xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Mips/MipsSEISelLowering.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsTargetLowering specialized for mips32/64.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MipsSEISelLowering.h"
14 #include "MipsMachineFunction.h"
15 #include "MipsRegisterInfo.h"
16 #include "MipsSubtarget.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/SelectionDAGNodes.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/IntrinsicsMips.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
49 #include <utility>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "mips-isel"
54 
55 static cl::opt<bool>
56 UseMipsTailCalls("mips-tail-calls", cl::Hidden,
57                     cl::desc("MIPS: permit tail calls."), cl::init(false));
58 
59 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
60                                    cl::desc("Expand double precision loads and "
61                                             "stores to their single precision "
62                                             "counterparts"));
63 
64 MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
65                                            const MipsSubtarget &STI)
66     : MipsTargetLowering(TM, STI) {
67   // Set up the register classes
68   addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
69 
70   if (Subtarget.isGP64bit())
71     addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
72 
73   if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
74     // Expand all truncating stores and extending loads.
75     for (MVT VT0 : MVT::fixedlen_vector_valuetypes()) {
76       for (MVT VT1 : MVT::fixedlen_vector_valuetypes()) {
77         setTruncStoreAction(VT0, VT1, Expand);
78         setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
79         setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
80         setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
81       }
82     }
83   }
84 
85   if (Subtarget.hasDSP()) {
86     MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
87 
88     for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
89       addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
90 
91       // Expand all builtin opcodes.
92       for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
93         setOperationAction(Opc, VecTys[i], Expand);
94 
95       setOperationAction(ISD::ADD, VecTys[i], Legal);
96       setOperationAction(ISD::SUB, VecTys[i], Legal);
97       setOperationAction(ISD::LOAD, VecTys[i], Legal);
98       setOperationAction(ISD::STORE, VecTys[i], Legal);
99       setOperationAction(ISD::BITCAST, VecTys[i], Legal);
100     }
101 
102     setTargetDAGCombine(ISD::SHL);
103     setTargetDAGCombine(ISD::SRA);
104     setTargetDAGCombine(ISD::SRL);
105     setTargetDAGCombine(ISD::SETCC);
106     setTargetDAGCombine(ISD::VSELECT);
107 
108     if (Subtarget.hasMips32r2()) {
109       setOperationAction(ISD::ADDC, MVT::i32, Legal);
110       setOperationAction(ISD::ADDE, MVT::i32, Legal);
111     }
112   }
113 
114   if (Subtarget.hasDSPR2())
115     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
116 
117   if (Subtarget.hasMSA()) {
118     addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
119     addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
120     addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
121     addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
122     addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
123     addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
124     addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
125 
126     // f16 is a storage-only type, always promote it to f32.
127     addRegisterClass(MVT::f16, &Mips::MSA128HRegClass);
128     setOperationAction(ISD::SETCC, MVT::f16, Promote);
129     setOperationAction(ISD::BR_CC, MVT::f16, Promote);
130     setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
131     setOperationAction(ISD::SELECT, MVT::f16, Promote);
132     setOperationAction(ISD::FADD, MVT::f16, Promote);
133     setOperationAction(ISD::FSUB, MVT::f16, Promote);
134     setOperationAction(ISD::FMUL, MVT::f16, Promote);
135     setOperationAction(ISD::FDIV, MVT::f16, Promote);
136     setOperationAction(ISD::FREM, MVT::f16, Promote);
137     setOperationAction(ISD::FMA, MVT::f16, Promote);
138     setOperationAction(ISD::FNEG, MVT::f16, Promote);
139     setOperationAction(ISD::FABS, MVT::f16, Promote);
140     setOperationAction(ISD::FCEIL, MVT::f16, Promote);
141     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
142     setOperationAction(ISD::FCOS, MVT::f16, Promote);
143     setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote);
144     setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
145     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
146     setOperationAction(ISD::FPOW, MVT::f16, Promote);
147     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
148     setOperationAction(ISD::FRINT, MVT::f16, Promote);
149     setOperationAction(ISD::FSIN, MVT::f16, Promote);
150     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
151     setOperationAction(ISD::FSQRT, MVT::f16, Promote);
152     setOperationAction(ISD::FEXP, MVT::f16, Promote);
153     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
154     setOperationAction(ISD::FLOG, MVT::f16, Promote);
155     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
156     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
157     setOperationAction(ISD::FROUND, MVT::f16, Promote);
158     setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
159     setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
160     setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
161     setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
162     setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
163 
164     setTargetDAGCombine(ISD::AND);
165     setTargetDAGCombine(ISD::OR);
166     setTargetDAGCombine(ISD::SRA);
167     setTargetDAGCombine(ISD::VSELECT);
168     setTargetDAGCombine(ISD::XOR);
169   }
170 
171   if (!Subtarget.useSoftFloat()) {
172     addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
173 
174     // When dealing with single precision only, use libcalls
175     if (!Subtarget.isSingleFloat()) {
176       if (Subtarget.isFP64bit())
177         addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
178       else
179         addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
180     }
181   }
182 
183   setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
184   setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
185   setOperationAction(ISD::MULHS,              MVT::i32, Custom);
186   setOperationAction(ISD::MULHU,              MVT::i32, Custom);
187 
188   if (Subtarget.hasCnMips())
189     setOperationAction(ISD::MUL,              MVT::i64, Legal);
190   else if (Subtarget.isGP64bit())
191     setOperationAction(ISD::MUL,              MVT::i64, Custom);
192 
193   if (Subtarget.isGP64bit()) {
194     setOperationAction(ISD::SMUL_LOHI,        MVT::i64, Custom);
195     setOperationAction(ISD::UMUL_LOHI,        MVT::i64, Custom);
196     setOperationAction(ISD::MULHS,            MVT::i64, Custom);
197     setOperationAction(ISD::MULHU,            MVT::i64, Custom);
198     setOperationAction(ISD::SDIVREM,          MVT::i64, Custom);
199     setOperationAction(ISD::UDIVREM,          MVT::i64, Custom);
200   }
201 
202   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
203   setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
204 
205   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
206   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
207   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
208   setOperationAction(ISD::LOAD,               MVT::i32, Custom);
209   setOperationAction(ISD::STORE,              MVT::i32, Custom);
210 
211   setTargetDAGCombine(ISD::MUL);
212 
213   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
214   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
215   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
216 
217   if (Subtarget.hasMips32r2() && !Subtarget.useSoftFloat() &&
218       !Subtarget.hasMips64()) {
219     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
220   }
221 
222   if (NoDPLoadStore) {
223     setOperationAction(ISD::LOAD, MVT::f64, Custom);
224     setOperationAction(ISD::STORE, MVT::f64, Custom);
225   }
226 
227   if (Subtarget.hasMips32r6()) {
228     // MIPS32r6 replaces the accumulator-based multiplies with a three register
229     // instruction
230     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
231     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
232     setOperationAction(ISD::MUL, MVT::i32, Legal);
233     setOperationAction(ISD::MULHS, MVT::i32, Legal);
234     setOperationAction(ISD::MULHU, MVT::i32, Legal);
235 
236     // MIPS32r6 replaces the accumulator-based division/remainder with separate
237     // three register division and remainder instructions.
238     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
239     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
240     setOperationAction(ISD::SDIV, MVT::i32, Legal);
241     setOperationAction(ISD::UDIV, MVT::i32, Legal);
242     setOperationAction(ISD::SREM, MVT::i32, Legal);
243     setOperationAction(ISD::UREM, MVT::i32, Legal);
244 
245     // MIPS32r6 replaces conditional moves with an equivalent that removes the
246     // need for three GPR read ports.
247     setOperationAction(ISD::SETCC, MVT::i32, Legal);
248     setOperationAction(ISD::SELECT, MVT::i32, Legal);
249     setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
250 
251     setOperationAction(ISD::SETCC, MVT::f32, Legal);
252     setOperationAction(ISD::SELECT, MVT::f32, Legal);
253     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
254 
255     assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
256     setOperationAction(ISD::SETCC, MVT::f64, Legal);
257     setOperationAction(ISD::SELECT, MVT::f64, Custom);
258     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
259 
260     setOperationAction(ISD::BRCOND, MVT::Other, Legal);
261 
262     // Floating point > and >= are supported via < and <=
263     setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
264     setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
265     setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
266     setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
267 
268     setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
269     setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
270     setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
271     setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
272   }
273 
274   if (Subtarget.hasMips64r6()) {
275     // MIPS64r6 replaces the accumulator-based multiplies with a three register
276     // instruction
277     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
278     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
279     setOperationAction(ISD::MUL, MVT::i64, Legal);
280     setOperationAction(ISD::MULHS, MVT::i64, Legal);
281     setOperationAction(ISD::MULHU, MVT::i64, Legal);
282 
283     // MIPS32r6 replaces the accumulator-based division/remainder with separate
284     // three register division and remainder instructions.
285     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
286     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
287     setOperationAction(ISD::SDIV, MVT::i64, Legal);
288     setOperationAction(ISD::UDIV, MVT::i64, Legal);
289     setOperationAction(ISD::SREM, MVT::i64, Legal);
290     setOperationAction(ISD::UREM, MVT::i64, Legal);
291 
292     // MIPS64r6 replaces conditional moves with an equivalent that removes the
293     // need for three GPR read ports.
294     setOperationAction(ISD::SETCC, MVT::i64, Legal);
295     setOperationAction(ISD::SELECT, MVT::i64, Legal);
296     setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
297   }
298 
299   computeRegisterProperties(Subtarget.getRegisterInfo());
300 }
301 
302 const MipsTargetLowering *
303 llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
304                                  const MipsSubtarget &STI) {
305   return new MipsSETargetLowering(TM, STI);
306 }
307 
308 const TargetRegisterClass *
309 MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
310   if (VT == MVT::Untyped)
311     return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
312 
313   return TargetLowering::getRepRegClassFor(VT);
314 }
315 
316 // Enable MSA support for the given integer type and Register class.
317 void MipsSETargetLowering::
318 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
319   addRegisterClass(Ty, RC);
320 
321   // Expand all builtin opcodes.
322   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
323     setOperationAction(Opc, Ty, Expand);
324 
325   setOperationAction(ISD::BITCAST, Ty, Legal);
326   setOperationAction(ISD::LOAD, Ty, Legal);
327   setOperationAction(ISD::STORE, Ty, Legal);
328   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
329   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
330   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
331   setOperationAction(ISD::UNDEF, Ty, Legal);
332 
333   setOperationAction(ISD::ADD, Ty, Legal);
334   setOperationAction(ISD::AND, Ty, Legal);
335   setOperationAction(ISD::CTLZ, Ty, Legal);
336   setOperationAction(ISD::CTPOP, Ty, Legal);
337   setOperationAction(ISD::MUL, Ty, Legal);
338   setOperationAction(ISD::OR, Ty, Legal);
339   setOperationAction(ISD::SDIV, Ty, Legal);
340   setOperationAction(ISD::SREM, Ty, Legal);
341   setOperationAction(ISD::SHL, Ty, Legal);
342   setOperationAction(ISD::SRA, Ty, Legal);
343   setOperationAction(ISD::SRL, Ty, Legal);
344   setOperationAction(ISD::SUB, Ty, Legal);
345   setOperationAction(ISD::SMAX, Ty, Legal);
346   setOperationAction(ISD::SMIN, Ty, Legal);
347   setOperationAction(ISD::UDIV, Ty, Legal);
348   setOperationAction(ISD::UREM, Ty, Legal);
349   setOperationAction(ISD::UMAX, Ty, Legal);
350   setOperationAction(ISD::UMIN, Ty, Legal);
351   setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
352   setOperationAction(ISD::VSELECT, Ty, Legal);
353   setOperationAction(ISD::XOR, Ty, Legal);
354 
355   if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
356     setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
357     setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
358     setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
359     setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
360   }
361 
362   setOperationAction(ISD::SETCC, Ty, Legal);
363   setCondCodeAction(ISD::SETNE, Ty, Expand);
364   setCondCodeAction(ISD::SETGE, Ty, Expand);
365   setCondCodeAction(ISD::SETGT, Ty, Expand);
366   setCondCodeAction(ISD::SETUGE, Ty, Expand);
367   setCondCodeAction(ISD::SETUGT, Ty, Expand);
368 }
369 
370 // Enable MSA support for the given floating-point type and Register class.
371 void MipsSETargetLowering::
372 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
373   addRegisterClass(Ty, RC);
374 
375   // Expand all builtin opcodes.
376   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
377     setOperationAction(Opc, Ty, Expand);
378 
379   setOperationAction(ISD::LOAD, Ty, Legal);
380   setOperationAction(ISD::STORE, Ty, Legal);
381   setOperationAction(ISD::BITCAST, Ty, Legal);
382   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
383   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
384   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
385 
386   if (Ty != MVT::v8f16) {
387     setOperationAction(ISD::FABS,  Ty, Legal);
388     setOperationAction(ISD::FADD,  Ty, Legal);
389     setOperationAction(ISD::FDIV,  Ty, Legal);
390     setOperationAction(ISD::FEXP2, Ty, Legal);
391     setOperationAction(ISD::FLOG2, Ty, Legal);
392     setOperationAction(ISD::FMA,   Ty, Legal);
393     setOperationAction(ISD::FMUL,  Ty, Legal);
394     setOperationAction(ISD::FRINT, Ty, Legal);
395     setOperationAction(ISD::FSQRT, Ty, Legal);
396     setOperationAction(ISD::FSUB,  Ty, Legal);
397     setOperationAction(ISD::VSELECT, Ty, Legal);
398 
399     setOperationAction(ISD::SETCC, Ty, Legal);
400     setCondCodeAction(ISD::SETOGE, Ty, Expand);
401     setCondCodeAction(ISD::SETOGT, Ty, Expand);
402     setCondCodeAction(ISD::SETUGE, Ty, Expand);
403     setCondCodeAction(ISD::SETUGT, Ty, Expand);
404     setCondCodeAction(ISD::SETGE,  Ty, Expand);
405     setCondCodeAction(ISD::SETGT,  Ty, Expand);
406   }
407 }
408 
409 SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
410   if(!Subtarget.hasMips32r6())
411     return MipsTargetLowering::LowerOperation(Op, DAG);
412 
413   EVT ResTy = Op->getValueType(0);
414   SDLoc DL(Op);
415 
416   // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the
417   // floating point register are undefined. Not really an issue as sel.d, which
418   // is produced from an FSELECT node, only looks at bit 0.
419   SDValue Tmp = DAG.getNode(MipsISD::MTC1_D64, DL, MVT::f64, Op->getOperand(0));
420   return DAG.getNode(MipsISD::FSELECT, DL, ResTy, Tmp, Op->getOperand(1),
421                      Op->getOperand(2));
422 }
423 
424 bool MipsSETargetLowering::allowsMisalignedMemoryAccesses(
425     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
426   MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
427 
428   if (Subtarget.systemSupportsUnalignedAccess()) {
429     // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
430     // implementation defined whether this is handled by hardware, software, or
431     // a hybrid of the two but it's expected that most implementations will
432     // handle the majority of cases in hardware.
433     if (Fast)
434       *Fast = true;
435     return true;
436   }
437 
438   switch (SVT) {
439   case MVT::i64:
440   case MVT::i32:
441     if (Fast)
442       *Fast = true;
443     return true;
444   default:
445     return false;
446   }
447 }
448 
449 SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
450                                              SelectionDAG &DAG) const {
451   switch(Op.getOpcode()) {
452   case ISD::LOAD:  return lowerLOAD(Op, DAG);
453   case ISD::STORE: return lowerSTORE(Op, DAG);
454   case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
455   case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
456   case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
457   case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
458   case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
459   case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
460   case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
461                                           DAG);
462   case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
463   case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
464   case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
465   case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
466   case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
467   case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
468   case ISD::SELECT:             return lowerSELECT(Op, DAG);
469   case ISD::BITCAST:            return lowerBITCAST(Op, DAG);
470   }
471 
472   return MipsTargetLowering::LowerOperation(Op, DAG);
473 }
474 
475 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
476 //
477 // Performs the following transformations:
478 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
479 //   sign/zero-extension is completely overwritten by the new one performed by
480 //   the ISD::AND.
481 // - Removes redundant zero extensions performed by an ISD::AND.
