1 //===------ PPCLoopInstrFormPrep.cpp - Loop Instr Form Prep Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a pass to prepare loops for ppc preferred addressing 10 // modes, leveraging different instruction form. (eg: DS/DQ form, D/DS form with 11 // update) 12 // Additional PHIs are created for loop induction variables used by load/store 13 // instructions so that preferred addressing modes can be used. 14 // 15 // 1: DS/DQ form preparation, prepare the load/store instructions so that they 16 // can satisfy the DS/DQ form displacement requirements. 17 // Generically, this means transforming loops like this: 18 // for (int i = 0; i < n; ++i) { 19 // unsigned long x1 = *(unsigned long *)(p + i + 5); 20 // unsigned long x2 = *(unsigned long *)(p + i + 9); 21 // } 22 // 23 // to look like this: 24 // 25 // unsigned NewP = p + 5; 26 // for (int i = 0; i < n; ++i) { 27 // unsigned long x1 = *(unsigned long *)(i + NewP); 28 // unsigned long x2 = *(unsigned long *)(i + NewP + 4); 29 // } 30 // 31 // 2: D/DS form with update preparation, prepare the load/store instructions so 32 // that we can use update form to do pre-increment. 33 // Generically, this means transforming loops like this: 34 // for (int i = 0; i < n; ++i) 35 // array[i] = c; 36 // 37 // to look like this: 38 // 39 // T *p = array[-1]; 40 // for (int i = 0; i < n; ++i) 41 // *++p = c; 42 // 43 // 3: common multiple chains for the load/stores with same offsets in the loop, 44 // so that we can reuse the offsets and reduce the register pressure in the 45 // loop. This transformation can also increase the loop ILP as now each chain 46 // uses its own loop induction add/addi. But this will increase the number of 47 // add/addi in the loop. 48 // 49 // Generically, this means transforming loops like this: 50 // 51 // char *p; 52 // A1 = p + base1 53 // A2 = p + base1 + offset 54 // B1 = p + base2 55 // B2 = p + base2 + offset 56 // 57 // for (int i = 0; i < n; i++) 58 // unsigned long x1 = *(unsigned long *)(A1 + i); 59 // unsigned long x2 = *(unsigned long *)(A2 + i) 60 // unsigned long x3 = *(unsigned long *)(B1 + i); 61 // unsigned long x4 = *(unsigned long *)(B2 + i); 62 // } 63 // 64 // to look like this: 65 // 66 // A1_new = p + base1 // chain 1 67 // B1_new = p + base2 // chain 2, now inside the loop, common offset is 68 // // reused. 69 // 70 // for (long long i = 0; i < n; i+=count) { 71 // unsigned long x1 = *(unsigned long *)(A1_new + i); 72 // unsigned long x2 = *(unsigned long *)((A1_new + i) + offset); 73 // unsigned long x3 = *(unsigned long *)(B1_new + i); 74 // unsigned long x4 = *(unsigned long *)((B1_new + i) + offset); 75 // } 76 //===----------------------------------------------------------------------===// 77 78 #include "PPC.h" 79 #include "PPCSubtarget.h" 80 #include "PPCTargetMachine.h" 81 #include "llvm/ADT/DepthFirstIterator.h" 82 #include "llvm/ADT/SmallPtrSet.h" 83 #include "llvm/ADT/SmallSet.h" 84 #include "llvm/ADT/SmallVector.h" 85 #include "llvm/ADT/Statistic.h" 86 #include "llvm/Analysis/LoopInfo.h" 87 #include "llvm/Analysis/ScalarEvolution.h" 88 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 89 #include "llvm/IR/BasicBlock.h" 90 #include "llvm/IR/CFG.h" 91 #include "llvm/IR/Dominators.h" 92 #include "llvm/IR/Instruction.h" 93 #include "llvm/IR/Instructions.h" 94 #include "llvm/IR/IntrinsicInst.h" 95 #include "llvm/IR/IntrinsicsPowerPC.h" 96 #include "llvm/IR/Module.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/InitializePasses.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Transforms/Scalar.h" 105 #include "llvm/Transforms/Utils.h" 106 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 107 #include "llvm/Transforms/Utils/Local.h" 108 #include "llvm/Transforms/Utils/LoopUtils.h" 109 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 110 #include <cassert> 111 #include <iterator> 112 #include <utility> 113 114 #define DEBUG_TYPE "ppc-loop-instr-form-prep" 115 116 using namespace llvm; 117 118 static cl::opt<unsigned> 119 MaxVarsPrep("ppc-formprep-max-vars", cl::Hidden, cl::init(24), 120 cl::desc("Potential common base number threshold per function " 121 "for PPC loop prep")); 122 123 static cl::opt<bool> PreferUpdateForm("ppc-formprep-prefer-update", 124 cl::init(true), cl::Hidden, 125 cl::desc("prefer update form when ds form is also a update form")); 126 127 static cl::opt<bool> EnableUpdateFormForNonConstInc( 128 "ppc-formprep-update-nonconst-inc", cl::init(false), cl::Hidden, 129 cl::desc("prepare update form when the load/store increment is a loop " 130 "invariant non-const value.")); 131 132 static cl::opt<bool> EnableChainCommoning( 133 "ppc-formprep-chain-commoning", cl::init(false), cl::Hidden, 134 cl::desc("Enable chain commoning in PPC loop prepare pass.")); 135 136 // Sum of following 3 per loop thresholds for all loops can not be larger 137 // than MaxVarsPrep. 138 // now the thresholds for each kind prep are exterimental values on Power9. 139 static cl::opt<unsigned> MaxVarsUpdateForm("ppc-preinc-prep-max-vars", 140 cl::Hidden, cl::init(3), 141 cl::desc("Potential PHI threshold per loop for PPC loop prep of update " 142 "form")); 143 144 static cl::opt<unsigned> MaxVarsDSForm("ppc-dsprep-max-vars", 145 cl::Hidden, cl::init(3), 146 cl::desc("Potential PHI threshold per loop for PPC loop prep of DS form")); 147 148 static cl::opt<unsigned> MaxVarsDQForm("ppc-dqprep-max-vars", 149 cl::Hidden, cl::init(8), 150 cl::desc("Potential PHI threshold per loop for PPC loop prep of DQ form")); 151 152 // Commoning chain will reduce the register pressure, so we don't consider about 153 // the PHI nodes number. 154 // But commoning chain will increase the addi/add number in the loop and also 155 // increase loop ILP. Maximum chain number should be same with hardware 156 // IssueWidth, because we won't benefit from ILP if the parallel chains number 157 // is bigger than IssueWidth. We assume there are 2 chains in one bucket, so 158 // there would be 4 buckets at most on P9(IssueWidth is 8). 159 static cl::opt<unsigned> MaxVarsChainCommon( 160 "ppc-chaincommon-max-vars", cl::Hidden, cl::init(4), 161 cl::desc("Bucket number per loop for PPC loop chain common")); 162 163 // If would not be profitable if the common base has only one load/store, ISEL 164 // should already be able to choose best load/store form based on offset for 165 // single load/store. Set minimal profitable value default to 2 and make it as 166 // an option. 