<string opcodestr, bits<6> funct6, string vw = "v"> {
545  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
546          Sched<[WriteVFCmpF, ReadVFCmpV, ReadVFCmpF, ReadVMask]>;
547}
548
549multiclass VSGNJ_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
550  def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
551          Sched<[WriteVFSgnjV, ReadVFSgnjV, ReadVFSgnjV, ReadVMask]>;
552  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
553          Sched<[WriteVFSgnjF, ReadVFSgnjV, ReadVFSgnjF, ReadVMask]>;
554}
555
556multiclass VCLS_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
557  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
558           Sched<[WriteVFClassV, ReadVFClassV, ReadVMask]>;
559}
560
561multiclass VCVTF_IV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
562  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
563           Sched<[WriteVFCvtIToFV, ReadVFCvtIToFV, ReadVMask]>;
564}
565
566multiclass VCVTI_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
567  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
568           Sched<[WriteVFCvtFToIV, ReadVFCvtFToIV, ReadVMask]>;
569}
570
571multiclass VWCVTF_IV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
572  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
573           Sched<[WriteVFWCvtIToFV, ReadVFWCvtIToFV, ReadVMask]>;
574}
575
576multiclass VWCVTI_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
577  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
578           Sched<[WriteVFWCvtFToIV, ReadVFWCvtFToIV, ReadVMask]>;
579}
580
581multiclass VWCVTF_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
582  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
583           Sched<[WriteVFWCvtFToFV, ReadVFWCvtFToFV, ReadVMask]>;
584}
585
586multiclass VNCVTF_IV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
587  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
588           Sched<[WriteVFNCvtIToFV, ReadVFNCvtIToFV, ReadVMask]>;
589}
590
591multiclass VNCVTI_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
592  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
593           Sched<[WriteVFNCvtFToIV, ReadVFNCvtFToIV, ReadVMask]>;
594}
595
596multiclass VNCVTF_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
597  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
598           Sched<[WriteVFNCvtFToFV, ReadVFNCvtFToFV, ReadVMask]>;
599}
600
601multiclass VRED_MV_V<string opcodestr, bits<6> funct6> {
602  def _VS : VALUVV<funct6, OPMVV, opcodestr # ".vs">,
603            Sched<[WriteVIRedV, ReadVIRedV, ReadVIRedV0, ReadVMask]>;
604}
605
606multiclass VWRED_IV_V<string opcodestr, bits<6> funct6> {
607  def _VS : VALUVV<funct6, OPIVV, opcodestr # ".vs">,
608            Sched<[WriteVIWRedV, ReadVIWRedV, ReadVIWRedV0, ReadVMask]>;
609}
610
611multiclass VRED_FV_V<string opcodestr, bits<6> funct6> {
612  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
613            Sched<[WriteVFRedV, ReadVFRedV, ReadVFRedV0, ReadVMask]>;
614}
615
616multiclass VREDO_FV_V<string opcodestr, bits<6> funct6> {
617  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
618            Sched<[WriteVFRedOV, ReadVFRedOV, ReadVFRedOV0, ReadVMask]>;
619}
620
621multiclass VWRED_FV_V<string opcodestr, bits<6> funct6> {
622  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
623            Sched<[WriteVFWRedV, ReadVFWRedV, ReadVFWRedV0, ReadVMask]>;
624}
625
626multiclass VWREDO_FV_V<string opcodestr, bits<6> funct6> {
627  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
628            Sched<[WriteVFWRedOV, ReadVFWRedOV, ReadVFWRedOV0, ReadVMask]>;
629}
630
631multiclass VMALU_MV_Mask<string opcodestr, bits<6> funct6, string vm = "v"> {
632  def M : VALUVVNoVm<funct6, OPMVV, opcodestr # "." # vm # "m">,
633          Sched<[WriteVMALUV, ReadVMALUV, ReadVMALUV]>;
634}
635
636multiclass VMSFS_MV_V<string opcodestr, bits<6> funct6, bits<5> vs1> {
637  def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>,
638           Sched<[WriteVMSFSV, ReadVMSFSV, ReadVMask]>;
639}
640
641multiclass VMIOT_MV_V<string opcodestr, bits<6> funct6, bits<5> vs1> {
642  def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>,
643           Sched<[WriteVMIotV, ReadVMIotV, ReadVMask]>;
644}
645
646multiclass VSHT_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
647  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
648           Sched<[WriteVShiftV, ReadVShiftV, ReadVShiftV, ReadVMask]>;
649  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
650           Sched<[WriteVShiftX, ReadVShiftV, ReadVShiftX, ReadVMask]>;
651  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
652           Sched<[WriteVShiftI, ReadVShiftV, ReadVMask]>;
653}
654
655multiclass VNSHT_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
656  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
657           Sched<[WriteVNShiftV, ReadVNShiftV, ReadVNShiftV, ReadVMask]>;
658  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
659           Sched<[WriteVNShiftX, ReadVNShiftV, ReadVNShiftX, ReadVMask]>;
660  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
661           Sched<[WriteVNShiftI, ReadVNShiftV, ReadVMask]>;
662}
663
664multiclass VCMP_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
665  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
666           Sched<[WriteVICmpV, ReadVICmpV, ReadVICmpV, ReadVMask]>;
667  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
668           Sched<[WriteVICmpX, ReadVICmpV, ReadVICmpX, ReadVMask]>;
669  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
670           Sched<[WriteVICmpI, ReadVICmpV, ReadVMask]>;
671}
672
673multiclass VCMP_IV_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
674  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
675           Sched<[WriteVICmpV, ReadVICmpV, ReadVICmpX, ReadVMask]>;
676  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
677           Sched<[WriteVICmpI, ReadVICmpV, ReadVMask]>;
678}
679
680multiclass VCMP_IV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
681  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
682           Sched<[WriteVICmpV, ReadVICmpV, ReadVICmpV, ReadVMask]>;
683  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
684           Sched<[WriteVICmpX, ReadVICmpV, ReadVICmpX, ReadVMask]>;
685}
686
687multiclass VMUL_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
688  def V  : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
689           Sched<[WriteVIMulV, ReadVIMulV, ReadVIMulV, ReadVMask]>;