482 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
483                                  TargetLowering::DAGCombinerInfo &DCI,
484                                  const MipsSubtarget &Subtarget) {
485   if (!Subtarget.hasMSA())
486     return SDValue();
487 
488   SDValue Op0 = N->getOperand(0);
489   SDValue Op1 = N->getOperand(1);
490   unsigned Op0Opcode = Op0->getOpcode();
491 
492   // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
493   // where $d + 1 == 2^n and n == 32
494   // or    $d + 1 == 2^n and n <= 32 and ZExt
495   // -> (MipsVExtractZExt $a, $b, $c)
496   if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
497       Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
498     ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
499 
500     if (!Mask)
501       return SDValue();
502 
503     int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
504 
505     if (Log2IfPositive <= 0)
506       return SDValue(); // Mask+1 is not a power of 2
507 
508     SDValue Op0Op2 = Op0->getOperand(2);
509     EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
510     unsigned ExtendTySize = ExtendTy.getSizeInBits();
511     unsigned Log2 = Log2IfPositive;
512 
513     if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
514         Log2 == ExtendTySize) {
515       SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
516       return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
517                          Op0->getVTList(),
518                          makeArrayRef(Ops, Op0->getNumOperands()));
519     }
520   }
521 
522   return SDValue();
523 }
524 
525 // Determine if the specified node is a constant vector splat.
526 //
527 // Returns true and sets Imm if:
528 // * N is a ISD::BUILD_VECTOR representing a constant splat
529 //
530 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
531 // differences are that it assumes the MSA has already been checked and the
532 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
533 // must not be in order for binsri.d to be selectable).
534 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
535   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
536 
537   if (!Node)
538     return false;
539 
540   APInt SplatValue, SplatUndef;
541   unsigned SplatBitSize;
542   bool HasAnyUndefs;
543 
544   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
545                              8, !IsLittleEndian))
546     return false;
547 
548   Imm = SplatValue;
549 
550   return true;
551 }
552 
553 // Test whether the given node is an all-ones build_vector.
554 static bool isVectorAllOnes(SDValue N) {
555   // Look through bitcasts. Endianness doesn't matter because we are looking
556   // for an all-ones value.
557   if (N->getOpcode() == ISD::BITCAST)
558     N = N->getOperand(0);
559 
560   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
561 
562   if (!BVN)
563     return false;
564 
565   APInt SplatValue, SplatUndef;
566   unsigned SplatBitSize;
567   bool HasAnyUndefs;
568 
569   // Endianness doesn't matter in this context because we are looking for
570   // an all-ones value.
571   if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
572     return SplatValue.isAllOnesValue();
573 
574   return false;
575 }
576 
577 // Test whether N is the bitwise inverse of OfNode.
578 static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
579   if (N->getOpcode() != ISD::XOR)
580     return false;
581 
582   if (isVectorAllOnes(N->getOperand(0)))
583     return N->getOperand(1) == OfNode;
584 
585   if (isVectorAllOnes(N->getOperand(1)))
586     return N->getOperand(0) == OfNode;
587 
588   return false;
589 }
590 
591 // Perform combines where ISD::OR is the root node.
592 //
593 // Performs the following transformations:
594 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
595 //   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
596 //   vector type.
597 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
598                                 TargetLowering::DAGCombinerInfo &DCI,
599                                 const MipsSubtarget &Subtarget) {
600   if (!Subtarget.hasMSA())
601     return SDValue();
602 
603   EVT Ty = N->getValueType(0);
604 
605   if (!Ty.is128BitVector())
606     return SDValue();
607 
608   SDValue Op0 = N->getOperand(0);
609   SDValue Op1 = N->getOperand(1);
610 
611   if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
612     SDValue Op0Op0 = Op0->getOperand(0);
613     SDValue Op0Op1 = Op0->getOperand(1);
614     SDValue Op1Op0 = Op1->getOperand(0);
615     SDValue Op1Op1 = Op1->getOperand(1);
616     bool IsLittleEndian = !Subtarget.isLittle();
617 
618     SDValue IfSet, IfClr, Cond;
619     bool IsConstantMask = false;
620     APInt Mask, InvMask;
621 
622     // If Op0Op0 is an appropriate mask, try to find it's inverse in either
623     // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
624     // looking.
625     // IfClr will be set if we find a valid match.
626     if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
627       Cond = Op0Op0;
628       IfSet = Op0Op1;
629 
630       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
631           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
632         IfClr = Op1Op1;
633       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
634                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
635         IfClr = Op1Op0;
636 
637       IsConstantMask = true;
638     }
639 
640     // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
641     // thing again using this mask.
642     // IfClr will be set if we find a valid match.
643     if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
644       Cond = Op0Op1;
645       IfSet = Op0Op0;
646 
647       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
648           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
649         IfClr = Op1Op1;
650       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
651                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
652         IfClr = Op1Op0;
653 
654       IsConstantMask = true;
655     }
656 
657     // If IfClr is not yet set, try looking for a non-constant match.
658     // IfClr will be set if we find a valid match amongst the eight
659     // possibilities.
660     if (!IfClr.getNode()) {
661       if (isBitwiseInverse(Op0Op0, Op1Op0)) {
662         Cond = Op1Op0;
663         IfSet = Op1Op1;
664         IfClr = Op0Op1;
665       } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
666         Cond = Op1Op0;
667         IfSet = Op1Op1;
668         IfClr = Op0Op0;
669       } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
670         Cond = Op1Op1;
671         IfSet = Op1Op0;
672         IfClr = Op0Op1;
673       } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
674         Cond = Op1Op1;
675         IfSet = Op1Op0;
676         IfClr = Op0Op0;
677       } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
678         Cond = Op0Op0;
679         IfSet = Op0Op1;
680         IfClr = Op1Op1;
681       } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
682         Cond = Op0Op0;
683         IfSet = Op0Op1;
684         IfClr = Op1Op0;
685       } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
686         Cond = Op0Op1;
687         IfSet = Op0Op0;
688         IfClr = Op1Op1;
689       } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
690         Cond = Op0Op1;
691         IfSet = Op0Op0;
692         IfClr = Op1Op0;
693       }
694     }
695 
696     // At this point, IfClr will be set if we have a valid match.
697     if (!IfClr.getNode())
698       return SDValue();
699 
700     assert(Cond.getNode() && IfSet.getNode());
701 
702     // Fold degenerate cases.
703     if (IsConstantMask) {
704       if (Mask.isAllOnesValue())
705         return IfSet;
706       else if (Mask == 0)
707         return IfClr;
708     }
709 
710     // Transform the DAG into an equivalent VSELECT.
711     return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
712   }
713 
714   return SDValue();
715 }
716 
717 static bool shouldTransformMulToShiftsAddsSubs(APInt C, EVT VT,
718                                                SelectionDAG &DAG,
719                                                const MipsSubtarget &Subtarget) {
720   // Estimate the number of operations the below transform will turn a
721   // constant multiply into. The number is approximately equal to the minimal
722   // number of powers of two that constant can be broken down to by adding
723   // or subtracting them.
724   //
725   // If we have taken more than 12[1] / 8[2] steps to attempt the
726   // optimization for a native sized value, it is more than likely that this
727   // optimization will make things worse.
728   //
729   // [1] MIPS64 requires 6 instructions at most to materialize any constant,
730   //     multiplication requires at least 4 cycles, but another cycle (or two)
731   //     to retrieve the result from the HI/LO registers.
732   //
733   // [2] For MIPS32, more than 8 steps is expensive as the constant could be
734   //     materialized in 2 instructions, multiplication requires at least 4
735   //     cycles, but another cycle (or two) to retrieve the result from the
736   //     HI/LO registers.
737   //
738   // TODO:
739   // - MaxSteps needs to consider the `VT` of the constant for the current
740   //   target.
741   // - Consider to perform this optimization after type legalization.
742   //   That allows to remove a workaround for types not supported natively.
743   // - Take in account `-Os, -Oz` flags because this optimization
744   //   increases code size.
745   unsigned MaxSteps = Subtarget.isABI_O32() ? 8 : 12;
746 
747   SmallVector<APInt, 16> WorkStack(1, C);
748   unsigned Steps = 0;
749   unsigned BitWidth = C.getBitWidth();
750 
751   while (!WorkStack.empty()) {
752     APInt Val = WorkStack.pop_back_val();
753 
754     if (Val == 0 || Val == 1)
755       continue;
756 
757     if (Steps >= MaxSteps)
758       return false;
759 
760     if (Val.isPowerOf2()) {
761       ++Steps;
762       continue;
763     }
764 
765     APInt Floor = APInt(BitWidth, 1) << Val.logBase2();
766     APInt Ceil = Val.isNegative() ? APInt(BitWidth, 0)
767                                   : APInt(BitWidth, 1) << C.ceilLogBase2();
768     if ((Val - Floor).ule(Ceil - Val)) {
769       WorkStack.push_back(Floor);
770       WorkStack.push_back(Val - Floor);
771     } else {
772       WorkStack.push_back(Ceil);
773       WorkStack.push_back(Ceil - Val);
774     }
775 
776     ++Steps;
777   }
778 
779   // If the value being multiplied is not supported natively, we have to pay
780   // an additional legalization cost, conservatively assume an increase in the
781   // cost of 3 instructions per step. This values for this heuristic were
782   // determined experimentally.
783   unsigned RegisterSize = DAG.getTargetLoweringInfo()
784                               .getRegisterType(*DAG.getContext(), VT)
785                               .getSizeInBits();
786   Steps *= (VT.getSizeInBits() != RegisterSize) * 3;
787   if (Steps > 27)
788     return false;
789 
790   return true;
791 }
792 
793 static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT,
794                             EVT ShiftTy, SelectionDAG &DAG) {
795   // Return 0.
796   if (C == 0)
797     return DAG.getConstant(0, DL, VT);
798 
799   // Return x.
800   if (C == 1)
801     return X;
802 
803   // If c is power of 2, return (shl x, log2(c)).
804   if (C.isPowerOf2())
805     return DAG.getNode(ISD::SHL, DL, VT, X,
806                        DAG.getConstant(C.logBase2(), DL, ShiftTy));
807 
808   unsigned BitWidth = C.getBitWidth();
809   APInt Floor = APInt(BitWidth, 1) << C.logBase2();
810   APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) :
811                                 APInt(BitWidth, 1) << C.ceilLogBase2();
812 
813   // If |c - floor_c| <= |c - ceil_c|,
814   // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
815   // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
816   if ((C - Floor).ule(Ceil - C)) {
817     SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
818     SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
819     return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
820   }
821 
822   // If |c - floor_c| > |c - ceil_c|,
823   // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
824   SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
825   SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
826   return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
827 }
828 
829 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
830                                  const TargetLowering::DAGCombinerInfo &DCI,
831                                  const MipsSETargetLowering *TL,
832                                  const MipsSubtarget &Subtarget) {
833   EVT VT = N->getValueType(0);
834 
835   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
836     if (!VT.isVector() && shouldTransformMulToShiftsAddsSubs(
837                               C->getAPIntValue(), VT, DAG, Subtarget))
838       return genConstMult(N->getOperand(0), C->getAPIntValue(), SDLoc(N), VT,
839                           TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
840                           DAG);
841 
842   return SDValue(N, 0);
843 }
844 
845 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
846                                       SelectionDAG &DAG,
847                                       const MipsSubtarget &Subtarget) {
848   // See if this is a vector splat immediate node.
849   APInt SplatValue, SplatUndef;
850   unsigned SplatBitSize;
851   bool HasAnyUndefs;
852   unsigned EltSize = Ty.getScalarSizeInBits();
853   BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
854 
855   if (!Subtarget.hasDSP())
856     return SDValue();
857 
858   if (!BV ||
859       !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
860                            EltSize, !Subtarget.isLittle()) ||
861       (SplatBitSize != EltSize) ||
862       (SplatValue.getZExtValue() >= EltSize))
863     return SDValue();
864 
865   SDLoc DL(N);
866   return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
867                      DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
868 }
869 
870 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
871                                  TargetLowering::DAGCombinerInfo &DCI,
872                                  const MipsSubtarget &Subtarget) {
873   EVT Ty = N->getValueType(0);
874 
875   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
876     return SDValue();
877 
878   return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
879 }
880 
881 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
882 // constant splats into MipsISD::SHRA_DSP for DSPr2.
883 //
884 // Performs the following transformations:
885 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
886 //   sign/zero-extension is completely overwritten by the new one performed by
887 //   the ISD::SRA and ISD::SHL nodes.
888 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
889 //   sequence.
890 //
891 // See performDSPShiftCombine for more information about the transformation
892 // used for DSPr2.