167 static cl::opt<unsigned> DispFormPrepMinThreshold("ppc-dispprep-min-threshold", 168 cl::Hidden, cl::init(2), 169 cl::desc("Minimal common base load/store instructions triggering DS/DQ form " 170 "preparation")); 171 172 static cl::opt<unsigned> ChainCommonPrepMinThreshold( 173 "ppc-chaincommon-min-threshold", cl::Hidden, cl::init(4), 174 cl::desc("Minimal common base load/store instructions triggering chain " 175 "commoning preparation. Must be not smaller than 4")); 176 177 STATISTIC(PHINodeAlreadyExistsUpdate, "PHI node already in pre-increment form"); 178 STATISTIC(PHINodeAlreadyExistsDS, "PHI node already in DS form"); 179 STATISTIC(PHINodeAlreadyExistsDQ, "PHI node already in DQ form"); 180 STATISTIC(DSFormChainRewritten, "Num of DS form chain rewritten"); 181 STATISTIC(DQFormChainRewritten, "Num of DQ form chain rewritten"); 182 STATISTIC(UpdFormChainRewritten, "Num of update form chain rewritten"); 183 STATISTIC(ChainCommoningRewritten, "Num of commoning chains"); 184 185 namespace { 186 struct BucketElement { 187 BucketElement(const SCEV *O, Instruction *I) : Offset(O), Instr(I) {} 188 BucketElement(Instruction *I) : Offset(nullptr), Instr(I) {} 189 190 const SCEV *Offset; 191 Instruction *Instr; 192 }; 193 194 struct Bucket { 195 Bucket(const SCEV *B, Instruction *I) 196 : BaseSCEV(B), Elements(1, BucketElement(I)) { 197 ChainSize = 0; 198 } 199 200 // The base of the whole bucket. 201 const SCEV *BaseSCEV; 202 203 // All elements in the bucket. In the bucket, the element with the BaseSCEV 204 // has no offset and all other elements are stored as offsets to the 205 // BaseSCEV. 206 SmallVector<BucketElement, 16> Elements; 207 208 // The potential chains size. This is used for chain commoning only. 209 unsigned ChainSize; 210 211 // The base for each potential chain. This is used for chain commoning only. 212 SmallVector<BucketElement, 16> ChainBases; 213 }; 214 215 // "UpdateForm" is not a real PPC instruction form, it stands for dform 216 // load/store with update like ldu/stdu, or Prefetch intrinsic. 217 // For DS form instructions, their displacements must be multiple of 4. 218 // For DQ form instructions, their displacements must be multiple of 16. 219 enum PrepForm { UpdateForm = 1, DSForm = 4, DQForm = 16, ChainCommoning }; 220 221 class PPCLoopInstrFormPrep : public FunctionPass { 222 public: 223 static char ID; // Pass ID, replacement for typeid 224 225 PPCLoopInstrFormPrep() : FunctionPass(ID) { 226 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); 227 } 228 229 PPCLoopInstrFormPrep(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) { 230 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); 231 } 232 233 void getAnalysisUsage(AnalysisUsage &AU) const override { 234 AU.addPreserved<DominatorTreeWrapperPass>(); 235 AU.addRequired<LoopInfoWrapperPass>(); 236 AU.addPreserved<LoopInfoWrapperPass>(); 237 AU.addRequired<ScalarEvolutionWrapperPass>(); 238 } 239 240 bool runOnFunction(Function &F) override; 241 242 private: 243 PPCTargetMachine *TM = nullptr; 244 const PPCSubtarget *ST; 245 DominatorTree *DT; 246 LoopInfo *LI; 247 ScalarEvolution *SE; 248 bool PreserveLCSSA; 249 bool HasCandidateForPrepare; 250 251 /// Successful preparation number for Update/DS/DQ form in all inner most 252 /// loops. One successful preparation will put one common base out of loop, 253 /// this may leads to register presure like LICM does. 254 /// Make sure total preparation number can be controlled by option. 255 unsigned SuccPrepCount; 256 257 bool runOnLoop(Loop *L); 258 259 /// Check if required PHI node is already exist in Loop \p L. 260 bool alreadyPrepared(Loop *L, Instruction *MemI, 261 const SCEV *BasePtrStartSCEV, 262 const SCEV *BasePtrIncSCEV, PrepForm Form); 263 264 /// Get the value which defines the increment SCEV \p BasePtrIncSCEV. 265 Value *getNodeForInc(Loop *L, Instruction *MemI, 266 const SCEV *BasePtrIncSCEV); 267 268 /// Common chains to reuse offsets for a loop to reduce register pressure. 269 bool chainCommoning(Loop *L, SmallVector<Bucket, 16> &Buckets); 270 271 /// Find out the potential commoning chains and their bases. 272 bool prepareBasesForCommoningChains(Bucket &BucketChain); 273 274 /// Rewrite load/store according to the common chains. 275 bool 276 rewriteLoadStoresForCommoningChains(Loop *L, Bucket &Bucket, 277 SmallSet<BasicBlock *, 16> &BBChanged); 278 279 /// Collect condition matched(\p isValidCandidate() returns true) 280 /// candidates in Loop \p L. 281 SmallVector<Bucket, 16> collectCandidates( 282 Loop *L, 283 std::function<bool(const Instruction *, Value *, const Type *)> 284 isValidCandidate, 285 std::function<bool(const SCEV *)> isValidDiff, 286 unsigned MaxCandidateNum); 287 288 /// Add a candidate to candidates \p Buckets if diff between candidate and 289 /// one base in \p Buckets matches \p isValidDiff. 290 void addOneCandidate(Instruction *MemI, const SCEV *LSCEV, 291 SmallVector<Bucket, 16> &Buckets, 292 std::function<bool(const SCEV *)> isValidDiff, 293 unsigned MaxCandidateNum); 294 295 /// Prepare all candidates in \p Buckets for update form. 296 bool updateFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets); 297 298 /// Prepare all candidates in \p Buckets for displacement form, now for 299 /// ds/dq. 300 bool dispFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets, PrepForm Form); 301 302 /// Prepare for one chain \p BucketChain, find the best base element and 303 /// update all other elements in \p BucketChain accordingly. 304 /// \p Form is used to find the best base element. 305 /// If success, best base element must be stored as the first element of 306 /// \p BucketChain. 307 /// Return false if no base element found, otherwise return true. 308 bool prepareBaseForDispFormChain(Bucket &BucketChain, PrepForm Form); 309 310 /// Prepare for one chain \p BucketChain, find the best base element and 311 /// update all other elements in \p BucketChain accordingly. 312 /// If success, best base element must be stored as the first element of 313 /// \p BucketChain. 314 /// Return false if no base element found, otherwise return true. 315 bool prepareBaseForUpdateFormChain(Bucket &BucketChain); 316 317 /// Rewrite load/store instructions in \p BucketChain according to 318 /// preparation. 319 bool rewriteLoadStores(Loop *L, Bucket &BucketChain, 320 SmallSet<BasicBlock *, 16> &BBChanged, 321 PrepForm Form); 322 323 /// Rewrite for the base load/store of a chain. 