//===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains small standalone enum definitions for the RISC-V target // useful for the compiler back-end and the MC libraries. // //===----------------------------------------------------------------------===// #include "RISCVBaseInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/RISCVISAInfo.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/TargetParser.h" #include "llvm/TargetParser/Triple.h" namespace llvm { extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures]; namespace RISCVSysReg { #define GET_SysRegsList_IMPL #include "RISCVGenSearchableTables.inc" } // namespace RISCVSysReg namespace RISCVInsnOpcode { #define GET_RISCVOpcodesList_IMPL #include "RISCVGenSearchableTables.inc" } // namespace RISCVInsnOpcode namespace RISCVABI { ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits, StringRef ABIName) { auto TargetABI = getTargetABI(ABIName); bool IsRV64 = TT.isArch64Bit(); bool IsRVE = FeatureBits[RISCV::FeatureRVE]; if (!ABIName.empty() && TargetABI == ABI_Unknown) { errs() << "'" << ABIName << "' is not a recognized ABI for this target (ignoring target-abi)\n"; } else if (ABIName.starts_with("ilp32") && IsRV64) { errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring " "target-abi)\n"; TargetABI = ABI_Unknown; } else if (ABIName.starts_with("lp64") && !IsRV64) { errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring " "target-abi)\n"; TargetABI = ABI_Unknown; } else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E && TargetABI != ABI_Unknown) { // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser errs() << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n"; TargetABI = ABI_Unknown; } else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E && TargetABI != ABI_Unknown) { // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser errs() << "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n"; TargetABI = ABI_Unknown; } if (TargetABI != ABI_Unknown) return TargetABI; // If no explicit ABI is given, try to compute the default ABI. auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits); if (!ISAInfo) report_fatal_error(ISAInfo.takeError()); return getTargetABI((*ISAInfo)->computeDefaultABI()); } ABI getTargetABI(StringRef ABIName) { auto TargetABI = StringSwitch(ABIName) .Case("ilp32", ABI_ILP32) .Case("ilp32f", ABI_ILP32F) .Case("ilp32d", ABI_ILP32D) .Case("ilp32e", ABI_ILP32E) .Case("lp64", ABI_LP64) .Case("lp64f", ABI_LP64F) .Case("lp64d", ABI_LP64D) .Case("lp64e", ABI_LP64E) .Default(ABI_Unknown); return TargetABI; } // To avoid the BP value clobbered by a function call, we need to choose a // callee saved register to save the value. RV32E only has X8 and X9 as callee // saved registers and X8 will be used as fp. So we choose X9 as bp. MCRegister getBPReg() { return RISCV::X9; } // Returns the register holding shadow call stack pointer. MCRegister getSCSPReg() { return RISCV::X3; } } // namespace RISCVABI namespace RISCVFeatures { void validate(const Triple &TT, const FeatureBitset &FeatureBits) { if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit]) report_fatal_error("RV64 target requires an RV64 CPU"); if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit]) report_fatal_error("RV32 target requires an RV32 CPU"); if (FeatureBits[RISCV::Feature32Bit] && FeatureBits[RISCV::Feature64Bit]) report_fatal_error("RV32 and RV64 can't be combined"); } llvm::Expected> parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) { unsigned XLen = IsRV64 ? 64 : 32; std::vector FeatureVector; // Convert FeatureBitset to FeatureVector. for (auto Feature : RISCVFeatureKV) { if (FeatureBits[Feature.Value] && llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key)) FeatureVector.push_back(std::string("+") + Feature.Key); } return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector); } } // namespace RISCVFeatures // Encode VTYPE into the binary format used by the the VSETVLI instruction which // is used by our MC layer representation. // // Bits | Name | Description // -----+------------+------------------------------------------------ // 7 | vma | Vector mask agnostic // 6 | vta | Vector tail agnostic // 5:3 | vsew[2:0] | Standard element width (SEW) setting // 2:0 | vlmul[2:0] | Vector register group multiplier (LMUL) setting unsigned RISCVVType::encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW, bool TailAgnostic, bool MaskAgnostic) { assert(isValidSEW(SEW) && "Invalid SEW"); unsigned VLMULBits = static_cast(VLMUL); unsigned VSEWBits = encodeSEW(SEW); unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7); if (TailAgnostic) VTypeI |= 0x40; if (MaskAgnostic) VTypeI |= 0x80; return VTypeI; } std::pair