690  def X  : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
691           Sched<[WriteVIMulX, ReadVIMulV, ReadVIMulX, ReadVMask]>;
692}
693
694multiclass VWMUL_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
695  def V  : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
696           Sched<[WriteVIWMulV, ReadVIWMulV, ReadVIWMulV, ReadVMask]>;
697  def X  : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
698           Sched<[WriteVIWMulX, ReadVIWMulV, ReadVIWMulX, ReadVMask]>;
699}
700
701multiclass VDIV_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
702  def V  : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
703           Sched<[WriteVIDivV, ReadVIDivV, ReadVIDivV, ReadVMask]>;
704  def X  : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
705           Sched<[WriteVIDivX, ReadVIDivV, ReadVIDivX, ReadVMask]>;
706}
707
708multiclass VSALU_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
709  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
710           Sched<[WriteVSALUV, ReadVSALUV, ReadVSALUV, ReadVMask]>;
711  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
712           Sched<[WriteVSALUX, ReadVSALUV, ReadVSALUX, ReadVMask]>;
713  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
714           Sched<[WriteVSALUI, ReadVSALUV, ReadVMask]>;
715}
716
717multiclass VSALU_IV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
718  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
719           Sched<[WriteVSALUV, ReadVSALUV, ReadVSALUV, ReadVMask]>;
720  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
721           Sched<[WriteVSALUX, ReadVSALUV, ReadVSALUX, ReadVMask]>;
722}
723
724multiclass VAALU_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
725  def V  : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
726           Sched<[WriteVAALUV, ReadVAALUV, ReadVAALUV, ReadVMask]>;
727  def X  : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
728           Sched<[WriteVAALUX, ReadVAALUV, ReadVAALUX, ReadVMask]>;
729}
730
731multiclass VSMUL_IV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
732  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
733           Sched<[WriteVSMulV, ReadVSMulV, ReadVSMulV, ReadVMask]>;
734  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
735           Sched<[WriteVSMulX, ReadVSMulV, ReadVSMulX, ReadVMask]>;
736}
737
738multiclass VSSHF_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
739  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
740           Sched<[WriteVSShiftV, ReadVSShiftV, ReadVSShiftV, ReadVMask]>;
741  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
742           Sched<[WriteVSShiftX, ReadVSShiftV, ReadVSShiftX, ReadVMask]>;
743  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
744           Sched<[WriteVSShiftI, ReadVSShiftV, ReadVMask]>;
745}
746
747multiclass VNCLP_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
748  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
749           Sched<[WriteVNClipV, ReadVNClipV, ReadVNClipV, ReadVMask]>;
750  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
751           Sched<[WriteVNClipX, ReadVNClipV, ReadVNClipX, ReadVMask]>;
752  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
753           Sched<[WriteVNClipI, ReadVNClipV, ReadVMask]>;
754}
755
756multiclass VSLD_IV_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
757  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
758           Sched<[WriteVISlideX, ReadVISlideV, ReadVISlideX, ReadVMask]>;
759  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
760           Sched<[WriteVISlideI, ReadVISlideV, ReadVMask]>;
761}
762
763multiclass VSLD1_MV_X<string opcodestr, bits<6> funct6, string vw = "v"> {
764  def X  : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
765           Sched<[WriteVISlide1X, ReadVISlideV, ReadVISlideX, ReadVMask]>;
766}
767
768multiclass VSLD1_FV_F<string opcodestr, bits<6> funct6, string vw = "v"> {
769  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
770          Sched<[WriteVFSlide1F, ReadVFSlideV, ReadVFSlideF, ReadVMask]>;
771}
772
773multiclass VGTR_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
774  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">,
775           Sched<[WriteVGatherV, ReadVGatherV, ReadVGatherV, ReadVMask]>;
776  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">,
777           Sched<[WriteVGatherX, ReadVGatherV, ReadVGatherX, ReadVMask]>;
778  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>,
779           Sched<[WriteVGatherI, ReadVGatherV, ReadVMask]>;
780}
781
782multiclass VCPR_MV_Mask<string opcodestr, bits<6> funct6, string vm = "v"> {
783  def M  : VALUVVNoVm<funct6, OPMVV, opcodestr # "." # vm # "m">,
784           Sched<[WriteVCompressV, ReadVCompressV, ReadVCompressV]>;
785}
786
787multiclass VWholeLoadN<bits<3> nf, string opcodestr, RegisterClass VRC> {
788  foreach l = [8, 16, 32] in {
789    defvar w = !cast<RISCVWidth>("LSWidth" # l);
790    defvar s = !cast<SchedWrite>("WriteVLD" # !add(nf, 1) # "R" # l);
791
792    def E # l # _V : VWholeLoad<nf, w, opcodestr # "e" # l # ".v", VRC>,
793                     Sched<[s, ReadVLDX]>;
794  }
795}
796multiclass VWholeLoadEEW64<bits<3> nf, string opcodestr, RegisterClass VRC, SchedReadWrite schedrw> {
797  def E64_V : VWholeLoad<nf, LSWidth64, opcodestr # "e64.v", VRC>,
798              Sched<[schedrw, ReadVLDX]>;
799}
800
801//===----------------------------------------------------------------------===//
802// Instructions
803//===----------------------------------------------------------------------===//
804
805let Predicates = [HasVInstructions] in {
806let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
807def VSETVLI : RVInstSetVLi<(outs GPR:$rd), (ins GPR:$rs1, VTypeIOp11:$vtypei),
808                           "vsetvli", "$rd, $rs1, $vtypei">;
809
810def VSETIVLI : RVInstSetiVLi<(outs GPR:$rd), (ins uimm5:$uimm, VTypeIOp10:$vtypei),
811                             "vsetivli", "$rd, $uimm, $vtypei">;
812
813def VSETVL : RVInstSetVL<(outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
814                         "vsetvl", "$rd, $rs1, $rs2">;
815} // hasSideEffects = 1, mayLoad = 0, mayStore = 0
816foreach eew = [8, 16, 32] in {
817  defvar w = !cast<RISCVWidth>("LSWidth" # eew);
818
819  // Vector Unit-Stride Instructions
820  def VLE#eew#_V : VUnitStrideLoad<w, "vle"#eew#".v">, VLESched<eew>;
821  def VSE#eew#_V  : VUnitStrideStore<w,  "vse"#eew#".v">, VSESched<eew>;
822
823  // Vector Unit-Stride Fault-only-First Loads
824  def VLE#eew#FF_V : VUnitStrideLoadFF<w,  "vle"#eew#"ff.v">, VLFSched<eew>;
825
826  // Vector Strided Instructions
827  def VLSE#eew#_V  : VStridedLoad<w,  "vlse"#eew#".v">, VLSSched<eew>;
828  def VSSE#eew#_V  : VStridedStore<w,  "vsse"#eew#".v">, VSSSched<eew>;
829}
830
831defm "" : VIndexLoadStore<[8, 16, 32]>;
832} // Predicates = [HasVInstructions]
833
834let Predicates = [HasVInstructions] in {
835def VLM_V : VUnitStrideLoadMask<"vlm.v">,
836             Sched<[WriteVLDM, ReadVLDX]>;
837def VSM_V : VUnitStrideStoreMask<"vsm.v">,
838             Sched<[WriteVSTM, ReadVSTM, ReadVSTX]>;
839def : InstAlias<"vle1.v $vd, (${rs1})",
840                (VLM_V VR:$vd, GPR:$rs1), 0>;
841def : InstAlias<"vse1.v $vs3, (${rs1})",
842                (VSM_V VR:$vs3, GPR:$rs1), 0>;
843
844defm VL1R : VWholeLoadN<0, "vl1r", VR>;
845defm VL2R : VWholeLoadN<1, "vl2r", VRM2>;
846defm VL4R : VWholeLoadN<3, "vl4r", VRM4>;
847defm VL8R : VWholeLoadN<7, "vl8r", VRM8>;
848
849def VS1R_V : VWholeStore<0, "vs1r.v", VR>,
850             Sched<[WriteVST1R, ReadVST1R, ReadVSTX]>;
851def VS2R_V : VWholeStore<1, "vs2r.v", VRM2>,
852             Sched<[WriteVST2R, ReadVST2R, ReadVSTX]>;
853def VS4R_V : VWholeStore<3, "vs4r.v", VRM4>,
854             Sched<[WriteVST4R, ReadVST4R, ReadVSTX]>;
855def VS8R_V : VWholeStore<7, "vs8r.v", VRM8>,
856             Sched<[WriteVST8R, ReadVST8R, ReadVSTX]>;
857
858def : InstAlias<"vl1r.v $vd, (${rs1})", (VL1RE8_V VR:$vd, GPR:$rs1)>;
859def : InstAlias<"vl2r.v $vd, (${rs1})", (VL2RE8_V VRM2:$vd, GPR:$rs1)>;
860def : InstAlias<"vl4r.v $vd, (${rs1})", (VL4RE8_V VRM4:$vd, GPR:$rs1)>;
861def : InstAlias<"vl8r.v $vd, (${rs1})", (VL8RE8_V VRM8:$vd, GPR:$rs1)>;
862} // Predicates = [HasVInstructions]
863
864let Predicates = [HasVInstructionsI64] in {
865// Vector Unit-Stride Instructions
866def VLE64_V : VUnitStrideLoad<LSWidth64, "vle64.v">,
867              VLESched<64>;
868
869def VLE64FF_V : VUnitStrideLoadFF<LSWidth64, "vle64ff.v">,
870                VLFSched<64>;
871
872def VSE64_V : VUnitStrideStore<LSWidth64, "vse64.v">,
873              VSESched<64>;
874// Vector Strided Instructions
875def VLSE64_V : VStridedLoad<LSWidth64, "vlse64.v">,
876               VLSSched<32>;
877
878def VSSE64_V : VStridedStore<LSWidth64, "vsse64.v">,
879               VSSSched<64>;
880
881defm VL1R: VWholeLoadEEW64<0, "vl1r", VR, WriteVLD1R64>;
882defm VL2R: VWholeLoadEEW64<1, "vl2r", VRM2, WriteVLD2R64>;
883defm VL4R: VWholeLoadEEW64<3, "vl4r", VRM4, WriteVLD4R64>;
884defm VL8R: VWholeLoadEEW64<7, "vl8r", VRM8, WriteVLD8R64>;
885} // Predicates = [HasVInstructionsI64]
886let Predicates = [IsRV64, HasVInstructionsI64] in {
887  // Vector Indexed Instructions
888  defm "" : VIndexLoadStore<[64]>;
889} // [IsRV64, HasVInstructionsI64]
890
891let Predicates = [HasVInstructions] in {
892// Vector Single-Width Integer Add and Subtract
893defm VADD_V : VALU_IV_V_X_I<"vadd", 0b000000>;
894defm VSUB_V : VALU_IV_V_X<"vsub", 0b000010>;
895defm VRSUB_V : VALU_IV_X_I<"vrsub", 0b000011>;
896
897def : InstAlias<"vneg.v $vd, $vs$vm", (VRSUB_VX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
898
899// Vector Widening Integer Add/Subtract
900// Refer to 11.2 Widening Vector Arithmetic Instructions
901// The destination vector register group cannot overlap a source vector
902// register group of a different element width (including the mask register
903// if masked), otherwise an illegal instruction exception is raised.
904let Constraints = "@earlyclobber $vd" in {
905let RVVConstraint = WidenV in {
906defm VWADDU_V : VALU_MV_V_X<"vwaddu", 0b110000>;
907defm VWSUBU_V : VALU_MV_V_X<"vwsubu", 0b110010>;
908defm VWADD_V : VALU_MV_V_X<"vwadd", 0b110001>;
909defm VWSUB_V : VALU_MV_V_X<"vwsub", 0b110011>;
910} // RVVConstraint = WidenV
911// Set earlyclobber for following instructions for second and mask operands.
912// This has the downside that the earlyclobber constraint is too coarse and
913// will impose unnecessary restrictions by not allowing the destination to
914// overlap with the first (wide) operand.
915let RVVConstraint = WidenW in {
916defm VWADDU_W : VALU_MV_V_X<"vwaddu", 0b110100, "w">;
917defm VWSUBU_W : VALU_MV_V_X<"vwsubu", 0b110110, "w">;
918defm VWADD_W : VALU_MV_V_X<"vwadd", 0b110101, "w">;
919defm VWSUB_W : VALU_MV_V_X<"vwsub", 0b110111, "w">;
920} // RVVConstraint = WidenW
921} // Constraints = "@earlyclobber $vd"
922
923def : InstAlias<"vwcvt.x.x.v $vd, $vs$vm",
924                (VWADD_VX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
925def : InstAlias<"vwcvtu.x.x.v $vd, $vs$vm",
926                (VWADDU_VX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
927
928// Vector Integer Extension
929defm VZEXT_VF8 : VALU_MV_VS2<"vzext.vf8", 0b010010, 0b00010>;
930defm VSEXT_VF8 : VALU_MV_VS2<"vsext.vf8", 0b010010, 0b00011>;
931defm VZEXT_VF4 : VALU_MV_VS2<"vzext.vf4", 0b010010, 0b00100>;
932defm VSEXT_VF4 : VALU_MV_VS2<"vsext.vf4", 0b010010, 0b00101>;
933defm VZEXT_VF2 : VALU_MV_VS2<"vzext.vf2", 0b010010, 0b00110>;
934defm VSEXT_VF2 : VALU_MV_VS2<"vsext.vf2", 0b010010, 0b00111>;
935
936// Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
937defm VADC_V : VALUm_IV_V_X_I<"vadc", 0b010000>;
938let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint in {
939defm VMADC_V : VALUm_IV_V_X_I<"vmadc", 0b010001>;
940defm VMADC_V : VALUNoVm_IV_V_X_I<"vmadc", 0b010001>;
941} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint
942defm VSBC_V : VALUm_IV_V_X<"vsbc", 0b010010>;
943let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint in {
944defm VMSBC_V : VALUm_IV_V_X<"vmsbc", 0b010011>;
945defm VMSBC_V : VALUNoVm_IV_V_X<"vmsbc", 0b010011>;
946} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint
947
948// Vector Bitwise Logical Instructions
949defm VAND_V : VALU_IV_V_X_I<"vand", 0b001001>;
950defm VOR_V : VALU_IV_V_X_I<"vor", 0b001010>;
951defm VXOR_V : VALU_IV_V_X_I<"vxor", 0b001011>;
952
953def : InstAlias<"vnot.v $vd, $vs$vm",
954                (VXOR_VI VR:$vd, VR:$vs, -1, VMaskOp:$vm)>;
955
956// Vector Single-Width Bit Shift Instructions
957defm VSLL_V : VSHT_IV_V_X_I<"vsll", 0b100101, uimm5>;
958defm VSRL_V : VSHT_IV_V_X_I<"vsrl", 0b101000, uimm5>;
959defm VSRA_V : VSHT_IV_V_X_I<"vsra", 0b101001, uimm5>;
960
961// Vector Narrowing Integer Right Shift Instructions
962// Refer to 11.3. Narrowing Vector Arithmetic Instructions
963// The destination vector register group cannot overlap the first source
964// vector register group (specified by vs2). The destination vector register
965// group cannot overlap the mask register if used, unless LMUL=1.