324 std::pair<Instruction *, Instruction *> 325 rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, 326 Instruction *BaseMemI, bool CanPreInc, PrepForm Form, 327 SCEVExpander &SCEVE, SmallPtrSet<Value *, 16> &DeletedPtrs); 328 329 /// Rewrite for the other load/stores of a chain according to the new \p 330 /// Base. 331 Instruction * 332 rewriteForBucketElement(std::pair<Instruction *, Instruction *> Base, 333 const BucketElement &Element, Value *OffToBase, 334 SmallPtrSet<Value *, 16> &DeletedPtrs); 335 }; 336 337 } // end anonymous namespace 338 339 char PPCLoopInstrFormPrep::ID = 0; 340 static const char *name = "Prepare loop for ppc preferred instruction forms"; 341 INITIALIZE_PASS_BEGIN(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) 342 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 343 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 344 INITIALIZE_PASS_END(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) 345 346 static constexpr StringRef PHINodeNameSuffix = ".phi"; 347 static constexpr StringRef CastNodeNameSuffix = ".cast"; 348 static constexpr StringRef GEPNodeIncNameSuffix = ".inc"; 349 static constexpr StringRef GEPNodeOffNameSuffix = ".off"; 350 351 FunctionPass *llvm::createPPCLoopInstrFormPrepPass(PPCTargetMachine &TM) { 352 return new PPCLoopInstrFormPrep(TM); 353 } 354 355 static bool IsPtrInBounds(Value *BasePtr) { 356 Value *StrippedBasePtr = BasePtr; 357 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBasePtr)) 358 StrippedBasePtr = BC->getOperand(0); 359 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(StrippedBasePtr)) 360 return GEP->isInBounds(); 361 362 return false; 363 } 364 365 static std::string getInstrName(const Value *I, StringRef Suffix) { 366 assert(I && "Invalid paramater!"); 367 if (I->hasName()) 368 return (I->getName() + Suffix).str(); 369 else 370 return ""; 371 } 372 373 static Value *getPointerOperandAndType(Value *MemI, 374 Type **PtrElementType = nullptr) { 375 376 Value *PtrValue = nullptr; 377 Type *PointerElementType = nullptr; 378 379 if (LoadInst *LMemI = dyn_cast<LoadInst>(MemI)) { 380 PtrValue = LMemI->getPointerOperand(); 381 PointerElementType = LMemI->getType(); 382 } else if (StoreInst *SMemI = dyn_cast<StoreInst>(MemI)) { 383 PtrValue = SMemI->getPointerOperand(); 384 PointerElementType = SMemI->getValueOperand()->getType(); 385 } else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(MemI)) { 386 PointerElementType = Type::getInt8Ty(MemI->getContext()); 387 if (IMemI->getIntrinsicID() == Intrinsic::prefetch || 388 IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) { 389 PtrValue = IMemI->getArgOperand(0); 390 } else if (IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp) { 391 PtrValue = IMemI->getArgOperand(1); 392 } 393 } 394 /*Get ElementType if PtrElementType is not null.*/ 395 if (PtrElementType) 396 *PtrElementType = PointerElementType; 397 398 return PtrValue; 399 } 400 401 bool PPCLoopInstrFormPrep::runOnFunction(Function &F) { 402 if (skipFunction(F)) 403 return false; 404 405 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 406 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 407 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 408 DT = DTWP ? &DTWP->getDomTree() : nullptr; 409 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 410 ST = TM ? TM->getSubtargetImpl(F) : nullptr; 411 SuccPrepCount = 0; 412 413 bool MadeChange = false; 414 415 for (Loop *I : *LI) 416 for (Loop *L : depth_first(I)) 417 MadeChange |= runOnLoop(L); 418 419 return MadeChange; 420 } 421 422 // Finding the minimal(chain_number + reusable_offset_number) is a complicated 423 // algorithmic problem. 424 // For now, the algorithm used here is simply adjusted to handle the case for 425 // manually unrolling cases. 426 // FIXME: use a more powerful algorithm to find minimal sum of chain_number and 427 // reusable_offset_number for one base with multiple offsets. 428 bool PPCLoopInstrFormPrep::prepareBasesForCommoningChains(Bucket &CBucket) { 429 // The minimal size for profitable chain commoning: 430 // A1 = base + offset1 431 // A2 = base + offset2 (offset2 - offset1 = X) 432 // A3 = base + offset3 433 // A4 = base + offset4 (offset4 - offset3 = X) 434 // ======> 435 // base1 = base + offset1 436 // base2 = base + offset3 437 // A1 = base1 438 // A2 = base1 + X 439 // A3 = base2 440 // A4 = base2 + X 441 // 442 // There is benefit because of reuse of offest 'X'. 443 444 assert(ChainCommonPrepMinThreshold >= 4 && 445 "Thredhold can not be smaller than 4!\n"); 446 if (CBucket.Elements.size() < ChainCommonPrepMinThreshold) 447 return false; 448 449 // We simply select the FirstOffset as the first reusable offset between each 450 // chain element 1 and element 0. 451 const SCEV *FirstOffset = CBucket.Elements[1].Offset; 452 453 // Figure out how many times above FirstOffset is used in the chain. 454 // For a success commoning chain candidate, offset difference between each 455 // chain element 1 and element 0 must be also FirstOffset. 456 unsigned FirstOffsetReusedCount = 1; 457 458 // Figure out how many times above FirstOffset is used in the first chain. 459 // Chain number is FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain 460 unsigned FirstOffsetReusedCountInFirstChain = 1; 461 462 unsigned EleNum = CBucket.Elements.size(); 463 bool SawChainSeparater = false; 464 for (unsigned j = 2; j != EleNum; ++j) { 465 if (SE->getMinusSCEV(CBucket.Elements[j].Offset, 466 CBucket.Elements[j - 1].Offset) == FirstOffset) { 467 if (!SawChainSeparater) 468 FirstOffsetReusedCountInFirstChain++; 469 FirstOffsetReusedCount++; 470 } else 471 // For now, if we meet any offset which is not FirstOffset, we assume we 472 // find a new Chain. 473 // This makes us miss some opportunities. 474 // For example, we can common: 475 // 476 // {OffsetA, Offset A, OffsetB, OffsetA, OffsetA, OffsetB} 477 // 478 // as two chains: 479 // {{OffsetA, Offset A, OffsetB}, {OffsetA, OffsetA, OffsetB}} 480 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 2 481 // 482 // But we fail to common: 483 // 484 // {OffsetA, OffsetB, OffsetA, OffsetA, OffsetB, OffsetA} 485 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 1 486 487 SawChainSeparater = true; 488 } 489 490 // FirstOffset is not reused, skip this bucket. 491 if (FirstOffsetReusedCount == 1) 492 return false; 493 494 unsigned ChainNum = 495 FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain; 496 497 // All elements are increased by FirstOffset. 498 // The number of chains should be sqrt(EleNum). 499 if (!SawChainSeparater) 500 ChainNum = (unsigned)sqrt((double)EleNum); 501 502 CBucket.ChainSize = (unsigned)(EleNum / ChainNum); 503 504 // If this is not a perfect chain(eg: not all elements can be put inside 505 // commoning chains.), skip now. 506 if (CBucket.ChainSize * ChainNum != EleNum) 507 return false; 508 509 if (SawChainSeparater) { 510 // Check that the offset seqs are the same for all chains. 511 for (unsigned i = 1; i < CBucket.ChainSize; i++) 512 for (unsigned j = 1; j < ChainNum; j++) 513 if (CBucket.Elements[i].Offset != 514 SE->getMinusSCEV(CBucket.Elements[i + j * CBucket.ChainSize].Offset, 515 CBucket.Elements[j * CBucket.ChainSize].Offset)) 516 return false; 517 } 518 519 for (unsigned i = 0; i < ChainNum; i++) 520 CBucket.ChainBases.push_back(CBucket.Elements[i * CBucket.ChainSize]); 521 522 LLVM_DEBUG(dbgs() << "Bucket has " << ChainNum << " chains.\n"); 523 524 return true; 525 } 526 527 bool PPCLoopInstrFormPrep::chainCommoning(Loop *L, 528 SmallVector<Bucket, 16> &Buckets) { 529 bool MadeChange = false; 530 531 if (Buckets.empty()) 532 return MadeChange; 533 534 SmallSet<BasicBlock *, 16> BBChanged; 535 536 for (auto &Bucket : Buckets) { 537 if (prepareBasesForCommoningChains(Bucket)) 538 MadeChange |= rewriteLoadStoresForCommoningChains(L, Bucket, BBChanged); 539 } 540 541 if (MadeChange) 542 for (auto *BB : BBChanged) 543 DeleteDeadPHIs(BB); 544 return MadeChange; 545 } 546 547 bool PPCLoopInstrFormPrep::rewriteLoadStoresForCommoningChains( 548 Loop *L, Bucket &Bucket, SmallSet<BasicBlock *, 16> &BBChanged) { 549 bool MadeChange = false; 550 551 assert(Bucket.Elements.size() == 552 Bucket.ChainBases.size() * Bucket.ChainSize && 553 "invalid bucket for chain commoning!