893 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
894                                  TargetLowering::DAGCombinerInfo &DCI,
895                                  const MipsSubtarget &Subtarget) {
896   EVT Ty = N->getValueType(0);
897 
898   if (Subtarget.hasMSA()) {
899     SDValue Op0 = N->getOperand(0);
900     SDValue Op1 = N->getOperand(1);
901 
902     // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
903     // where $d + sizeof($c) == 32
904     // or    $d + sizeof($c) <= 32 and SExt
905     // -> (MipsVExtractSExt $a, $b, $c)
906     if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
907       SDValue Op0Op0 = Op0->getOperand(0);
908       ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
909 
910       if (!ShAmount)
911         return SDValue();
912 
913       if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
914           Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
915         return SDValue();
916 
917       EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
918       unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
919 
920       if (TotalBits == 32 ||
921           (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
922            TotalBits <= 32)) {
923         SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
924                           Op0Op0->getOperand(2) };
925         return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
926                            Op0Op0->getVTList(),
927                            makeArrayRef(Ops, Op0Op0->getNumOperands()));
928       }
929     }
930   }
931 
932   if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
933     return SDValue();
934 
935   return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
936 }
937 
938 
939 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
940                                  TargetLowering::DAGCombinerInfo &DCI,
941                                  const MipsSubtarget &Subtarget) {
942   EVT Ty = N->getValueType(0);
943 
944   if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
945     return SDValue();
946 
947   return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
948 }
949 
950 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
951   bool IsV216 = (Ty == MVT::v2i16);
952 
953   switch (CC) {
954   case ISD::SETEQ:
955   case ISD::SETNE:  return true;
956   case ISD::SETLT:
957   case ISD::SETLE:
958   case ISD::SETGT:
959   case ISD::SETGE:  return IsV216;
960   case ISD::SETULT:
961   case ISD::SETULE:
962   case ISD::SETUGT:
963   case ISD::SETUGE: return !IsV216;
964   default:          return false;
965   }
966 }
967 
968 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
969   EVT Ty = N->getValueType(0);
970 
971   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
972     return SDValue();
973 
974   if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
975     return SDValue();
976 
977   return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
978                      N->getOperand(1), N->getOperand(2));
979 }
980 
981 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
982   EVT Ty = N->getValueType(0);
983 
984   if (Ty == MVT::v2i16 || Ty == MVT::v4i8) {
985     SDValue SetCC = N->getOperand(0);
986 
987     if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
988       return SDValue();
989 
990     return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
991                        SetCC.getOperand(0), SetCC.getOperand(1),
992                        N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
993   }
994 
995   return SDValue();
996 }
997 
998 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
999                                  const MipsSubtarget &Subtarget) {
1000   EVT Ty = N->getValueType(0);
1001 
1002   if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
1003     // Try the following combines:
1004     //   (xor (or $a, $b), (build_vector allones))
1005     //   (xor (or $a, $b), (bitcast (build_vector allones)))
1006     SDValue Op0 = N->getOperand(0);
1007     SDValue Op1 = N->getOperand(1);
1008     SDValue NotOp;
1009 
1010     if (ISD::isBuildVectorAllOnes(Op0.getNode()))
1011       NotOp = Op1;
1012     else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
1013       NotOp = Op0;
1014     else
1015       return SDValue();
1016 
1017     if (NotOp->getOpcode() == ISD::OR)
1018       return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
1019                          NotOp->getOperand(1));
1020   }
1021 
1022   return SDValue();
1023 }
1024 
1025 SDValue
1026 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1027   SelectionDAG &DAG = DCI.DAG;
1028   SDValue Val;
1029 
1030   switch (N->getOpcode()) {
1031   case ISD::AND:
1032     Val = performANDCombine(N, DAG, DCI, Subtarget);
1033     break;
1034   case ISD::OR:
1035     Val = performORCombine(N, DAG, DCI, Subtarget);
1036     break;
1037   case ISD::MUL:
1038     return performMULCombine(N, DAG, DCI, this, Subtarget);
1039   case ISD::SHL:
1040     Val = performSHLCombine(N, DAG, DCI, Subtarget);
1041     break;
1042   case ISD::SRA:
1043     return performSRACombine(N, DAG, DCI, Subtarget);
1044   case ISD::SRL:
1045     return performSRLCombine(N, DAG, DCI, Subtarget);
1046   case ISD::VSELECT:
1047     return performVSELECTCombine(N, DAG);
1048   case ISD::XOR:
1049     Val = performXORCombine(N, DAG, Subtarget);
1050     break;
1051   case ISD::SETCC:
1052     Val = performSETCCCombine(N, DAG);
1053     break;
1054   }
1055 
1056   if (Val.getNode()) {
1057     LLVM_DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1058                N->printrWithDepth(dbgs(), &DAG); dbgs() << "\n=> \n";
1059                Val.getNode()->printrWithDepth(dbgs(), &DAG); dbgs() << "\n");
1060     return Val;
1061   }
1062 
1063   return MipsTargetLowering::PerformDAGCombine(N, DCI);
1064 }
1065 
1066 MachineBasicBlock *
1067 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1068                                                   MachineBasicBlock *BB) const {
1069   switch (MI.getOpcode()) {
1070   default:
1071     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1072   case Mips::BPOSGE32_PSEUDO:
1073     return emitBPOSGE32(MI, BB);
1074   case Mips::SNZ_B_PSEUDO:
1075     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1076   case Mips::SNZ_H_PSEUDO:
1077     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1078   case Mips::SNZ_W_PSEUDO:
1079     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1080   case Mips::SNZ_D_PSEUDO:
1081     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1082   case Mips::SNZ_V_PSEUDO:
1083     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1084   case Mips::SZ_B_PSEUDO:
1085     return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1086   case Mips::SZ_H_PSEUDO:
1087     return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1088   case Mips::SZ_W_PSEUDO:
1089     return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1090   case Mips::SZ_D_PSEUDO:
1091     return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1092   case Mips::SZ_V_PSEUDO:
1093     return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1094   case Mips::COPY_FW_PSEUDO:
1095     return emitCOPY_FW(MI, BB);
1096   case Mips::COPY_FD_PSEUDO:
1097     return emitCOPY_FD(MI, BB);
1098   case Mips::INSERT_FW_PSEUDO:
1099     return emitINSERT_FW(MI, BB);
1100   case Mips::INSERT_FD_PSEUDO:
1101     return emitINSERT_FD(MI, BB);
1102   case Mips::INSERT_B_VIDX_PSEUDO:
1103   case Mips::INSERT_B_VIDX64_PSEUDO:
1104     return emitINSERT_DF_VIDX(MI, BB, 1, false);
1105   case Mips::INSERT_H_VIDX_PSEUDO:
1106   case Mips::INSERT_H_VIDX64_PSEUDO:
1107     return emitINSERT_DF_VIDX(MI, BB, 2, false);
1108   case Mips::INSERT_W_VIDX_PSEUDO:
1109   case Mips::INSERT_W_VIDX64_PSEUDO:
1110     return emitINSERT_DF_VIDX(MI, BB, 4, false);
1111   case Mips::INSERT_D_VIDX_PSEUDO:
1112   case Mips::INSERT_D_VIDX64_PSEUDO:
1113     return emitINSERT_DF_VIDX(MI, BB, 8, false);
1114   case Mips::INSERT_FW_VIDX_PSEUDO:
1115   case Mips::INSERT_FW_VIDX64_PSEUDO:
1116     return emitINSERT_DF_VIDX(MI, BB, 4, true);
1117   case Mips::INSERT_FD_VIDX_PSEUDO:
1118   case Mips::INSERT_FD_VIDX64_PSEUDO:
1119     return emitINSERT_DF_VIDX(MI, BB, 8, true);
1120   case Mips::FILL_FW_PSEUDO:
1121     return emitFILL_FW(MI, BB);
1122   case Mips::FILL_FD_PSEUDO:
1123     return emitFILL_FD(MI, BB);
1124   case Mips::FEXP2_W_1_PSEUDO:
1125     return emitFEXP2_W_1(MI, BB);
1126   case Mips::FEXP2_D_1_PSEUDO:
1127     return emitFEXP2_D_1(MI, BB);
1128   case Mips::ST_F16:
1129     return emitST_F16_PSEUDO(MI, BB);
1130   case Mips::LD_F16:
1131     return emitLD_F16_PSEUDO(MI, BB);
1132   case Mips::MSA_FP_EXTEND_W_PSEUDO:
1133     return emitFPEXTEND_PSEUDO(MI, BB, false);
1134   case Mips::MSA_FP_ROUND_W_PSEUDO:
1135     return emitFPROUND_PSEUDO(MI, BB, false);
1136   case Mips::MSA_FP_EXTEND_D_PSEUDO:
1137     return emitFPEXTEND_PSEUDO(MI, BB, true);
1138   case Mips::MSA_FP_ROUND_D_PSEUDO:
1139     return emitFPROUND_PSEUDO(MI, BB, true);
1140   }
1141 }
1142 
1143 bool MipsSETargetLowering::isEligibleForTailCallOptimization(
1144     const CCState &CCInfo, unsigned NextStackOffset,
1145     const MipsFunctionInfo &FI) const {
1146   if (!UseMipsTailCalls)
1147     return false;
1148 
1149   // Exception has to be cleared with eret.
1150   if (FI.isISR())
1151     return false;
1152 
1153   // Return false if either the callee or caller has a byval argument.
1154   if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
1155     return false;
1156 
1157   // Return true if the callee's argument area is no larger than the
1158   // caller's.
1159   return NextStackOffset <= FI.getIncomingArgSize();
1160 }
1161 
1162 void MipsSETargetLowering::
1163 getOpndList(SmallVectorImpl<SDValue> &Ops,
1164             std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
1165             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1166             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
1167             SDValue Chain) const {
1168   Ops.push_back(Callee);
1169   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1170                                   InternalLinkage, IsCallReloc, CLI, Callee,
1171                                   Chain);
1172 }
1173 
1174 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1175   LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1176 
1177   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1178     return MipsTargetLowering::lowerLOAD(Op, DAG);
1179 
1180   // Replace a double precision load with two i32 loads and a buildpair64.
1181   SDLoc DL(Op);
1182   SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1183   EVT PtrVT = Ptr.getValueType();
1184 
1185   // i32 load from lower address.
1186   SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(),
1187                            Nd.getAlignment(), Nd.getMemOperand()->getFlags());
1188 
1189   // i32 load from higher address.
1190   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1191   SDValue Hi = DAG.getLoad(
1192       MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(),
1193       std::min(Nd.getAlignment(), 4U), Nd.getMemOperand()->getFlags());
1194 
1195   if (!Subtarget.isLittle())
1196     std::swap(Lo, Hi);
1197 
1198   SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1199   SDValue Ops[2] = {BP, Hi.getValue(1)};
1200   return DAG.getMergeValues(Ops, DL);
1201 }
1202 
1203 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1204   StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1205 
1206   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1207     return MipsTargetLowering::lowerSTORE(Op, DAG);
1208 
1209   // Replace a double precision store with two extractelement64s and i32 stores.
1210   SDLoc DL(Op);
1211   SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1212   EVT PtrVT = Ptr.getValueType();
1213   SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1214                            Val, DAG.getConstant(0, DL, MVT::i32));
1215   SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1216                            Val, DAG.getConstant(1, DL, MVT::i32));
1217 
1218   if (!Subtarget.isLittle())
1219     std::swap(Lo, Hi);
1220 
1221   // i32 store to lower address.
1222   Chain =
1223       DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlignment(),
1224                    Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1225 
1226   // i32 store to higher address.
1227   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1228   return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1229                       std::min(Nd.getAlignment(), 4U),
1230                       Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1231 }
1232 
1233 SDValue MipsSETargetLowering::lowerBITCAST(SDValue Op,
1234                                            SelectionDAG &DAG) const {
1235   SDLoc DL(Op);
1236   MVT Src = Op.getOperand(0).getValueType().getSimpleVT();
1237   MVT Dest = Op.getValueType().getSimpleVT();
1238 
1239   // Bitcast i64 to double.
1240   if (Src == MVT::i64 && Dest == MVT::f64) {
1241     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
1242                              Op.getOperand(0), DAG.getIntPtrConstant(0, DL));
1243     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
1244                              Op.getOperand(0), DAG.getIntPtrConstant(1, DL));
1245     return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1246   }
1247 
1248   // Bitcast double to i64.
1249   if (Src == MVT::f64 && Dest == MVT::i64) {
1250     SDValue Lo =
1251         DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1252                     DAG.getConstant(0, DL, MVT::i32));
1253     SDValue Hi =
1254         DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1255                     DAG.getConstant(1, DL, MVT::i32));
1256     return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1257   }
1258 
1259   // Skip other cases of bitcast and use default lowering.
1260   return SDValue();
1261 }
1262 
1263 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1264                                           bool HasLo, bool HasHi,
1265                                           SelectionDAG &DAG) const {
1266   // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
1267   assert(!Subtarget.hasMips32r6());
1268 
1269   EVT Ty = Op.getOperand(0).getValueType();
1270   SDLoc DL(Op);
1271   SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1272                              Op.getOperand(0), Op.getOperand(1));
1273   SDValue Lo, Hi;
1274 
1275   if (HasLo)
1276     Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1277   if (HasHi)
1278     Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1279 
1280   if (!HasLo || !HasHi)
1281     return HasLo ? Lo : Hi;
1282 
1283   SDValue Vals[] = { Lo, Hi };
1284   return DAG.getMergeValues(Vals, DL);
1285 }
1286 
1287 static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
1288   SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1289                              DAG.getConstant(0, DL, MVT::i32));
1290   SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1291                              DAG.getConstant(1, DL, MVT::i32));
1292   return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1293 }
1294 
1295 static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
1296   SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1297   SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1298   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1299 }
1300 
1301 // This function expands mips intrinsic nodes which have 64-bit input operands
1302 // or output values.
1303 //
1304 // out64 = intrinsic-node in64
1305 // =>
1306 // lo = copy (extract-element (in64, 0))
1307 // hi = copy (extract-element (in64, 1))
1308 // mips-specific-node
1309 // v0 = copy lo
1310 // v1 = copy hi
1311 // out64 = merge-values (v0, v1)
1312 //
1313 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1314   SDLoc DL(Op);
1315   bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1316   SmallVector<SDValue, 3> Ops;
1317   unsigned OpNo = 0;
1318 
1319   // See if Op has a chain input.
1320   if (HasChainIn)
1321     Ops.push_back(Op->getOperand(OpNo++));
1322 
1323   // The next operand is the intrinsic opcode.
1324   assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1325 
1326   // See if the next operand has type i64.
1327   SDValue Opnd = Op->getOperand(++OpNo), In64;
1328 
1329   if (Opnd.getValueType() == MVT::i64)
1330     In64 = initAccumulator(Opnd, DL, DAG);
1331   else
1332     Ops.push_back(Opnd);
1333 
1334   // Push the remaining operands.
1335   for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1336     Ops.push_back(Op->getOperand(OpNo));
1337 
1338   // Add In64 to the end of the list.
1339   if (In64.getNode())
1340     Ops.push_back(In64);
1341 
1342   // Scan output.
1343   SmallVector<EVT, 2> ResTys;
1344 
1345   for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
1346        I != E; ++I)
1347     ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
1348 
1349   // Create node.
1350   SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1351   SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1352 
1353   if (!HasChainIn)
1354     return Out;
1355 
1356   assert(Val->getValueType(1) == MVT::Other);
1357   SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1358   return DAG.getMergeValues(Vals, DL);
1359 }
1360 
1361 // Lower an MSA copy intrinsic into the specified SelectionDAG node
1362 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1363   SDLoc DL(Op);
1364   SDValue Vec = Op->getOperand(1);
1365   SDValue Idx = Op->getOperand(2);
1366   EVT ResTy = Op->getValueType(0);
1367   EVT EltTy = Vec->getValueType(0).getVectorElementType();
1368 
1369   SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1370                                DAG.getValueType(EltTy));
1371 
1372   return Result;
1373 }
1374 
1375 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1376   EVT ResVecTy = Op->getValueType(0);
1377   EVT ViaVecTy = ResVecTy;
1378   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1379   SDLoc DL(Op);
1380 
1381   // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1382   // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1383   // lanes.
1384   SDValue LaneA = Op->getOperand(OpNr);
1385   SDValue LaneB;
1386 
1387   if (ResVecTy == MVT::v2i64) {
1388     // In case of the index being passed as an immediate value, set the upper
1389     // lane to 0 so that the splati.d instruction can be matched.
1390     if (isa<ConstantSDNode>(LaneA))
1391       LaneB = DAG.getConstant(0, DL, MVT::i32);
1392     // Having the index passed in a register, set the upper lane to the same
1393     // value as the lower - this results in the BUILD_VECTOR node not being
1394     // expanded through stack. This way we are able to pattern match the set of
1395     // nodes created here to splat.d.
1396     else
1397       LaneB = LaneA;
1398     ViaVecTy = MVT::v4i32;
1399     if(BigEndian)
1400       std::swap(LaneA, LaneB);
1401   } else
1402     LaneB = LaneA;
1403 
1404   SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1405                       LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1406 
1407   SDValue Result = DAG.getBuildVector(
1408       ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1409 
1410   if (ViaVecTy != ResVecTy) {
1411     SDValue One = DAG.getConstant(1, DL, ViaVecTy);
1412     Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy,
1413                          DAG.getNode(ISD::AND, DL, ViaVecTy, Result, One));
1414   }
1415 
1416   return Result;
1417 }
1418 
1419 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG,
1420                                 bool IsSigned = false) {
1421   auto *CImm = cast<ConstantSDNode>(Op->getOperand(ImmOp));
1422   return DAG.getConstant(
1423       APInt(Op->getValueType(0).getScalarType().getSizeInBits(),
1424             IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
1425       SDLoc(Op), Op->getValueType(0));
1426 }
1427 
1428 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1429                                    bool BigEndian, SelectionDAG &DAG) {
1430   EVT ViaVecTy = VecTy;
1431   SDValue SplatValueA = SplatValue;
1432   SDValue SplatValueB = SplatValue;
1433   SDLoc DL(SplatValue);
1434 
1435   if (VecTy == MVT::v2i64) {
1436     // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1437     ViaVecTy = MVT::v4i32;
1438 
1439     SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1440     SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1441                               DAG.getConstant(32, DL, MVT::i32));
1442     SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1443   }
1444 
1445   // We currently hold the parts in little endian order. Swap them if
1446   // necessary.
1447   if (BigEndian)
1448     std::swap(SplatValueA, SplatValueB);
1449 
1450   SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1451                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1452                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1453                       SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1454 
1455   SDValue Result = DAG.getBuildVector(
1456       ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1457 
1458   if (VecTy != ViaVecTy)
1459     Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1460 
1461   return Result;
1462 }
1463 
1464 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1465                                         unsigned Opc, SDValue Imm,
1466                                         bool BigEndian) {
1467   EVT VecTy = Op->getValueType(0);
1468   SDValue Exp2Imm;
1469   SDLoc DL(Op);
1470 
1471   // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1472   // here for now.
1473   if (VecTy == MVT::v2i64) {
1474     if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1475       APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1476 
1477       SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
1478                                            MVT::i32);
1479       SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
1480 
1481       if (BigEndian)
1482         std::swap(BitImmLoOp, BitImmHiOp);
1483 
1484       Exp2Imm = DAG.getNode(
1485           ISD::BITCAST, DL, MVT::v2i64,
1486           DAG.getBuildVector(MVT::v4i32, DL,
1487                              {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
1488     }
1489   }
1490 
1491   if (!Exp2Imm.getNode()) {
1492     // We couldnt constant fold, do a vector shift instead
1493 
1494     // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1495     // only values 0-63 are valid.