966let Constraints = "@earlyclobber $vd" in {
967defm VNSRL_W : VNSHT_IV_V_X_I<"vnsrl", 0b101100, uimm5, "w">;
968defm VNSRA_W : VNSHT_IV_V_X_I<"vnsra", 0b101101, uimm5, "w">;
969} // Constraints = "@earlyclobber $vd"
970
971def : InstAlias<"vncvt.x.x.w $vd, $vs$vm",
972                (VNSRL_WX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
973
974// Vector Integer Comparison Instructions
975let RVVConstraint = NoConstraint in {
976defm VMSEQ_V : VCMP_IV_V_X_I<"vmseq", 0b011000>;
977defm VMSNE_V : VCMP_IV_V_X_I<"vmsne", 0b011001>;
978defm VMSLTU_V : VCMP_IV_V_X<"vmsltu", 0b011010>;
979defm VMSLT_V : VCMP_IV_V_X<"vmslt", 0b011011>;
980defm VMSLEU_V : VCMP_IV_V_X_I<"vmsleu", 0b011100>;
981defm VMSLE_V : VCMP_IV_V_X_I<"vmsle", 0b011101>;
982defm VMSGTU_V : VCMP_IV_X_I<"vmsgtu", 0b011110>;
983defm VMSGT_V : VCMP_IV_X_I<"vmsgt", 0b011111>;
984} // RVVConstraint = NoConstraint
985
986def : InstAlias<"vmsgtu.vv $vd, $va, $vb$vm",
987                (VMSLTU_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
988def : InstAlias<"vmsgt.vv $vd, $va, $vb$vm",
989                (VMSLT_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
990def : InstAlias<"vmsgeu.vv $vd, $va, $vb$vm",
991                (VMSLEU_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
992def : InstAlias<"vmsge.vv $vd, $va, $vb$vm",
993                (VMSLE_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
994
995let isCodeGenOnly = 0, isAsmParserOnly = 1, hasSideEffects = 0, mayLoad = 0,
996    mayStore = 0 in {
997// For unsigned comparisons we need to special case 0 immediate to maintain
998// the always true/false semantics we would invert if we just decremented the
999// immediate like we do for signed. To match the GNU assembler we will use
1000// vmseq/vmsne.vv with the same register for both operands which we can't do
1001// from an InstAlias.
1002def PseudoVMSGEU_VI : Pseudo<(outs VR:$vd),
1003                             (ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
1004                             [], "vmsgeu.vi", "$vd, $vs2, $imm$vm">;
1005def PseudoVMSLTU_VI : Pseudo<(outs VR:$vd),
1006                             (ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
1007                             [], "vmsltu.vi", "$vd, $vs2, $imm$vm">;
1008// Handle signed with pseudos as well for more consistency in the
1009// implementation.
1010def PseudoVMSGE_VI : Pseudo<(outs VR:$vd),
1011                            (ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
1012                            [], "vmsge.vi", "$vd, $vs2, $imm$vm">;
1013def PseudoVMSLT_VI : Pseudo<(outs VR:$vd),
1014                            (ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
1015                            [], "vmslt.vi", "$vd, $vs2, $imm$vm">;
1016}
1017
1018let isCodeGenOnly = 0, isAsmParserOnly = 1, hasSideEffects = 0, mayLoad = 0,
1019    mayStore = 0 in {
1020def PseudoVMSGEU_VX : Pseudo<(outs VR:$vd),
1021                             (ins VR:$vs2, GPR:$rs1),
1022                             [], "vmsgeu.vx", "$vd, $vs2, $rs1">;
1023def PseudoVMSGE_VX : Pseudo<(outs VR:$vd),
1024                            (ins VR:$vs2, GPR:$rs1),
1025                            [], "vmsge.vx", "$vd, $vs2, $rs1">;
1026def PseudoVMSGEU_VX_M : Pseudo<(outs VRNoV0:$vd),
1027                               (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
1028                               [], "vmsgeu.vx", "$vd, $vs2, $rs1$vm">;
1029def PseudoVMSGE_VX_M : Pseudo<(outs VRNoV0:$vd),
1030                              (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
1031                              [], "vmsge.vx", "$vd, $vs2, $rs1$vm">;
1032def PseudoVMSGEU_VX_M_T : Pseudo<(outs VR:$vd, VRNoV0:$scratch),
1033                                 (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
1034                                 [], "vmsgeu.vx", "$vd, $vs2, $rs1$vm, $scratch">;
1035def PseudoVMSGE_VX_M_T : Pseudo<(outs VR:$vd, VRNoV0:$scratch),
1036                                (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
1037                                [], "vmsge.vx", "$vd, $vs2, $rs1$vm, $scratch">;
1038}
1039
1040// Vector Integer Min/Max Instructions
1041defm VMINU_V : VCMP_IV_V_X<"vminu", 0b000100>;
1042defm VMIN_V : VCMP_IV_V_X<"vmin", 0b000101>;
1043defm VMAXU_V : VCMP_IV_V_X<"vmaxu", 0b000110>;
1044defm VMAX_V : VCMP_IV_V_X<"vmax", 0b000111>;
1045
1046// Vector Single-Width Integer Multiply Instructions
1047defm VMUL_V : VMUL_MV_V_X<"vmul", 0b100101>;
1048defm VMULH_V : VMUL_MV_V_X<"vmulh", 0b100111>;
1049defm VMULHU_V : VMUL_MV_V_X<"vmulhu", 0b100100>;
1050defm VMULHSU_V : VMUL_MV_V_X<"vmulhsu", 0b100110>;
1051
1052// Vector Integer Divide Instructions
1053defm VDIVU_V : VDIV_MV_V_X<"vdivu", 0b100000>;
1054defm VDIV_V : VDIV_MV_V_X<"vdiv", 0b100001>;
1055defm VREMU_V : VDIV_MV_V_X<"vremu", 0b100010>;
1056defm VREM_V : VDIV_MV_V_X<"vrem", 0b100011>;
1057
1058// Vector Widening Integer Multiply Instructions
1059let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
1060defm VWMUL_V : VWMUL_MV_V_X<"vwmul", 0b111011>;
1061defm VWMULU_V : VWMUL_MV_V_X<"vwmulu", 0b111000>;
1062defm VWMULSU_V : VWMUL_MV_V_X<"vwmulsu", 0b111010>;
1063} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV
1064
1065// Vector Single-Width Integer Multiply-Add Instructions