\n"); 554 SmallPtrSet<Value *, 16> DeletedPtrs; 555 556 BasicBlock *Header = L->getHeader(); 557 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 558 559 SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(), 560 "loopprepare-chaincommon"); 561 562 for (unsigned ChainIdx = 0; ChainIdx < Bucket.ChainBases.size(); ++ChainIdx) { 563 unsigned BaseElemIdx = Bucket.ChainSize * ChainIdx; 564 const SCEV *BaseSCEV = 565 ChainIdx ? SE->getAddExpr(Bucket.BaseSCEV, 566 Bucket.Elements[BaseElemIdx].Offset) 567 : Bucket.BaseSCEV; 568 const SCEVAddRecExpr *BasePtrSCEV = cast<SCEVAddRecExpr>(BaseSCEV); 569 570 // Make sure the base is able to expand. 571 if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart())) 572 return MadeChange; 573 574 assert(BasePtrSCEV->isAffine() && 575 "Invalid SCEV type for the base ptr for a candidate chain!\n"); 576 577 std::pair<Instruction *, Instruction *> Base = rewriteForBase( 578 L, BasePtrSCEV, Bucket.Elements[BaseElemIdx].Instr, 579 false /* CanPreInc */, ChainCommoning, SCEVE, DeletedPtrs); 580 581 if (!Base.first || !Base.second) 582 return MadeChange; 583 584 // Keep track of the replacement pointer values we've inserted so that we 585 // don't generate more pointer values than necessary. 586 SmallPtrSet<Value *, 16> NewPtrs; 587 NewPtrs.insert(Base.first); 588 589 for (unsigned Idx = BaseElemIdx + 1; Idx < BaseElemIdx + Bucket.ChainSize; 590 ++Idx) { 591 BucketElement &I = Bucket.Elements[Idx]; 592 Value *Ptr = getPointerOperandAndType(I.Instr); 593 assert(Ptr && "No pointer operand"); 594 if (NewPtrs.count(Ptr)) 595 continue; 596 597 const SCEV *OffsetSCEV = 598 BaseElemIdx ? SE->getMinusSCEV(Bucket.Elements[Idx].Offset, 599 Bucket.Elements[BaseElemIdx].Offset) 600 : Bucket.Elements[Idx].Offset; 601 602 // Make sure offset is able to expand. Only need to check one time as the 603 // offsets are reused between different chains. 604 if (!BaseElemIdx) 605 if (!SCEVE.isSafeToExpand(OffsetSCEV)) 606 return false; 607 608 Value *OffsetValue = SCEVE.expandCodeFor( 609 OffsetSCEV, OffsetSCEV->getType(), LoopPredecessor->getTerminator()); 610 611 Instruction *NewPtr = rewriteForBucketElement(Base, Bucket.Elements[Idx], 612 OffsetValue, DeletedPtrs); 613 614 assert(NewPtr && "Wrong rewrite!\n"); 615 NewPtrs.insert(NewPtr); 616 } 617 618 ++ChainCommoningRewritten; 619 } 620 621 // Clear the rewriter cache, because values that are in the rewriter's cache 622 // can be deleted below, causing the AssertingVH in the cache to trigger. 623 SCEVE.clear(); 624 625 for (auto *Ptr : DeletedPtrs) { 626 if (Instruction *IDel = dyn_cast<Instruction>(Ptr)) 627 BBChanged.insert(IDel->getParent()); 628 RecursivelyDeleteTriviallyDeadInstructions(Ptr); 629 } 630 631 MadeChange = true; 632 return MadeChange; 633 } 634 635 // Rewrite the new base according to BasePtrSCEV. 636 // bb.loop.preheader: 637 // %newstart = ... 638 // bb.loop.body: 639 // %phinode = phi [ %newstart, %bb.loop.preheader ], [ %add, %bb.loop.body ] 640 // ... 641 // %add = getelementptr %phinode, %inc 642 // 643 // First returned instruciton is %phinode (or a type cast to %phinode), caller 644 // needs this value to rewrite other load/stores in the same chain. 645 // Second returned instruction is %add, caller needs this value to rewrite other 646 // load/stores in the same chain. 647 std::pair<Instruction *, Instruction *> 648 PPCLoopInstrFormPrep::rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, 649 Instruction *BaseMemI, bool CanPreInc, 650 PrepForm Form, SCEVExpander &SCEVE, 651 SmallPtrSet<Value *, 16> &DeletedPtrs) { 652 653 LLVM_DEBUG(dbgs() << "PIP: Transforming: " << *BasePtrSCEV << "\n"); 654 655 assert(BasePtrSCEV->getLoop() == L && "AddRec for the wrong loop?"); 656 657 Value *BasePtr = getPointerOperandAndType(BaseMemI); 658 assert(BasePtr && "No pointer operand"); 659 660 Type *I8Ty = Type::getInt8Ty(BaseMemI->getParent()->getContext()); 661 Type *I8PtrTy = 662 Type::getInt8PtrTy(BaseMemI->getParent()->getContext(), 663 BasePtr->getType()->getPointerAddressSpace()); 664 665 bool IsConstantInc = false; 666 const SCEV *BasePtrIncSCEV = BasePtrSCEV->getStepRecurrence(*SE); 667 Value *IncNode = getNodeForInc(L, BaseMemI, BasePtrIncSCEV); 668 669 const SCEVConstant *BasePtrIncConstantSCEV = 670 dyn_cast<SCEVConstant>(BasePtrIncSCEV); 671 if (BasePtrIncConstantSCEV) 672 IsConstantInc = true; 673 674 // No valid representation for the increment. 675 if (!IncNode) { 676 LLVM_DEBUG(dbgs() << "Loop Increasement can not be represented!\n"); 677 return std::make_pair(nullptr, nullptr); 678 } 679 680 if (Form == UpdateForm && !IsConstantInc && !EnableUpdateFormForNonConstInc) { 681 LLVM_DEBUG( 682 dbgs() 683 << "Update form prepare for non-const increment is not enabled!\n"); 684 return std::make_pair(nullptr, nullptr); 685 } 686 687 const SCEV *BasePtrStartSCEV = nullptr; 688 if (CanPreInc) { 689 assert(SE->isLoopInvariant(BasePtrIncSCEV, L) && 690 "Increment is not loop invariant!\n"); 691 BasePtrStartSCEV = SE->getMinusSCEV(BasePtrSCEV->getStart(), 692 IsConstantInc ? BasePtrIncConstantSCEV 693 : BasePtrIncSCEV); 694 } else 695 BasePtrStartSCEV = BasePtrSCEV->getStart(); 696 697 if (alreadyPrepared(L, BaseMemI, BasePtrStartSCEV, BasePtrIncSCEV, Form)) { 698 LLVM_DEBUG(dbgs() << "Instruction form is already prepared!\n"); 699 return std::make_pair(nullptr, nullptr); 700 } 701 702 LLVM_DEBUG(dbgs() << "PIP: New start is: " << *BasePtrStartSCEV << "\n"); 703 704 BasicBlock *Header = L->getHeader(); 705 unsigned HeaderLoopPredCount = pred_size(Header); 706 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 707 708 PHINode *NewPHI = PHINode::Create(I8PtrTy, HeaderLoopPredCount, 709 getInstrName(BaseMemI, PHINodeNameSuffix), 710 Header->getFirstNonPHI()); 711 712 Value *BasePtrStart = SCEVE.expandCodeFor(BasePtrStartSCEV, I8PtrTy, 713 LoopPredecessor->getTerminator()); 714 715 // Note that LoopPredecessor might occur in the predecessor list multiple 716 // times, and we need to add it the right number of times. 