xref: /freebsd/contrib/llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVBaseInfo.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone enum definitions for the RISC-V target
10 // useful for the compiler back-end and the MC libraries.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVBaseInfo.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/MC/MCInst.h"
17 #include "llvm/MC/MCRegisterInfo.h"
18 #include "llvm/MC/MCSubtargetInfo.h"
19 #include "llvm/Support/RISCVISAInfo.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/TargetParser/TargetParser.h"
22 #include "llvm/TargetParser/Triple.h"
23 
24 namespace llvm {
25 
26 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
27 
28 namespace RISCVSysReg {
29 #define GET_SysRegsList_IMPL
30 #include "RISCVGenSearchableTables.inc"
31 } // namespace RISCVSysReg
32 
33 namespace RISCVInsnOpcode {
34 #define GET_RISCVOpcodesList_IMPL
35 #include "RISCVGenSearchableTables.inc"
36 } // namespace RISCVInsnOpcode
37 
38 namespace RISCVABI {
39 ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits,
40                      StringRef ABIName) {
41   auto TargetABI = getTargetABI(ABIName);
42   bool IsRV64 = TT.isArch64Bit();
43   bool IsRVE = FeatureBits[RISCV::FeatureRVE];
44 
45   if (!ABIName.empty() && TargetABI == ABI_Unknown) {
46     errs()
47         << "'" << ABIName
48         << "' is not a recognized ABI for this target (ignoring target-abi)\n";
49   } else if (ABIName.starts_with("ilp32") && IsRV64) {
50     errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
51               "target-abi)\n";
52     TargetABI = ABI_Unknown;
53   } else if (ABIName.starts_with("lp64") && !IsRV64) {
54     errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
55               "target-abi)\n";
56     TargetABI = ABI_Unknown;
57   } else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E &&
58              TargetABI != ABI_Unknown) {
59     // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
60     errs()
61         << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
62     TargetABI = ABI_Unknown;
63   } else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E &&
64              TargetABI != ABI_Unknown) {
65     // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
66     errs()
67         << "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n";
68     TargetABI = ABI_Unknown;
69   }
70 
71   if (TargetABI != ABI_Unknown)
72     return TargetABI;
73 
74   // If no explicit ABI is given, try to compute the default ABI.
75   auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits);
76   if (!ISAInfo)
77     report_fatal_error(ISAInfo.takeError());
78   return getTargetABI((*ISAInfo)->computeDefaultABI());
79 }
80 
81 ABI getTargetABI(StringRef ABIName) {
82   auto TargetABI = StringSwitch<ABI>(ABIName)
83                        .Case("ilp32", ABI_ILP32)
84                        .Case("ilp32f", ABI_ILP32F)
85                        .Case("ilp32d", ABI_ILP32D)
86                        .Case("ilp32e", ABI_ILP32E)
87                        .Case("lp64", ABI_LP64)
88                        .Case("lp64f", ABI_LP64F)
89                        .Case("lp64d", ABI_LP64D)
90                        .Case("lp64e", ABI_LP64E)
91                        .Default(ABI_Unknown);
92   return TargetABI;
93 }
94 
95 // To avoid the BP value clobbered by a function call, we need to choose a
96 // callee saved register to save the value. RV32E only has X8 and X9 as callee
97 // saved registers and X8 will be used as fp. So we choose X9 as bp.
98 MCRegister getBPReg() { return RISCV::X9; }
99 
100 // Returns the register holding shadow call stack pointer.
101 MCRegister getSCSPReg() { return RISCV::X3; }
102 
103 } // namespace RISCVABI
104 
105 namespace RISCVFeatures {
106 
107 void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
108   if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
109     report_fatal_error("RV64 target requires an RV64 CPU");
110   if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit])
111     report_fatal_error("RV32 target requires an RV32 CPU");
112   if (FeatureBits[RISCV::Feature32Bit] &&
113       FeatureBits[RISCV::Feature64Bit])
114     report_fatal_error("RV32 and RV64 can't be combined");
115 }
116 
117 llvm::Expected<std::unique_ptr<RISCVISAInfo>>
118 parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) {
119   unsigned XLen = IsRV64 ? 64 : 32;
120   std::vector<std::string> FeatureVector;
121   // Convert FeatureBitset to FeatureVector.