1496     if (VecTy == MVT::v2i64)
1497       Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1498 
1499     Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1500 
1501     Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
1502                           Exp2Imm);
1503   }
1504 
1505   return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1506 }
1507 
1508 static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) {
1509   SDLoc DL(Op);
1510   EVT ResTy = Op->getValueType(0);
1511   SDValue Vec = Op->getOperand(2);
1512   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1513   MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32;
1514   SDValue ConstValue = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1,
1515                                        DL, ResEltTy);
1516   SDValue SplatVec = getBuildVectorSplat(ResTy, ConstValue, BigEndian, DAG);
1517 
1518   return DAG.getNode(ISD::AND, DL, ResTy, Vec, SplatVec);
1519 }
1520 
1521 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1522   EVT ResTy = Op->getValueType(0);
1523   SDLoc DL(Op);
1524   SDValue One = DAG.getConstant(1, DL, ResTy);
1525   SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Op, DAG));
1526 
1527   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1528                      DAG.getNOT(DL, Bit, ResTy));
1529 }
1530 
1531 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1532   SDLoc DL(Op);
1533   EVT ResTy = Op->getValueType(0);
1534   APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1)
1535                  << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
1536   SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
1537 
1538   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1539 }
1540 
1541 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1542                                                       SelectionDAG &DAG) const {
1543   SDLoc DL(Op);
1544   unsigned Intrinsic = cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue();
1545   switch (Intrinsic) {
1546   default:
1547     return SDValue();
1548   case Intrinsic::mips_shilo:
1549     return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1550   case Intrinsic::mips_dpau_h_qbl:
1551     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1552   case Intrinsic::mips_dpau_h_qbr:
1553     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1554   case Intrinsic::mips_dpsu_h_qbl:
1555     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1556   case Intrinsic::mips_dpsu_h_qbr:
1557     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1558   case Intrinsic::mips_dpa_w_ph:
1559     return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1560   case Intrinsic::mips_dps_w_ph:
1561     return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1562   case Intrinsic::mips_dpax_w_ph:
1563     return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1564   case Intrinsic::mips_dpsx_w_ph:
1565     return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1566   case Intrinsic::mips_mulsa_w_ph:
1567     return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1568   case Intrinsic::mips_mult:
1569     return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1570   case Intrinsic::mips_multu:
1571     return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1572   case Intrinsic::mips_madd:
1573     return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1574   case Intrinsic::mips_maddu:
1575     return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1576   case Intrinsic::mips_msub:
1577     return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1578   case Intrinsic::mips_msubu:
1579     return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1580   case Intrinsic::mips_addv_b:
1581   case Intrinsic::mips_addv_h:
1582   case Intrinsic::mips_addv_w:
1583   case Intrinsic::mips_addv_d:
1584     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1585                        Op->getOperand(2));
1586   case Intrinsic::mips_addvi_b:
1587   case Intrinsic::mips_addvi_h:
1588   case Intrinsic::mips_addvi_w:
1589   case Intrinsic::mips_addvi_d:
1590     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1591                        lowerMSASplatImm(Op, 2, DAG));
1592   case Intrinsic::mips_and_v:
1593     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1594                        Op->getOperand(2));
1595   case Intrinsic::mips_andi_b:
1596     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1597                        lowerMSASplatImm(Op, 2, DAG));
1598   case Intrinsic::mips_bclr_b:
1599   case Intrinsic::mips_bclr_h:
1600   case Intrinsic::mips_bclr_w:
1601   case Intrinsic::mips_bclr_d:
1602     return lowerMSABitClear(Op, DAG);
1603   case Intrinsic::mips_bclri_b:
1604   case Intrinsic::mips_bclri_h:
1605   case Intrinsic::mips_bclri_w:
1606   case Intrinsic::mips_bclri_d:
1607     return lowerMSABitClearImm(Op, DAG);
1608   case Intrinsic::mips_binsli_b:
1609   case Intrinsic::mips_binsli_h:
1610   case Intrinsic::mips_binsli_w:
1611   case Intrinsic::mips_binsli_d: {
1612     // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1613     EVT VecTy = Op->getValueType(0);
1614     EVT EltTy = VecTy.getVectorElementType();
1615     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1616       report_fatal_error("Immediate out of range");
1617     APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1618                                        Op->getConstantOperandVal(3) + 1);
1619     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1620                        DAG.getConstant(Mask, DL, VecTy, true),
1621                        Op->getOperand(2), Op->getOperand(1));
1622   }
1623   case Intrinsic::mips_binsri_b:
1624   case Intrinsic::mips_binsri_h:
1625   case Intrinsic::mips_binsri_w:
1626   case Intrinsic::mips_binsri_d: {
1627     // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1628     EVT VecTy = Op->getValueType(0);
1629     EVT EltTy = VecTy.getVectorElementType();
1630     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1631       report_fatal_error("Immediate out of range");
1632     APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1633                                       Op->getConstantOperandVal(3) + 1);
1634     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1635                        DAG.getConstant(Mask, DL, VecTy, true),
1636                        Op->getOperand(2), Op->getOperand(1));
1637   }
1638   case Intrinsic::mips_bmnz_v:
1639     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1640                        Op->getOperand(2), Op->getOperand(1));
1641   case Intrinsic::mips_bmnzi_b:
1642     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1643                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1644                        Op->getOperand(1));
1645   case Intrinsic::mips_bmz_v:
1646     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1647                        Op->getOperand(1), Op->getOperand(2));
1648   case Intrinsic::mips_bmzi_b:
1649     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1650                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1651                        Op->getOperand(2));
1652   case Intrinsic::mips_bneg_b:
1653   case Intrinsic::mips_bneg_h:
1654   case Intrinsic::mips_bneg_w:
1655   case Intrinsic::mips_bneg_d: {
1656     EVT VecTy = Op->getValueType(0);
1657     SDValue One = DAG.getConstant(1, DL, VecTy);
1658 
1659     return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1660                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1661                                    truncateVecElts(Op, DAG)));
1662   }
1663   case Intrinsic::mips_bnegi_b:
1664   case Intrinsic::mips_bnegi_h:
1665   case Intrinsic::mips_bnegi_w:
1666   case Intrinsic::mips_bnegi_d:
1667     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1668                                     !Subtarget.isLittle());
1669   case Intrinsic::mips_bnz_b:
1670   case Intrinsic::mips_bnz_h:
1671   case Intrinsic::mips_bnz_w:
1672   case Intrinsic::mips_bnz_d:
1673     return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1674                        Op->getOperand(1));
1675   case Intrinsic::mips_bnz_v:
1676     return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1677                        Op->getOperand(1));
1678   case Intrinsic::mips_bsel_v:
1679     // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1680     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1681                        Op->getOperand(1), Op->getOperand(3),
1682                        Op->getOperand(2));
1683   case Intrinsic::mips_bseli_b:
1684     // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1685     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1686                        Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1687                        Op->getOperand(2));
1688   case Intrinsic::mips_bset_b:
1689   case Intrinsic::mips_bset_h:
1690   case Intrinsic::mips_bset_w:
1691   case Intrinsic::mips_bset_d: {
1692     EVT VecTy = Op->getValueType(0);
1693     SDValue One = DAG.getConstant(1, DL, VecTy);
1694 
1695     return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1696                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1697                                    truncateVecElts(Op, DAG)));
1698   }
1699   case Intrinsic::mips_bseti_b:
1700   case Intrinsic::mips_bseti_h:
1701   case Intrinsic::mips_bseti_w:
1702   case Intrinsic::mips_bseti_d:
1703     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1704                                     !Subtarget.isLittle());
1705   case Intrinsic::mips_bz_b:
1706   case Intrinsic::mips_bz_h:
1707   case Intrinsic::mips_bz_w:
1708   case Intrinsic::mips_bz_d:
1709     return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1710                        Op->getOperand(1));
1711   case Intrinsic::mips_bz_v:
1712     return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1713                        Op->getOperand(1));
1714   case Intrinsic::mips_ceq_b:
1715   case Intrinsic::mips_ceq_h:
1716   case Intrinsic::mips_ceq_w:
1717   case Intrinsic::mips_ceq_d:
1718     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1719                         Op->getOperand(2), ISD::SETEQ);
1720   case Intrinsic::mips_ceqi_b:
1721   case Intrinsic::mips_ceqi_h:
1722   case Intrinsic::mips_ceqi_w:
1723   case Intrinsic::mips_ceqi_d:
1724     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1725                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ);
1726   case Intrinsic::mips_cle_s_b:
1727   case Intrinsic::mips_cle_s_h:
1728   case Intrinsic::mips_cle_s_w:
1729   case Intrinsic::mips_cle_s_d:
1730     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1731                         Op->getOperand(2), ISD::SETLE);
1732   case Intrinsic::mips_clei_s_b:
1733   case Intrinsic::mips_clei_s_h:
1734   case Intrinsic::mips_clei_s_w:
1735   case Intrinsic::mips_clei_s_d:
1736     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1737                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE);
1738   case Intrinsic::mips_cle_u_b:
1739   case Intrinsic::mips_cle_u_h:
1740   case Intrinsic::mips_cle_u_w:
1741   case Intrinsic::mips_cle_u_d:
1742     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1743                         Op->getOperand(2), ISD::SETULE);
1744   case Intrinsic::mips_clei_u_b:
1745   case Intrinsic::mips_clei_u_h:
1746   case Intrinsic::mips_clei_u_w:
1747   case Intrinsic::mips_clei_u_d:
1748     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1749                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1750   case Intrinsic::mips_clt_s_b:
1751   case Intrinsic::mips_clt_s_h:
1752   case Intrinsic::mips_clt_s_w:
1753   case Intrinsic::mips_clt_s_d:
1754     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1755                         Op->getOperand(2), ISD::SETLT);
1756   case Intrinsic::mips_clti_s_b:
1757   case Intrinsic::mips_clti_s_h:
1758   case Intrinsic::mips_clti_s_w:
1759   case Intrinsic::mips_clti_s_d:
1760     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1761                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT);
1762   case Intrinsic::mips_clt_u_b:
1763   case Intrinsic::mips_clt_u_h:
1764   case Intrinsic::mips_clt_u_w:
1765   case Intrinsic::mips_clt_u_d:
1766     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1767                         Op->getOperand(2), ISD::SETULT);
1768   case Intrinsic::mips_clti_u_b:
1769   case Intrinsic::mips_clti_u_h:
1770   case Intrinsic::mips_clti_u_w:
1771   case Intrinsic::mips_clti_u_d:
1772     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1773                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1774   case Intrinsic::mips_copy_s_b:
1775   case Intrinsic::mips_copy_s_h:
1776   case Intrinsic::mips_copy_s_w:
1777     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1778   case Intrinsic::mips_copy_s_d:
1779     if (Subtarget.hasMips64())
1780       // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1781       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1782     else {
1783       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1784       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1785       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1786                          Op->getValueType(0), Op->getOperand(1),
1787                          Op->getOperand(2));
1788     }
1789   case Intrinsic::mips_copy_u_b:
1790   case Intrinsic::mips_copy_u_h:
1791   case Intrinsic::mips_copy_u_w:
1792     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1793   case Intrinsic::mips_copy_u_d:
1794     if (Subtarget.hasMips64())
1795       // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1796       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1797     else {
1798       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1799       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1800       // Note: When i64 is illegal, this results in copy_s.w instructions
1801       // instead of copy_u.w instructions. This makes no difference to the
1802       // behaviour since i64 is only illegal when the register file is 32-bit.
1803       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1804                          Op->getValueType(0), Op->getOperand(1),
1805                          Op->getOperand(2));
1806     }
1807   case Intrinsic::mips_div_s_b:
1808   case Intrinsic::mips_div_s_h:
1809   case Intrinsic::mips_div_s_w:
1810   case Intrinsic::mips_div_s_d:
1811     return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1812                        Op->getOperand(2));
1813   case Intrinsic::mips_div_u_b:
1814   case Intrinsic::mips_div_u_h:
1815   case Intrinsic::mips_div_u_w:
1816   case Intrinsic::mips_div_u_d:
1817     return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1818                        Op->getOperand(2));
1819   case Intrinsic::mips_fadd_w:
1820   case Intrinsic::mips_fadd_d:
1821     // TODO: If intrinsics have fast-math-flags, propagate them.
1822     return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1823                        Op->getOperand(2));
1824   // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1825   case Intrinsic::mips_fceq_w:
1826   case Intrinsic::mips_fceq_d:
1827     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1828                         Op->getOperand(2), ISD::SETOEQ);
1829   case Intrinsic::mips_fcle_w:
1830   case Intrinsic::mips_fcle_d:
1831     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1832                         Op->getOperand(2), ISD::SETOLE);
1833   case Intrinsic::mips_fclt_w:
1834   case Intrinsic::mips_fclt_d:
1835     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1836                         Op->getOperand(2), ISD::SETOLT);
1837   case Intrinsic::mips_fcne_w:
1838   case Intrinsic::mips_fcne_d:
1839     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1840                         Op->getOperand(2), ISD::SETONE);
1841   case Intrinsic::mips_fcor_w:
1842   case Intrinsic::mips_fcor_d:
1843     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1844                         Op->getOperand(2), ISD::SETO);
1845   case Intrinsic::mips_fcueq_w:
1846   case Intrinsic::mips_fcueq_d:
1847     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1848                         Op->getOperand(2), ISD::SETUEQ);
1849   case Intrinsic::mips_fcule_w:
1850   case Intrinsic::mips_fcule_d:
1851     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1852                         Op->getOperand(2), ISD::SETULE);
1853   case Intrinsic::mips_fcult_w:
1854   case Intrinsic::mips_fcult_d:
1855     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1856                         Op->getOperand(2), ISD::SETULT);
1857   case Intrinsic::mips_fcun_w:
1858   case Intrinsic::mips_fcun_d:
1859     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1860                         Op->getOperand(2), ISD::SETUO);
1861   case Intrinsic::mips_fcune_w:
1862   case Intrinsic::mips_fcune_d:
1863     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1864                         Op->getOperand(2), ISD::SETUNE);
1865   case Intrinsic::mips_fdiv_w:
1866   case Intrinsic::mips_fdiv_d:
1867     // TODO: If intrinsics have fast-math-flags, propagate them.
1868     return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1869                        Op->getOperand(2));
1870   case Intrinsic::mips_ffint_u_w:
1871   case Intrinsic::mips_ffint_u_d:
1872     return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1873                        Op->getOperand(1));
1874   case Intrinsic::mips_ffint_s_w:
1875   case Intrinsic::mips_ffint_s_d:
1876     return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1877                        Op->getOperand(1));
1878   case Intrinsic::mips_fill_b:
1879   case Intrinsic::mips_fill_h:
1880   case Intrinsic::mips_fill_w:
1881   case Intrinsic::mips_fill_d: {
1882     EVT ResTy = Op->getValueType(0);
1883     SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
1884                                  Op->getOperand(1));
1885 
1886     // If ResTy is v2i64 then the type legalizer will break this node down into
1887     // an equivalent v4i32.
1888     return DAG.getBuildVector(ResTy, DL, Ops);
1889   }
1890   case Intrinsic::mips_fexp2_w:
1891   case Intrinsic::mips_fexp2_d: {
1892     // TODO: If intrinsics have fast-math-flags, propagate them.
1893     EVT ResTy = Op->getValueType(0);
1894     return DAG.getNode(
1895         ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1896         DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1897   }
1898   case Intrinsic::mips_flog2_w:
1899   case Intrinsic::mips_flog2_d:
1900     return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1901   case Intrinsic::mips_fmadd_w:
1902   case Intrinsic::mips_fmadd_d:
1903     return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1904                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1905   case Intrinsic::mips_fmul_w:
1906   case Intrinsic::mips_fmul_d:
1907     // TODO: If intrinsics have fast-math-flags, propagate them.
1908     return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1909                        Op->getOperand(2));
1910   case Intrinsic::mips_fmsub_w:
1911   case Intrinsic::mips_fmsub_d: {
1912     // TODO: If intrinsics have fast-math-flags, propagate them.
1913     return DAG.getNode(MipsISD::FMS, SDLoc(Op), Op->getValueType(0),
1914                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1915   }
1916   case Intrinsic::mips_frint_w:
1917   case Intrinsic::mips_frint_d:
1918     return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1919   case Intrinsic::mips_fsqrt_w:
1920   case Intrinsic::mips_fsqrt_d:
1921     return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1922   case Intrinsic::mips_fsub_w:
1923   case Intrinsic::mips_fsub_d:
1924     // TODO: If intrinsics have fast-math-flags, propagate them.
1925     return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1926                        Op->getOperand(2));
1927   case Intrinsic::mips_ftrunc_u_w:
1928   case Intrinsic::mips_ftrunc_u_d:
1929     return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1930                        Op->getOperand(1));
1931   case Intrinsic::mips_ftrunc_s_w:
1932   case Intrinsic::mips_ftrunc_s_d:
1933     return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1934                        Op->getOperand(1));
1935   case Intrinsic::mips_ilvev_b:
1936   case Intrinsic::mips_ilvev_h:
1937   case Intrinsic::mips_ilvev_w:
1938   case Intrinsic::mips_ilvev_d:
1939     return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1940                        Op->getOperand(1), Op->getOperand(2));
1941   case Intrinsic::mips_ilvl_b:
1942   case Intrinsic::mips_ilvl_h:
1943   case Intrinsic::mips_ilvl_w:
1944   case Intrinsic::mips_ilvl_d:
1945     return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1946                        Op->getOperand(1), Op->getOperand(2));
1947   case Intrinsic::mips_ilvod_b:
1948   case Intrinsic::mips_ilvod_h:
1949   case Intrinsic::mips_ilvod_w:
1950   case Intrinsic::mips_ilvod_d:
1951     return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1952                        Op->getOperand(1), Op->getOperand(2));
1953   case Intrinsic::mips_ilvr_b:
1954   case Intrinsic::mips_ilvr_h:
1955   case Intrinsic::mips_ilvr_w:
1956   case Intrinsic::mips_ilvr_d:
1957     return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1958                        Op->getOperand(1), Op->getOperand(2));
1959   case Intrinsic::mips_insert_b:
1960   case Intrinsic::mips_insert_h:
1961   case Intrinsic::mips_insert_w:
1962   case Intrinsic::mips_insert_d:
1963     return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1964                        Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1965   case Intrinsic::mips_insve_b:
1966   case Intrinsic::mips_insve_h:
1967   case Intrinsic::mips_insve_w:
1968   case Intrinsic::mips_insve_d: {
1969     // Report an error for out of range values.