717 for (auto PI : predecessors(Header)) { 718 if (PI != LoopPredecessor) 719 continue; 720 721 NewPHI->addIncoming(BasePtrStart, LoopPredecessor); 722 } 723 724 Instruction *PtrInc = nullptr; 725 Instruction *NewBasePtr = nullptr; 726 if (CanPreInc) { 727 Instruction *InsPoint = &*Header->getFirstInsertionPt(); 728 PtrInc = GetElementPtrInst::Create( 729 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), 730 InsPoint); 731 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); 732 for (auto PI : predecessors(Header)) { 733 if (PI == LoopPredecessor) 734 continue; 735 736 NewPHI->addIncoming(PtrInc, PI); 737 } 738 if (PtrInc->getType() != BasePtr->getType()) 739 NewBasePtr = 740 new BitCastInst(PtrInc, BasePtr->getType(), 741 getInstrName(PtrInc, CastNodeNameSuffix), InsPoint); 742 else 743 NewBasePtr = PtrInc; 744 } else { 745 // Note that LoopPredecessor might occur in the predecessor list multiple 746 // times, and we need to make sure no more incoming value for them in PHI. 747 for (auto PI : predecessors(Header)) { 748 if (PI == LoopPredecessor) 749 continue; 750 751 // For the latch predecessor, we need to insert a GEP just before the 752 // terminator to increase the address. 753 BasicBlock *BB = PI; 754 Instruction *InsPoint = BB->getTerminator(); 755 PtrInc = GetElementPtrInst::Create( 756 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), 757 InsPoint); 758 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); 759 760 NewPHI->addIncoming(PtrInc, PI); 761 } 762 PtrInc = NewPHI; 763 if (NewPHI->getType() != BasePtr->getType()) 764 NewBasePtr = new BitCastInst(NewPHI, BasePtr->getType(), 765 getInstrName(NewPHI, CastNodeNameSuffix), 766 &*Header->getFirstInsertionPt()); 767 else 768 NewBasePtr = NewPHI; 769 } 770 771 BasePtr->replaceAllUsesWith(NewBasePtr); 772 773 DeletedPtrs.insert(BasePtr); 774 775 return std::make_pair(NewBasePtr, PtrInc); 776 } 777 778 Instruction *PPCLoopInstrFormPrep::rewriteForBucketElement( 779 std::pair<Instruction *, Instruction *> Base, const BucketElement &Element, 780 Value *OffToBase, SmallPtrSet<Value *, 16> &DeletedPtrs) { 781 Instruction *NewBasePtr = Base.first; 782 Instruction *PtrInc = Base.second; 783 assert((NewBasePtr && PtrInc) && "base does not exist!\n"); 784 785 Type *I8Ty = Type::getInt8Ty(PtrInc->getParent()->getContext()); 786 787 Value *Ptr = getPointerOperandAndType(Element.Instr); 788 assert(Ptr && "No pointer operand"); 789 790 Instruction *RealNewPtr; 791 if (!Element.Offset || 792 (isa<SCEVConstant>(Element.Offset) && 793 cast<SCEVConstant>(Element.Offset)->getValue()->isZero())) { 794 RealNewPtr = NewBasePtr; 795 } else { 796 Instruction *PtrIP = dyn_cast<Instruction>(Ptr); 797 if (PtrIP && isa<Instruction>(NewBasePtr) && 798 cast<Instruction>(NewBasePtr)->getParent() == PtrIP->getParent()) 799 PtrIP = nullptr; 800 else if (PtrIP && isa<PHINode>(PtrIP)) 801 PtrIP = &*PtrIP->getParent()->getFirstInsertionPt(); 802 else if (!PtrIP) 803 PtrIP = Element.Instr; 804 805 assert(OffToBase && "There should be an offset for non base element!\n"); 806 GetElementPtrInst *NewPtr = GetElementPtrInst::Create( 807 I8Ty, PtrInc, OffToBase, 808 getInstrName(Element.Instr, GEPNodeOffNameSuffix), PtrIP); 809 if (!PtrIP) 810 NewPtr->insertAfter(cast<Instruction>(PtrInc)); 811 NewPtr->setIsInBounds(IsPtrInBounds(Ptr)); 812 RealNewPtr = NewPtr; 813 } 814 815 Instruction *ReplNewPtr; 816 if (Ptr->getType() != RealNewPtr->getType()) { 817 ReplNewPtr = new BitCastInst(RealNewPtr, Ptr->getType(), 818 getInstrName(Ptr, CastNodeNameSuffix)); 819 ReplNewPtr->insertAfter(RealNewPtr); 820 } else 821 ReplNewPtr = RealNewPtr; 822 823 Ptr->replaceAllUsesWith(ReplNewPtr); 824 DeletedPtrs.insert(Ptr); 825 826 return ReplNewPtr; 827 } 828 829 void PPCLoopInstrFormPrep::addOneCandidate( 830 Instruction *MemI, const SCEV *LSCEV, SmallVector<Bucket, 16> &Buckets, 831 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) { 832 assert((MemI && getPointerOperandAndType(MemI)) && 833 "Candidate should be a memory instruction."); 834 assert(LSCEV && "Invalid SCEV for Ptr value."); 835 836 bool FoundBucket = false; 837 for (auto &B : Buckets) { 838 if (cast<SCEVAddRecExpr>(B.BaseSCEV)->getStepRecurrence(*SE) != 839 cast<SCEVAddRecExpr>(LSCEV)->getStepRecurrence(*SE)) 840 continue; 841 const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV); 842 if (isValidDiff(Diff)) { 843 B.Elements.push_back(BucketElement(Diff, MemI)); 844 FoundBucket = true; 845 break; 846 } 847 } 848 849 if (!FoundBucket) { 850 if (Buckets.size() == MaxCandidateNum) { 851 LLVM_DEBUG(dbgs() << "Can not prepare more chains, reach maximum limit " 852 << MaxCandidateNum << "\n"); 853 return; 854 } 855 Buckets.push_back(Bucket(LSCEV, MemI)); 856 } 857 } 858 859 SmallVector<Bucket, 16> PPCLoopInstrFormPrep::collectCandidates( 860 Loop *L, 861 std::function<bool(const Instruction *, Value *, const Type *)> 862 isValidCandidate, 863 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) { 864 SmallVector<Bucket, 16> Buckets; 865 866 for (const auto &BB : L->blocks()) 867 for (auto &J : *BB) { 868 Value *PtrValue = nullptr; 869 Type *PointerElementType = nullptr; 870 PtrValue = getPointerOperandAndType(&J, &PointerElementType); 871 872 if (!PtrValue) 873 continue; 874 875 if (PtrValue->getType()->getPointerAddressSpace()) 876 continue; 877 878 if (L->isLoopInvariant(PtrValue)) 879 continue; 880 881 const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L); 882 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV); 883 if (!LARSCEV || LARSCEV->getLoop() != L) 884 continue; 885 886 // Mark that we have candidates for preparing. 887 HasCandidateForPrepare = true; 888 889 if (isValidCandidate(&J, PtrValue, PointerElementType)) 890 addOneCandidate(&J, LSCEV, Buckets, isValidDiff, MaxCandidateNum); 891 } 892 return Buckets; 893 } 894 895 bool PPCLoopInstrFormPrep::prepareBaseForDispFormChain(Bucket &BucketChain, 896 PrepForm Form) { 897 // RemainderOffsetInfo details: 898 // key: value of (Offset urem DispConstraint). For DSForm, it can 899 // be [0, 4). 900 // first of pair: the index of first BucketElement whose remainder is equal 901 // to key. For key 0, this value must be 0. 902 // second of pair: number of load/stores with the same remainder. 903 DenseMap<unsigned, std::pair<unsigned, unsigned>> RemainderOffsetInfo; 904 905 for (unsigned j = 0, je = BucketChain.Elements.size(); j != je; ++j) { 906 if (!BucketChain.Elements[j].Offset) 907 RemainderOffsetInfo[0] = std::make_pair(0, 1); 908 else { 909 unsigned Remainder = cast<SCEVConstant>(BucketChain.Elements[j].Offset) 910 ->getAPInt() 911 .urem(Form); 912 if (RemainderOffsetInfo.find(Remainder) == RemainderOffsetInfo.end()) 913 RemainderOffsetInfo[Remainder] = std::make_pair(j, 1); 914 else 915 RemainderOffsetInfo[Remainder].second++; 916 } 917 } 918 // Currently we choose the most profitable base as the one which has the max 919 // number of load/store with same remainder. 920 // FIXME: adjust the base selection strategy according to load/store offset 921 // distribution. 