//===------ PPCLoopInstrFormPrep.cpp - Loop Instr Form Prep Pass ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a pass to prepare loops for ppc preferred addressing // modes, leveraging different instruction form. (eg: DS/DQ form, D/DS form with // update) // Additional PHIs are created for loop induction variables used by load/store // instructions so that preferred addressing modes can be used. // // 1: DS/DQ form preparation, prepare the load/store instructions so that they // can satisfy the DS/DQ form displacement requirements. // Generically, this means transforming loops like this: // for (int i = 0; i < n; ++i) { // unsigned long x1 = *(unsigned long *)(p + i + 5); // unsigned long x2 = *(unsigned long *)(p + i + 9); // } // // to look like this: // // unsigned NewP = p + 5; // for (int i = 0; i < n; ++i) { // unsigned long x1 = *(unsigned long *)(i + NewP); // unsigned long x2 = *(unsigned long *)(i + NewP + 4); // } // // 2: D/DS form with update preparation, prepare the load/store instructions so // that we can use update form to do pre-increment. // Generically, this means transforming loops like this: // for (int i = 0; i < n; ++i) // array[i] = c; // // to look like this: // // T *p = array[-1]; // for (int i = 0; i < n; ++i) // *++p = c; // // 3: common multiple chains for the load/stores with same offsets in the loop, // so that we can reuse the offsets and reduce the register pressure in the // loop. This transformation can also increase the loop ILP as now each chain // uses its own loop induction add/addi. But this will increase the number of // add/addi in the loop. // // Generically, this means transforming loops like this: // // char *p; // A1 = p + base1 // A2 = p + base1 + offset // B1 = p + base2 // B2 = p + base2 + offset // // for (int i = 0; i < n; i++) // unsigned long x1 = *(unsigned long *)(A1 + i); // unsigned long x2 = *(unsigned long *)(A2 + i) // unsigned long x3 = *(unsigned long *)(B1 + i); // unsigned long x4 = *(unsigned long *)(B2 + i); // } // // to look like this: // // A1_new = p + base1 // chain 1 // B1_new = p + base2 // chain 2, now inside the loop, common offset is // // reused. // // for (long long i = 0; i < n; i+=count) { // unsigned long x1 = *(unsigned long *)(A1_new + i); // unsigned long x2 = *(unsigned long *)((A1_new + i) + offset); // unsigned long x3 = *(unsigned long *)(B1_new + i); // unsigned long x4 = *(unsigned long *)((B1_new + i) + offset); // } //===----------------------------------------------------------------------===// #include "PPC.h" #include "PPCSubtarget.h" #include "PPCTargetMachine.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/IntrinsicsPowerPC.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" #include #include #include #define DEBUG_TYPE "ppc-loop-instr-form-prep" using namespace llvm; static cl::opt MaxVarsPrep("ppc-formprep-max-vars", cl::Hidden, cl::init(24), cl::desc("Potential common base number threshold per function " "for PPC loop prep")); static cl::opt PreferUpdateForm("ppc-formprep-prefer-update", cl::init(true), cl::Hidden, cl::desc("prefer update form when ds form is also a update form")); static cl::opt EnableUpdateFormForNonConstInc( "ppc-formprep-update-nonconst-inc", cl::init(false), cl::Hidden, cl::desc("prepare update form when the load/store increment is a loop " "invariant non-const value.")); static cl::opt EnableChainCommoning( "ppc-formprep-chain-commoning", cl::init(false), cl::Hidden, cl::desc("Enable chain commoning in PPC loop prepare pass.")); // Sum of following 3 per loop thresholds for all loops can not be larger // than MaxVarsPrep. // now the thresholds for each kind prep are exterimental values on Power9. static cl::opt MaxVarsUpdateForm("ppc-preinc-prep-max-vars", cl::Hidden, cl::init(3), cl::desc("Potential PHI threshold per loop for PPC loop prep of update " "form")); static cl::opt MaxVarsDSForm("ppc-dsprep-max-vars", cl::Hidden, cl::init(3), cl::desc("Potential PHI threshold per loop for PPC loop prep of DS form")); static cl::opt MaxVarsDQForm("ppc-dqprep-max-vars", cl::Hidden, cl::init(8), cl::desc("Potential PHI threshold per loop for PPC loop prep of DQ form")); // Commoning chain will reduce the register pressure, so we don't consider about // the PHI nodes number. // But commoning chain will increase the addi/add number in the loop and also // increase loop ILP. Maximum chain number should be same with hardware // IssueWidth, because we won't benefit from ILP if the parallel chains number // is bigger than IssueWidth. We assume there are 2 chains in one bucket, so // there would be 4 buckets at most on P9(IssueWidth is 8). static cl::opt MaxVarsChainCommon( "ppc-chaincommon-max-vars", cl::Hidden, cl::init(4), cl::desc("Bucket number per loop for PPC loop chain common")); // If would not be profitable if the common base has only one load/store, ISEL // should already be able to choose best load/store form based on offset for // single load/store. Set minimal profitable value default to 2 and make it as // an option. static cl::opt DispFormPrepMinThreshold("ppc-dispprep-min-threshold", cl::Hidden, cl::init(2), cl::desc("Minimal common base load/store instructions triggering DS/DQ form " "preparation")); static cl::opt ChainCommonPrepMinThreshold( "ppc-chaincommon-min-threshold", cl::Hidden, cl::init(4), cl::desc("Minimal common base load/store instructions triggering chain " "commoning preparation. Must be not smaller than 4")); STATISTIC(PHINodeAlreadyExistsUpdate, "PHI node already in pre-increment form"); STATISTIC(PHINodeAlreadyExistsDS, "PHI node already in DS form"); STATISTIC(PHINodeAlreadyExistsDQ, "PHI node already in DQ form"); STATISTIC(DSFormChainRewritten, "Num of DS form chain rewritten"); STATISTIC(DQFormChainRewritten, "Num of DQ form chain rewritten"); STATISTIC(UpdFormChainRewritten, "Num of update form chain rewritten"); STATISTIC(ChainCommoningRewritten, "Num of commoning chains"); namespace { struct BucketElement { BucketElement(const SCEV *O, Instruction *I) : Offset(O), Instr(I) {} BucketElement(Instruction *I) : Offset(nullptr), Instr(I) {} const SCEV *Offset; Instruction *Instr; }; struct Bucket { Bucket(const SCEV *B, Instruction *I) : BaseSCEV(B), Elements(1, BucketElement(I)) { ChainSize = 0; } // The base of the whole bucket. const SCEV *BaseSCEV; // All elements in the bucket. In the bucket, the element with the BaseSCEV // has no offset and all other elements are stored as offsets to the // BaseSCEV. SmallVector Elements; // The potential chains size. This is used for chain commoning only. unsigned ChainSize; // The base for each potential chain. This is used for chain commoning only. SmallVector ChainBases; }; // "UpdateForm" is not a real PPC instruction form, it stands for dform // load/store with update like ldu/stdu, or Prefetch intrinsic. // For DS form instructions, their displacements must be multiple of 4. // For DQ form instructions, their displacements must be multiple of 16. enum PrepForm { UpdateForm = 1, DSForm = 4, DQForm = 16, ChainCommoning }; class PPCLoopInstrFormPrep : public FunctionPass { public: static char ID; // Pass ID, replacement for typeid PPCLoopInstrFormPrep() : FunctionPass(ID) { initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); } PPCLoopInstrFormPrep(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) { initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); } bool runOnFunction(Function &F) override; private: PPCTargetMachine *TM = nullptr; const PPCSubtarget *ST; DominatorTree *DT; LoopInfo *LI; ScalarEvolution *SE; bool PreserveLCSSA; bool HasCandidateForPrepare; /// Successful preparation number for Update/DS/DQ form in all inner most /// loops. One successful preparation will put one common base out of loop, /// this may leads to register presure like LICM does. /// Make sure total preparation number can be controlled by option. unsigned SuccPrepCount; bool runOnLoop(Loop *L); /// Check if required PHI node is already exist in Loop \p L. bool alreadyPrepared(Loop *L, Instruction *MemI, const SCEV *BasePtrStartSCEV, const SCEV *BasePtrIncSCEV, PrepForm Form); /// Get the value which defines the increment SCEV \p BasePtrIncSCEV. Value *getNodeForInc(Loop *L, Instruction *MemI, const SCEV *BasePtrIncSCEV); /// Common chains to reuse offsets for a loop to reduce register pressure. bool chainCommoning(Loop *L, SmallVector &Buckets); /// Find out the potential commoning chains and their bases. bool prepareBasesForCommoningChains(Bucket &BucketChain); /// Rewrite load/store according to the common chains. bool rewriteLoadStoresForCommoningChains(Loop *L, Bucket &Bucket, SmallSet &BBChanged); /// Collect condition matched(\p isValidCandidate() returns true) /// candidates in Loop \p L. SmallVector collectCandidates( Loop *L, std::function isValidCandidate, std::function isValidDiff, unsigned MaxCandidateNum); /// Add a candidate to candidates \p Buckets if diff between candidate and /// one base in \p Buckets matches \p isValidDiff. void addOneCandidate(Instruction *MemI, const SCEV *LSCEV, SmallVector &Buckets, std::function isValidDiff, unsigned MaxCandidateNum); /// Prepare all candidates in \p Buckets for update form. bool updateFormPrep(Loop *L, SmallVector &Buckets); /// Prepare all candidates in \p Buckets for displacement form, now for /// ds/dq. bool dispFormPrep(Loop *L, SmallVector &Buckets, PrepForm Form); /// Prepare for one chain \p BucketChain, find the best base element and /// update all other elements in \p BucketChain accordingly. /// \p Form is used to find the best base element. /// If success, best base element must be stored as the first element of /// \p BucketChain. /// Return false if no base element found, otherwise return true. bool prepareBaseForDispFormChain(Bucket &BucketChain, PrepForm Form); /// Prepare for one chain \p BucketChain, find the best base element and /// update all other elements in \p BucketChain accordingly. /// If success, best base element must be stored as the first element of /// \p BucketChain. /// Return false if no base element found, otherwise return true. bool prepareBaseForUpdateFormChain(Bucket &BucketChain); /// Rewrite load/store instructions in \p BucketChain according to /// preparation. bool rewriteLoadStores(Loop *L, Bucket &BucketChain, SmallSet &BBChanged, PrepForm Form); /// Rewrite for the base load/store of a chain. std::pair rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, Instruction *BaseMemI, bool CanPreInc, PrepForm Form, SCEVExpander &SCEVE, SmallPtrSet &DeletedPtrs); /// Rewrite for the other load/stores of a chain according to the new \p /// Base. Instruction * rewriteForBucketElement(std::pair Base, const BucketElement &Element, Value *OffToBase, SmallPtrSet &DeletedPtrs); }; } // end anonymous namespace char PPCLoopInstrFormPrep::ID = 0; static const char *name = "Prepare loop for ppc preferred instruction forms"; INITIALIZE_PASS_BEGIN(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_END(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) static constexpr StringRef PHINodeNameSuffix = ".phi"; static constexpr StringRef CastNodeNameSuffix = ".cast"; static constexpr StringRef GEPNodeIncNameSuffix = ".inc"; static constexpr StringRef GEPNodeOffNameSuffix = ".off"; FunctionPass *llvm::createPPCLoopInstrFormPrepPass(PPCTargetMachine &TM) { return new PPCLoopInstrFormPrep(TM); } static bool IsPtrInBounds(Value *BasePtr) { Value *StrippedBasePtr = BasePtr; while (BitCastInst *BC = dyn_cast(StrippedBasePtr)) StrippedBasePtr = BC->getOperand(0); if (GetElementPtrInst *GEP = dyn_cast(StrippedBasePtr)) return GEP->isInBounds(); return false; } static std::string getInstrName(const Value *I, StringRef Suffix) { assert(I && "Invalid paramater!"); if (I->hasName()) return (I->getName() + Suffix).str(); else return ""; } static Value *getPointerOperandAndType(Value *MemI, Type **PtrElementType = nullptr) { Value *PtrValue = nullptr; Type *PointerElementType = nullptr; if (LoadInst *LMemI = dyn_cast(MemI)) { PtrValue = LMemI->getPointerOperand(); PointerElementType = LMemI->getType(); } else if (StoreInst *SMemI = dyn_cast(MemI)) { PtrValue = SMemI->getPointerOperand(); PointerElementType = SMemI->getValueOperand()->getType(); } else if (IntrinsicInst *IMemI = dyn_cast(MemI)) { PointerElementType = Type::getInt8Ty(MemI->getContext()); if (IMemI->getIntrinsicID() == Intrinsic::prefetch || IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) { PtrValue = IMemI->getArgOperand(0); } else if (IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp) { PtrValue = IMemI->getArgOperand(1); } } /*Get ElementType if PtrElementType is not null.*/ if (PtrElementType) *PtrElementType = PointerElementType; return PtrValue; } bool PPCLoopInstrFormPrep::runOnFunction(Function &F) { if (skipFunction(F)) return false; LI = &getAnalysis().getLoopInfo(); SE = &getAnalysis().getSE(); auto *DTWP = getAnalysisIfAvailable(); DT = DTWP ? &DTWP->getDomTree() : nullptr; PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); ST = TM ? TM->getSubtargetImpl(F) : nullptr; SuccPrepCount = 0; bool MadeChange = false; for (Loop *I : *LI) for (Loop *L : depth_first(I)) MadeChange |= runOnLoop(L); return MadeChange; } // Finding the minimal(chain_number + reusable_offset_number) is a complicated // algorithmic problem. // For now, the algorithm used here is simply adjusted to handle the case for // manually unrolling cases. // FIXME: use a more powerful algorithm to find minimal sum of chain_number and // reusable_offset_number for one base with multiple offsets. bool PPCLoopInstrFormPrep::prepareBasesForCommoningChains(Bucket &CBucket) { // The minimal size for profitable chain commoning: // A1 = base + offset1 // A2 = base + offset2 (offset2 - offset1 = X) // A3 = base + offset3 // A4 = base + offset4 (offset4 - offset3 = X) // ======> // base1 = base + offset1 // base2 = base + offset3 // A1 = base1 // A2 = base1 + X // A3 = base2 // A4 = base2 + X // // There is benefit because of reuse of offest 'X'. assert(ChainCommonPrepMinThreshold >= 4 && "Thredhold can not be smaller than 4!\n"); if (CBucket.Elements.size() < ChainCommonPrepMinThreshold) return false; // We simply select the FirstOffset as the first reusable offset between each // chain element 1 and element 0. const SCEV *FirstOffset = CBucket.Elements[1].Offset; // Figure out how many times above FirstOffset is used in the chain. // For a success commoning chain candidate, offset difference between each // chain element 1 and element 0 must be also FirstOffset. unsigned FirstOffsetReusedCount = 1; // Figure out how many times above FirstOffset is used in the first chain. // Chain number is FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain unsigned FirstOffsetReusedCountInFirstChain = 1; unsigned EleNum = CBucket.Elements.size(); bool SawChainSeparater = false; for (unsigned j = 2; j != EleNum; ++j) { if (SE->getMinusSCEV(CBucket.Elements[j].Offset, CBucket.Elements[j - 1].Offset) == FirstOffset) { if (!SawChainSeparater) FirstOffsetReusedCountInFirstChain++; FirstOffsetReusedCount++; } else // For now, if we meet any offset which is not FirstOffset, we assume we // find a new Chain. // This makes us miss some opportunities. // For example, we can common: // // {OffsetA, Offset A, OffsetB, OffsetA, OffsetA, OffsetB} // // as two chains: // {{OffsetA, Offset A, OffsetB}, {OffsetA, OffsetA, OffsetB}} // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 2 // // But we fail to common: // // {OffsetA, OffsetB, OffsetA, OffsetA, OffsetB, OffsetA} // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 1 SawChainSeparater = true; } // FirstOffset is not reused, skip this bucket. if (FirstOffsetReusedCount == 1) return false; unsigned ChainNum = FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain; // All elements are increased by FirstOffset. // The number of chains should be sqrt(EleNum). if (!SawChainSeparater) ChainNum = (unsigned)sqrt((double)EleNum); CBucket.ChainSize = (unsigned)(EleNum / ChainNum); // If this is not a perfect chain(eg: not all elements can be put inside // commoning chains.), skip now. if (CBucket.ChainSize * ChainNum != EleNum) return false; if (SawChainSeparater) { // Check that the offset seqs are the same for all chains. for (unsigned i = 1; i < CBucket.ChainSize; i++) for (unsigned j = 1; j < ChainNum; j++) if (CBucket.Elements[i].Offset != SE->getMinusSCEV(CBucket.Elements[i + j * CBucket.ChainSize].Offset, CBucket.Elements[j * CBucket.ChainSize].Offset)) return false; } for (unsigned i = 0; i < ChainNum; i++) CBucket.ChainBases.push_back(CBucket.Elements[i * CBucket.ChainSize]); LLVM_DEBUG(dbgs() << "Bucket has " << ChainNum << " chains.\n"); return true; } bool PPCLoopInstrFormPrep::chainCommoning(Loop *L, SmallVector &Buckets) { bool MadeChange = false; if (Buckets.empty()) return MadeChange; SmallSet BBChanged; for (auto &Bucket : Buckets) { if (prepareBasesForCommoningChains(Bucket)) MadeChange |= rewriteLoadStoresForCommoningChains(L, Bucket, BBChanged); } if (MadeChange) for (auto *BB : BBChanged) DeleteDeadPHIs(BB); return MadeChange; } bool PPCLoopInstrFormPrep::rewriteLoadStoresForCommoningChains( Loop *L, Bucket &Bucket, SmallSet &BBChanged) { bool MadeChange = false; assert(Bucket.Elements.size() == Bucket.ChainBases.size() * Bucket.ChainSize && "invalid bucket for chain commoning!