122   for (auto Feature : RISCVFeatureKV) {
123     if (FeatureBits[Feature.Value] &&
124         llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
125       FeatureVector.push_back(std::string("+") + Feature.Key);
126   }
127   return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector);
128 }
129 
130 } // namespace RISCVFeatures
131 
132 // Encode VTYPE into the binary format used by the the VSETVLI instruction which
133 // is used by our MC layer representation.
134 //
135 // Bits | Name       | Description
136 // -----+------------+------------------------------------------------
137 // 7    | vma        | Vector mask agnostic
138 // 6    | vta        | Vector tail agnostic
139 // 5:3  | vsew[2:0]  | Standard element width (SEW) setting
140 // 2:0  | vlmul[2:0] | Vector register group multiplier (LMUL) setting
141 unsigned RISCVVType::encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW,
142                                  bool TailAgnostic, bool MaskAgnostic) {
143   assert(isValidSEW(SEW) && "Invalid SEW");
144   unsigned VLMULBits = static_cast<unsigned>(VLMUL);
145   unsigned VSEWBits = encodeSEW(SEW);
146   unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7);
147   if (TailAgnostic)
148     VTypeI |= 0x40;
149   if (MaskAgnostic)
150     VTypeI |= 0x80;
151 
152   return VTypeI;
153 }
154 
155 std::pair<unsigned, bool> RISCVVType::decodeVLMUL(RISCVII::VLMUL VLMUL) {
156   switch (VLMUL) {
157   default:
158     llvm_unreachable("Unexpected LMUL value!");
159   case RISCVII::VLMUL::LMUL_1:
160   case RISCVII::VLMUL::LMUL_2:
161   case RISCVII::VLMUL::LMUL_4:
162   case RISCVII::VLMUL::LMUL_8:
163     return std::make_pair(1 << static_cast<unsigned>(VLMUL), false);
164   case RISCVII::VLMUL::LMUL_F2:
165   case RISCVII::VLMUL::LMUL_F4:
166   case RISCVII::VLMUL::LMUL_F8:
167     return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true);
168   }
169 }
170 
171 void RISCVVType::printVType(unsigned VType, raw_ostream &OS) {
172   unsigned Sew = getSEW(VType);
173   OS << "e" << Sew;
174 
175   unsigned LMul;
176   bool Fractional;
177   std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
178 
179   if (Fractional)
180     OS << ", mf";
181   else
182     OS << ", m";
183   OS << LMul;
184 
185   if (isTailAgnostic(VType))
186     OS << ", ta";
187   else
188     OS << ", tu";
189 
190   if (isMaskAgnostic(VType))
191     OS << ", ma";
192   else
193     OS << ", mu";
194 }
195 
196 unsigned RISCVVType::getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) {
197   unsigned LMul;
198   bool Fractional;
199   std::tie(LMul, Fractional) = decodeVLMUL(VLMul);
200 
201   // Convert LMul to a fixed point value with 3 fractional bits.
202   LMul = Fractional ? (8 / LMul) : (LMul * 8);
203 
204   assert(SEW >= 8 && "Unexpected SEW value");
205   return (SEW * 8) / LMul;
206 }
207 
208 std::optional<RISCVII::VLMUL>
209 RISCVVType::getSameRatioLMUL(unsigned SEW, RISCVII::VLMUL VLMUL, unsigned EEW) {
210   unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMUL);
211   unsigned EMULFixedPoint = (EEW * 8) / Ratio;
212   bool Fractional = EMULFixedPoint < 8;
213   unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8;
214   if (!isValidLMUL(EMUL, Fractional))
215     return std::nullopt;
216   return RISCVVType::encodeLMUL(EMUL, Fractional);
217 }
218 
219 // Include the auto-generated portion of the compress emitter.