922 // For example, if we have one candidate chain for DS form preparation, which 923 // contains following load/stores with different remainders: 924 // 1: 10 load/store whose remainder is 1; 925 // 2: 9 load/store whose remainder is 2; 926 // 3: 1 for remainder 3 and 0 for remainder 0; 927 // Now we will choose the first load/store whose remainder is 1 as base and 928 // adjust all other load/stores according to new base, so we will get 10 DS 929 // form and 10 X form. 930 // But we should be more clever, for this case we could use two bases, one for 931 // remainder 1 and the other for remainder 2, thus we could get 19 DS form and 932 // 1 X form. 933 unsigned MaxCountRemainder = 0; 934 for (unsigned j = 0; j < (unsigned)Form; j++) 935 if ((RemainderOffsetInfo.find(j) != RemainderOffsetInfo.end()) && 936 RemainderOffsetInfo[j].second > 937 RemainderOffsetInfo[MaxCountRemainder].second) 938 MaxCountRemainder = j; 939 940 // Abort when there are too few insts with common base. 941 if (RemainderOffsetInfo[MaxCountRemainder].second < DispFormPrepMinThreshold) 942 return false; 943 944 // If the first value is most profitable, no needed to adjust BucketChain 945 // elements as they are substracted the first value when collecting. 946 if (MaxCountRemainder == 0) 947 return true; 948 949 // Adjust load/store to the new chosen base. 950 const SCEV *Offset = 951 BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first].Offset; 952 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); 953 for (auto &E : BucketChain.Elements) { 954 if (E.Offset) 955 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset)); 956 else 957 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset)); 958 } 959 960 std::swap(BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first], 961 BucketChain.Elements[0]); 962 return true; 963 } 964 965 // FIXME: implement a more clever base choosing policy. 966 // Currently we always choose an exist load/store offset. This maybe lead to 967 // suboptimal code sequences. For example, for one DS chain with offsets 968 // {-32769, 2003, 2007, 2011}, we choose -32769 as base offset, and left disp 969 // for load/stores are {0, 34772, 34776, 34780}. Though each offset now is a 970 // multipler of 4, it cannot be represented by sint16. 971 bool PPCLoopInstrFormPrep::prepareBaseForUpdateFormChain(Bucket &BucketChain) { 972 // We have a choice now of which instruction's memory operand we use as the 973 // base for the generated PHI. Always picking the first instruction in each 974 // bucket does not work well, specifically because that instruction might 975 // be a prefetch (and there are no pre-increment dcbt variants). Otherwise, 976 // the choice is somewhat arbitrary, because the backend will happily 977 // generate direct offsets from both the pre-incremented and 978 // post-incremented pointer values. Thus, we'll pick the first non-prefetch 979 // instruction in each bucket, and adjust the recurrence and other offsets 980 // accordingly. 981 for (int j = 0, je = BucketChain.Elements.size(); j != je; ++j) { 982 if (auto *II = dyn_cast<IntrinsicInst>(BucketChain.Elements[j].Instr)) 983 if (II->getIntrinsicID() == Intrinsic::prefetch) 984 continue; 985 986 // If we'd otherwise pick the first element anyway, there's nothing to do. 987 if (j == 0) 988 break; 989 990 // If our chosen element has no offset from the base pointer, there's 991 // nothing to do. 992 if (!BucketChain.Elements[j].Offset || 993 cast<SCEVConstant>(BucketChain.Elements[j].Offset)->isZero()) 994 break; 995 996 const SCEV *Offset = BucketChain.Elements[j].Offset; 997 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); 998 for (auto &E : BucketChain.Elements) { 999 if (E.Offset) 1000 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset)); 1001 else 1002 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset)); 1003 } 1004 1005 std::swap(BucketChain.Elements[j], BucketChain.Elements[0]); 1006 break; 1007 } 1008 return true; 1009 } 1010 1011 bool PPCLoopInstrFormPrep::rewriteLoadStores( 1012 Loop *L, Bucket &BucketChain, SmallSet<BasicBlock *, 16> &BBChanged, 1013 PrepForm Form) { 1014 bool MadeChange = false; 1015 1016 const SCEVAddRecExpr *BasePtrSCEV = 1017 cast<SCEVAddRecExpr>(BucketChain.BaseSCEV); 1018 if (!BasePtrSCEV->isAffine()) 1019 return MadeChange; 1020 1021 BasicBlock *Header = L->getHeader(); 1022 SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(), 1023 "loopprepare-formrewrite"); 1024 if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart())) 1025 return MadeChange; 1026 1027 SmallPtrSet<Value *, 16> DeletedPtrs; 1028 1029 // For some DS form load/store instructions, it can also be an update form, 1030 // if the stride is constant and is a multipler of 4. Use update form if 1031 // prefer it. 1032 bool CanPreInc = (Form == UpdateForm || 1033 ((Form == DSForm) && 1034 isa<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) && 1035 !cast<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) 1036 ->getAPInt() 1037 .urem(4) && 1038 PreferUpdateForm)); 1039 1040 std::pair<Instruction *, Instruction *> Base = 1041 rewriteForBase(L, BasePtrSCEV, BucketChain.Elements.begin()->Instr, 1042 CanPreInc, Form, SCEVE, DeletedPtrs); 1043 1044 if (!Base.first || !Base.second) 1045 return MadeChange; 1046 1047 // Keep track of the replacement pointer values we've inserted so that we 1048 // don't generate more pointer values than necessary. 1049 SmallPtrSet<Value *, 16> NewPtrs; 1050 NewPtrs.insert(Base.first); 1051 1052 for (auto I = std::next(BucketChain.Elements.begin()), 1053 IE = BucketChain.Elements.end(); I != IE; ++I) { 1054 Value *Ptr = getPointerOperandAndType(I->Instr); 1055 assert(Ptr && "No pointer operand"); 1056 if (NewPtrs.count(Ptr)) 1057 continue; 1058 1059 Instruction *NewPtr = rewriteForBucketElement( 1060 Base, *I, 1061 I->Offset ? cast<SCEVConstant>(I->Offset)->getValue() : nullptr, 1062 DeletedPtrs); 1063 assert(NewPtr && "wrong rewrite!\n"); 1064 NewPtrs.insert(NewPtr); 1065 } 1066 1067 // Clear the rewriter cache, because values that are in the rewriter's cache 1068 // can be deleted below, causing the AssertingVH in the cache to trigger. 1069 SCEVE.clear(); 1070 1071 for (auto *Ptr : DeletedPtrs) { 1072 if (Instruction *IDel = dyn_cast<Instruction>(Ptr)) 1073 BBChanged.insert(IDel->getParent()); 1074 RecursivelyDeleteTriviallyDeadInstructions(Ptr); 1075 } 1076 1077 MadeChange = true; 1078 1079 SuccPrepCount++; 1080 1081 if (Form == DSForm && !CanPreInc) 1082 DSFormChainRewritten++; 1083 else if (Form == DQForm) 1084 DQFormChainRewritten++; 1085 else if (Form == UpdateForm || (Form == DSForm && CanPreInc)) 1086 UpdFormChainRewritten++; 1087 1088 return MadeChange; 1089 } 1090 1091 bool PPCLoopInstrFormPrep::updateFormPrep(Loop *L, 1092 SmallVector<Bucket, 16> &Buckets) { 1093 bool MadeChange = false; 1094 if (Buckets.empty()) 1095 return MadeChange; 1096 SmallSet<BasicBlock *, 16> BBChanged; 1097 for (auto &Bucket : Buckets) 1098 // The base address of each bucket is transformed into a phi and the others 1099 // are rewritten based on new base. 1100 if (prepareBaseForUpdateFormChain(Bucket)) 1101 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, UpdateForm); 1102 1103 if (MadeChange) 1104 for (auto *BB : BBChanged) 1105 DeleteDeadPHIs(BB); 1106 return MadeChange; 1107 } 1108 1109 bool PPCLoopInstrFormPrep::dispFormPrep(Loop *L, 1110 SmallVector<Bucket, 16> &Buckets, 1111 PrepForm Form) { 1112 bool MadeChange = false; 1113 1114 if (Buckets.empty()) 1115 return MadeChange; 1116 1117 SmallSet<BasicBlock *, 16> BBChanged; 1118 for (auto &Bucket : Buckets) { 1119 if (Bucket.Elements.size() < DispFormPrepMinThreshold) 1120 continue; 1121 if (prepareBaseForDispFormChain(Bucket, Form)) 1122 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, Form); 1123 } 1124 1125 if (MadeChange) 1126 for (auto *BB : BBChanged) 1127 DeleteDeadPHIs(BB); 1128 return MadeChange; 1129 } 1130 1131 // Find the loop invariant increment node for SCEV BasePtrIncSCEV. 