1970     int64_t Max;
1971     switch (Intrinsic) {
1972     case Intrinsic::mips_insve_b: Max = 15; break;
1973     case Intrinsic::mips_insve_h: Max = 7; break;
1974     case Intrinsic::mips_insve_w: Max = 3; break;
1975     case Intrinsic::mips_insve_d: Max = 1; break;
1976     default: llvm_unreachable("Unmatched intrinsic");
1977     }
1978     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
1979     if (Value < 0 || Value > Max)
1980       report_fatal_error("Immediate out of range");
1981     return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
1982                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
1983                        DAG.getConstant(0, DL, MVT::i32));
1984     }
1985   case Intrinsic::mips_ldi_b:
1986   case Intrinsic::mips_ldi_h:
1987   case Intrinsic::mips_ldi_w:
1988   case Intrinsic::mips_ldi_d:
1989     return lowerMSASplatImm(Op, 1, DAG, true);
1990   case Intrinsic::mips_lsa:
1991   case Intrinsic::mips_dlsa: {
1992     EVT ResTy = Op->getValueType(0);
1993     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1994                        DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1995                                    Op->getOperand(2), Op->getOperand(3)));
1996   }
1997   case Intrinsic::mips_maddv_b:
1998   case Intrinsic::mips_maddv_h:
1999   case Intrinsic::mips_maddv_w:
2000   case Intrinsic::mips_maddv_d: {
2001     EVT ResTy = Op->getValueType(0);
2002     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
2003                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2004                                    Op->getOperand(2), Op->getOperand(3)));
2005   }
2006   case Intrinsic::mips_max_s_b:
2007   case Intrinsic::mips_max_s_h:
2008   case Intrinsic::mips_max_s_w:
2009   case Intrinsic::mips_max_s_d:
2010     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2011                        Op->getOperand(1), Op->getOperand(2));
2012   case Intrinsic::mips_max_u_b:
2013   case Intrinsic::mips_max_u_h:
2014   case Intrinsic::mips_max_u_w:
2015   case Intrinsic::mips_max_u_d:
2016     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2017                        Op->getOperand(1), Op->getOperand(2));
2018   case Intrinsic::mips_maxi_s_b:
2019   case Intrinsic::mips_maxi_s_h:
2020   case Intrinsic::mips_maxi_s_w:
2021   case Intrinsic::mips_maxi_s_d:
2022     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2023                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2024   case Intrinsic::mips_maxi_u_b:
2025   case Intrinsic::mips_maxi_u_h:
2026   case Intrinsic::mips_maxi_u_w:
2027   case Intrinsic::mips_maxi_u_d:
2028     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2029                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2030   case Intrinsic::mips_min_s_b:
2031   case Intrinsic::mips_min_s_h:
2032   case Intrinsic::mips_min_s_w:
2033   case Intrinsic::mips_min_s_d:
2034     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2035                        Op->getOperand(1), Op->getOperand(2));
2036   case Intrinsic::mips_min_u_b:
2037   case Intrinsic::mips_min_u_h:
2038   case Intrinsic::mips_min_u_w:
2039   case Intrinsic::mips_min_u_d:
2040     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2041                        Op->getOperand(1), Op->getOperand(2));
2042   case Intrinsic::mips_mini_s_b:
2043   case Intrinsic::mips_mini_s_h:
2044   case Intrinsic::mips_mini_s_w:
2045   case Intrinsic::mips_mini_s_d:
2046     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2047                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2048   case Intrinsic::mips_mini_u_b:
2049   case Intrinsic::mips_mini_u_h:
2050   case Intrinsic::mips_mini_u_w:
2051   case Intrinsic::mips_mini_u_d:
2052     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2053                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2054   case Intrinsic::mips_mod_s_b:
2055   case Intrinsic::mips_mod_s_h:
2056   case Intrinsic::mips_mod_s_w:
2057   case Intrinsic::mips_mod_s_d:
2058     return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
2059                        Op->getOperand(2));
2060   case Intrinsic::mips_mod_u_b:
2061   case Intrinsic::mips_mod_u_h:
2062   case Intrinsic::mips_mod_u_w:
2063   case Intrinsic::mips_mod_u_d:
2064     return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
2065                        Op->getOperand(2));
2066   case Intrinsic::mips_mulv_b:
2067   case Intrinsic::mips_mulv_h:
2068   case Intrinsic::mips_mulv_w:
2069   case Intrinsic::mips_mulv_d:
2070     return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
2071                        Op->getOperand(2));
2072   case Intrinsic::mips_msubv_b:
2073   case Intrinsic::mips_msubv_h:
2074   case Intrinsic::mips_msubv_w:
2075   case Intrinsic::mips_msubv_d: {
2076     EVT ResTy = Op->getValueType(0);
2077     return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
2078                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2079                                    Op->getOperand(2), Op->getOperand(3)));
2080   }
2081   case Intrinsic::mips_nlzc_b:
2082   case Intrinsic::mips_nlzc_h:
2083   case Intrinsic::mips_nlzc_w:
2084   case Intrinsic::mips_nlzc_d:
2085     return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
2086   case Intrinsic::mips_nor_v: {
2087     SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2088                               Op->getOperand(1), Op->getOperand(2));
2089     return DAG.getNOT(DL, Res, Res->getValueType(0));
2090   }
2091   case Intrinsic::mips_nori_b: {
2092     SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2093                                Op->getOperand(1),
2094                                lowerMSASplatImm(Op, 2, DAG));
2095     return DAG.getNOT(DL, Res, Res->getValueType(0));
2096   }
2097   case Intrinsic::mips_or_v:
2098     return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
2099                        Op->getOperand(2));
2100   case Intrinsic::mips_ori_b:
2101     return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2102                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2103   case Intrinsic::mips_pckev_b:
2104   case Intrinsic::mips_pckev_h:
2105   case Intrinsic::mips_pckev_w:
2106   case Intrinsic::mips_pckev_d:
2107     return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
2108                        Op->getOperand(1), Op->getOperand(2));
2109   case Intrinsic::mips_pckod_b:
2110   case Intrinsic::mips_pckod_h:
2111   case Intrinsic::mips_pckod_w:
2112   case Intrinsic::mips_pckod_d:
2113     return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
2114                        Op->getOperand(1), Op->getOperand(2));
2115   case Intrinsic::mips_pcnt_b:
2116   case Intrinsic::mips_pcnt_h:
2117   case Intrinsic::mips_pcnt_w:
2118   case Intrinsic::mips_pcnt_d:
2119     return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
2120   case Intrinsic::mips_sat_s_b:
2121   case Intrinsic::mips_sat_s_h:
2122   case Intrinsic::mips_sat_s_w:
2123   case Intrinsic::mips_sat_s_d:
2124   case Intrinsic::mips_sat_u_b:
2125   case Intrinsic::mips_sat_u_h:
2126   case Intrinsic::mips_sat_u_w:
2127   case Intrinsic::mips_sat_u_d: {
2128     // Report an error for out of range values.
2129     int64_t Max;
2130     switch (Intrinsic) {
2131     case Intrinsic::mips_sat_s_b:
2132     case Intrinsic::mips_sat_u_b: Max = 7;  break;
2133     case Intrinsic::mips_sat_s_h:
2134     case Intrinsic::mips_sat_u_h: Max = 15; break;
2135     case Intrinsic::mips_sat_s_w:
2136     case Intrinsic::mips_sat_u_w: Max = 31; break;
2137     case Intrinsic::mips_sat_s_d:
2138     case Intrinsic::mips_sat_u_d: Max = 63; break;
2139     default: llvm_unreachable("Unmatched intrinsic");
2140     }
2141     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2142     if (Value < 0 || Value > Max)
2143       report_fatal_error("Immediate out of range");
2144     return SDValue();
2145   }
2146   case Intrinsic::mips_shf_b:
2147   case Intrinsic::mips_shf_h:
2148   case Intrinsic::mips_shf_w: {
2149     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2150     if (Value < 0 || Value > 255)
2151       report_fatal_error("Immediate out of range");
2152     return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
2153                        Op->getOperand(2), Op->getOperand(1));
2154   }
2155   case Intrinsic::mips_sldi_b:
2156   case Intrinsic::mips_sldi_h:
2157   case Intrinsic::mips_sldi_w:
2158   case Intrinsic::mips_sldi_d: {
2159     // Report an error for out of range values.
2160     int64_t Max;
2161     switch (Intrinsic) {
2162     case Intrinsic::mips_sldi_b: Max = 15; break;
2163     case Intrinsic::mips_sldi_h: Max = 7; break;
2164     case Intrinsic::mips_sldi_w: Max = 3; break;
2165     case Intrinsic::mips_sldi_d: Max = 1; break;
2166     default: llvm_unreachable("Unmatched intrinsic");
2167     }
2168     int64_t Value = cast<ConstantSDNode>(Op->getOperand(3))->getSExtValue();
2169     if (Value < 0 || Value > Max)
2170       report_fatal_error("Immediate out of range");
2171     return SDValue();
2172   }
2173   case Intrinsic::mips_sll_b:
2174   case Intrinsic::mips_sll_h:
2175   case Intrinsic::mips_sll_w:
2176   case Intrinsic::mips_sll_d:
2177     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
2178                        truncateVecElts(Op, DAG));
2179   case Intrinsic::mips_slli_b:
2180   case Intrinsic::mips_slli_h:
2181   case Intrinsic::mips_slli_w:
2182   case Intrinsic::mips_slli_d:
2183     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
2184                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2185   case Intrinsic::mips_splat_b:
2186   case Intrinsic::mips_splat_h:
2187   case Intrinsic::mips_splat_w:
2188   case Intrinsic::mips_splat_d:
2189     // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2190     // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2191     // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2192     // Instead we lower to MipsISD::VSHF and match from there.
2193     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2194                        lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2195                        Op->getOperand(1));
2196   case Intrinsic::mips_splati_b:
2197   case Intrinsic::mips_splati_h:
2198   case Intrinsic::mips_splati_w:
2199   case Intrinsic::mips_splati_d:
2200     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2201                        lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2202                        Op->getOperand(1));
2203   case Intrinsic::mips_sra_b:
2204   case Intrinsic::mips_sra_h:
2205   case Intrinsic::mips_sra_w:
2206   case Intrinsic::mips_sra_d:
2207     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2208                        truncateVecElts(Op, DAG));
2209   case Intrinsic::mips_srai_b:
2210   case Intrinsic::mips_srai_h:
2211   case Intrinsic::mips_srai_w:
2212   case Intrinsic::mips_srai_d:
2213     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2214                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2215   case Intrinsic::mips_srari_b:
2216   case Intrinsic::mips_srari_h:
2217   case Intrinsic::mips_srari_w:
2218   case Intrinsic::mips_srari_d: {
2219     // Report an error for out of range values.
2220     int64_t Max;
2221     switch (Intrinsic) {
2222     case Intrinsic::mips_srari_b: Max = 7; break;
2223     case Intrinsic::mips_srari_h: Max = 15; break;
2224     case Intrinsic::mips_srari_w: Max = 31; break;
2225     case Intrinsic::mips_srari_d: Max = 63; break;
2226     default: llvm_unreachable("Unmatched intrinsic");
2227     }
2228     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2229     if (Value < 0 || Value > Max)
2230       report_fatal_error("Immediate out of range");
2231     return SDValue();
2232   }
2233   case Intrinsic::mips_srl_b:
2234   case Intrinsic::mips_srl_h:
2235   case Intrinsic::mips_srl_w:
2236   case Intrinsic::mips_srl_d:
2237     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2238                        truncateVecElts(Op, DAG));
2239   case Intrinsic::mips_srli_b:
2240   case Intrinsic::mips_srli_h:
2241   case Intrinsic::mips_srli_w:
2242   case Intrinsic::mips_srli_d:
2243     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2244                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2245   case Intrinsic::mips_srlri_b:
2246   case Intrinsic::mips_srlri_h:
2247   case Intrinsic::mips_srlri_w:
2248   case Intrinsic::mips_srlri_d: {
2249     // Report an error for out of range values.
2250     int64_t Max;
2251     switch (Intrinsic) {
2252     case Intrinsic::mips_srlri_b: Max = 7; break;
2253     case Intrinsic::mips_srlri_h: Max = 15; break;
2254     case Intrinsic::mips_srlri_w: Max = 31; break;
2255     case Intrinsic::mips_srlri_d: Max = 63; break;
2256     default: llvm_unreachable("Unmatched intrinsic");
2257     }
2258     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2259     if (Value < 0 || Value > Max)
2260       report_fatal_error("Immediate out of range");
2261     return SDValue();
2262   }
2263   case Intrinsic::mips_subv_b:
2264   case Intrinsic::mips_subv_h:
2265   case Intrinsic::mips_subv_w:
2266   case Intrinsic::mips_subv_d:
2267     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2268                        Op->getOperand(2));
2269   case Intrinsic::mips_subvi_b:
2270   case Intrinsic::mips_subvi_h:
2271   case Intrinsic::mips_subvi_w:
2272   case Intrinsic::mips_subvi_d:
2273     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2274                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2275   case Intrinsic::mips_vshf_b:
2276   case Intrinsic::mips_vshf_h:
2277   case Intrinsic::mips_vshf_w:
2278   case Intrinsic::mips_vshf_d:
2279     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2280                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2281   case Intrinsic::mips_xor_v:
2282     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2283                        Op->getOperand(2));
2284   case Intrinsic::mips_xori_b:
2285     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2286                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2287   case Intrinsic::thread_pointer: {
2288     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2289     return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2290   }
2291   }
2292 }
2293 
2294 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2295                                 const MipsSubtarget &Subtarget) {
2296   SDLoc DL(Op);
2297   SDValue ChainIn = Op->getOperand(0);
2298   SDValue Address = Op->getOperand(2);
2299   SDValue Offset  = Op->getOperand(3);
2300   EVT ResTy = Op->getValueType(0);
2301   EVT PtrTy = Address->getValueType(0);
2302 
2303   // For N64 addresses have the underlying type MVT::i64. This intrinsic
2304   // however takes an i32 signed constant offset. The actual type of the
2305   // intrinsic is a scaled signed i10.
2306   if (Subtarget.isABI_N64())
2307     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2308 
2309   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2310   return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(),
2311                      /* Alignment = */ 16);
2312 }
2313 
2314 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2315                                                      SelectionDAG &DAG) const {
2316   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2317   switch (Intr) {
2318   default:
2319     return SDValue();
2320   case Intrinsic::mips_extp:
2321     return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2322   case Intrinsic::mips_extpdp:
2323     return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2324   case Intrinsic::mips_extr_w:
2325     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2326   case Intrinsic::mips_extr_r_w:
2327     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2328   case Intrinsic::mips_extr_rs_w:
2329     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2330   case Intrinsic::mips_extr_s_h:
2331     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2332   case Intrinsic::mips_mthlip:
2333     return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2334   case Intrinsic::mips_mulsaq_s_w_ph:
2335     return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2336   case Intrinsic::mips_maq_s_w_phl:
2337     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2338   case Intrinsic::mips_maq_s_w_phr:
2339     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2340   case Intrinsic::mips_maq_sa_w_phl:
2341     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2342   case Intrinsic::mips_maq_sa_w_phr:
2343     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2344   case Intrinsic::mips_dpaq_s_w_ph:
2345     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2346   case Intrinsic::mips_dpsq_s_w_ph:
2347     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2348   case Intrinsic::mips_dpaq_sa_l_w:
2349     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2350   case Intrinsic::mips_dpsq_sa_l_w:
2351     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2352   case Intrinsic::mips_dpaqx_s_w_ph:
2353     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2354   case Intrinsic::mips_dpaqx_sa_w_ph:
2355     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2356   case Intrinsic::mips_dpsqx_s_w_ph:
2357     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2358   case Intrinsic::mips_dpsqx_sa_w_ph:
2359     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2360   case Intrinsic::mips_ld_b:
2361   case Intrinsic::mips_ld_h:
2362   case Intrinsic::mips_ld_w:
2363   case Intrinsic::mips_ld_d:
2364    return lowerMSALoadIntr(Op, DAG, Intr, Subtarget);
2365   }
2366 }
2367 
2368 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2369                                  const MipsSubtarget &Subtarget) {
2370   SDLoc DL(Op);
2371   SDValue ChainIn = Op->getOperand(0);
2372   SDValue Value   = Op->getOperand(2);
2373   SDValue Address = Op->getOperand(3);
2374   SDValue Offset  = Op->getOperand(4);
2375   EVT PtrTy = Address->getValueType(0);
2376 
2377   // For N64 addresses have the underlying type MVT::i64. This intrinsic
2378   // however takes an i32 signed constant offset. The actual type of the
2379   // intrinsic is a scaled signed i10.