\n"); SmallPtrSet DeletedPtrs; BasicBlock *Header = L->getHeader(); BasicBlock *LoopPredecessor = L->getLoopPredecessor(); SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(), "loopprepare-chaincommon"); for (unsigned ChainIdx = 0; ChainIdx < Bucket.ChainBases.size(); ++ChainIdx) { unsigned BaseElemIdx = Bucket.ChainSize * ChainIdx; const SCEV *BaseSCEV = ChainIdx ? SE->getAddExpr(Bucket.BaseSCEV, Bucket.Elements[BaseElemIdx].Offset) : Bucket.BaseSCEV; const SCEVAddRecExpr *BasePtrSCEV = cast(BaseSCEV); // Make sure the base is able to expand. if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart())) return MadeChange; assert(BasePtrSCEV->isAffine() && "Invalid SCEV type for the base ptr for a candidate chain!\n"); std::pair Base = rewriteForBase( L, BasePtrSCEV, Bucket.Elements[BaseElemIdx].Instr, false /* CanPreInc */, ChainCommoning, SCEVE, DeletedPtrs); if (!Base.first || !Base.second) return MadeChange; // Keep track of the replacement pointer values we've inserted so that we // don't generate more pointer values than necessary. SmallPtrSet NewPtrs; NewPtrs.insert(Base.first); for (unsigned Idx = BaseElemIdx + 1; Idx < BaseElemIdx + Bucket.ChainSize; ++Idx) { BucketElement &I = Bucket.Elements[Idx]; Value *Ptr = getPointerOperandAndType(I.Instr); assert(Ptr && "No pointer operand"); if (NewPtrs.count(Ptr)) continue; const SCEV *OffsetSCEV = BaseElemIdx ? SE->getMinusSCEV(Bucket.Elements[Idx].Offset, Bucket.Elements[BaseElemIdx].Offset) : Bucket.Elements[Idx].Offset; // Make sure offset is able to expand. Only need to check one time as the // offsets are reused between different chains. if (!BaseElemIdx) if (!SCEVE.isSafeToExpand(OffsetSCEV)) return false; Value *OffsetValue = SCEVE.expandCodeFor( OffsetSCEV, OffsetSCEV->getType(), LoopPredecessor->getTerminator()); Instruction *NewPtr = rewriteForBucketElement(Base, Bucket.Elements[Idx], OffsetValue, DeletedPtrs); assert(NewPtr && "Wrong rewrite!\n"); NewPtrs.insert(NewPtr); } ++ChainCommoningRewritten; } // Clear the rewriter cache, because values that are in the rewriter's cache // can be deleted below, causing the AssertingVH in the cache to trigger. SCEVE.clear(); for (auto *Ptr : DeletedPtrs) { if (Instruction *IDel = dyn_cast(Ptr)) BBChanged.insert(IDel->getParent()); RecursivelyDeleteTriviallyDeadInstructions(Ptr); } MadeChange = true; return MadeChange; } // Rewrite the new base according to BasePtrSCEV. // bb.loop.preheader: // %newstart = ... // bb.loop.body: // %phinode = phi [ %newstart, %bb.loop.preheader ], [ %add, %bb.loop.body ] // ... // %add = getelementptr %phinode, %inc // // First returned instruciton is %phinode (or a type cast to %phinode), caller // needs this value to rewrite other load/stores in the same chain. // Second returned instruction is %add, caller needs this value to rewrite other // load/stores in the same chain. std::pair PPCLoopInstrFormPrep::rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, Instruction *BaseMemI, bool CanPreInc, PrepForm Form, SCEVExpander &SCEVE, SmallPtrSet &DeletedPtrs) { LLVM_DEBUG(dbgs() << "PIP: Transforming: " << *BasePtrSCEV << "\n"); assert(BasePtrSCEV->getLoop() == L && "AddRec for the wrong loop?"); Value *BasePtr = getPointerOperandAndType(BaseMemI); assert(BasePtr && "No pointer operand"); Type *I8Ty = Type::getInt8Ty(BaseMemI->getParent()->getContext()); Type *I8PtrTy = Type::getInt8PtrTy(BaseMemI->getParent()->getContext(), BasePtr->getType()->getPointerAddressSpace()); bool IsConstantInc = false; const SCEV *BasePtrIncSCEV = BasePtrSCEV->getStepRecurrence(*SE); Value *IncNode = getNodeForInc(L, BaseMemI, BasePtrIncSCEV); const SCEVConstant *BasePtrIncConstantSCEV = dyn_cast(BasePtrIncSCEV); if (BasePtrIncConstantSCEV) IsConstantInc = true; // No valid representation for the increment. if (!IncNode) { LLVM_DEBUG(dbgs() << "Loop Increasement can not be represented!\n"); return std::make_pair(nullptr, nullptr); } if (Form == UpdateForm && !IsConstantInc && !EnableUpdateFormForNonConstInc) { LLVM_DEBUG( dbgs() << "Update form prepare for non-const increment is not enabled!\n"); return std::make_pair(nullptr, nullptr); } const SCEV *BasePtrStartSCEV = nullptr; if (CanPreInc) { assert(SE->isLoopInvariant(BasePtrIncSCEV, L) && "Increment is not loop invariant!\n"); BasePtrStartSCEV = SE->getMinusSCEV(BasePtrSCEV->getStart(), IsConstantInc ? BasePtrIncConstantSCEV : BasePtrIncSCEV); } else BasePtrStartSCEV = BasePtrSCEV->getStart(); if (alreadyPrepared(L, BaseMemI, BasePtrStartSCEV, BasePtrIncSCEV, Form)) { LLVM_DEBUG(dbgs() << "Instruction form is already prepared!\n"); return std::make_pair(nullptr, nullptr); } LLVM_DEBUG(dbgs() << "PIP: New start is: " << *BasePtrStartSCEV << "\n"); BasicBlock *Header = L->getHeader(); unsigned HeaderLoopPredCount = pred_size(Header); BasicBlock *LoopPredecessor = L->getLoopPredecessor(); PHINode *NewPHI = PHINode::Create(I8PtrTy, HeaderLoopPredCount, getInstrName(BaseMemI, PHINodeNameSuffix), Header->getFirstNonPHI()); Value *BasePtrStart = SCEVE.expandCodeFor(BasePtrStartSCEV, I8PtrTy, LoopPredecessor->getTerminator()); // Note that LoopPredecessor might occur in the predecessor list multiple // times, and we need to add it the right number of times. for (auto PI : predecessors(Header)) { if (PI != LoopPredecessor) continue; NewPHI->addIncoming(BasePtrStart, LoopPredecessor); } Instruction *PtrInc = nullptr; Instruction *NewBasePtr = nullptr; if (CanPreInc) { Instruction *InsPoint = &*Header->getFirstInsertionPt(); PtrInc = GetElementPtrInst::Create( I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), InsPoint); cast(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); for (auto PI : predecessors(Header)) { if (PI == LoopPredecessor) continue; NewPHI->addIncoming(PtrInc, PI); } if (PtrInc->getType() != BasePtr->getType()) NewBasePtr = new BitCastInst(PtrInc, BasePtr->getType(), getInstrName(PtrInc, CastNodeNameSuffix), InsPoint); else NewBasePtr = PtrInc; } else { // Note that LoopPredecessor might occur in the predecessor list multiple // times, and we need to make sure no more incoming value for them in PHI. for (auto PI : predecessors(Header)) { if (PI == LoopPredecessor) continue; // For the latch predecessor, we need to insert a GEP just before the // terminator to increase the address. BasicBlock *BB = PI; Instruction *InsPoint = BB->getTerminator(); PtrInc = GetElementPtrInst::Create( I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), InsPoint); cast(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); NewPHI->addIncoming(PtrInc, PI); } PtrInc = NewPHI; if (NewPHI->getType() != BasePtr->getType()) NewBasePtr = new BitCastInst(NewPHI, BasePtr->getType(), getInstrName(NewPHI, CastNodeNameSuffix), &*Header->getFirstInsertionPt()); else NewBasePtr = NewPHI; } BasePtr->replaceAllUsesWith(NewBasePtr); DeletedPtrs.insert(BasePtr); return std::make_pair(NewBasePtr, PtrInc); } Instruction *PPCLoopInstrFormPrep::rewriteForBucketElement( std::pair Base, const BucketElement &Element, Value *OffToBase, SmallPtrSet &DeletedPtrs) { Instruction *NewBasePtr = Base.first; Instruction *PtrInc = Base.second; assert((NewBasePtr && PtrInc) && "base does not exist!\n"); Type *I8Ty = Type::getInt8Ty(PtrInc->getParent()->getContext()); Value *Ptr = getPointerOperandAndType(Element.Instr); assert(Ptr && "No pointer operand"); Instruction *RealNewPtr; if (!Element.Offset || (isa(Element.Offset) && cast(Element.Offset)->getValue()->isZero())) { RealNewPtr = NewBasePtr; } else { Instruction *PtrIP = dyn_cast(Ptr); if (PtrIP && isa(NewBasePtr) && cast(NewBasePtr)->getParent() == PtrIP->getParent()) PtrIP = nullptr; else if (PtrIP && isa(PtrIP)) PtrIP = &*PtrIP->getParent()->getFirstInsertionPt(); else if (!PtrIP) PtrIP = Element.Instr; assert(OffToBase && "There should be an offset for non base element!\n"); GetElementPtrInst *NewPtr = GetElementPtrInst::Create( I8Ty, PtrInc, OffToBase, getInstrName(Element.Instr, GEPNodeOffNameSuffix), PtrIP); if (!PtrIP) NewPtr->insertAfter(cast(PtrInc)); NewPtr->setIsInBounds(IsPtrInBounds(Ptr)); RealNewPtr = NewPtr; } Instruction *ReplNewPtr; if (Ptr->getType() != RealNewPtr->getType()) { ReplNewPtr = new BitCastInst(RealNewPtr, Ptr->getType(), getInstrName(Ptr, CastNodeNameSuffix)); ReplNewPtr->insertAfter(RealNewPtr); } else ReplNewPtr = RealNewPtr; Ptr->replaceAllUsesWith(ReplNewPtr); DeletedPtrs.insert(Ptr); return ReplNewPtr; } void PPCLoopInstrFormPrep::addOneCandidate( Instruction *MemI, const SCEV *LSCEV, SmallVector &Buckets, std::function isValidDiff, unsigned MaxCandidateNum) { assert((MemI && getPointerOperandAndType(MemI)) && "Candidate should be a memory instruction."); assert(LSCEV && "Invalid SCEV for Ptr value."); bool FoundBucket = false; for (auto &B : Buckets) { if (cast(B.BaseSCEV)->getStepRecurrence(*SE) != cast(LSCEV)->getStepRecurrence(*SE)) continue; const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV); if (isValidDiff(Diff)) { B.Elements.push_back(BucketElement(Diff, MemI)); FoundBucket = true; break; } } if (!FoundBucket) { if (Buckets.size() == MaxCandidateNum) { LLVM_DEBUG(dbgs() << "Can not prepare more chains, reach maximum limit " << MaxCandidateNum << "\n"); return; } Buckets.push_back(Bucket(LSCEV, MemI)); } } SmallVector PPCLoopInstrFormPrep::collectCandidates( Loop *L, std::function isValidCandidate, std::function isValidDiff, unsigned MaxCandidateNum) { SmallVector Buckets; for (const auto &BB : L->blocks()) for (auto &J : *BB) { Value *PtrValue = nullptr; Type *PointerElementType = nullptr; PtrValue = getPointerOperandAndType(&J, &PointerElementType); if (!PtrValue) continue; if (PtrValue->getType()->getPointerAddressSpace()) continue; if (L->isLoopInvariant(PtrValue)) continue; const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L); const SCEVAddRecExpr *LARSCEV = dyn_cast(LSCEV); if (!LARSCEV || LARSCEV->getLoop() != L) continue; // Mark that we have candidates for preparing. HasCandidateForPrepare = true; if (isValidCandidate(&J, PtrValue, PointerElementType)) addOneCandidate(&J, LSCEV, Buckets, isValidDiff, MaxCandidateNum); } return Buckets; } bool PPCLoopInstrFormPrep::prepareBaseForDispFormChain(Bucket &BucketChain, PrepForm Form) { // RemainderOffsetInfo details: // key: value of (Offset urem DispConstraint). For DSForm, it can // be [0, 4). // first of pair: the index of first BucketElement whose remainder is equal // to key. For key 0, this value must be 0. // second of pair: number of load/stores with the same remainder. DenseMap> RemainderOffsetInfo; for (unsigned j = 0, je = BucketChain.Elements.size(); j != je; ++j) { if (!BucketChain.Elements[j].Offset) RemainderOffsetInfo[0] = std::make_pair(0, 1); else { unsigned Remainder = cast(BucketChain.Elements[j].Offset) ->getAPInt() .urem(Form); if (RemainderOffsetInfo.find(Remainder) == RemainderOffsetInfo.end()) RemainderOffsetInfo[Remainder] = std::make_pair(j, 1); else RemainderOffsetInfo[Remainder].second++; } } // Currently we choose the most profitable base as the one which has the max // number of load/store with same remainder. // FIXME: adjust the base selection strategy according to load/store offset // distribution. // For example, if we have one candidate chain for DS form preparation, which // contains following load/stores with different remainders: // 1: 10 load/store whose remainder is 1; // 2: 9 load/store whose remainder is 2; // 3: 1 for remainder 3 and 0 for remainder 0; // Now we will choose the first load/store whose remainder is 1 as base and // adjust all other load/stores according to new base, so we will get 10 DS // form