1132 // bb.loop.preheader: 1133 // %start = ... 1134 // bb.loop.body: 1135 // %phinode = phi [ %start, %bb.loop.preheader ], [ %add, %bb.loop.body ] 1136 // ... 1137 // %add = add %phinode, %inc ; %inc is what we want to get. 1138 // 1139 Value *PPCLoopInstrFormPrep::getNodeForInc(Loop *L, Instruction *MemI, 1140 const SCEV *BasePtrIncSCEV) { 1141 // If the increment is a constant, no definition is needed. 1142 // Return the value directly. 1143 if (isa<SCEVConstant>(BasePtrIncSCEV)) 1144 return cast<SCEVConstant>(BasePtrIncSCEV)->getValue(); 1145 1146 if (!SE->isLoopInvariant(BasePtrIncSCEV, L)) 1147 return nullptr; 1148 1149 BasicBlock *BB = MemI->getParent(); 1150 if (!BB) 1151 return nullptr; 1152 1153 BasicBlock *LatchBB = L->getLoopLatch(); 1154 1155 if (!LatchBB) 1156 return nullptr; 1157 1158 // Run through the PHIs and check their operands to find valid representation 1159 // for the increment SCEV. 1160 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis(); 1161 for (auto &CurrentPHI : PHIIter) { 1162 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI); 1163 if (!CurrentPHINode) 1164 continue; 1165 1166 if (!SE->isSCEVable(CurrentPHINode->getType())) 1167 continue; 1168 1169 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); 1170 1171 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV); 1172 if (!PHIBasePtrSCEV) 1173 continue; 1174 1175 const SCEV *PHIBasePtrIncSCEV = PHIBasePtrSCEV->getStepRecurrence(*SE); 1176 1177 if (!PHIBasePtrIncSCEV || (PHIBasePtrIncSCEV != BasePtrIncSCEV)) 1178 continue; 1179 1180 // Get the incoming value from the loop latch and check if the value has 1181 // the add form with the required increment. 1182 if (Instruction *I = dyn_cast<Instruction>( 1183 CurrentPHINode->getIncomingValueForBlock(LatchBB))) { 1184 Value *StrippedBaseI = I; 1185 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBaseI)) 1186 StrippedBaseI = BC->getOperand(0); 1187 1188 Instruction *StrippedI = dyn_cast<Instruction>(StrippedBaseI); 1189 if (!StrippedI) 1190 continue; 1191 1192 // LSR pass may add a getelementptr instruction to do the loop increment, 1193 // also search in that getelementptr instruction. 1194 if (StrippedI->getOpcode() == Instruction::Add || 1195 (StrippedI->getOpcode() == Instruction::GetElementPtr && 1196 StrippedI->getNumOperands() == 2)) { 1197 if (SE->getSCEVAtScope(StrippedI->getOperand(0), L) == BasePtrIncSCEV) 1198 return StrippedI->getOperand(0); 1199 if (SE->getSCEVAtScope(StrippedI->getOperand(1), L) == BasePtrIncSCEV) 1200 return StrippedI->getOperand(1); 1201 } 1202 } 1203 } 1204 return nullptr; 1205 } 1206 1207 // In order to prepare for the preferred instruction form, a PHI is added. 1208 // This function will check to see if that PHI already exists and will return 1209 // true if it found an existing PHI with the matched start and increment as the 1210 // one we wanted to create. 1211 bool PPCLoopInstrFormPrep::alreadyPrepared(Loop *L, Instruction *MemI, 1212 const SCEV *BasePtrStartSCEV, 1213 const SCEV *BasePtrIncSCEV, 1214 PrepForm Form) { 1215 BasicBlock *BB = MemI->getParent(); 1216 if (!BB) 1217 return false; 1218 1219 BasicBlock *PredBB = L->getLoopPredecessor(); 1220 BasicBlock *LatchBB = L->getLoopLatch(); 1221 1222 if (!PredBB || !LatchBB) 1223 return false; 1224 1225 // Run through the PHIs and see if we have some that looks like a preparation 1226 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis(); 1227 for (auto & CurrentPHI : PHIIter) { 1228 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI); 1229 if (!CurrentPHINode) 1230 continue; 1231 1232 if (!SE->isSCEVable(CurrentPHINode->getType())) 1233 continue; 1234 1235 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); 1236 1237 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV); 1238 if (!PHIBasePtrSCEV) 1239 continue; 1240 1241 const SCEVConstant *PHIBasePtrIncSCEV = 1242 dyn_cast<SCEVConstant>(PHIBasePtrSCEV->getStepRecurrence(*SE)); 1243 if (!PHIBasePtrIncSCEV) 1244 continue; 1245 1246 if (CurrentPHINode->getNumIncomingValues() == 2) { 1247 if ((CurrentPHINode->getIncomingBlock(0) == LatchBB && 1248 CurrentPHINode->getIncomingBlock(1) == PredBB) || 1249 (CurrentPHINode->getIncomingBlock(1) == LatchBB && 1250 CurrentPHINode->getIncomingBlock(0) == PredBB)) { 1251 if (PHIBasePtrIncSCEV == BasePtrIncSCEV) { 1252 // The existing PHI (CurrentPHINode) has the same start and increment 1253 // as the PHI that we wanted to create. 1254 if ((Form == UpdateForm || Form == ChainCommoning ) && 1255 PHIBasePtrSCEV->getStart() == BasePtrStartSCEV) { 1256 ++PHINodeAlreadyExistsUpdate; 1257 return true; 1258 } 1259 if (Form == DSForm || Form == DQForm) { 1260 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 1261 SE->getMinusSCEV(PHIBasePtrSCEV->getStart(), BasePtrStartSCEV)); 1262 if (Diff && !Diff->getAPInt().urem(Form)) { 1263 if (Form == DSForm) 1264 ++PHINodeAlreadyExistsDS; 1265 else 1266 ++PHINodeAlreadyExistsDQ; 1267 return true; 1268 } 1269 } 1270 } 1271 } 1272 } 1273 } 1274 return false; 1275 } 1276 1277 bool PPCLoopInstrFormPrep::runOnLoop(Loop *L) { 1278 bool MadeChange = false; 1279 1280 // Only prep. the inner-most loop 1281 if (!L->isInnermost()) 1282 return MadeChange; 1283 1284 // Return if already done enough preparation. 1285 if (SuccPrepCount >= MaxVarsPrep) 1286 return MadeChange; 1287 1288 LLVM_DEBUG(dbgs() << "PIP: Examining: " << *L << "\n"); 1289 1290 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 1291 // If there is no loop predecessor, or the loop predecessor's terminator 1292 // returns a value (which might contribute to determining the loop's 1293 // iteration space), insert a new preheader for the loop. 1294 if (!LoopPredecessor || 1295 !LoopPredecessor->getTerminator()->getType()->isVoidTy()) { 1296 LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA); 1297 if (LoopPredecessor) 1298 MadeChange = true; 1299 } 1300 if (!LoopPredecessor) { 1301 LLVM_DEBUG(dbgs() << "PIP fails since no predecessor for current loop.\n"); 1302 return MadeChange; 1303 } 1304 // Check if a load/store has update form. This lambda is used by function 1305 // collectCandidates which can collect candidates for types defined by lambda. 1306 auto isUpdateFormCandidate = [&](const Instruction *I, Value *PtrValue, 1307 const Type *PointerElementType) { 1308 assert((PtrValue && I) && "Invalid parameter!"); 1309 // There are no update forms for Altivec vector load/stores. 