1066defm VMACC_V : VMAC_MV_V_X<"vmacc", 0b101101>;
1067defm VNMSAC_V : VMAC_MV_V_X<"vnmsac", 0b101111>;
1068defm VMADD_V : VMAC_MV_V_X<"vmadd", 0b101001>;
1069defm VNMSUB_V : VMAC_MV_V_X<"vnmsub", 0b101011>;
1070
1071// Vector Widening Integer Multiply-Add Instructions
1072let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
1073defm VWMACCU_V : VWMAC_MV_V_X<"vwmaccu", 0b111100>;
1074defm VWMACC_V : VWMAC_MV_V_X<"vwmacc", 0b111101>;
1075defm VWMACCSU_V : VWMAC_MV_V_X<"vwmaccsu", 0b111111>;
1076defm VWMACCUS_V : VWMAC_MV_X<"vwmaccus", 0b111110>;
1077} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV
1078
1079// Vector Integer Merge Instructions
1080defm VMERGE_V : VMRG_IV_V_X_I<"vmerge", 0b010111>;
1081
1082// Vector Integer Move Instructions
1083let hasSideEffects = 0, mayLoad = 0, mayStore = 0, vs2 = 0, vm = 1,
1084    RVVConstraint = NoConstraint  in {
1085// op vd, vs1
1086def VMV_V_V : RVInstVV<0b010111, OPIVV, (outs VR:$vd),
1087                       (ins VR:$vs1), "vmv.v.v", "$vd, $vs1">,
1088              Sched<[WriteVIMovV, ReadVIMovV]>;
1089// op vd, rs1
1090def VMV_V_X : RVInstVX<0b010111, OPIVX, (outs VR:$vd),
1091                       (ins GPR:$rs1), "vmv.v.x", "$vd, $rs1">,
1092              Sched<[WriteVIMovX, ReadVIMovX]>;
1093// op vd, imm
1094def VMV_V_I : RVInstIVI<0b010111, (outs VR:$vd),
1095                       (ins simm5:$imm), "vmv.v.i", "$vd, $imm">,
1096              Sched<[WriteVIMovI]>;
1097} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1098
1099// Vector Fixed-Point Arithmetic Instructions
1100defm VSADDU_V : VSALU_IV_V_X_I<"vsaddu", 0b100000>;
1101defm VSADD_V : VSALU_IV_V_X_I<"vsadd", 0b100001>;
1102defm VSSUBU_V : VSALU_IV_V_X<"vssubu", 0b100010>;
1103defm VSSUB_V : VSALU_IV_V_X<"vssub", 0b100011>;
1104
1105// Vector Single-Width Averaging Add and Subtract
1106defm VAADDU_V : VAALU_MV_V_X<"vaaddu", 0b001000>;
1107defm VAADD_V : VAALU_MV_V_X<"vaadd", 0b001001>;
1108defm VASUBU_V : VAALU_MV_V_X<"vasubu", 0b001010>;
1109defm VASUB_V : VAALU_MV_V_X<"vasub", 0b001011>;
1110
1111// Vector Single-Width Fractional Multiply with Rounding and Saturation
1112defm VSMUL_V : VSMUL_IV_V_X<"vsmul", 0b100111>;
1113
1114// Vector Single-Width Scaling Shift Instructions
1115defm VSSRL_V : VSSHF_IV_V_X_I<"vssrl", 0b101010, uimm5>;
1116defm VSSRA_V : VSSHF_IV_V_X_I<"vssra", 0b101011, uimm5>;
1117
1118// Vector Narrowing Fixed-Point Clip Instructions
1119let Constraints = "@earlyclobber $vd" in {
1120defm VNCLIPU_W : VNCLP_IV_V_X_I<"vnclipu", 0b101110, uimm5, "w">;
1121defm VNCLIP_W : VNCLP_IV_V_X_I<"vnclip", 0b101111, uimm5, "w">;
1122} // Constraints = "@earlyclobber $vd"
1123} // Predicates = [HasVInstructions]
1124
1125let Predicates = [HasVInstructionsAnyF] in {
1126// Vector Single-Width Floating-Point Add/Subtract Instructions
1127defm VFADD_V : VALU_FV_V_F<"vfadd", 0b000000>;
1128defm VFSUB_V : VALU_FV_V_F<"vfsub", 0b000010>;
1129defm VFRSUB_V : VALU_FV_F<"vfrsub", 0b100111>;
1130
1131// Vector Widening Floating-Point Add/Subtract Instructions
1132let Constraints = "@earlyclobber $vd" in {
1133let RVVConstraint = WidenV in {
1134defm VFWADD_V : VWALU_FV_V_F<"vfwadd", 0b110000>;
1135defm VFWSUB_V : VWALU_FV_V_F<"vfwsub", 0b110010>;
1136} // RVVConstraint = WidenV
1137// Set earlyclobber for following instructions for second and mask operands.
1138// This has the downside that the earlyclobber constraint is too coarse and
1139// will impose unnecessary restrictions by not allowing the destination to
1140// overlap with the first (wide) operand.
1141let RVVConstraint = WidenW in {
1142defm VFWADD_W : VWALU_FV_V_F<"vfwadd", 0b110100, "w">;
1143defm VFWSUB_W : VWALU_FV_V_F<"vfwsub", 0b110110, "w">;
1144} // RVVConstraint = WidenW
1145} // Constraints = "@earlyclobber $vd"
1146
1147// Vector Single-Width Floating-Point Multiply/Divide Instructions
1148defm VFMUL_V : VMUL_FV_V_F<"vfmul", 0b100100>;
1149defm VFDIV_V : VDIV_FV_V_F<"vfdiv", 0b100000>;
1150defm VFRDIV_V : VRDIV_FV_F<"vfrdiv", 0b100001>;
1151
1152// Vector Widening Floating-Point Multiply
1153let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
1154defm VFWMUL_V : VWMUL_FV_V_F<"vfwmul", 0b111000>;
1155} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV
1156
1157// Vector Single-Width Floating-Point Fused Multiply-Add Instructions
1158defm VFMACC_V : VMAC_FV_V_F<"vfmacc", 0b101100>;
1159defm VFNMACC_V : VMAC_FV_V_F<"vfnmacc", 0b101101>;
1160defm VFMSAC_V : VMAC_FV_V_F<"vfmsac", 0b101110>;
1161defm VFNMSAC_V : VMAC_FV_V_F<"vfnmsac", 0b101111>;
1162defm VFMADD_V : VMAC_FV_V_F<"vfmadd", 0b101000>;
1163defm VFNMADD_V : VMAC_FV_V_F<"vfnmadd", 0b101001>;
1164defm VFMSUB_V : VMAC_FV_V_F<"vfmsub", 0b101010>;
1165defm VFNMSUB_V : VMAC_FV_V_F<"vfnmsub", 0b101011>;
1166
1167// Vector Widening Floating-Point Fused Multiply-Add Instructions
1168let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
1169defm VFWMACC_V : VWMAC_FV_V_F<"vfwmacc", 0b111100>;
1170defm VFWNMACC_V : VWMAC_FV_V_F<"vfwnmacc", 0b111101>;
1171defm VFWMSAC_V : VWMAC_FV_V_F<"vfwmsac", 0b111110>;
1172defm VFWNMSAC_V : VWMAC_FV_V_F<"vfwnmsac", 0b111111>;
1173} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV
1174
1175// Vector Floating-Point Square-Root Instruction
1176defm VFSQRT_V : VSQR_FV_VS2<"vfsqrt.v", 0b010011, 0b00000>;
1177defm VFRSQRT7_V : VRCP_FV_VS2<"vfrsqrt7.v", 0b010011, 0b00100>;