and 10 X form. // But we should be more clever, for this case we could use two bases, one for // remainder 1 and the other for remainder 2, thus we could get 19 DS form and // 1 X form. unsigned MaxCountRemainder = 0; for (unsigned j = 0; j < (unsigned)Form; j++) if ((RemainderOffsetInfo.find(j) != RemainderOffsetInfo.end()) && RemainderOffsetInfo[j].second > RemainderOffsetInfo[MaxCountRemainder].second) MaxCountRemainder = j; // Abort when there are too few insts with common base. if (RemainderOffsetInfo[MaxCountRemainder].second < DispFormPrepMinThreshold) return false; // If the first value is most profitable, no needed to adjust BucketChain // elements as they are substracted the first value when collecting. if (MaxCountRemainder == 0) return true; // Adjust load/store to the new chosen base. const SCEV *Offset = BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first].Offset; BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); for (auto &E : BucketChain.Elements) { if (E.Offset) E.Offset = cast(SE->getMinusSCEV(E.Offset, Offset)); else E.Offset = cast(SE->getNegativeSCEV(Offset)); } std::swap(BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first], BucketChain.Elements[0]); return true; } // FIXME: implement a more clever base choosing policy. // Currently we always choose an exist load/store offset. This maybe lead to // suboptimal code sequences. For example, for one DS chain with offsets // {-32769, 2003, 2007, 2011}, we choose -32769 as base offset, and left disp // for load/stores are {0, 34772, 34776, 34780}. Though each offset now is a // multipler of 4, it cannot be represented by sint16. bool PPCLoopInstrFormPrep::prepareBaseForUpdateFormChain(Bucket &BucketChain) { // We have a choice now of which instruction's memory operand we use as the // base for the generated PHI. Always picking the first instruction in each // bucket does not work well, specifically because that instruction might // be a prefetch (and there are no pre-increment dcbt variants). Otherwise, // the choice is somewhat arbitrary, because the backend will happily // generate direct offsets from both the pre-incremented and // post-incremented pointer values. Thus, we'll pick the first non-prefetch // instruction in each bucket, and adjust the recurrence and other offsets // accordingly. for (int j = 0, je = BucketChain.Elements.size(); j != je; ++j) { if (auto *II = dyn_cast(BucketChain.Elements[j].Instr)) if (II->getIntrinsicID() == Intrinsic::prefetch) continue; // If we'd otherwise pick the first element anyway, there's nothing to do. if (j == 0) break; // If our chosen element has no offset from the base pointer, there's // nothing to do. if (!BucketChain.Elements[j].Offset || cast(BucketChain.Elements[j].Offset)->isZero()) break; const SCEV *Offset = BucketChain.Elements[j].Offset; BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); for (auto &E : BucketChain.Elements) { if (E.Offset) E.Offset = cast(SE->getMinusSCEV(E.Offset, Offset)); else E.Offset = cast(SE->getNegativeSCEV(Offset)); } std::swap(BucketChain.Elements[j], BucketChain.Elements[0]); break; } return true; } bool PPCLoopInstrFormPrep::rewriteLoadStores( Loop *L, Bucket &BucketChain, SmallSet &BBChanged, PrepForm Form) { bool MadeChange = false; const SCEVAddRecExpr *BasePtrSCEV = cast(BucketChain.BaseSCEV); if (!BasePtrSCEV->isAffine()) return MadeChange; BasicBlock *Header = L->getHeader(); SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(), "loopprepare-formrewrite"); if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart())) return MadeChange; SmallPtrSet DeletedPtrs; // For some DS form load/store instructions, it can also be an update form, // if the stride is constant and is a multipler of 4. Use update form if // prefer it. bool CanPreInc = (Form == UpdateForm || ((Form == DSForm) && isa(BasePtrSCEV->getStepRecurrence(*SE)) && !cast(BasePtrSCEV->getStepRecurrence(*SE)) ->getAPInt() .urem(4) && PreferUpdateForm)); std::pair Base = rewriteForBase(L, BasePtrSCEV, BucketChain.Elements.begin()->Instr, CanPreInc, Form, SCEVE, DeletedPtrs); if (!Base.first || !Base.second) return MadeChange; // Keep track of the replacement pointer values we've inserted so that we // don't generate more pointer values than necessary. SmallPtrSet NewPtrs; NewPtrs.insert(Base.first); for (auto I = std::next(BucketChain.Elements.begin()), IE = BucketChain.Elements.end(); I != IE; ++I) { Value *Ptr = getPointerOperandAndType(I->Instr); assert(Ptr && "No pointer operand"); if (NewPtrs.count(Ptr)) continue; Instruction *NewPtr = rewriteForBucketElement( Base, *I, I->Offset ? cast(I->Offset)->getValue() : nullptr, DeletedPtrs); assert(NewPtr && "wrong rewrite!\n"); NewPtrs.insert(NewPtr); } // Clear the rewriter cache, because values that are in the rewriter's cache // can be deleted below, causing the AssertingVH in the cache to trigger. SCEVE.clear(); for (auto *Ptr : DeletedPtrs) { if (Instruction *IDel = dyn_cast(Ptr)) BBChanged.insert(IDel->getParent()); RecursivelyDeleteTriviallyDeadInstructions(Ptr); } MadeChange = true; SuccPrepCount++; if (Form == DSForm && !CanPreInc) DSFormChainRewritten++; else if (Form == DQForm) DQFormChainRewritten++; else if (Form == UpdateForm || (Form == DSForm && CanPreInc)) UpdFormChainRewritten++; return MadeChange; } bool PPCLoopInstrFormPrep::updateFormPrep(Loop *L, SmallVector &Buckets) { bool MadeChange = false; if (Buckets.empty()) return MadeChange; SmallSet BBChanged; for (auto &Bucket : Buckets) // The base address of each bucket is transformed into a phi and the others // are rewritten based on new base. if (prepareBaseForUpdateFormChain(Bucket)) MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, UpdateForm); if (MadeChange) for (auto *BB : BBChanged) DeleteDeadPHIs(BB); return