2380   if (Subtarget.isABI_N64())
2381     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2382 
2383   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2384 
2385   return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(),
2386                       /* Alignment = */ 16);
2387 }
2388 
2389 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2390                                                   SelectionDAG &DAG) const {
2391   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2392   switch (Intr) {
2393   default:
2394     return SDValue();
2395   case Intrinsic::mips_st_b:
2396   case Intrinsic::mips_st_h:
2397   case Intrinsic::mips_st_w:
2398   case Intrinsic::mips_st_d:
2399     return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget);
2400   }
2401 }
2402 
2403 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2404 //
2405 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2406 // choose to sign-extend but we could have equally chosen zero-extend. The
2407 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2408 // result into this node later (possibly changing it to a zero-extend in the
2409 // process).
2410 SDValue MipsSETargetLowering::
2411 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2412   SDLoc DL(Op);
2413   EVT ResTy = Op->getValueType(0);
2414   SDValue Op0 = Op->getOperand(0);
2415   EVT VecTy = Op0->getValueType(0);
2416 
2417   if (!VecTy.is128BitVector())
2418     return SDValue();
2419 
2420   if (ResTy.isInteger()) {
2421     SDValue Op1 = Op->getOperand(1);
2422     EVT EltTy = VecTy.getVectorElementType();
2423     return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2424                        DAG.getValueType(EltTy));
2425   }
2426 
2427   return Op;
2428 }
2429 
2430 static bool isConstantOrUndef(const SDValue Op) {
2431   if (Op->isUndef())
2432     return true;
2433   if (isa<ConstantSDNode>(Op))
2434     return true;
2435   if (isa<ConstantFPSDNode>(Op))
2436     return true;
2437   return false;
2438 }
2439 
2440 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2441   for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2442     if (isConstantOrUndef(Op->getOperand(i)))
2443       return true;
2444   return false;
2445 }
2446 
2447 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2448 // backend.
2449 //
2450 // Lowers according to the following rules:
2451 // - Constant splats are legal as-is as long as the SplatBitSize is a power of
2452 //   2 less than or equal to 64 and the value fits into a signed 10-bit
2453 //   immediate
2454 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2455 //   is a power of 2 less than or equal to 64 and the value does not fit into a
2456 //   signed 10-bit immediate
2457 // - Non-constant splats are legal as-is.
2458 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2459 // - All others are illegal and must be expanded.
2460 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2461                                                 SelectionDAG &DAG) const {
2462   BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2463   EVT ResTy = Op->getValueType(0);
2464   SDLoc DL(Op);
2465   APInt SplatValue, SplatUndef;
2466   unsigned SplatBitSize;
2467   bool HasAnyUndefs;
2468 
2469   if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
2470     return SDValue();
2471 
2472   if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2473                             HasAnyUndefs, 8,
2474                             !Subtarget.isLittle()) && SplatBitSize <= 64) {
2475     // We can only cope with 8, 16, 32, or 64-bit elements
2476     if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2477         SplatBitSize != 64)
2478       return SDValue();
2479 
2480     // If the value isn't an integer type we will have to bitcast
2481     // from an integer type first. Also, if there are any undefs, we must
2482     // lower them to defined values first.
2483     if (ResTy.isInteger() && !HasAnyUndefs)
2484       return Op;
2485 
2486     EVT ViaVecTy;
2487 
2488     switch (SplatBitSize) {
2489     default:
2490       return SDValue();
2491     case 8:
2492       ViaVecTy = MVT::v16i8;
2493       break;
2494     case 16:
2495       ViaVecTy = MVT::v8i16;
2496       break;
2497     case 32:
2498       ViaVecTy = MVT::v4i32;
2499       break;
2500     case 64:
2501       // There's no fill.d to fall back on for 64-bit values
2502       return SDValue();
2503     }
2504 
2505     // SelectionDAG::getConstant will promote SplatValue appropriately.
2506     SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
2507 
2508     // Bitcast to the type we originally wanted
2509     if (ViaVecTy != ResTy)
2510       Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2511 
2512     return Result;
2513   } else if (DAG.isSplatValue(Op, /* AllowUndefs */ false))
2514     return Op;
2515   else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2516     // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2517     // The resulting code is the same length as the expansion, but it doesn't
2518     // use memory operations
2519     EVT ResTy = Node->getValueType(0);
2520 
2521     assert(ResTy.isVector());
2522 
2523     unsigned NumElts = ResTy.getVectorNumElements();
2524     SDValue Vector = DAG.getUNDEF(ResTy);
2525     for (unsigned i = 0; i < NumElts; ++i) {
2526       Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2527                            Node->getOperand(i),
2528                            DAG.getConstant(i, DL, MVT::i32));
2529     }
2530     return Vector;
2531   }
2532 
2533   return SDValue();
2534 }
2535 
2536 // Lower VECTOR_SHUFFLE into SHF (if possible).
2537 //
2538 // SHF splits the vector into blocks of four elements, then shuffles these
2539 // elements according to a <4 x i2> constant (encoded as an integer immediate).
2540 //
2541 // It is therefore possible to lower into SHF when the mask takes the form:
2542 //   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2543 // When undef's appear they are treated as if they were whatever value is
2544 // necessary in order to fit the above forms.
2545 //
2546 // For example:
2547 //   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2548 //                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2549 //                                 i32 7, i32 6, i32 5, i32 4>
2550 // is lowered to:
2551 //   (SHF_H $w0, $w1, 27)
2552 // where the 27 comes from:
2553 //   3 + (2 << 2) + (1 << 4) + (0 << 6)
2554 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2555                                        SmallVector<int, 16> Indices,
2556                                        SelectionDAG &DAG) {
2557   int SHFIndices[4] = { -1, -1, -1, -1 };
2558 
2559   if (Indices.size() < 4)
2560     return SDValue();
2561 
2562   for (unsigned i = 0; i < 4; ++i) {
2563     for (unsigned j = i; j < Indices.size(); j += 4) {
2564       int Idx = Indices[j];
2565 
2566       // Convert from vector index to 4-element subvector index
2567       // If an index refers to an element outside of the subvector then give up
2568       if (Idx != -1) {
2569         Idx -= 4 * (j / 4);
2570         if (Idx < 0 || Idx >= 4)
2571           return SDValue();
2572       }
2573 
2574       // If the mask has an undef, replace it with the current index.
2575       // Note that it might still be undef if the current index is also undef
2576       if (SHFIndices[i] == -1)
2577         SHFIndices[i] = Idx;
2578 
2579       // Check that non-undef values are the same as in the mask. If they
2580       // aren't then give up
2581       if (!(Idx == -1 || Idx == SHFIndices[i]))
2582         return SDValue();
2583     }
2584   }
2585 
2586   // Calculate the immediate. Replace any remaining undefs with zero
2587   APInt Imm(32, 0);
2588   for (int i = 3; i >= 0; --i) {
2589     int Idx = SHFIndices[i];
2590 
2591     if (Idx == -1)
2592       Idx = 0;
2593 
2594     Imm <<= 2;
2595     Imm |= Idx & 0x3;
2596   }
2597 
2598   SDLoc DL(Op);
2599   return DAG.getNode(MipsISD::SHF, DL, ResTy,
2600                      DAG.getTargetConstant(Imm, DL, MVT::i32),
2601                      Op->getOperand(0));
2602 }
2603 
2604 /// Determine whether a range fits a regular pattern of values.
2605 /// This function accounts for the possibility of jumping over the End iterator.
2606 template <typename ValType>
2607 static bool
2608 fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
2609                    unsigned CheckStride,
2610                    typename SmallVectorImpl<ValType>::const_iterator End,
2611                    ValType ExpectedIndex, unsigned ExpectedIndexStride) {
2612   auto &I = Begin;
2613 
2614   while (I != End) {
2615     if (*I != -1 && *I != ExpectedIndex)
2616       return false;
2617     ExpectedIndex += ExpectedIndexStride;
2618 
2619     // Incrementing past End is undefined behaviour so we must increment one
2620     // step at a time and check for End at each step.
2621     for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
2622       ; // Empty loop body.
2623   }
2624   return true;
2625 }
2626 
2627 // Determine whether VECTOR_SHUFFLE is a SPLATI.
2628 //
2629 // It is a SPLATI when the mask is:
2630 //   <x, x, x, ...>
2631 // where x is any valid index.
2632 //
2633 // When undef's appear in the mask they are treated as if they were whatever
2634 // value is necessary in order to fit the above form.
2635 static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
2636                                     SmallVector<int, 16> Indices,
2637                                     SelectionDAG &DAG) {
2638   assert((Indices.size() % 2) == 0);
2639 
2640   int SplatIndex = -1;
2641   for (const auto &V : Indices) {
2642     if (V != -1) {
2643       SplatIndex = V;
2644       break;
2645     }
2646   }
2647 
2648   return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
2649                                  0);
2650 }
2651 
2652 // Lower VECTOR_SHUFFLE into ILVEV (if possible).
2653 //
2654 // ILVEV interleaves the even elements from each vector.
2655 //
2656 // It is possible to lower into ILVEV when the mask consists of two of the
2657 // following forms interleaved:
2658 //   <0, 2, 4, ...>
2659 //   <n, n+2, n+4, ...>
2660 // where n is the number of elements in the vector.
2661 // For example:
2662 //   <0, 0, 2, 2, 4, 4, ...>
2663 //   <0, n, 2, n+2, 4, n+4, ...>
2664 //
2665 // When undef's appear in the mask they are treated as if they were whatever
2666 // value is necessary in order to fit the above forms.
2667 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2668                                          SmallVector<int, 16> Indices,
2669                                          SelectionDAG &DAG) {
2670   assert((Indices.size() % 2) == 0);
2671 
2672   SDValue Wt;
2673   SDValue Ws;
2674   const auto &Begin = Indices.begin();
2675   const auto &End = Indices.end();
2676 
2677   // Check even elements are taken from the even elements of one half or the
2678   // other and pick an operand accordingly.
2679   if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
2680     Wt = Op->getOperand(0);
2681   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
2682     Wt = Op->getOperand(1);
2683   else
2684     return SDValue();
2685 
2686   // Check odd elements are taken from the even elements of one half or the
2687   // other and pick an operand accordingly.
2688   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
2689     Ws = Op->getOperand(0);
2690   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
2691     Ws = Op->getOperand(1);
2692   else
2693     return SDValue();
2694 
2695   return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
2696 }
2697 
2698 // Lower VECTOR_SHUFFLE into ILVOD (if possible).
2699 //
2700 // ILVOD interleaves the odd elements from each vector.
2701 //
2702 // It is possible to lower into ILVOD when the mask consists of two of the
2703 // following forms interleaved:
2704 //   <1, 3, 5, ...>
2705 //   <n+1, n+3, n+5, ...>
2706 // where n is the number of elements in the vector.
2707 // For example:
2708 //   <1, 1, 3, 3, 5, 5, ...>
2709 //   <1, n+1, 3, n+3, 5, n+5, ...>
2710 //
2711 // When undef's appear in the mask they are treated as if they were whatever
2712 // value is necessary in order to fit the above forms.
2713 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2714                                          SmallVector<int, 16> Indices,
2715                                          SelectionDAG &DAG) {
2716   assert((Indices.size() % 2) == 0);
2717 
2718   SDValue Wt;
2719   SDValue Ws;
2720   const auto &Begin = Indices.begin();
2721   const auto &End = Indices.end();
2722 
2723   // Check even elements are taken from the odd elements of one half or the
2724   // other and pick an operand accordingly.
2725   if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
2726     Wt = Op->getOperand(0);
2727   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
2728     Wt = Op->getOperand(1);
2729   else
2730     return SDValue();
2731 
2732   // Check odd elements are taken from the odd elements of one half or the
2733   // other and pick an operand accordingly.
2734   if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
2735     Ws = Op->getOperand(0);
2736   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
2737     Ws = Op->getOperand(1);
2738   else
2739     return SDValue();
2740 
2741   return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
2742 }
2743 
2744 // Lower VECTOR_SHUFFLE into ILVR (if possible).
2745 //
2746 // ILVR interleaves consecutive elements from the right (lowest-indexed) half of
2747 // each vector.
2748 //
2749 // It is possible to lower into ILVR when the mask consists of two of the
2750 // following forms interleaved:
2751 //   <0, 1, 2, ...>
2752 //   <n, n+1, n+2, ...>
2753 // where n is the number of elements in the vector.
2754 // For example:
2755 //   <0, 0, 1, 1, 2, 2, ...>
2756 //   <0, n, 1, n+1, 2, n+2, ...>
2757 //
2758 // When undef's appear in the mask they are treated as if they were whatever
2759 // value is necessary in order to fit the above forms.
2760 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2761                                         SmallVector<int, 16> Indices,
2762                                         SelectionDAG &DAG) {
2763   assert((Indices.size() % 2) == 0);
2764 
2765   SDValue Wt;
2766   SDValue Ws;
2767   const auto &Begin = Indices.begin();
2768   const auto &End = Indices.end();
2769 
2770   // Check even elements are taken from the right (lowest-indexed) elements of
2771   // one half or the other and pick an operand accordingly.
2772   if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
2773     Wt = Op->getOperand(0);
2774   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
2775     Wt = Op->getOperand(1);
2776   else
2777     return SDValue();
2778 
2779   // Check odd elements are taken from the right (lowest-indexed) elements of
2780   // one half or the other and pick an operand accordingly.
2781   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
2782     Ws = Op->getOperand(0);
2783   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
2784     Ws = Op->getOperand(1);
2785   else
2786     return SDValue();
2787 
2788   return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
2789 }
2790 
2791 // Lower VECTOR_SHUFFLE into ILVL (if possible).
2792 //
2793 // ILVL interleaves consecutive elements from the left (highest-indexed) half
2794 // of each vector.
2795 //
2796 // It is possible to lower into ILVL when the mask consists of two of the
2797 // following forms interleaved:
2798 //   <x, x+1, x+2, ...>
2799 //   <n+x, n+x+1, n+x+2, ...>
2800 // where n is the number of elements in the vector and x is half n.
2801 // For example:
2802 //   <x, x, x+1, x+1, x+2, x+2, ...>
2803 //   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2804 //
2805 // When undef's appear in the mask they are treated as if they were whatever
2806 // value is necessary in order to fit the above forms.
2807 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2808                                         SmallVector<int, 16> Indices,
2809                                         SelectionDAG &DAG) {
2810   assert((Indices.size() % 2) == 0);
2811 
2812   unsigned HalfSize = Indices.size() / 2;
2813   SDValue Wt;
2814   SDValue Ws;
2815   const auto &Begin = Indices.begin();
2816   const auto &End = Indices.end();
2817 
2818   // Check even elements are taken from the left (highest-indexed) elements of
2819   // one half or the other and pick an operand accordingly.
2820   if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
2821     Wt = Op->getOperand(0);
2822   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
2823     Wt = Op->getOperand(1);
2824   else
2825     return SDValue();
2826 
2827   // Check odd elements are taken from the left (highest-indexed) elements of
2828   // one half or the other and pick an operand accordingly.
2829   if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
2830     Ws = Op->getOperand(0);
2831   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
2832                                    1))
2833     Ws = Op->getOperand(1);
2834   else
2835     return SDValue();
2836 
2837   return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
2838 }
2839 
2840 // Lower VECTOR_SHUFFLE into PCKEV (if possible).
2841 //
2842 // PCKEV copies the even elements of each vector into the result vector.