1178defm VFREC7_V : VRCP_FV_VS2<"vfrec7.v", 0b010011, 0b00101>;
1179
1180// Vector Floating-Point MIN/MAX Instructions
1181defm VFMIN_V : VCMP_FV_V_F<"vfmin", 0b000100>;
1182defm VFMAX_V : VCMP_FV_V_F<"vfmax", 0b000110>;
1183
1184// Vector Floating-Point Sign-Injection Instructions
1185defm VFSGNJ_V : VSGNJ_FV_V_F<"vfsgnj", 0b001000>;
1186defm VFSGNJN_V : VSGNJ_FV_V_F<"vfsgnjn", 0b001001>;
1187defm VFSGNJX_V : VSGNJ_FV_V_F<"vfsgnjx", 0b001010>;
1188
1189def : InstAlias<"vfneg.v $vd, $vs$vm",
1190                (VFSGNJN_VV VR:$vd, VR:$vs, VR:$vs, VMaskOp:$vm)>;
1191def : InstAlias<"vfabs.v $vd, $vs$vm",
1192                (VFSGNJX_VV VR:$vd, VR:$vs, VR:$vs, VMaskOp:$vm)>;
1193
1194// Vector Floating-Point Compare Instructions
1195let RVVConstraint = NoConstraint in {
1196defm VMFEQ_V : VCMP_FV_V_F<"vmfeq", 0b011000>;
1197defm VMFNE_V : VCMP_FV_V_F<"vmfne", 0b011100>;
1198defm VMFLT_V : VCMP_FV_V_F<"vmflt", 0b011011>;
1199defm VMFLE_V : VCMP_FV_V_F<"vmfle", 0b011001>;
1200defm VMFGT_V : VCMP_FV_F<"vmfgt", 0b011101>;
1201defm VMFGE_V : VCMP_FV_F<"vmfge", 0b011111>;
1202} // RVVConstraint = NoConstraint
1203
1204def : InstAlias<"vmfgt.vv $vd, $va, $vb$vm",
1205                (VMFLT_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1206def : InstAlias<"vmfge.vv $vd, $va, $vb$vm",
1207                (VMFLE_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1208
1209// Vector Floating-Point Classify Instruction
1210defm VFCLASS_V : VCLS_FV_VS2<"vfclass.v", 0b010011, 0b10000>;
1211
1212let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
1213
1214// Vector Floating-Point Merge Instruction
1215let vm = 0 in
1216def VFMERGE_VFM : RVInstVX<0b010111, OPFVF, (outs VR:$vd),
1217                           (ins VR:$vs2, FPR32:$rs1, VMV0:$v0),
1218                           "vfmerge.vfm", "$vd, $vs2, $rs1, v0">,
1219                  Sched<[WriteVFMergeV, ReadVFMergeV, ReadVFMergeF, ReadVMask]>;
1220
1221// Vector Floating-Point Move Instruction
1222let RVVConstraint = NoConstraint in
1223let vm = 1, vs2 = 0 in
1224def VFMV_V_F : RVInstVX<0b010111, OPFVF, (outs VR:$vd),
1225                       (ins FPR32:$rs1), "vfmv.v.f", "$vd, $rs1">,
1226               Sched<[WriteVFMovV, ReadVFMovF]>;
1227
1228} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1229
1230// Single-Width Floating-Point/Integer Type-Convert Instructions
1231defm VFCVT_XU_F_V : VCVTI_FV_VS2<"vfcvt.xu.f.v", 0b010010, 0b00000>;
1232defm VFCVT_X_F_V : VCVTI_FV_VS2<"vfcvt.x.f.v", 0b010010, 0b00001>;
1233defm VFCVT_RTZ_XU_F_V : VCVTI_FV_VS2<"vfcvt.rtz.xu.f.v", 0b010010, 0b00110>;
1234defm VFCVT_RTZ_X_F_V : VCVTI_FV_VS2<"vfcvt.rtz.x.f.v", 0b010010, 0b00111>;
1235defm VFCVT_F_XU_V : VCVTF_IV_VS2<"vfcvt.f.xu.v", 0b010010, 0b00010>;
1236defm VFCVT_F_X_V : VCVTF_IV_VS2<"vfcvt.f.x.v", 0b010010, 0b00011>;
1237
1238// Widening Floating-Point/Integer Type-Convert Instructions
1239let Constraints = "@earlyclobber $vd", RVVConstraint = WidenCvt in {
1240defm VFWCVT_XU_F_V : VWCVTI_FV_VS2<"vfwcvt.xu.f.v", 0b010010, 0b01000>;
1241defm VFWCVT_X_F_V : VWCVTI_FV_VS2<"vfwcvt.x.f.v", 0b010010, 0b01001>;
1242defm VFWCVT_RTZ_XU_F_V : VWCVTI_FV_VS2<"vfwcvt.rtz.xu.f.v", 0b010010, 0b01110>;
1243defm VFWCVT_RTZ_X_F_V : VWCVTI_FV_VS2<"vfwcvt.rtz.x.f.v", 0b010010, 0b01111>;
1244defm VFWCVT_F_XU_V : VWCVTF_IV_VS2<"vfwcvt.f.xu.v", 0b010010, 0b01010>;
1245defm VFWCVT_F_X_V : VWCVTF_IV_VS2<"vfwcvt.f.x.v", 0b010010, 0b01011>;
1246defm VFWCVT_F_F_V : VWCVTF_FV_VS2<"vfwcvt.f.f.v", 0b010010, 0b01100>;
1247} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenCvt
1248
1249// Narrowing Floating-Point/Integer Type-Convert Instructions
1250let Constraints = "@earlyclobber $vd" in {
1251defm VFNCVT_XU_F_W : VNCVTI_FV_VS2<"vfncvt.xu.f.w", 0b010010, 0b10000>;
1252defm VFNCVT_X_F_W : VNCVTI_FV_VS2<"vfncvt.x.f.w", 0b010010, 0b10001>;
1253defm VFNCVT_RTZ_XU_F_W : VNCVTI_FV_VS2<"vfncvt.rtz.xu.f.w", 0b010010, 0b10110>;
1254defm VFNCVT_RTZ_X_F_W : VNCVTI_FV_VS2<"vfncvt.rtz.x.f.w", 0b010010, 0b10111>;
1255defm VFNCVT_F_XU_W : VNCVTF_IV_VS2<"vfncvt.f.xu.w", 0b010010, 0b10010>;
1256defm VFNCVT_F_X_W : VNCVTF_IV_VS2<"vfncvt.f.x.w", 0b010010, 0b10011>;
1257defm VFNCVT_F_F_W : VNCVTF_FV_VS2<"vfncvt.f.f.w", 0b010010, 0b10100>;
1258defm VFNCVT_ROD_F_F_W : VNCVTF_FV_VS2<"vfncvt.rod.f.f.w", 0b010010, 0b10101>;
1259} // Constraints = "@earlyclobber $vd"
1260} // Predicates = HasVInstructionsAnyF]
1261
1262let Predicates = [HasVInstructions] in {
1263
1264// Vector Single-Width Integer Reduction Instructions
1265let RVVConstraint = NoConstraint in {
1266defm VREDSUM : VRED_MV_V<"vredsum", 0b000000>;
1267defm VREDMAXU : VRED_MV_V<"vredmaxu", 0b000110>;
1268defm VREDMAX : VRED_MV_V<"vredmax", 0b000111>;
1269defm VREDMINU : VRED_MV_V<"vredminu", 0b000100>;
1270defm VREDMIN : VRED_MV_V<"vredmin", 0b000101>;
1271defm VREDAND : VRED_MV_V<"vredand", 0b000001>;
1272defm VREDOR : VRED_MV_V<"vredor", 0b000010>;
1273defm VREDXOR : VRED_MV_V<"vredxor", 0b000011>;
1274} // RVVConstraint = NoConstraint
1275
1276// Vector Widening Integer Reduction Instructions
1277let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint in {
1278// Set earlyclobber for following instructions for second and mask operands.
1279// This has the downside that the earlyclobber constraint is too coarse and
1280// will impose unnecessary restrictions by not allowing the destination to
1281// overlap with the first (wide) operand.