MadeChange; } bool PPCLoopInstrFormPrep::dispFormPrep(Loop *L, SmallVector &Buckets, PrepForm Form) { bool MadeChange = false; if (Buckets.empty()) return MadeChange; SmallSet BBChanged; for (auto &Bucket : Buckets) { if (Bucket.Elements.size() < DispFormPrepMinThreshold) continue; if (prepareBaseForDispFormChain(Bucket, Form)) MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, Form); } if (MadeChange) for (auto *BB : BBChanged) DeleteDeadPHIs(BB); return MadeChange; } // Find the loop invariant increment node for SCEV BasePtrIncSCEV. // bb.loop.preheader: // %start = ... // bb.loop.body: // %phinode = phi [ %start, %bb.loop.preheader ], [ %add, %bb.loop.body ] // ... // %add = add %phinode, %inc ; %inc is what we want to get. // Value *PPCLoopInstrFormPrep::getNodeForInc(Loop *L, Instruction *MemI, const SCEV *BasePtrIncSCEV) { // If the increment is a constant, no definition is needed. // Return the value directly. if (isa(BasePtrIncSCEV)) return cast(BasePtrIncSCEV)->getValue(); if (!SE->isLoopInvariant(BasePtrIncSCEV, L)) return nullptr; BasicBlock *BB = MemI->getParent(); if (!BB) return nullptr; BasicBlock *LatchBB = L->getLoopLatch(); if (!LatchBB) return nullptr; // Run through the PHIs and check their operands to find valid representation // for the increment SCEV. iterator_range PHIIter = BB->phis(); for (auto &CurrentPHI : PHIIter) { PHINode *CurrentPHINode = dyn_cast(&CurrentPHI); if (!CurrentPHINode) continue; if (!SE->isSCEVable(CurrentPHINode->getType())) continue; const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast(PHISCEV); if (!PHIBasePtrSCEV) continue; const SCEV *PHIBasePtrIncSCEV = PHIBasePtrSCEV->getStepRecurrence(*SE); if (!PHIBasePtrIncSCEV || (PHIBasePtrIncSCEV != BasePtrIncSCEV)) continue; // Get the incoming value from the loop latch and check if the value has // the add form with the required increment. if (Instruction *I = dyn_cast( CurrentPHINode->getIncomingValueForBlock(LatchBB))) { Value *StrippedBaseI = I; while (BitCastInst *BC = dyn_cast(StrippedBaseI)) StrippedBaseI = BC->getOperand(0); Instruction *StrippedI = dyn_cast(StrippedBaseI); if (!StrippedI) continue; // LSR pass may add a getelementptr instruction to do the loop increment, // also search in that getelementptr instruction. if (StrippedI->getOpcode() == Instruction::Add || (StrippedI->getOpcode() == Instruction::GetElementPtr && StrippedI->getNumOperands() == 2)) { if (SE->getSCEVAtScope(StrippedI->getOperand(0), L) == BasePtrIncSCEV) return StrippedI->getOperand(0); if (SE->getSCEVAtScope(StrippedI->getOperand(1), L) == BasePtrIncSCEV) return StrippedI->getOperand(1); } } } return nullptr; } // In order to prepare for the preferred instruction form, a PHI is added. // This function will check to see if that PHI already exists and will return // true if it found an existing PHI with the matched start and increment as the // one we wanted to create. bool PPCLoopInstrFormPrep::alreadyPrepared(Loop *L, Instruction *MemI, const SCEV *BasePtrStartSCEV, const SCEV *BasePtrIncSCEV, PrepForm Form) { BasicBlock *BB = MemI->getParent(); if (!BB) return false; BasicBlock *PredBB = L->getLoopPredecessor(); BasicBlock *LatchBB = L->getLoopLatch(); if (!PredBB || !LatchBB) return false; // Run through the PHIs and see if we have some that looks like a preparation iterator_range PHIIter = BB->phis(); for (auto & CurrentPHI : PHIIter) { PHINode *CurrentPHINode = dyn_cast(&CurrentPHI); if (!CurrentPHINode) continue; if (!SE->isSCEVable(CurrentPHINode->getType())) continue; const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast(PHISCEV); if (!PHIBasePtrSCEV) continue; const SCEVConstant *PHIBasePtrIncSCEV = dyn_cast(PHIBasePtrSCEV->getStepRecurrence(*SE)); if (!PHIBasePtrIncSCEV) continue; if (CurrentPHINode->getNumIncomingValues() == 2) { if ((CurrentPHINode->getIncomingBlock(0) == LatchBB && CurrentPHINode->getIncomingBlock(1) == PredBB) || (CurrentPHINode->getIncomingBlock(1) == LatchBB && CurrentPHINode->getIncomingBlock(0) == PredBB)) { if (PHIBasePtrIncSCEV == BasePtrIncSCEV) { // The existing PHI (CurrentPHINode) has the same start and increment // as the PHI that we wanted to create. if ((Form == UpdateForm || Form == ChainCommoning ) && PHIBasePtrSCEV->getStart() == BasePtrStartSCEV) { ++PHINodeAlreadyExistsUpdate; return true; } if (Form == DSForm || Form == DQForm) { const SCEVConstant *Diff = dyn_cast( SE->getMinusSCEV(PHIBasePtrSCEV->getStart(), BasePtrStartSCEV)); if (Diff && !Diff->getAPInt().urem(Form)) { if (Form == DSForm) ++PHINodeAlreadyExistsDS; else ++PHINodeAlreadyExistsDQ; return true; } } } } } } return false; } bool PPCLoopInstrFormPrep::runOnLoop(Loop *L) { bool MadeChange = false; // Only prep. the inner-most loop if (!L->isInnermost()) return MadeChange; // Return if already done enough preparation. if (SuccPrepCount >= MaxVarsPrep) return MadeChange; LLVM_DEBUG(dbgs() << "PIP: Examining: " << *L << "\n"); BasicBlock *LoopPredecessor = L->getLoopPredecessor(); // If there is no loop predecessor, or the loop predecessor's terminator // returns a value (which might contribute to determining the loop's // iteration space), insert a new preheader for the loop. if (!LoopPredecessor || !LoopPredecessor->getTerminator()->getType()->isVoidTy()) { LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA); if (LoopPredecessor) MadeChange = true; } if (!LoopPredecessor) { LLVM_DEBUG(dbgs() << "PIP fails since no predecessor for current loop.