RISCVVType::decodeVLMUL(RISCVII::VLMUL VLMUL) { switch (VLMUL) { default: llvm_unreachable("Unexpected LMUL value!"); case RISCVII::VLMUL::LMUL_1: case RISCVII::VLMUL::LMUL_2: case RISCVII::VLMUL::LMUL_4: case RISCVII::VLMUL::LMUL_8: return std::make_pair(1 << static_cast(VLMUL), false); case RISCVII::VLMUL::LMUL_F2: case RISCVII::VLMUL::LMUL_F4: case RISCVII::VLMUL::LMUL_F8: return std::make_pair(1 << (8 - static_cast(VLMUL)), true); } } void RISCVVType::printVType(unsigned VType, raw_ostream &OS) { unsigned Sew = getSEW(VType); OS << "e" << Sew; unsigned LMul; bool Fractional; std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType)); if (Fractional) OS << ", mf"; else OS << ", m"; OS << LMul; if (isTailAgnostic(VType)) OS << ", ta"; else OS << ", tu"; if (isMaskAgnostic(VType)) OS << ", ma"; else OS << ", mu"; } unsigned RISCVVType::getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) { unsigned LMul; bool Fractional; std::tie(LMul, Fractional) = decodeVLMUL(VLMul); // Convert LMul to a fixed point value with 3 fractional bits. LMul = Fractional ? (8 / LMul) : (LMul * 8); assert(SEW >= 8 && "Unexpected SEW value"); return (SEW * 8) / LMul; } std::optional RISCVVType::getSameRatioLMUL(unsigned SEW, RISCVII::VLMUL VLMUL, unsigned EEW) { unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMUL); unsigned EMULFixedPoint = (EEW * 8) / Ratio; bool Fractional = EMULFixedPoint < 8; unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8; if (!isValidLMUL(EMUL, Fractional)) return std::nullopt; return RISCVVType::encodeLMUL(EMUL, Fractional); } // Include the auto-generated portion of the compress emitter. #define GEN_UNCOMPRESS_INSTR #define GEN_COMPRESS_INSTR #include "RISCVGenCompressInstEmitter.inc" bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI, const MCSubtargetInfo &STI) { return compressInst(OutInst, MI, STI); } bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI, const MCSubtargetInfo &STI) { return uncompressInst(OutInst, MI, STI); } // Lookup table for fli.s for entries 2-31. static constexpr std::pair LoadFP32ImmArr[] = { {0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00}, {0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00}, {0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10}, {0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01}, {0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00}, {0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11}, {0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10}, {0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00}, {0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00}, {0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10}, }; int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) { assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() || &FPImm.getSemantics() == &APFloat::IEEEdouble() || &FPImm.getSemantics() == &APFloat::IEEEhalf()) && "Unexpected semantics"); // Handle the minimum normalized value which is different for each type. if (FPImm.isSmallestNormalized() && !FPImm.isNegative()) return 1; // Convert to single precision to use its lookup table. bool LosesInfo; APFloat::opStatus Status = FPImm.convert( APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo); if (Status != APFloat::opOK || LosesInfo) return -1; APInt Imm = FPImm.bitcastToAPInt(); if (Imm.extractBitsAsZExtValue(21, 0) != 0) return -1; bool Sign = Imm.extractBitsAsZExtValue(1, 31); uint8_t Mantissa = Imm.extractBitsAsZExtValue(2, 21); uint8_t Exp = Imm.extractBitsAsZExtValue(8, 23); auto EMI = llvm::lower_bound(LoadFP32ImmArr, std::make_pair(Exp, Mantissa)); if (EMI == std::end(LoadFP32ImmArr) || EMI->first != Exp || EMI->second != Mantissa) return -1; // Table doesn't have entry 0 or 1. int Entry = std::distance(std::begin(LoadFP32ImmArr), EMI) + 2; // The only legal negative value is -1.0(entry 0). 1.0 is entry 16. if (Sign) { if (Entry == 16) return 0; return -1; } return Entry; } float RISCVLoadFPImm::getFPImm(unsigned Imm) { assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate"); // Entry 0 is -1.0, the only negative value. Entry 16 is 1.0. uint32_t Sign = 0; if (Imm == 0) { Sign = 0b1; Imm = 16; } uint32_t Exp = LoadFP32ImmArr[Imm - 2].first; uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second; uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21; return bit_cast(I); } void RISCVZC::printRlist(unsigned SlistEncode, raw_ostream &OS) { OS << "{ra"; if (SlistEncode > 4) { OS << ", s0"; if (SlistEncode == 15) OS << "-s11"; else if (SlistEncode > 5 && SlistEncode <= 14) OS << "-s" << (SlistEncode - 5); } OS << "}"; } void RISCVZC::printSpimm(int64_t Spimm, raw_ostream &OS) { OS << Spimm; } } // namespace llvm