1282defm VWREDSUMU : VWRED_IV_V<"vwredsumu", 0b110000>;
1283defm VWREDSUM : VWRED_IV_V<"vwredsum", 0b110001>;
1284} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint
1285
1286} // Predicates = [HasVInstructions]
1287
1288let Predicates = [HasVInstructionsAnyF] in {
1289// Vector Single-Width Floating-Point Reduction Instructions
1290let RVVConstraint = NoConstraint in {
1291defm VFREDOSUM : VREDO_FV_V<"vfredosum", 0b000011>;
1292defm VFREDUSUM : VRED_FV_V<"vfredusum", 0b000001>;
1293defm VFREDMAX : VRED_FV_V<"vfredmax", 0b000111>;
1294defm VFREDMIN : VRED_FV_V<"vfredmin", 0b000101>;
1295} // RVVConstraint = NoConstraint
1296
1297def : InstAlias<"vfredsum.vs $vd, $vs2, $vs1$vm",
1298                (VFREDUSUM_VS VR:$vd, VR:$vs2, VR:$vs1, VMaskOp:$vm), 0>;
1299
1300// Vector Widening Floating-Point Reduction Instructions
1301let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint in {
1302// Set earlyclobber for following instructions for second and mask operands.
1303// This has the downside that the earlyclobber constraint is too coarse and
1304// will impose unnecessary restrictions by not allowing the destination to
1305// overlap with the first (wide) operand.
1306defm VFWREDOSUM : VWREDO_FV_V<"vfwredosum", 0b110011>;
1307defm VFWREDUSUM : VWRED_FV_V<"vfwredusum", 0b110001>;
1308} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint
1309
1310def : InstAlias<"vfwredsum.vs $vd, $vs2, $vs1$vm",
1311                (VFWREDUSUM_VS VR:$vd, VR:$vs2, VR:$vs1, VMaskOp:$vm), 0>;
1312} // Predicates = [HasVInstructionsAnyF]
1313
1314let Predicates = [HasVInstructions] in {
1315// Vector Mask-Register Logical Instructions
1316let RVVConstraint = NoConstraint in {
1317defm VMAND_M : VMALU_MV_Mask<"vmand", 0b011001, "m">;
1318defm VMNAND_M : VMALU_MV_Mask<"vmnand", 0b011101, "m">;
1319defm VMANDN_M : VMALU_MV_Mask<"vmandn", 0b011000, "m">;
1320defm VMXOR_M : VMALU_MV_Mask<"vmxor", 0b011011, "m">;
1321defm VMOR_M : VMALU_MV_Mask<"vmor", 0b011010, "m">;
1322defm VMNOR_M : VMALU_MV_Mask<"vmnor", 0b011110, "m">;
1323defm VMORN_M : VMALU_MV_Mask<"vmorn", 0b011100, "m">;
1324defm VMXNOR_M : VMALU_MV_Mask<"vmxnor", 0b011111, "m">;
1325}
1326
1327def : InstAlias<"vmmv.m $vd, $vs",
1328                (VMAND_MM VR:$vd, VR:$vs, VR:$vs)>;
1329def : InstAlias<"vmclr.m $vd",
1330                (VMXOR_MM VR:$vd, VR:$vd, VR:$vd)>;
1331def : InstAlias<"vmset.m $vd",
1332                (VMXNOR_MM VR:$vd, VR:$vd, VR:$vd)>;
1333def : InstAlias<"vmnot.m $vd, $vs",
1334                (VMNAND_MM VR:$vd, VR:$vs, VR:$vs)>;
1335
1336def : InstAlias<"vmandnot.mm $vd, $vs2, $vs1",
1337                (VMANDN_MM VR:$vd, VR:$vs2, VR:$vs1), 0>;
1338def : InstAlias<"vmornot.mm $vd, $vs2, $vs1",
1339                (VMORN_MM VR:$vd, VR:$vs2, VR:$vs1), 0>;
1340
1341let hasSideEffects = 0, mayLoad = 0, mayStore = 0,
1342    RVVConstraint = NoConstraint  in {
1343
1344// Vector mask population count vcpop
1345def VCPOP_M : RVInstV<0b010000, 0b10000, OPMVV, (outs GPR:$vd),
1346                      (ins VR:$vs2, VMaskOp:$vm),
1347                      "vcpop.m", "$vd, $vs2$vm">,
1348              Sched<[WriteVMPopV, ReadVMPopV, ReadVMask]>;
1349
1350// vfirst find-first-set mask bit
1351def VFIRST_M : RVInstV<0b010000, 0b10001, OPMVV, (outs GPR:$vd),
1352                       (ins VR:$vs2, VMaskOp:$vm),
1353                       "vfirst.m", "$vd, $vs2$vm">,
1354              Sched<[WriteVMFFSV, ReadVMFFSV, ReadVMask]>;
1355
1356} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1357
1358def : InstAlias<"vpopc.m $vd, $vs2$vm",
1359                (VCPOP_M GPR:$vd, VR:$vs2, VMaskOp:$vm), 0>;
1360
1361let Constraints = "@earlyclobber $vd", RVVConstraint = Iota in {
1362
1363// vmsbf.m set-before-first mask bit
1364defm VMSBF_M : VMSFS_MV_V<"vmsbf.m", 0b010100, 0b00001>;
1365// vmsif.m set-including-first mask bit
1366defm VMSIF_M : VMSFS_MV_V<"vmsif.m", 0b010100, 0b00011>;
1367// vmsof.m set-only-first mask bit
1368defm VMSOF_M : VMSFS_MV_V<"vmsof.m", 0b010100, 0b00010>;
1369// Vector Iota Instruction
1370defm VIOTA_M : VMIOT_MV_V<"viota.m", 0b010100, 0b10000>;
1371
1372} // Constraints = "@earlyclobber $vd", RVVConstraint = Iota
1373
1374// Vector Element Index Instruction
1375let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
1376
1377let vs2 = 0 in
1378def VID_V : RVInstV<0b010100, 0b10001, OPMVV, (outs VR:$vd),
1379                    (ins VMaskOp:$vm), "vid.v", "$vd$vm">,
1380            Sched<[WriteVMIdxV, ReadVMask]>;
1381
1382// Integer Scalar Move Instructions
1383let vm = 1, RVVConstraint = NoConstraint in {
1384def VMV_X_S : RVInstV<0b010000, 0b00000, OPMVV, (outs GPR:$vd),
1385                      (ins VR:$vs2), "vmv.x.s", "$vd, $vs2">,
1386              Sched<[WriteVIMovVX, ReadVIMovVX]>;
1387let Constraints = "$vd = $vd_wb" in
1388def VMV_S_X : RVInstV2<0b010000, 0b00000, OPMVX, (outs VR:$vd_wb),
1389                      (ins VR:$vd, GPR:$rs1), "vmv.s.x", "$vd, $rs1">,
1390              Sched<[WriteVIMovXV, ReadVIMovXV, ReadVIMovXX]>;
1391}
1392
1393} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1394
1395} // Predicates = [HasVInstructions]
1396
1397let Predicates = [HasVInstructionsAnyF] in {
1398
1399let hasSideEffects = 0, mayLoad = 0, mayStore = 0, vm = 1,
1400    RVVConstraint = NoConstraint  in {
1401// Floating-Point Scalar Move Instructions
1402def VFMV_F_S : RVInstV<0b010000, 0b00000, OPFVV, (outs FPR32:$vd),
1403                      (ins VR:$vs2), "vfmv.f.s", "$vd, $vs2">,
1404               Sched<[WriteVFMovVF, ReadVFMovVF]>;
1405let Constraints = "$vd = $vd_wb" in
1406def VFMV_S_F : RVInstV2<0b010000, 0b00000, OPFVF, (outs VR:$vd_wb),
1407                       (ins VR:$vd, FPR32:$rs1), "vfmv.s.f", "$vd, $rs1">,
1408               Sched<[WriteVFMovFV, ReadVFMovFV, ReadVFMovFX]>;