2843 //
2844 // It is possible to lower into PCKEV when the mask consists of two of the
2845 // following forms concatenated:
2846 //   <0, 2, 4, ...>
2847 //   <n, n+2, n+4, ...>
2848 // where n is the number of elements in the vector.
2849 // For example:
2850 //   <0, 2, 4, ..., 0, 2, 4, ...>
2851 //   <0, 2, 4, ..., n, n+2, n+4, ...>
2852 //
2853 // When undef's appear in the mask they are treated as if they were whatever
2854 // value is necessary in order to fit the above forms.
2855 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2856                                          SmallVector<int, 16> Indices,
2857                                          SelectionDAG &DAG) {
2858   assert((Indices.size() % 2) == 0);
2859 
2860   SDValue Wt;
2861   SDValue Ws;
2862   const auto &Begin = Indices.begin();
2863   const auto &Mid = Indices.begin() + Indices.size() / 2;
2864   const auto &End = Indices.end();
2865 
2866   if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
2867     Wt = Op->getOperand(0);
2868   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
2869     Wt = Op->getOperand(1);
2870   else
2871     return SDValue();
2872 
2873   if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
2874     Ws = Op->getOperand(0);
2875   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
2876     Ws = Op->getOperand(1);
2877   else
2878     return SDValue();
2879 
2880   return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
2881 }
2882 
2883 // Lower VECTOR_SHUFFLE into PCKOD (if possible).
2884 //
2885 // PCKOD copies the odd elements of each vector into the result vector.
2886 //
2887 // It is possible to lower into PCKOD when the mask consists of two of the
2888 // following forms concatenated:
2889 //   <1, 3, 5, ...>
2890 //   <n+1, n+3, n+5, ...>
2891 // where n is the number of elements in the vector.
2892 // For example:
2893 //   <1, 3, 5, ..., 1, 3, 5, ...>
2894 //   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2895 //
2896 // When undef's appear in the mask they are treated as if they were whatever
2897 // value is necessary in order to fit the above forms.
2898 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2899                                          SmallVector<int, 16> Indices,
2900                                          SelectionDAG &DAG) {
2901   assert((Indices.size() % 2) == 0);
2902 
2903   SDValue Wt;
2904   SDValue Ws;
2905   const auto &Begin = Indices.begin();
2906   const auto &Mid = Indices.begin() + Indices.size() / 2;
2907   const auto &End = Indices.end();
2908 
2909   if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
2910     Wt = Op->getOperand(0);
2911   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
2912     Wt = Op->getOperand(1);
2913   else
2914     return SDValue();
2915 
2916   if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
2917     Ws = Op->getOperand(0);
2918   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
2919     Ws = Op->getOperand(1);
2920   else
2921     return SDValue();
2922 
2923   return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
2924 }
2925 
2926 // Lower VECTOR_SHUFFLE into VSHF.
2927 //
2928 // This mostly consists of converting the shuffle indices in Indices into a
2929 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2930 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2931 // if the type is v8i16 and all the indices are less than 8 then the second
2932 // operand is unused and can be replaced with anything. We choose to replace it
2933 // with the used operand since this reduces the number of instructions overall.
2934 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2935                                         SmallVector<int, 16> Indices,
2936                                         SelectionDAG &DAG) {
2937   SmallVector<SDValue, 16> Ops;
2938   SDValue Op0;
2939   SDValue Op1;
2940   EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2941   EVT MaskEltTy = MaskVecTy.getVectorElementType();
2942   bool Using1stVec = false;
2943   bool Using2ndVec = false;
2944   SDLoc DL(Op);
2945   int ResTyNumElts = ResTy.getVectorNumElements();
2946 
2947   for (int i = 0; i < ResTyNumElts; ++i) {
2948     // Idx == -1 means UNDEF
2949     int Idx = Indices[i];
2950 
2951     if (0 <= Idx && Idx < ResTyNumElts)
2952       Using1stVec = true;
2953     if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2954       Using2ndVec = true;
2955   }
2956 
2957   for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
2958        ++I)
2959     Ops.push_back(DAG.getTargetConstant(*I, DL, MaskEltTy));
2960 
2961   SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
2962 
2963   if (Using1stVec && Using2ndVec) {
2964     Op0 = Op->getOperand(0);
2965     Op1 = Op->getOperand(1);
2966   } else if (Using1stVec)
2967     Op0 = Op1 = Op->getOperand(0);
2968   else if (Using2ndVec)
2969     Op0 = Op1 = Op->getOperand(1);
2970   else
2971     llvm_unreachable("shuffle vector mask references neither vector operand?");
2972 
2973   // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
2974   // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
2975   // VSHF concatenates the vectors in a bitwise fashion:
2976   // <0b00, 0b01> + <0b10, 0b11> ->
2977   // 0b0100       + 0b1110       -> 0b01001110
2978   //                                <0b10, 0b11, 0b00, 0b01>
2979   // We must therefore swap the operands to get the correct result.
2980   return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
2981 }
2982 
2983 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2984 // indices in the shuffle.
2985 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2986                                                   SelectionDAG &DAG) const {
2987   ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2988   EVT ResTy = Op->getValueType(0);
2989 
2990   if (!ResTy.is128BitVector())
2991     return SDValue();
2992 
2993   int ResTyNumElts = ResTy.getVectorNumElements();
2994   SmallVector<int, 16> Indices;
2995 
2996   for (int i = 0; i < ResTyNumElts; ++i)
2997     Indices.push_back(Node->getMaskElt(i));
2998 
2999   // splati.[bhwd] is preferable to the others but is matched from
3000   // MipsISD::VSHF.
3001   if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
3002     return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
3003   SDValue Result;
3004   if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
3005     return Result;
3006   if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
3007     return Result;
3008   if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
3009     return Result;
3010   if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
3011     return Result;
3012   if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
3013     return Result;
3014   if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
3015     return Result;
3016   if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
3017     return Result;
3018   return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
3019 }
3020 
3021 MachineBasicBlock *
3022 MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
3023                                    MachineBasicBlock *BB) const {
3024   // $bb:
3025   //  bposge32_pseudo $vr0
3026   //  =>
3027   // $bb:
3028   //  bposge32 $tbb
3029   // $fbb:
3030   //  li $vr2, 0
3031   //  b $sink
3032   // $tbb:
3033   //  li $vr1, 1
3034   // $sink:
3035   //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
3036 
3037   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3038   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3039   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3040   DebugLoc DL = MI.getDebugLoc();
3041   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3042   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3043   MachineFunction *F = BB->getParent();
3044   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3045   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3046   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3047   F->insert(It, FBB);
3048   F->insert(It, TBB);
3049   F->insert(It, Sink);
3050 
3051   // Transfer the remainder of BB and its successor edges to Sink.
3052   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3053                BB->end());
3054   Sink->transferSuccessorsAndUpdatePHIs(BB);
3055 
3056   // Add successors.
3057   BB->addSuccessor(FBB);
3058   BB->addSuccessor(TBB);
3059   FBB->addSuccessor(Sink);
3060   TBB->addSuccessor(Sink);
3061 
3062   // Insert the real bposge32 instruction to $BB.
3063   BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
3064   // Insert the real bposge32c instruction to $BB.
3065   BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
3066 
3067   // Fill $FBB.
3068   Register VR2 = RegInfo.createVirtualRegister(RC);
3069   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
3070     .addReg(Mips::ZERO).addImm(0);
3071   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3072 
3073   // Fill $TBB.
3074   Register VR1 = RegInfo.createVirtualRegister(RC);
3075   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
3076     .addReg(Mips::ZERO).addImm(1);
3077 
3078   // Insert phi function to $Sink.
3079   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3080           MI.getOperand(0).getReg())
3081       .addReg(VR2)
3082       .addMBB(FBB)
3083       .addReg(VR1)
3084       .addMBB(TBB);
3085 
3086   MI.eraseFromParent(); // The pseudo instruction is gone now.
3087   return Sink;
3088 }
3089 
3090 MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
3091     MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
3092   // $bb:
3093   //  vany_nonzero $rd, $ws
3094   //  =>
3095   // $bb:
3096   //  bnz.b $ws, $tbb
3097   //  b $fbb
3098   // $fbb:
3099   //  li $rd1, 0
3100   //  b $sink
3101   // $tbb:
3102   //  li $rd2, 1
3103   // $sink:
3104   //  $rd = phi($rd1, $fbb, $rd2, $tbb)
3105 
3106   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3107   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3108   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3109   DebugLoc DL = MI.getDebugLoc();
3110   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3111   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3112   MachineFunction *F = BB->getParent();
3113   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3114   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3115   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3116   F->insert(It, FBB);
3117   F->insert(It, TBB);
3118   F->insert(It, Sink);
3119 
3120   // Transfer the remainder of BB and its successor edges to Sink.
3121   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3122                BB->end());
3123   Sink->transferSuccessorsAndUpdatePHIs(BB);
3124 
3125   // Add successors.
3126   BB->addSuccessor(FBB);
3127   BB->addSuccessor(TBB);
3128   FBB->addSuccessor(Sink);
3129   TBB->addSuccessor(Sink);
3130 
3131   // Insert the real bnz.b instruction to $BB.
3132   BuildMI(BB, DL, TII->get(BranchOp))
3133       .addReg(MI.getOperand(1).getReg())
3134       .addMBB(TBB);
3135 
3136   // Fill $FBB.
3137   Register RD1 = RegInfo.createVirtualRegister(RC);
3138   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
3139     .addReg(Mips::ZERO).addImm(0);
3140   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3141 
3142   // Fill $TBB.
3143   Register RD2 = RegInfo.createVirtualRegister(RC);
3144   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
3145     .addReg(Mips::ZERO).addImm(1);
3146 
3147   // Insert phi function to $Sink.
3148   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3149           MI.getOperand(0).getReg())
3150       .addReg(RD1)
3151       .addMBB(FBB)
3152       .addReg(RD2)
3153       .addMBB(TBB);
3154 
3155   MI.eraseFromParent(); // The pseudo instruction is gone now.
3156   return Sink;
3157 }
3158 
3159 // Emit the COPY_FW pseudo instruction.
3160 //
3161 // copy_fw_pseudo $fd, $ws, n
3162 // =>
3163 // copy_u_w $rt, $ws, $n
3164 // mtc1     $rt, $fd
3165 //
3166 // When n is zero, the equivalent operation can be performed with (potentially)
3167 // zero instructions due to register overlaps. This optimization is never valid
3168 // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
3169 MachineBasicBlock *
3170 MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
3171                                   MachineBasicBlock *BB) const {
3172   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3173   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3174   DebugLoc DL = MI.getDebugLoc();
3175   Register Fd = MI.getOperand(0).getReg();
3176   Register Ws = MI.getOperand(1).getReg();
3177   unsigned Lane = MI.getOperand(2).getImm();
3178 
3179   if (Lane == 0) {
3180     unsigned Wt = Ws;
3181     if (!Subtarget.useOddSPReg()) {
3182       // We must copy to an even-numbered MSA register so that the
3183       // single-precision sub-register is also guaranteed to be even-numbered.
3184       Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
3185 
3186       BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
3187     }
3188 
3189     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3190   } else {
3191     Register Wt = RegInfo.createVirtualRegister(
3192         Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3193                                 : &Mips::MSA128WEvensRegClass);
3194 
3195     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
3196     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3197   }
3198 
3199   MI.eraseFromParent(); // The pseudo instruction is gone now.
3200   return BB;
3201 }
3202 
3203 // Emit the COPY_FD pseudo instruction.
3204 //
3205 // copy_fd_pseudo $fd, $ws, n
3206 // =>
3207 // splati.d $wt, $ws, $n
3208 // copy $fd, $wt:sub_64
3209 //
3210 // When n is zero, the equivalent operation can be performed with (potentially)
3211 // zero instructions due to register overlaps. This optimization is always
3212 // valid because FR=1 mode which is the only supported mode in MSA.
3213 MachineBasicBlock *
3214 MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
3215                                   MachineBasicBlock *BB) const {
3216   assert(Subtarget.isFP64bit());
3217 
3218   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3219   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3220   Register Fd = MI.getOperand(0).getReg();
3221   Register Ws = MI.getOperand(1).getReg();
3222   unsigned Lane = MI.getOperand(2).getImm() * 2;
3223   DebugLoc DL = MI.getDebugLoc();
3224 
3225   if (Lane == 0)
3226     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
3227   else {
3228     Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3229 
3230     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
3231     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
3232   }
3233 
3234   MI.eraseFromParent(); // The pseudo instruction is gone now.
3235   return BB;
3236 }
3237 
3238 // Emit the INSERT_FW pseudo instruction.
3239 //
3240 // insert_fw_pseudo $wd, $wd_in, $n, $fs
3241 // =>
3242 // subreg_to_reg $wt:sub_lo, $fs
3243 // insve_w $wd[$n], $wd_in, $wt[0]
3244 MachineBasicBlock *
3245 MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
3246                                     MachineBasicBlock *BB) const {
3247   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3248   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3249   DebugLoc DL = MI.getDebugLoc();
3250   Register Wd = MI.getOperand(0).getReg();
3251   Register Wd_in = MI.getOperand(1).getReg();
3252   unsigned Lane = MI.getOperand(2).getImm();
3253   Register Fs = MI.getOperand(3).getReg();
3254   Register Wt = RegInfo.createVirtualRegister(
3255       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3256                               : &Mips::MSA128WEvensRegClass);
3257 
3258   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3259       .addImm(0)
3260       .addReg(Fs)
3261       .addImm(Mips::sub_lo);
3262   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
3263       .addReg(Wd_in)
3264       .addImm(Lane)
3265       .addReg(Wt)
3266       .addImm(0);
3267 
3268   MI.eraseFromParent(); // The pseudo instruction is gone now.
3269   return BB;
3270 }
3271 
3272 // Emit the INSERT_FD pseudo instruction.
3273 //
3274 // insert_fd_pseudo $wd, $fs, n
3275 // =>
3276 // subreg_to_reg $wt:sub_64, $fs
3277 // insve_d $wd[$n], $wd_in, $wt[0]
3278 MachineBasicBlock *
3279 MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
3280                                     MachineBasicBlock *BB) const {
3281   assert(Subtarget.isFP64bit());
3282 
3283   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3284   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3285   DebugLoc DL = MI.getDebugLoc();
3286   Register Wd = MI.getOperand(0).getReg();
3287   Register Wd_in = MI.getOperand(1).getReg();
3288   unsigned Lane = MI.getOperand(2).getImm();
3289   Register Fs = MI.getOperand(3).getReg();
3290   Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3291 
3292   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3293       .addImm(0)
3294       .addReg(Fs)
3295       .addImm(Mips::sub_64);
3296   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
3297       .addReg(Wd_in)
3298       .addImm(Lane)
3299       .addReg(Wt)
3300       .addImm(0);
3301 
3302   MI.eraseFromParent(); // The pseudo instruction is gone now.
3303   return BB;
3304 }
3305 
3306 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
3307 //
3308 // For integer:
3309 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
3310 // =>
3311 // (SLL $lanetmp1, $lane, <log2size)
3312 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3313 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
3314 // (NEG $lanetmp2, $lanetmp1)
3315 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3316 //
3317 // For floating point:
3318 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
3319 // =>
3320 // (SUBREG_TO_REG $wt, $fs, <subreg>)
3321 // (SLL $lanetmp1, $lane, <log2size)
3322 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3323 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
3324 // (NEG $lanetmp2, $lanetmp1)
3325 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3326 MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
3327     MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
3328     bool IsFP) const {
3329   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3330   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3331   DebugLoc DL = MI.getDebugLoc();
3332   Register Wd = MI.getOperand(0).getReg();
3333   Register SrcVecReg = MI.getOperand(1).getReg();
3334   Register LaneReg = MI.getOperand(2).getReg();
3335   Register SrcValReg = MI.getOperand(3).getReg();
3336 
3337   const TargetRegisterClass *VecRC = nullptr;
3338   // FIXME: This should be true for N32 too.