220 #define GEN_UNCOMPRESS_INSTR
221 #define GEN_COMPRESS_INSTR
222 #include "RISCVGenCompressInstEmitter.inc"
223 
224 bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI,
225                         const MCSubtargetInfo &STI) {
226   return compressInst(OutInst, MI, STI);
227 }
228 
229 bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI,
230                           const MCSubtargetInfo &STI) {
231   return uncompressInst(OutInst, MI, STI);
232 }
233 
234 // Lookup table for fli.s for entries 2-31.
235 static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = {
236     {0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00},
237     {0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00},
238     {0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10},
239     {0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01},
240     {0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00},
241     {0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11},
242     {0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10},
243     {0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00},
244     {0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00},
245     {0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10},
246 };
247 
248 int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) {
249   assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() ||
250           &FPImm.getSemantics() == &APFloat::IEEEdouble() ||
251           &FPImm.getSemantics() == &APFloat::IEEEhalf()) &&
252          "Unexpected semantics");
253 
254   // Handle the minimum normalized value which is different for each type.
255   if (FPImm.isSmallestNormalized() && !FPImm.isNegative())
256     return 1;
257 
258   // Convert to single precision to use its lookup table.
259   bool LosesInfo;
260   APFloat::opStatus Status = FPImm.convert(
261       APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo);
262   if (Status != APFloat::opOK || LosesInfo)
263     return -1;
264 
265   APInt Imm = FPImm.bitcastToAPInt();
266 
267   if (Imm.extractBitsAsZExtValue(21, 0) != 0)
268     return -1;
269 
270   bool Sign = Imm.extractBitsAsZExtValue(1, 31);
271   uint8_t Mantissa = Imm.extractBitsAsZExtValue(2, 21);
272   uint8_t Exp = Imm.extractBitsAsZExtValue(8, 23);
273 
274   auto EMI = llvm::lower_bound(LoadFP32ImmArr, std::make_pair(Exp, Mantissa));
275   if (EMI == std::end(LoadFP32ImmArr) || EMI->first != Exp ||
276       EMI->second != Mantissa)
277     return -1;
278 
279   // Table doesn't have entry 0 or 1.
280   int Entry = std::distance(std::begin(LoadFP32ImmArr), EMI) + 2;
281 
282   // The only legal negative value is -1.0(entry 0). 1.0 is entry 16.
283   if (Sign) {
284     if (Entry == 16)
285       return 0;
286     return -1;
287   }
288 
289   return Entry;
290 }
291 
292 float RISCVLoadFPImm::getFPImm(unsigned Imm) {
293   assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate");
294 
295   // Entry 0 is -1.0, the only negative value. Entry 16 is 1.0.
296   uint32_t Sign = 0;
297   if (Imm == 0) {
298     Sign = 0b1;
299     Imm = 16;
300   }
301 
302   uint32_t Exp = LoadFP32ImmArr[Imm - 2].first;
303   uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second;
304 
305   uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21;
306   return bit_cast<float>(I);
307 }
308 
309 void RISCVZC::printRlist(unsigned SlistEncode, raw_ostream &OS) {
310   OS << "{ra";
311   if (SlistEncode > 4) {
312     OS << ", s0";
313     if (SlistEncode == 15)
314       OS << "-s11";
315     else if (SlistEncode > 5 && SlistEncode <= 14)
316       OS << "-s" << (SlistEncode - 5);
317   }
318   OS << "}";
319 }
320 
321 void RISCVZC::printSpimm(int64_t Spimm, raw_ostream &OS) { OS << Spimm; }
322 
323 } // namespace llvm
324