1409
1410} // hasSideEffects = 0, mayLoad = 0, mayStore = 0, vm = 1
1411
1412} // Predicates = [HasVInstructionsAnyF]
1413
1414let Predicates = [HasVInstructions] in {
1415// Vector Slide Instructions
1416let Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp in {
1417defm VSLIDEUP_V : VSLD_IV_X_I<"vslideup", 0b001110, uimm5>;
1418defm VSLIDE1UP_V : VSLD1_MV_X<"vslide1up", 0b001110>;
1419} // Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp
1420defm VSLIDEDOWN_V : VSLD_IV_X_I<"vslidedown", 0b001111, uimm5>;
1421defm VSLIDE1DOWN_V : VSLD1_MV_X<"vslide1down", 0b001111>;
1422} // Predicates = [HasVInstructions]
1423
1424let Predicates = [HasVInstructionsAnyF] in {
1425let Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp in {
1426defm VFSLIDE1UP_V : VSLD1_FV_F<"vfslide1up", 0b001110>;
1427} // Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp
1428defm VFSLIDE1DOWN_V : VSLD1_FV_F<"vfslide1down", 0b001111>;
1429} // Predicates = [HasVInstructionsAnyF]
1430
1431let Predicates = [HasVInstructions] in {
1432// Vector Register Gather Instruction
1433let Constraints = "@earlyclobber $vd", RVVConstraint = Vrgather in {
1434defm VRGATHER_V : VGTR_IV_V_X_I<"vrgather", 0b001100, uimm5>;
1435def VRGATHEREI16_VV : VALUVV<0b001110, OPIVV, "vrgatherei16.vv">,
1436                      Sched<[WriteVGatherV, ReadVGatherV, ReadVGatherV]>;
1437} // Constraints = "@earlyclobber $vd", RVVConstraint = Vrgather
1438
1439// Vector Compress Instruction
1440let Constraints = "@earlyclobber $vd", RVVConstraint = Vcompress in {
1441defm VCOMPRESS_V : VCPR_MV_Mask<"vcompress", 0b010111>;
1442} // Constraints = "@earlyclobber $vd", RVVConstraint = Vcompress
1443
1444let hasSideEffects = 0, mayLoad = 0, mayStore = 0,
1445    RVVConstraint = NoConstraint in {
1446def VMV1R_V  : RVInstV<0b100111, 0, OPIVI, (outs VR:$vd), (ins VR:$vs2),
1447                       "vmv1r.v", "$vd, $vs2">, VMVRSched<1> {
1448  let Uses = [];
1449  let vm = 1;
1450}
1451// A future extension may relax the vector register alignment restrictions.
1452foreach n = [2, 4, 8] in {
1453  defvar vrc = !cast<VReg>("VRM"#n);
1454  def VMV#n#R_V  : RVInstV<0b100111, !add(n, -1), OPIVI, (outs vrc:$vd),
1455                           (ins vrc:$vs2), "vmv" # n # "r.v", "$vd, $vs2">,
1456                   VMVRSched<n> {
1457    let Uses = [];
1458    let vm = 1;
1459  }
1460}
1461} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1462} // Predicates = [HasVInstructions]
1463
1464let Predicates = [HasVInstructions] in {
1465  foreach nf=2-8 in {
1466    foreach eew = [8, 16, 32] in {
1467      defvar w = !cast<RISCVWidth>("LSWidth"#eew);
1468
1469      def VLSEG#nf#E#eew#_V :
1470        VUnitStrideSegmentLoad<!add(nf, -1), w, "vlseg"#nf#"e"#eew#".v">;
1471      def VLSEG#nf#E#eew#FF_V :
1472        VUnitStrideSegmentLoadFF<!add(nf, -1), w, "vlseg"#nf#"e"#eew#"ff.v">;
1473      def VSSEG#nf#E#eew#_V :
1474        VUnitStrideSegmentStore<!add(nf, -1), w, "vsseg"#nf#"e"#eew#".v">;
1475
1476      // Vector Strided Instructions
1477      def VLSSEG#nf#E#eew#_V :
1478        VStridedSegmentLoad<!add(nf, -1), w, "vlsseg"#nf#"e"#eew#".v">;
1479      def VSSSEG#nf#E#eew#_V :
1480        VStridedSegmentStore<!add(nf, -1), w, "vssseg"#nf#"e"#eew#".v">;
1481
1482      // Vector Indexed Instructions
1483      def VLUXSEG#nf#EI#eew#_V :
1484        VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedUnord, w,
1485                            "vluxseg"#nf#"ei"#eew#".v">;
1486      def VLOXSEG#nf#EI#eew#_V :
1487        VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedOrder, w,
1488                            "vloxseg"#nf#"ei"#eew#".v">;
1489      def VSUXSEG#nf#EI#eew#_V :
1490        VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedUnord, w,
1491                             "vsuxseg"#nf#"ei"#eew#".v">;
1492      def VSOXSEG#nf#EI#eew#_V :
1493        VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedOrder, w,
1494                             "vsoxseg"#nf#"ei"#eew#".v">;
1495    }
1496  }
1497} // Predicates = [HasVInstructions]
1498
1499let Predicates = [HasVInstructionsI64] in {
1500  foreach nf=2-8 in {
1501    // Vector Unit-strided Segment Instructions
1502    def VLSEG#nf#E64_V :
1503      VUnitStrideSegmentLoad<!add(nf, -1), LSWidth64, "vlseg"#nf#"e64.v">;
1504    def VLSEG#nf#E64FF_V :
1505      VUnitStrideSegmentLoadFF<!add(nf, -1), LSWidth64, "vlseg"#nf#"e64ff.v">;
1506    def VSSEG#nf#E64_V :
1507      VUnitStrideSegmentStore<!add(nf, -1), LSWidth64, "vsseg"#nf#"e64.v">;
1508
1509    // Vector Strided Segment Instructions
1510    def VLSSEG#nf#E64_V :
1511      VStridedSegmentLoad<!add(nf, -1), LSWidth64, "vlsseg"#nf#"e64.v">;
1512    def VSSSEG#nf#E64_V :
1513      VStridedSegmentStore<!add(nf, -1), LSWidth64, "vssseg"#nf#"e64.v">;
1514  }
1515} // Predicates = [HasVInstructionsI64]
1516let Predicates = [HasVInstructionsI64, IsRV64] in {
1517  foreach nf=2-8 in {
1518    // Vector Indexed Segment Instructions
1519    def VLUXSEG#nf#EI64_V :
1520      VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedUnord, LSWidth64,
1521                          "vluxseg"#nf#"ei64.v">;
1522    def VLOXSEG#nf#EI64_V :
1523      VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedOrder, LSWidth64,
1524                          "vloxseg"#nf#"ei64.v">;
1525    def VSUXSEG#nf#EI64_V :
1526      VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedUnord, LSWidth64,
1527                           "vsuxseg"#nf#"ei64.v">;
1528    def VSOXSEG#nf#EI64_V :
1529      VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedOrder, LSWidth64,
1530                           "vsoxseg"#nf#"ei64.v">;
1531  }
1532} // Predicates = [HasVInstructionsI64, IsRV64]
1533
1534include "RISCVInstrInfoVPseudos.td"
1535