3339   const TargetRegisterClass *GPRRC =
3340       Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3341   unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
3342   unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
3343   unsigned EltLog2Size;
3344   unsigned InsertOp = 0;
3345   unsigned InsveOp = 0;
3346   switch (EltSizeInBytes) {
3347   default:
3348     llvm_unreachable("Unexpected size");
3349   case 1:
3350     EltLog2Size = 0;
3351     InsertOp = Mips::INSERT_B;
3352     InsveOp = Mips::INSVE_B;
3353     VecRC = &Mips::MSA128BRegClass;
3354     break;
3355   case 2:
3356     EltLog2Size = 1;
3357     InsertOp = Mips::INSERT_H;
3358     InsveOp = Mips::INSVE_H;
3359     VecRC = &Mips::MSA128HRegClass;
3360     break;
3361   case 4:
3362     EltLog2Size = 2;
3363     InsertOp = Mips::INSERT_W;
3364     InsveOp = Mips::INSVE_W;
3365     VecRC = &Mips::MSA128WRegClass;
3366     break;
3367   case 8:
3368     EltLog2Size = 3;
3369     InsertOp = Mips::INSERT_D;
3370     InsveOp = Mips::INSVE_D;
3371     VecRC = &Mips::MSA128DRegClass;
3372     break;
3373   }
3374 
3375   if (IsFP) {
3376     Register Wt = RegInfo.createVirtualRegister(VecRC);
3377     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3378         .addImm(0)
3379         .addReg(SrcValReg)
3380         .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
3381     SrcValReg = Wt;
3382   }
3383 
3384   // Convert the lane index into a byte index
3385   if (EltSizeInBytes != 1) {
3386     Register LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
3387     BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
3388         .addReg(LaneReg)
3389         .addImm(EltLog2Size);
3390     LaneReg = LaneTmp1;
3391   }
3392 
3393   // Rotate bytes around so that the desired lane is element zero
3394   Register WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3395   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3396       .addReg(SrcVecReg)
3397       .addReg(SrcVecReg)
3398       .addReg(LaneReg, 0, SubRegIdx);
3399 
3400   Register WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3401   if (IsFP) {
3402     // Use insve.df to insert to element zero
3403     BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3404         .addReg(WdTmp1)
3405         .addImm(0)
3406         .addReg(SrcValReg)
3407         .addImm(0);
3408   } else {
3409     // Use insert.df to insert to element zero
3410     BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3411         .addReg(WdTmp1)
3412         .addReg(SrcValReg)
3413         .addImm(0);
3414   }
3415 
3416   // Rotate elements the rest of the way for a full rotation.
3417   // sld.df inteprets $rt modulo the number of columns so we only need to negate
3418   // the lane index to do this.
3419   Register LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3420   BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
3421           LaneTmp2)
3422       .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
3423       .addReg(LaneReg);
3424   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3425       .addReg(WdTmp2)
3426       .addReg(WdTmp2)
3427       .addReg(LaneTmp2, 0, SubRegIdx);
3428 
3429   MI.eraseFromParent(); // The pseudo instruction is gone now.
3430   return BB;
3431 }
3432 
3433 // Emit the FILL_FW pseudo instruction.
3434 //
3435 // fill_fw_pseudo $wd, $fs
3436 // =>
3437 // implicit_def $wt1
3438 // insert_subreg $wt2:subreg_lo, $wt1, $fs
3439 // splati.w $wd, $wt2[0]
3440 MachineBasicBlock *
3441 MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
3442                                   MachineBasicBlock *BB) const {
3443   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3444   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3445   DebugLoc DL = MI.getDebugLoc();
3446   Register Wd = MI.getOperand(0).getReg();
3447   Register Fs = MI.getOperand(1).getReg();
3448   Register Wt1 = RegInfo.createVirtualRegister(
3449       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3450                               : &Mips::MSA128WEvensRegClass);
3451   Register Wt2 = RegInfo.createVirtualRegister(
3452       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3453                               : &Mips::MSA128WEvensRegClass);
3454 
3455   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3456   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3457       .addReg(Wt1)
3458       .addReg(Fs)
3459       .addImm(Mips::sub_lo);
3460   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3461 
3462   MI.eraseFromParent(); // The pseudo instruction is gone now.
3463   return BB;
3464 }
3465 
3466 // Emit the FILL_FD pseudo instruction.
3467 //
3468 // fill_fd_pseudo $wd, $fs
3469 // =>
3470 // implicit_def $wt1
3471 // insert_subreg $wt2:subreg_64, $wt1, $fs
3472 // splati.d $wd, $wt2[0]
3473 MachineBasicBlock *
3474 MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
3475                                   MachineBasicBlock *BB) const {
3476   assert(Subtarget.isFP64bit());
3477 
3478   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3479   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3480   DebugLoc DL = MI.getDebugLoc();
3481   Register Wd = MI.getOperand(0).getReg();
3482   Register Fs = MI.getOperand(1).getReg();
3483   Register Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3484   Register Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3485 
3486   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3487   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3488       .addReg(Wt1)
3489       .addReg(Fs)
3490       .addImm(Mips::sub_64);
3491   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3492 
3493   MI.eraseFromParent(); // The pseudo instruction is gone now.
3494   return BB;
3495 }
3496 
3497 // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA
3498 // register.
3499 //
3500 // STF16 MSA128F16:$wd, mem_simm10:$addr
3501 // =>
3502 //  copy_u.h $rtemp,$wd[0]
3503 //  sh $rtemp, $addr
3504 //
3505 // Safety: We can't use st.h & co as they would over write the memory after
3506 // the destination. It would require half floats be allocated 16 bytes(!) of
3507 // space.
3508 MachineBasicBlock *
3509 MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI,
3510                                        MachineBasicBlock *BB) const {
3511 
3512   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3513   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3514   DebugLoc DL = MI.getDebugLoc();
3515   Register Ws = MI.getOperand(0).getReg();
3516   Register Rt = MI.getOperand(1).getReg();
3517   const MachineMemOperand &MMO = **MI.memoperands_begin();
3518   unsigned Imm = MMO.getOffset();
3519 
3520   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3521   //          spill and reload can expand as a GPR64 operand. Examine the
3522   //          operand in detail and default to ABI.
3523   const TargetRegisterClass *RC =
3524       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3525                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3526                                                         : &Mips::GPR64RegClass);
3527   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3528   Register Rs = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3529 
3530   BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0);
3531   if(!UsingMips32) {
3532     Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR64RegClass);
3533     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Tmp)
3534         .addImm(0)
3535         .addReg(Rs)
3536         .addImm(Mips::sub_32);
3537     Rs = Tmp;
3538   }
3539   BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64))
3540       .addReg(Rs)
3541       .addReg(Rt)
3542       .addImm(Imm)
3543       .addMemOperand(BB->getParent()->getMachineMemOperand(
3544           &MMO, MMO.getOffset(), MMO.getSize()));
3545 
3546   MI.eraseFromParent();
3547   return BB;
3548 }
3549 
3550 // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register.
3551 //
3552 // LD_F16 MSA128F16:$wd, mem_simm10:$addr
3553 // =>
3554 //  lh $rtemp, $addr
3555 //  fill.h $wd, $rtemp
3556 //
3557 // Safety: We can't use ld.h & co as they over-read from the source.
3558 // Additionally, if the address is not modulo 16, 2 cases can occur:
3559 //  a) Segmentation fault as the load instruction reads from a memory page
3560 //     memory it's not supposed to.
3561 //  b) The load crosses an implementation specific boundary, requiring OS
3562 //     intervention.
3563 MachineBasicBlock *
3564 MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI,
3565                                        MachineBasicBlock *BB) const {
3566 
3567   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3568   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3569   DebugLoc DL = MI.getDebugLoc();
3570   Register Wd = MI.getOperand(0).getReg();
3571 
3572   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3573   //          spill and reload can expand as a GPR64 operand. Examine the
3574   //          operand in detail and default to ABI.
3575   const TargetRegisterClass *RC =
3576       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3577                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3578                                                         : &Mips::GPR64RegClass);
3579 
3580   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3581   Register Rt = RegInfo.createVirtualRegister(RC);
3582 
3583   MachineInstrBuilder MIB =
3584       BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt);
3585   for (unsigned i = 1; i < MI.getNumOperands(); i++)
3586     MIB.add(MI.getOperand(i));
3587 
3588   if(!UsingMips32) {
3589     Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3590     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Tmp).addReg(Rt, 0, Mips::sub_32);
3591     Rt = Tmp;
3592   }
3593 
3594   BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt);
3595 
3596   MI.eraseFromParent();
3597   return BB;
3598 }
3599 
3600 // Emit the FPROUND_PSEUDO instruction.
3601 //
3602 // Round an FGR64Opnd, FGR32Opnd to an f16.
3603 //
3604 // Safety: Cycle the operand through the GPRs so the result always ends up
3605 //         the correct MSA register.
3606 //
3607 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs
3608 //        / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register
3609 //        (which they can be, as the MSA registers are defined to alias the
3610 //        FPU's 64 bit and 32 bit registers) the result can be accessed using
3611 //        the correct register class. That requires operands be tie-able across
3612 //        register classes which have a sub/super register class relationship.
3613 //
3614 // For FPG32Opnd:
3615 //
3616 // FPROUND MSA128F16:$wd, FGR32Opnd:$fs
3617 // =>
3618 //  mfc1 $rtemp, $fs
3619 //  fill.w $rtemp, $wtemp
3620 //  fexdo.w $wd, $wtemp, $wtemp
3621 //
3622 // For FPG64Opnd on mips32r2+:
3623 //
3624 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3625 // =>
3626 //  mfc1 $rtemp, $fs
3627 //  fill.w $rtemp, $wtemp
3628 //  mfhc1 $rtemp2, $fs
3629 //  insert.w $wtemp[1], $rtemp2
3630 //  insert.w $wtemp[3], $rtemp2
3631 //  fexdo.w $wtemp2, $wtemp, $wtemp
3632 //  fexdo.h $wd, $temp2, $temp2
3633 //
3634 // For FGR64Opnd on mips64r2+:
3635 //
3636 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3637 // =>
3638 //  dmfc1 $rtemp, $fs
3639 //  fill.d $rtemp, $wtemp
3640 //  fexdo.w $wtemp2, $wtemp, $wtemp
3641 //  fexdo.h $wd, $wtemp2, $wtemp2
3642 //
3643 // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the
3644 //              undef bits are "just right" and the exception enable bits are
3645 //              set. By using fill.w to replicate $fs into all elements over
3646 //              insert.w for one element, we avoid that potiential case. If
3647 //              fexdo.[hw] causes an exception in, the exception is valid and it
3648 //              occurs for all elements.
3649 MachineBasicBlock *
3650 MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI,
3651                                          MachineBasicBlock *BB,
3652                                          bool IsFGR64) const {
3653 
3654   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3655   // here. It's technically doable to support MIPS32 here, but the ISA forbids
3656   // it.
3657   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3658 
3659   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3660   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3661 
3662   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3663   DebugLoc DL = MI.getDebugLoc();
3664   Register Wd = MI.getOperand(0).getReg();
3665   Register Fs = MI.getOperand(1).getReg();
3666 
3667   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3668   Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3669   const TargetRegisterClass *GPRRC =
3670       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3671   unsigned MFC1Opc = IsFGR64onMips64
3672                          ? Mips::DMFC1
3673                          : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1);
3674   unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W;
3675 
3676   // Perform the register class copy as mentioned above.
3677   Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3678   BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs);
3679   BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp);
3680   unsigned WPHI = Wtemp;
3681 
3682   if (IsFGR64onMips32) {
3683     Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3684     BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs);
3685     Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3686     Register Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3687     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2)
3688         .addReg(Wtemp)
3689         .addReg(Rtemp2)
3690         .addImm(1);
3691     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3)
3692         .addReg(Wtemp2)
3693         .addReg(Rtemp2)
3694         .addImm(3);
3695     WPHI = Wtemp3;
3696   }
3697 
3698   if (IsFGR64) {
3699     Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3700     BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2)
3701         .addReg(WPHI)
3702         .addReg(WPHI);
3703     WPHI = Wtemp2;
3704   }
3705 
3706   BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI);
3707 
3708   MI.eraseFromParent();
3709   return BB;
3710 }
3711 
3712 // Emit the FPEXTEND_PSEUDO instruction.
3713 //
3714 // Expand an f16 to either a FGR32Opnd or FGR64Opnd.
3715 //
3716 // Safety: Cycle the result through the GPRs so the result always ends up
3717 //         the correct floating point register.
3718 //
3719 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd
3720 //        / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register
3721 //        (which they can be, as the MSA registers are defined to alias the
3722 //        FPU's 64 bit and 32 bit registers) the result can be accessed using
3723 //        the correct register class. That requires operands be tie-able across
3724 //        register classes which have a sub/super register class relationship. I
3725 //        haven't checked.
3726 //
3727 // For FGR32Opnd:
3728 //
3729 // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws
3730 // =>
3731 //  fexupr.w $wtemp, $ws
3732 //  copy_s.w $rtemp, $ws[0]
3733 //  mtc1 $rtemp, $fd
3734 //
3735 // For FGR64Opnd on Mips64:
3736 //
3737 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3738 // =>
3739 //  fexupr.w $wtemp, $ws
3740 //  fexupr.d $wtemp2, $wtemp
3741 //  copy_s.d $rtemp, $wtemp2s[0]
3742 //  dmtc1 $rtemp, $fd
3743 //
3744 // For FGR64Opnd on Mips32:
3745 //
3746 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3747 // =>
3748 //  fexupr.w $wtemp, $ws
3749 //  fexupr.d $wtemp2, $wtemp
3750 //  copy_s.w $rtemp, $wtemp2[0]
3751 //  mtc1 $rtemp, $ftemp
3752 //  copy_s.w $rtemp2, $wtemp2[1]
3753 //  $fd = mthc1 $rtemp2, $ftemp
3754 MachineBasicBlock *
3755 MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI,
3756                                           MachineBasicBlock *BB,
3757                                           bool IsFGR64) const {
3758 
3759   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3760   // here. It's technically doable to support MIPS32 here, but the ISA forbids
3761   // it.
3762   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3763 
3764   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3765   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3766 
3767   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3768   DebugLoc DL = MI.getDebugLoc();
3769   Register Fd = MI.getOperand(0).getReg();
3770   Register Ws = MI.getOperand(1).getReg();
3771 
3772   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3773   const TargetRegisterClass *GPRRC =
3774       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3775   unsigned MTC1Opc = IsFGR64onMips64
3776                          ? Mips::DMTC1
3777                          : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1);
3778   Register COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W;
3779 
3780   Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3781   Register WPHI = Wtemp;
3782 
3783   BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws);
3784   if (IsFGR64) {
3785     WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3786     BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp);
3787   }
3788 
3789   // Perform the safety regclass copy mentioned above.
3790   Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3791   Register FPRPHI = IsFGR64onMips32
3792                         ? RegInfo.createVirtualRegister(&Mips::FGR64RegClass)
3793                         : Fd;
3794   BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0);
3795   BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp);
3796 
3797   if (IsFGR64onMips32) {
3798     Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3799     BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2)
3800         .addReg(WPHI)
3801         .addImm(1);
3802     BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd)
3803         .addReg(FPRPHI)
3804         .addReg(Rtemp2);
3805   }
3806 
3807   MI.eraseFromParent();
3808   return BB;
3809 }
3810 
3811 // Emit the FEXP2_W_1 pseudo instructions.
3812 //
3813 // fexp2_w_1_pseudo $wd, $wt
3814 // =>
3815 // ldi.w $ws, 1
3816 // fexp2.w $wd, $ws, $wt
3817 MachineBasicBlock *
3818 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
3819                                     MachineBasicBlock *BB) const {
3820   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3821   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3822   const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3823   Register Ws1 = RegInfo.createVirtualRegister(RC);
3824   Register Ws2 = RegInfo.createVirtualRegister(RC);
3825   DebugLoc DL = MI.getDebugLoc();
3826 
3827   // Splat 1.0 into a vector
3828   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3829   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3830 
3831   // Emit 1.0 * fexp2(Wt)
3832   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
3833       .addReg(Ws2)
3834       .addReg(MI.getOperand(1).getReg());
3835 
3836   MI.eraseFromParent(); // The pseudo instruction is gone now.
3837   return BB;
3838 }
3839 
3840 // Emit the FEXP2_D_1 pseudo instructions.
3841 //
3842 // fexp2_d_1_pseudo $wd, $wt
3843 // =>
3844 // ldi.d $ws, 1
3845 // fexp2.d $wd, $ws, $wt
3846 MachineBasicBlock *
3847 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
3848                                     MachineBasicBlock *BB) const {
3849   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3850   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3851   const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3852   Register Ws1 = RegInfo.createVirtualRegister(RC);
3853   Register Ws2 = RegInfo.createVirtualRegister(RC);
3854   DebugLoc DL = MI.getDebugLoc();
3855 
3856   // Splat 1.0 into a vector
3857   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3858   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3859 
3860   // Emit 1.0 * fexp2(Wt)
3861   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
3862       .addReg(Ws2)
3863       .addReg(MI.getOperand(1).getReg());
3864 
3865   MI.eraseFromParent(); // The pseudo instruction is gone now.
3866   return BB;
3867 }
3868