\n"); return MadeChange; } // Check if a load/store has update form. This lambda is used by function // collectCandidates which can collect candidates for types defined by lambda. auto isUpdateFormCandidate = [&](const Instruction *I, Value *PtrValue, const Type *PointerElementType) { assert((PtrValue && I) && "Invalid parameter!"); // There are no update forms for Altivec vector load/stores. if (ST && ST->hasAltivec() && PointerElementType->isVectorTy()) return false; // There are no update forms for P10 lxvp/stxvp intrinsic. auto *II = dyn_cast(I); if (II && ((II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) || II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp)) return false; // See getPreIndexedAddressParts, the displacement for LDU/STDU has to // be 4's multiple (DS-form). For i64 loads/stores when the displacement // fits in a 16-bit signed field but isn't a multiple of 4, it will be // useless and possible to break some original well-form addressing mode // to make this pre-inc prep for it. if (PointerElementType->isIntegerTy(64)) { const SCEV *LSCEV = SE->getSCEVAtScope(const_cast(PtrValue), L); const SCEVAddRecExpr *LARSCEV = dyn_cast(LSCEV); if (!LARSCEV || LARSCEV->getLoop() != L) return false; if (const SCEVConstant *StepConst = dyn_cast(LARSCEV->getStepRecurrence(*SE))) { const APInt &ConstInt = StepConst->getValue()->getValue(); if (ConstInt.isSignedIntN(16) && ConstInt.srem(4) != 0) return false; } } return true; }; // Check if a load/store has DS form. auto isDSFormCandidate = [](const Instruction *I, Value *PtrValue, const Type *PointerElementType) { assert((PtrValue && I) && "Invalid parameter!"); if (isa(I)) return false; return (PointerElementType->isIntegerTy(64)) || (PointerElementType->isFloatTy()) || (PointerElementType->isDoubleTy()) || (PointerElementType->isIntegerTy(32) && llvm::any_of(I->users(), [](const User *U) { return isa(U); })); }; // Check if a load/store has DQ form. auto isDQFormCandidate = [&](const Instruction *I, Value *PtrValue, const Type *PointerElementType) { assert((PtrValue && I) && "Invalid parameter!"); // Check if it is a P10 lxvp/stxvp intrinsic. auto *II = dyn_cast(I); if (II) return II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp || II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp; // Check if it is a P9 vector load/store. return ST && ST->hasP9Vector() && (PointerElementType->isVectorTy()); }; // Check if a load/store is candidate for chain commoning. // If the SCEV is only with one ptr operand in its start, we can use that // start as a chain separator. Mark this load/store as a candidate. auto isChainCommoningCandidate = [&](const Instruction *I, Value *PtrValue, const Type *PointerElementType) { const SCEVAddRecExpr *ARSCEV = cast(SE->getSCEVAtScope(PtrValue, L)); if (!ARSCEV) return false; if (!ARSCEV->isAffine()) return false; const SCEV *Start = ARSCEV->getStart(); // A single pointer. We can treat it as offset 0. if (isa(Start) && Start->getType()->isPointerTy()) return true; const SCEVAddExpr *ASCEV = dyn_cast(Start); // We need a SCEVAddExpr to include both base and offset. if (!ASCEV) return false; // Make sure there is only one pointer operand(base) and all other operands // are integer type. bool SawPointer = false; for (const SCEV *Op : ASCEV->operands()) { if (Op->getType()->isPointerTy()) { if (SawPointer) return false; SawPointer = true; } else if (!Op->getType()->isIntegerTy()) return false; } return SawPointer; }; // Check if the diff is a constant type. This is used for update/DS/DQ form // preparation. auto isValidConstantDiff = [](const SCEV *Diff) { return dyn_cast(Diff) != nullptr; }; // Make sure the diff between the base and new candidate is required type. // This is used for chain commoning preparation. auto isValidChainCommoningDiff = [](const SCEV *Diff) { assert(Diff && "Invalid Diff!\n"); // Don't mess up previous dform prepare. if (isa(Diff)) return false; // A single integer type offset. if (isa(Diff) && Diff->getType()->isIntegerTy()) return true; const SCEVNAryExpr *ADiff = dyn_cast(Diff); if (!ADiff) return false; for (const SCEV *Op : ADiff->operands()) if (!Op->getType()->isIntegerTy()) return false; return true; }; HasCandidateForPrepare = false; LLVM_DEBUG(dbgs() << "Start to prepare for update form.\n"); // Collect buckets of comparable addresses used by loads and stores for update // form. SmallVector UpdateFormBuckets = collectCandidates( L, isUpdateFormCandidate, isValidConstantDiff, MaxVarsUpdateForm); // Prepare for update form. if (!UpdateFormBuckets.empty()) MadeChange |= updateFormPrep(L, UpdateFormBuckets); else if (!HasCandidateForPrepare) { LLVM_DEBUG( dbgs() << "No prepare candidates found, stop praparation for current loop!\n"); // If no candidate for preparing, return early. return MadeChange; } LLVM_DEBUG(dbgs() << "Start to prepare for DS form.\n"); // Collect buckets of comparable addresses used by loads and stores for DS // form. SmallVector DSFormBuckets = collectCandidates( L, isDSFormCandidate, isValidConstantDiff, MaxVarsDSForm); // Prepare for DS form. if (!DSFormBuckets.empty()) MadeChange |= dispFormPrep(L, DSFormBuckets, DSForm); LLVM_DEBUG(dbgs() << "Start to prepare for DQ form.\n"); // Collect buckets of comparable addresses used by loads and stores for DQ // form. SmallVector DQFormBuckets = collectCandidates( L, isDQFormCandidate, isValidConstantDiff, MaxVarsDQForm); // Prepare for DQ form. if (!DQFormBuckets.empty()) MadeChange |= dispFormPrep(L, DQFormBuckets, DQForm); // Collect buckets of comparable addresses used by loads and stores for chain // commoning. With chain commoning, we reuse offsets between the chains, so // the register pressure will be reduced. if (!EnableChainCommoning) { LLVM_DEBUG(dbgs() << "Chain commoning is not enabled.\n"); return MadeChange; } LLVM_DEBUG(dbgs() << "Start to prepare for chain commoning.\n"); SmallVector Buckets = collectCandidates(L, isChainCommoningCandidate, isValidChainCommoningDiff, MaxVarsChainCommon); // Prepare for chain commoning. if (!Buckets.empty()) MadeChange |= chainCommoning(L, Buckets); return MadeChange; }