1310 if (ST && ST->hasAltivec() && PointerElementType->isVectorTy()) 1311 return false; 1312 // There are no update forms for P10 lxvp/stxvp intrinsic. 1313 auto *II = dyn_cast<IntrinsicInst>(I); 1314 if (II && ((II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) || 1315 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp)) 1316 return false; 1317 // See getPreIndexedAddressParts, the displacement for LDU/STDU has to 1318 // be 4's multiple (DS-form). For i64 loads/stores when the displacement 1319 // fits in a 16-bit signed field but isn't a multiple of 4, it will be 1320 // useless and possible to break some original well-form addressing mode 1321 // to make this pre-inc prep for it. 1322 if (PointerElementType->isIntegerTy(64)) { 1323 const SCEV *LSCEV = SE->getSCEVAtScope(const_cast<Value *>(PtrValue), L); 1324 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV); 1325 if (!LARSCEV || LARSCEV->getLoop() != L) 1326 return false; 1327 if (const SCEVConstant *StepConst = 1328 dyn_cast<SCEVConstant>(LARSCEV->getStepRecurrence(*SE))) { 1329 const APInt &ConstInt = StepConst->getValue()->getValue(); 1330 if (ConstInt.isSignedIntN(16) && ConstInt.srem(4) != 0) 1331 return false; 1332 } 1333 } 1334 return true; 1335 }; 1336 1337 // Check if a load/store has DS form. 1338 auto isDSFormCandidate = [](const Instruction *I, Value *PtrValue, 1339 const Type *PointerElementType) { 1340 assert((PtrValue && I) && "Invalid parameter!"); 1341 if (isa<IntrinsicInst>(I)) 1342 return false; 1343 return (PointerElementType->isIntegerTy(64)) || 1344 (PointerElementType->isFloatTy()) || 1345 (PointerElementType->isDoubleTy()) || 1346 (PointerElementType->isIntegerTy(32) && 1347 llvm::any_of(I->users(), 1348 [](const User *U) { return isa<SExtInst>(U); })); 1349 }; 1350 1351 // Check if a load/store has DQ form. 1352 auto isDQFormCandidate = [&](const Instruction *I, Value *PtrValue, 1353 const Type *PointerElementType) { 1354 assert((PtrValue && I) && "Invalid parameter!"); 1355 // Check if it is a P10 lxvp/stxvp intrinsic. 1356 auto *II = dyn_cast<IntrinsicInst>(I); 1357 if (II) 1358 return II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp || 1359 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp; 1360 // Check if it is a P9 vector load/store. 1361 return ST && ST->hasP9Vector() && (PointerElementType->isVectorTy()); 1362 }; 1363 1364 // Check if a load/store is candidate for chain commoning. 1365 // If the SCEV is only with one ptr operand in its start, we can use that 1366 // start as a chain separator. Mark this load/store as a candidate. 1367 auto isChainCommoningCandidate = [&](const Instruction *I, Value *PtrValue, 1368 const Type *PointerElementType) { 1369 const SCEVAddRecExpr *ARSCEV = 1370 cast<SCEVAddRecExpr>(SE->getSCEVAtScope(PtrValue, L)); 1371 if (!ARSCEV) 1372 return false; 1373 1374 if (!ARSCEV->isAffine()) 1375 return false; 1376 1377 const SCEV *Start = ARSCEV->getStart(); 1378 1379 // A single pointer. We can treat it as offset 0. 1380 if (isa<SCEVUnknown>(Start) && Start->getType()->isPointerTy()) 1381 return true; 1382 1383 const SCEVAddExpr *ASCEV = dyn_cast<SCEVAddExpr>(Start); 1384 1385 // We need a SCEVAddExpr to include both base and offset. 1386 if (!ASCEV) 1387 return false; 1388 1389 // Make sure there is only one pointer operand(base) and all other operands 1390 // are integer type. 1391 bool SawPointer = false; 1392 for (const SCEV *Op : ASCEV->operands()) { 1393 if (Op->getType()->isPointerTy()) { 1394 if (SawPointer) 1395 return false; 1396 SawPointer = true; 1397 } else if (!Op->getType()->isIntegerTy()) 1398 return false; 1399 } 1400 1401 return SawPointer; 1402 }; 1403 1404 // Check if the diff is a constant type. This is used for update/DS/DQ form 1405 // preparation. 1406 auto isValidConstantDiff = [](const SCEV *Diff) { 1407 return dyn_cast<SCEVConstant>(Diff) != nullptr; 1408 }; 1409 1410 // Make sure the diff between the base and new candidate is required type. 1411 // This is used for chain commoning preparation. 1412 auto isValidChainCommoningDiff = [](const SCEV *Diff) { 1413 assert(Diff && "Invalid Diff!\n"); 1414 1415 // Don't mess up previous dform prepare. 1416 if (isa<SCEVConstant>(Diff)) 1417 return false; 1418 1419 // A single integer type offset. 1420 if (isa<SCEVUnknown>(Diff) && Diff->getType()->isIntegerTy()) 1421 return true; 1422 1423 const SCEVNAryExpr *ADiff = dyn_cast<SCEVNAryExpr>(Diff); 1424 if (!ADiff) 1425 return false; 1426 1427 for (const SCEV *Op : ADiff->operands()) 1428 if (!Op->getType()->isIntegerTy()) 1429 return false; 1430 1431 return true; 1432 }; 1433 1434 HasCandidateForPrepare = false; 1435 1436 LLVM_DEBUG(dbgs() << "Start to prepare for update form.\n"); 1437 // Collect buckets of comparable addresses used by loads and stores for update 1438 // form. 1439 SmallVector<Bucket, 16> UpdateFormBuckets = collectCandidates( 1440 L, isUpdateFormCandidate, isValidConstantDiff, MaxVarsUpdateForm); 1441 1442 // Prepare for update form. 1443 if (!UpdateFormBuckets.empty()) 1444 MadeChange |= updateFormPrep(L, UpdateFormBuckets); 1445 else if (!HasCandidateForPrepare) { 1446 LLVM_DEBUG( 1447 dbgs() 1448 << "No prepare candidates found, stop praparation for current loop!\n"); 1449 // If no candidate for preparing, return early. 1450 return MadeChange; 1451 } 1452 1453 LLVM_DEBUG(dbgs() << "Start to prepare for DS form.\n"); 1454 // Collect buckets of comparable addresses used by loads and stores for DS 1455 // form. 1456 SmallVector<Bucket, 16> DSFormBuckets = collectCandidates( 1457 L, isDSFormCandidate, isValidConstantDiff, MaxVarsDSForm); 1458 1459 // Prepare for DS form. 1460 if (!DSFormBuckets.empty()) 1461 MadeChange |= dispFormPrep(L, DSFormBuckets, DSForm); 1462 1463 LLVM_DEBUG(dbgs() << "Start to prepare for DQ form.\n"); 1464 // Collect buckets of comparable addresses used by loads and stores for DQ 1465 // form. 1466 SmallVector<Bucket, 16> DQFormBuckets = collectCandidates( 1467 L, isDQFormCandidate, isValidConstantDiff, MaxVarsDQForm); 1468 1469 // Prepare for DQ form. 1470 if (!DQFormBuckets.empty()) 1471 MadeChange |= dispFormPrep(L, DQFormBuckets, DQForm); 1472 1473 // Collect buckets of comparable addresses used by loads and stores for chain 1474 // commoning. With chain commoning, we reuse offsets between the chains, so 1475 // the register pressure will be reduced. 1476 if (!EnableChainCommoning) { 1477 LLVM_DEBUG(dbgs() << "Chain commoning is not enabled.\n"); 1478 return MadeChange; 1479 } 1480 1481 LLVM_DEBUG(dbgs() << "Start to prepare for chain commoning.\n"); 1482 SmallVector<Bucket, 16> Buckets = 1483 collectCandidates(L, isChainCommoningCandidate, isValidChainCommoningDiff, 1484 MaxVarsChainCommon); 1485 1486 // Prepare for chain commoning. 1487 if (!Buckets.empty()) 1488 MadeChange |= chainCommoning(L, Buckets); 1489 1490 return MadeChange; 1491 } 1492